JP2010121683A - Shaft seal device - Google Patents

Shaft seal device Download PDF

Info

Publication number
JP2010121683A
JP2010121683A JP2008294813A JP2008294813A JP2010121683A JP 2010121683 A JP2010121683 A JP 2010121683A JP 2008294813 A JP2008294813 A JP 2008294813A JP 2008294813 A JP2008294813 A JP 2008294813A JP 2010121683 A JP2010121683 A JP 2010121683A
Authority
JP
Japan
Prior art keywords
seal
sleeve
shaft
sliding surface
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008294813A
Other languages
Japanese (ja)
Inventor
Hironobu Fujii
博允 藤井
Yoji Murakami
洋二 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Starlite Co Ltd
Original Assignee
Starlite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Starlite Co Ltd filed Critical Starlite Co Ltd
Priority to JP2008294813A priority Critical patent/JP2010121683A/en
Publication of JP2010121683A publication Critical patent/JP2010121683A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sealing With Elastic Sealing Lips (AREA)
  • Sealing Of Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shaft seal device based on the new concept which exhibits effective sealing performance with respect to axial eccentricity and axial forward/backward movement, has an advantage of lip seal and labyrinth seal, simultaneously, is excellent in sealing performance from a low speed to a high speed of circumferential speed of the rotary shaft, and does not cause deadly sealing performance reduction at a stretch even when a frictional damage of contact seal member occurs. <P>SOLUTION: The shaft seal device is produced by synthetic resin with elastic storage profile, and consists of a seal body 3, in which a periphery of a flat disc seal plate 5 having a central hole 6 bigger than a diameter of a rotary shaft 1 is fixed to an annular securing section 7, and a sleeve 4, which has a sliding surface 9 inclined to the opposite side with respect to a sealed object as it approaches the radial outside in a part of a body section 8 outer fixed to the rotary shaft. The annular securing section of the seal body is attached to a casing 2, and the rotary shaft is fixed so that the sliding surface of the sleeve may contact an inner circumferential section of the seal plate from the opposite side of the sealed object. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、一般産業用機械、ブロアー、ポンプ等の回転・揺動軸の軸封装置に係わり、更に詳しくは回転・揺動シャフトから作動流体の漏洩又は外部からのダスト、ミスト、粉体の侵入を防止し、周速度が低速から高速まで使用可能な軸封装置に関するものである。   The present invention relates to a shaft seal device for rotating / oscillating shafts of general industrial machines, blowers, pumps, and the like, and more specifically, leakage of working fluid from the rotating / oscillating shaft or dust, mist, powder from the outside. The present invention relates to a shaft seal device that prevents intrusion and can be used from a low peripheral speed to a high peripheral speed.

従来から、回転シャフトとケーシングの間を作動流体に対してシールする軸封装置として、接触型シールと非接触型シールがあり、接触型シールには接触型メカニカルシールやリップシールがあり、非接触型シールには非接触型メカニカルシールやラビリンスシールがある。メカニカルシールは、高圧の軸封が可能であるが、非常に高価であるとともに、設置のためのスペースが大きいという問題があり、使用環境に応じてリップシールあるいはラビリンスシールが単独で又は組み合わせて使用されることが多い。一般的に、リップシールは、比較的低周速で高シール性の用途に向き、ラビリンスシールは、高周速で比較的低シール性の用途に向いている。   Conventionally, there are contact type seals and non-contact type seals as shaft seal devices that seal between the rotating shaft and the casing against the working fluid, and contact type seals include contact type mechanical seals and lip seals, which are non-contact types. The mold seal includes a non-contact mechanical seal and a labyrinth seal. Mechanical seals are capable of high-pressure shaft seals, but are very expensive and have a problem of large installation space. Depending on the usage environment, lip seals or labyrinth seals are used alone or in combination. Often done. In general, the lip seal is suitable for a relatively low peripheral speed and high sealing performance, and the labyrinth seal is suitable for a high peripheral speed and relatively low sealing performance.

ここで、作動流体がガスの場合は無潤滑状態のシールとなり、非接触型のラビリンスシールが使用され、作動流体が液体の場合は潤滑状態のシールとなり、リップシール、オイルシール、パッキン等の接触型シールが用いられるが、両シールとも軸振れ追随性が乏しい。   Here, when the working fluid is gas, it becomes a non-lubricated seal, and a non-contact type labyrinth seal is used.When the working fluid is liquid, it becomes a lubricated seal, and contacts such as lip seals, oil seals, packings, etc. A mold seal is used, but both seals have poor shaft runout.

ラビリンスシールは、作動流体が狭い隙間と広い空間とを繰り返し通過することにより、圧力損失を生じさせて漏れを減少させる原理を利用しているため、ある程度の漏れは許容される用途、例えばターボチャージャーやブロアー等の高周速回転、あるいは揺動するシャフトのシールとして使用する。この漏れ量を減少させるために、隙間を極小にする工夫や複雑な流路にする工夫がなされているが、シール性、軸の収縮・膨張・軸振れに対する追随性に乏しい。金属製ラビリンスシールは、軸とのメタルタッチを防ぐために、軸間に隙間を設け、あるいは樹脂コート、樹脂スリーブを設ける必要がある。樹脂製ラビリンスシールでは、初期に軸に接触させることでシール部分を摩耗させ、最適なクリアランスにすることが行われている。接触型シールは、軸芯変動等により、シールの負荷が増加し、シール漏れ、シールの破損が起こることがある。   Labyrinth seals use the principle of reducing leakage by causing pressure loss by repeatedly passing the working fluid through narrow gaps and wide spaces. Used as a seal for rotating shafts or swinging shafts such as blowers and blowers. In order to reduce the amount of leakage, a device for minimizing the gap and a device for forming a complicated flow path have been devised, but the sealability, shaft shrinkage / expansion, and followability to shaft runout are poor. In order to prevent metal touch with the shaft, the metal labyrinth seal needs to provide a gap between the shafts, or provide a resin coat and a resin sleeve. In the labyrinth seal made of resin, the seal portion is initially worn to contact with the shaft so as to obtain an optimum clearance. In the contact-type seal, the load on the seal increases due to shaft center fluctuation or the like, and seal leakage or seal damage may occur.

特許文献1には、中央部に円孔を有する四フッ化エチレン樹脂製の円板状シール部材の外周部を保持環に固定するとともに、該円板状シール部材の内周部を軸方向に癖付けしてリップ部を形成したリップシールが記載されている。ここで、リップシール基材として、四フッ化エチレン樹脂にグラファイト粉末やカーボン繊維を適量充填したものを用い、耐摩耗性、耐圧性、耐熱性を改善している。   In Patent Document 1, the outer peripheral portion of a disc-shaped seal member made of ethylene tetrafluoride resin having a circular hole in the central portion is fixed to a retaining ring, and the inner peripheral portion of the disc-shaped seal member is axially fixed. A lip seal is described in which a lip portion is formed by brazing. Here, as the lip seal substrate, a tetrafluoroethylene resin filled with an appropriate amount of graphite powder or carbon fiber is used to improve wear resistance, pressure resistance, and heat resistance.

特許文献2には、ロータの外周に金属製のフィンの先端を微小間隙を介して対向させたラビリンスシールにおいて、前記微小間隙が基本的なシーリング性能を達成する値となるように前記フィンを形成し、前記フィンの先端を含む表面にフッ素系樹脂の薄い被覆膜を形成したことを特徴とする流体機械のラビリンスシールが記載されている。例えば、ロータは、直径が200mmで100m/sの周速度で回転し、フィン部材は、5mmのピッチで並べた5枚の5mmの高さフィンを有し、各フィンの先端は微小な対向間隙180μmを介在させて前記ロータの外周面に対向している。   In Patent Document 2, in a labyrinth seal in which the tip of a metal fin is opposed to the outer periphery of a rotor via a minute gap, the fin is formed so that the minute gap has a value that achieves basic sealing performance. In addition, a labyrinth seal for a fluid machine is described in which a thin coating film made of a fluororesin is formed on the surface including the tip of the fin. For example, the rotor has a diameter of 200 mm and rotates at a peripheral speed of 100 m / s, the fin member has five 5 mm height fins arranged at a pitch of 5 mm, and the tip of each fin has a minute opposing gap. It faces the outer peripheral surface of the rotor with 180 μm interposed.

軸偏芯が大きい場合、従来のラビリンスシールではメタルタッチが発生するので、これを避けるためにはシャフトとのクリアランスを大きくする必要があり、その結果漏れを大きく許容しなければならない。また、熱膨張等によるシャフトの前後運動に対しても追随性がない。更に、近年、機械の高速化が進んでおり、従来の接触型シールでは、速度、軸振れへ対応することができない。
特公平2−38832号公報 特願2001−129038号公報
When the shaft eccentricity is large, a metal touch is generated in the conventional labyrinth seal. To avoid this, it is necessary to increase the clearance with the shaft, and as a result, leakage must be greatly allowed. In addition, there is no followability to the longitudinal movement of the shaft due to thermal expansion or the like. Furthermore, in recent years, the speed of machines has been increased, and conventional contact seals cannot cope with speed and shaft runout.
Japanese Patent Publication No. 2-38832 Japanese Patent Application No. 2001-129038

そこで、本発明が前述の状況に鑑み、解決しようとするところは、軸偏芯、軸の前後運動に対しても有効なシール性を備え、リップシールとラビリンスシールの利点を併せ持った新規な概念の軸封装置を提案するものであり、つまり回転シャフトの周速度が低速から高速までシール性に優れ、接触シール部材の摩耗損傷が発生しても、一気に致命的なシール性低下に繋がらない軸封装置を提供する点にある。   Therefore, in view of the above-described situation, the present invention intends to solve a novel concept that has an effective sealing property against shaft eccentricity and shaft back-and-forth motion, and has the advantages of a lip seal and a labyrinth seal. This is a shaft seal device that offers excellent sealing performance from low to high peripheral speed of the rotating shaft, and shafts that do not lead to a fatal deterioration in sealing performance even if wear damage occurs on the contact seal member. The sealing device is provided.

本発明は、前述の課題解決のために、回転シャフトとケーシングの間をシールする軸封装置であって、弾性記憶特性を備えた合成樹脂で作製され、前記回転シャフトの直径よりも大きな中心孔を有する偏平円板状のシール板の外周部を環状保持部に固定したシール体と、前記回転シャフトに外挿固定する本体部の一部に、半径方向外側になるにつれて被封止物と反対側へ傾斜した摺動面を有するスリーブとからなり、前記シール体の環状保持部を前記ケーシングに取付け、被封止物と反対側から前記スリーブの摺動面が前記シール板の内周部に接触するように前記回転シャフトに固定することを特徴とする軸封装置を構成した(請求項1)。   In order to solve the above-mentioned problems, the present invention is a shaft seal device that seals between a rotating shaft and a casing, and is made of a synthetic resin having elastic memory characteristics, and has a central hole larger than the diameter of the rotating shaft. A seal body in which an outer peripheral portion of a flat disc-shaped seal plate having an annular shape is fixed to an annular holding portion, and a part of a main body portion that is extrapolated and fixed to the rotating shaft, is opposite to an object to be sealed as it becomes radially outward. A sleeve having a sliding surface inclined to the side, and the annular holding portion of the seal body is attached to the casing, and the sliding surface of the sleeve is located on the inner peripheral portion of the seal plate from the opposite side to the object to be sealed. The shaft seal device is configured to be fixed to the rotating shaft so as to be in contact with each other (Claim 1).

ここで、前記環状保持部に複数のシール板を軸方向に間隔を隔てて固定したシール体と、各シール板に対応した傾斜摺動面を軸方向に間隔を隔てて設けたスリーブとからなることも好ましい(請求項2)。   Here, a seal body in which a plurality of seal plates are fixed to the annular holding portion at intervals in the axial direction, and a sleeve in which inclined sliding surfaces corresponding to the seal plates are provided at intervals in the axial direction. It is also preferable (Claim 2).

そして、前記スリーブを回転シャフトに固定する軸方向位置で前記摺動面に対するシール板の接触面圧を調節してなることが好ましい(請求項3)。   Preferably, the contact surface pressure of the seal plate against the sliding surface is adjusted at an axial position where the sleeve is fixed to the rotating shaft.

具体的には、前記シール板の厚さが0.3〜1.5mmであり、該シール板の内周部に前記スリーブの摺動面が接触してから該シール板の厚みの0.5〜10倍だけ該スリーブを被封止物側へ変位させて固定してなるのである(請求項4)。   Specifically, the thickness of the seal plate is 0.3 to 1.5 mm, and the thickness of the seal plate is 0.5 after the sliding surface of the sleeve comes into contact with the inner peripheral portion of the seal plate. The sleeve is displaced and fixed to the object to be sealed side by 10 times (claim 4).

また、前記シール板の内周部と前記スリーブの摺動面との接触幅が0.5〜5.0mmである(請求項5)。   The contact width between the inner peripheral portion of the seal plate and the sliding surface of the sleeve is 0.5 to 5.0 mm.

更に、前記スリーブの摺動面の半径方向に対する傾斜角度が0〜45°であり、好ましくは10〜30°である(請求項6)。   Furthermore, the inclination angle of the sliding surface of the sleeve with respect to the radial direction is 0 to 45 °, preferably 10 to 30 ° (Claim 6).

そして、前記スリーブの摺動面の被封止物と反対側に円筒面を連続的に形成してなることがより好ましい(請求項7)。   It is more preferable that a cylindrical surface is continuously formed on the side of the sliding surface of the sleeve opposite to the object to be sealed (Claim 7).

また、前記シール体の環状保持部の一部若しくは該環状保持部に固定したリング板と、前記スリーブの外周面若しくは前記回転シャフトの外周面との間隔を極小に設定し、ラビリンスシール機能を付与してなることも好ましい(請求項8)。   In addition, a labyrinth seal function is provided by setting the gap between a part of the annular holding portion of the seal body or the ring plate fixed to the annular holding portion and the outer peripheral surface of the sleeve or the outer peripheral surface of the rotating shaft to a minimum. It is also preferable that it be formed (claim 8).

以上にしてなる請求項1の軸封装置によれば、ケーシングに環状保持部を取付けたシール体のシール板の内周部に、被封止物と反対側から前記回転シャフトに固定した前記スリーブの傾斜摺動面が接触しているので、弾性記憶特性を有するシール板の内周部があたかも接触型リップシールのリップ部のように作用して、作動流体に対して従来のラビリンスシールよりも高いシール性を確保することができるにも係わらず、傾斜した摺動面とシール板の内周部との接触面圧は低いので、回転シャフトの周速度が速くても摩擦熱の発生を抑制し、摩耗量も抑制できるので、リップシールのようにラビリンスシールよりも高いシール性を維持することができるのである。また、常にシール板の内周部がスリーブの傾斜摺動面に接触しているので、ダスト等の固体や潤滑油のシールとしても使用可能であり、更に回転シャフトの周速度が遅くても優れたシール性を有し、また停止した場合に多少の負圧が発生してもシール性を維持できるのである。そして、シール板の内周部とスリーブの摺動面との摺動形態がスラスト摺動となり、軸振れや軸偏芯に柔軟に対応できるため、従来のシールに比べ軸振れ・偏芯への許容値が大きく、更に軸方向の変位や熱膨張にも追随可能である。また、スリーブを回転シャフトに外挿固定するので、既存の回転シャフトを追加工する必要がなく、また使用条件、耐熱性、耐薬品性、耐久性に合わせて、シール材とスリーブ材を回転シャフトに関係なく選定することができる。   According to the shaft seal device of the first aspect as described above, the sleeve fixed to the rotary shaft from the side opposite to the object to be sealed, on the inner peripheral portion of the seal plate of the seal body in which the annular holding portion is attached to the casing. Since the slanted sliding surface is in contact, the inner peripheral portion of the seal plate having elastic memory characteristics acts as if it is a lip portion of a contact-type lip seal, so that the working fluid is more than the conventional labyrinth seal. Despite the fact that high sealing performance can be secured, the contact pressure between the inclined sliding surface and the inner periphery of the seal plate is low, so the generation of frictional heat is suppressed even when the rotating shaft has a high peripheral speed. In addition, since the amount of wear can be suppressed, the sealing performance higher than that of the labyrinth seal such as a lip seal can be maintained. In addition, since the inner periphery of the seal plate is always in contact with the inclined sliding surface of the sleeve, it can also be used as a seal for solids such as dust and lubricating oil, and it is excellent even when the peripheral speed of the rotating shaft is slow. In addition, the sealing performance can be maintained even if some negative pressure is generated when the operation is stopped. And the sliding form between the inner peripheral part of the seal plate and the sliding surface of the sleeve is thrust sliding, which can flexibly cope with shaft runout and shaft eccentricity. The allowable value is large, and it is possible to follow axial displacement and thermal expansion. In addition, since the sleeve is extrapolated to the rotating shaft, there is no need to rework the existing rotating shaft, and the sealing material and sleeve material are combined with the rotating shaft according to the operating conditions, heat resistance, chemical resistance and durability. Can be selected regardless of

請求項2によれば、前記環状保持部に複数のシール板を軸方向に間隔を隔てて固定したシール体と、各シール板に対応した傾斜摺動面を軸方向に間隔を隔てて設けたスリーブとからなる場合には、シール板と摺動面との複数対で多重にシールするので、更にシール性は高くなる。   According to claim 2, a seal body in which a plurality of seal plates are fixed to the annular holding portion at intervals in the axial direction, and inclined sliding surfaces corresponding to the seal plates are provided at intervals in the axial direction. In the case of the sleeve, the sealing performance is further enhanced because multiple sealing is performed with a plurality of pairs of the sealing plate and the sliding surface.

請求項3によれば、前記スリーブを回転シャフトに固定する軸方向位置で前記摺動面に対するシール板の接触面圧を調節してなるので、接触面圧を使用環境に応じて容易に調節することができる。   According to the third aspect, since the contact surface pressure of the seal plate with respect to the sliding surface is adjusted at the axial position where the sleeve is fixed to the rotating shaft, the contact surface pressure is easily adjusted according to the use environment. be able to.

請求項4によれば、前記シール板の厚さが0.3〜1.5mmであり、該シール板の内周部に前記スリーブの摺動面が接触してから該シール板の厚みの0.5〜10倍だけ該スリーブを被封止物側へ変位させて固定してなるので、回転シャフトの直径が大きくなるのに応じてシール板の厚さを厚くしてシール性を確保し、該シール板の内周部とスリーブの摺動面との接触面圧を、シール板の厚さを基準として設定することができ、その調節は該シール板の内周部に前記スリーブの摺動面が接触してからのスリーブの軸方向変位量で確認することができる。   According to claim 4, the thickness of the seal plate is 0.3 to 1.5 mm, and the thickness of the seal plate is 0 after the sliding surface of the sleeve comes into contact with the inner peripheral portion of the seal plate. Since the sleeve is displaced and fixed to the object to be sealed side by 5 to 10 times, the sealing plate is secured by increasing the thickness of the seal plate as the diameter of the rotating shaft increases. The contact surface pressure between the inner periphery of the seal plate and the sliding surface of the sleeve can be set on the basis of the thickness of the seal plate, and the adjustment is made by sliding the sleeve on the inner periphery of the seal plate. This can be confirmed by the amount of axial displacement of the sleeve after the surfaces contact.

請求項5によれば、前記シール板の内周部と前記スリーブの摺動面との接触幅が0.5〜5.0mmであるので、回転シャフトの直径が大きくなるのに応じて接触幅を大きくすることでシール性を確保できる。   According to the fifth aspect, since the contact width between the inner peripheral portion of the seal plate and the sliding surface of the sleeve is 0.5 to 5.0 mm, the contact width is increased as the diameter of the rotating shaft increases. The sealing property can be secured by increasing the size.

請求項6によれば、前記スリーブの摺動面の半径方向に対する傾斜角度が0〜45°であり、好ましくは10〜30°であるので、回転シャフトの外周面を直接リップ部で緊迫するリップシールよりは遥かに接触面圧を低くすることができ、速い周速度でも摩擦熱の発生を抑制するとともに、摩耗量も抑制できるので、十分な耐久性を備えたものとなる。   According to claim 6, since the angle of inclination of the sliding surface of the sleeve with respect to the radial direction is 0 to 45 °, preferably 10 to 30 °, the lip that directly presses the outer peripheral surface of the rotary shaft with the lip portion. The contact surface pressure can be made much lower than that of the seal, the generation of frictional heat can be suppressed even at a high peripheral speed, and the amount of wear can also be suppressed, so that it has sufficient durability.

請求項7によれば、前記スリーブの摺動面の被封止物と反対側に円筒面を連続的に形成してなるので、長時間の運転によりシール板の内周部が摩滅してスリーブの摺動面に接触しない状態になっても、該摺動面に連続する円筒面とシール板の内周部が接触するか若しくは微小な間隙で接近するので、この部分で新たにラビリンスシールが構成され、最低限のシール性が確保でき、予期しない作動流体の急激な漏れを防止することができ、致命的なシール性の低下がない。   According to the seventh aspect of the present invention, the cylindrical surface is continuously formed on the opposite side of the sliding surface of the sleeve to the object to be sealed. Even if the sliding surface does not come into contact, the cylindrical surface continuous with the sliding surface and the inner peripheral portion of the seal plate come into contact with each other or approach each other with a minute gap. Constructed, a minimum sealing performance can be secured, an unexpected sudden leakage of working fluid can be prevented, and there is no fatal deterioration in sealing performance.

請求項8によれば、前記シール体の環状保持部の一部若しくは該環状保持部に固定したリング板と、前記スリーブの外周面若しくは前記回転シャフトの外周面との間隔を極小に設定し、ラビリンスシール機能を付与してなるので、シール板の内周部とスリーブの摺動面のシール性が損なわれた際にも作動流体の漏れを最小限に抑制することができ、急激な作動流体の漏れによる機器の不具合を未然に防止できる。   According to claim 8, the interval between a part of the annular holding portion of the seal body or the ring plate fixed to the annular holding portion and the outer peripheral surface of the sleeve or the outer peripheral surface of the rotary shaft is set to a minimum, Since the labyrinth seal function is added, even when the sealing performance between the inner periphery of the seal plate and the sliding surface of the sleeve is impaired, the leakage of the working fluid can be suppressed to a minimum. It is possible to prevent the malfunction of the equipment due to the leakage of water.

次に、本発明の詳細を実施形態に基づいて説明する。図1は本発明の軸封装置の概念図を示し、図2は軸振れや軸移動が発生した場合の追随性を説明する説明図であり、図中符号1は回転シャフト、2はケーシング、3はシール体、4はスリーブをそれぞれ示している。   Next, details of the present invention will be described based on embodiments. FIG. 1 is a conceptual diagram of a shaft seal device according to the present invention, FIG. 2 is an explanatory diagram for explaining the followability when shaft runout or shaft movement occurs, in which 1 is a rotating shaft, 2 is a casing, Reference numeral 3 denotes a seal body, and 4 denotes a sleeve.

本発明の軸封装置は、回転シャフト1とケーシング2の間をシールする軸封装置であって、弾性記憶特性を備えた合成樹脂で作製され、前記回転シャフト1の直径よりも大きな中心孔6を有する偏平円板状のシール板5の外周部を環状保持部7に固定したシール体3と、前記回転シャフト1に外挿固定する本体部8の一部に、半径方向外側になるにつれて被封止物と反対側へ傾斜した摺動面9を有するスリーブ4とからなり、前記シール体3の環状保持部7を前記ケーシング2に取付け、被封止物と反対側から前記スリーブ4の摺動面9が前記シール板5の内周部に接触するように前記回転シャフ1トに固定した構造のものである。   The shaft seal device of the present invention is a shaft seal device that seals between the rotary shaft 1 and the casing 2, is made of a synthetic resin having elastic memory characteristics, and has a center hole 6 larger than the diameter of the rotary shaft 1. A flat disc-shaped sealing plate 5 having an outer peripheral portion fixed to the annular holding portion 7 and a part of the main body portion 8 that is externally fixed to the rotating shaft 1 are covered with the outer side in the radial direction. It comprises a sleeve 4 having a sliding surface 9 inclined to the opposite side to the sealed object, and an annular holding portion 7 of the seal body 3 is attached to the casing 2 so that the sleeve 4 slides from the opposite side to the sealed object. In this structure, the moving surface 9 is fixed to the rotary shaft 1 so as to contact the inner peripheral portion of the seal plate 5.

通常は、ケーシング2の内部にはガスや液体からなる作動流体があり、その作動流体が外部(軸方向外方)に漏れるのを軸封装置で防ぐのである。この場合には、作動流体が被封止物となり、被封止物と反対側とは軸方向外側を意味する。ここで、被封止物側とは、軸封装置によって封止する対象物の側である。また、軸受に使用した潤滑油がケーシング2の内部に侵入するのを防ぐために、軸受とケーシング2の内部との間に軸封装置を設ける場合には、潤滑油が被封止物となり、被封止物と反対側とは軸方向内側を意味する。また、ケーシング2の内部又は軸受に大気中ダストが侵入するのを防ぐために、軸方向外側に軸封装置を設ける場合には、ダストが被封止物となり、被封止物と反対側とは軸方向内側を意味する。本実施形態では、ケーシング2の内部の作動流体が外部に漏洩するのを防止するために軸封装置を用いる。従って、図1において左側がケーシング2の内部であり、右側が外部である。   Normally, there is a working fluid made of gas or liquid inside the casing 2, and the shaft sealing device prevents the working fluid from leaking to the outside (in the axial direction). In this case, the working fluid becomes an object to be sealed, and the side opposite to the object to be sealed means the outside in the axial direction. Here, the to-be-sealed object side is the object side to be sealed by the shaft seal device. In addition, when a shaft seal device is provided between the bearing and the inside of the casing 2 in order to prevent the lubricating oil used for the bearing from entering the inside of the casing 2, the lubricating oil becomes an object to be sealed. The side opposite to the sealing material means the inside in the axial direction. Further, in order to prevent dust in the atmosphere from entering the inside of the casing 2 or the bearing, when a shaft sealing device is provided on the outer side in the axial direction, the dust becomes an object to be sealed, and the opposite side to the object to be sealed is It means the inside in the axial direction. In the present embodiment, a shaft seal device is used to prevent the working fluid inside the casing 2 from leaking to the outside. Therefore, in FIG. 1, the left side is the inside of the casing 2, and the right side is the outside.

具体的には、前記シール板5の材料としては、弾性記憶特性を有する樹脂でPTFEあるいは超高分子量PE等のベース材に、カーボン、グラファイト、二硫化モリブデン等の固体潤滑材やガラス繊維、カーボン繊維等の強化材を充填したものを用いる。また、前記スリーブ4の材料としては、炭素鋼、ステンレス鋼、Cu系等の金属材又は繊維強化樹脂を用いる。上記材料であれば組み合わせを問わず、湿度、耐食性等の使用環境に合わせて選択する。   Specifically, the material of the seal plate 5 is a resin having elastic memory characteristics, a base material such as PTFE or ultrahigh molecular weight PE, a solid lubricant such as carbon, graphite, molybdenum disulfide, glass fiber, carbon, etc. A material filled with a reinforcing material such as fiber is used. The sleeve 4 is made of carbon steel, stainless steel, Cu-based metal or fiber reinforced resin. If it is the said material, regardless of a combination, it selects according to use environments, such as humidity and corrosion resistance.

本実施形態では、前記シール板5としてPTFEにカーボンとカーボン繊維を充填したものを用い、スリーブ4としてS45Cを用いた。前記シール板5は、前述のシール材を円筒状に成形し、それを所定幅でスライスして作製する。ここまでは、リップシールのシール部材の製法と同じであるが、本発明では平板状のまま使用する。つまり、リップシールのようにリップ部を軸方向に癖付け加工することはない。また、前記シール板5と環状保持部7との関係において、両者が別部材でシール板5の外周部を環状保持部7に気密状態で固定する構造や、シール板5と環状保持部7が一体物で、合成樹脂製の一体成形、あるいはブロックからの研削によって作製した構造がある。   In the present embodiment, PTFE filled with carbon and carbon fibers is used as the seal plate 5, and S45C is used as the sleeve 4. The seal plate 5 is produced by forming the above-described seal material into a cylindrical shape and slicing it with a predetermined width. Up to this point, the manufacturing method is the same as the manufacturing method of the seal member of the lip seal. That is, unlike the lip seal, the lip portion is not brazed in the axial direction. Further, in the relationship between the seal plate 5 and the annular holding portion 7, both are separate members and the outer peripheral portion of the seal plate 5 is fixed to the annular holding portion 7 in an airtight state, or the seal plate 5 and the annular holding portion 7 are There is a structure that is a single piece, made by integral molding made of synthetic resin, or by grinding from a block.

そして、前記シール板5の厚さが0.3〜1.5mmであり、前記スリーブ4の摺動面9の半径方向に対する傾斜角度θが0〜45°であり、好ましくは10〜30°である。また、前記シール板5の内周部と前記スリーブ4の摺動面9との接触幅Wを0.5〜5.0mmとした。   And the thickness of the said sealing plate 5 is 0.3-1.5 mm, The inclination | tilt angle (theta) with respect to the radial direction of the sliding surface 9 of the said sleeve 4 is 0-45 degrees, Preferably it is 10-30 degrees. is there. The contact width W between the inner peripheral portion of the seal plate 5 and the sliding surface 9 of the sleeve 4 was set to 0.5 to 5.0 mm.

シール板5の厚さが0.3mmより小さいと、機械的強度が弱く、十分な弾性復元性が得られず、所望のシール性を確保することが困難である。シール板5の厚さが1.5mmより大きいと、剛性が強くなり、シール板5と強く擦れ合うため摩擦熱の発生量や摩耗量が増えたり、軸振れや軸移動に対する追随性が低下したりするので好ましくない。また、摺動面9の傾斜角度θは、原理的に0〜45°であれば良いが、実用的には10〜30°の範囲で設定する。摺動面9の傾斜角度θが10°より小さいと、十分な接触面圧を得ることが難しく、また軸移動に対しての許容範囲が狭くなり、傾斜角度θが30°より大きいと、十分な接触面圧を確保できるものの、軸振れに対してシール板5の内周部と強く擦れ合うので摩耗量が増えるので好ましくない。また、シール板5の内周部と摺動面9との接触幅Wは、回転シャフト1の直径の増加に比例して広くするが、通常は接触幅Wを0.5〜5.0mmとする。接触幅Wが0.5mmより小さいと、十分なシール性が得られず、また5.0mmより大きいと、摩擦熱の発生量が増えたり、軸振れや軸移動の際に接触状態に偏りが生じて好ましくない。   If the thickness of the seal plate 5 is smaller than 0.3 mm, the mechanical strength is weak, sufficient elastic restoring property cannot be obtained, and it is difficult to secure a desired sealing property. If the thickness of the seal plate 5 is larger than 1.5 mm, the rigidity becomes strong, and the amount of frictional heat generated and the amount of wear increase due to strong rubbing against the seal plate 5, and the followability to shaft runout and shaft movement is reduced. This is not preferable. Further, the inclination angle θ of the sliding surface 9 may be in the range of 0 to 45 ° in principle, but is practically set in the range of 10 to 30 °. If the inclination angle θ of the sliding surface 9 is smaller than 10 °, it is difficult to obtain a sufficient contact surface pressure, and the allowable range for the axial movement becomes narrow. If the inclination angle θ is larger than 30 °, it is sufficient. Although a sufficient contact surface pressure can be ensured, it is not preferable because the amount of wear increases because it rubs strongly against the shaft runout against the inner peripheral portion of the seal plate 5. Further, the contact width W between the inner peripheral portion of the seal plate 5 and the sliding surface 9 is increased in proportion to the increase in the diameter of the rotary shaft 1, but the contact width W is normally set to 0.5 to 5.0 mm. To do. If the contact width W is less than 0.5 mm, sufficient sealing performance cannot be obtained. If the contact width W is greater than 5.0 mm, the amount of frictional heat generated increases, or the contact state is biased during shaft runout or shaft movement. It is not desirable to occur.

例えば、回転シャフト1の直径が65mmφの場合、シール板5の厚みを1.2mm、スリーブ4の摺動面9の傾斜角度θを30°とする。また、回転シャフト1の直径が30mmφの場合、シール板5の厚みを0,8mm、スリーブ4の摺動面9の傾斜角度θを20°とする。   For example, when the diameter of the rotating shaft 1 is 65 mmφ, the thickness of the seal plate 5 is 1.2 mm, and the inclination angle θ of the sliding surface 9 of the sleeve 4 is 30 °. When the diameter of the rotary shaft 1 is 30 mmφ, the thickness of the seal plate 5 is 0.8 mm, and the inclination angle θ of the sliding surface 9 of the sleeve 4 is 20 °.

本発明の軸封装置を所定位置に組み付けるには、図1に示すように、前記シール体3の環状保持部7をケーシング2の環状段部10に密嵌するとともに、該ケーシング2にネジ止めした固定金具11で前記環状保持部7を押圧保持する。それから、前記スリーブ4を回転シャフト1の被封止物と反対側からスライドさせて、前記シール板5の内周部に前記スリーブ4の摺動面9が接触させる。この位置から更に前記シール板5の厚みの0.5〜10倍だけ前記スリーブ4を被封止物側へ変位させて固定する。このスリーブ4の移動量でシール板5の内周部とスリーブ4の摺動面9との接触面圧を調整する。実際には、前記シール体3の環状保持部7とスリーブ4の相対位置を正確に設定できるように、専用のゲージを用いることが好ましい。尚、前記スリーブ4を回転シャフト1に固定するには、該スリーブ4に半径方向から螺合し貫通したネジを該回転シャフト1の外周面に圧接する。   In order to assemble the shaft seal device of the present invention at a predetermined position, as shown in FIG. 1, the annular holding portion 7 of the seal body 3 is closely fitted to the annular step portion 10 of the casing 2 and is screwed to the casing 2. The annular holding portion 7 is pressed and held by the fixed fixture 11. Then, the sleeve 4 is slid from the side opposite to the object to be sealed of the rotary shaft 1, and the sliding surface 9 of the sleeve 4 is brought into contact with the inner peripheral portion of the seal plate 5. From this position, the sleeve 4 is further displaced to the sealed object side by 0.5 to 10 times the thickness of the seal plate 5 and fixed. The contact surface pressure between the inner peripheral portion of the seal plate 5 and the sliding surface 9 of the sleeve 4 is adjusted by the amount of movement of the sleeve 4. Actually, it is preferable to use a dedicated gauge so that the relative position of the annular holding portion 7 of the seal body 3 and the sleeve 4 can be accurately set. In order to fix the sleeve 4 to the rotary shaft 1, a screw threaded through the sleeve 4 from the radial direction and penetrated is pressed against the outer peripheral surface of the rotary shaft 1.

また、シール性が重要視される用途では、前記スリーブ4の内周面にOリングを装着し、前記回転シャフト1の外周面に圧接して、スリーブ4を回転シャフト1の間の漏洩を防止する。前記スリーブ4が合成樹脂製の場合には、該スリーブ4の摺動面9とは反対側の内周部にリップ部を一体形成してダストシールを構成し、該リップ部を回転シャフト1の外周面に圧接してダストの侵入を防止することが可能である。   In applications where sealing performance is important, an O-ring is attached to the inner peripheral surface of the sleeve 4 and pressed against the outer peripheral surface of the rotary shaft 1 to prevent the sleeve 4 from leaking between the rotary shafts 1. To do. When the sleeve 4 is made of synthetic resin, a lip portion is integrally formed on the inner peripheral portion of the sleeve 4 opposite to the sliding surface 9 to form a dust seal, and the lip portion is formed on the outer periphery of the rotary shaft 1. It is possible to prevent dust from entering by pressing against the surface.

更に本発明では、前記スリーブ4の摺動面9の被封止物と反対側に円筒面12を連続的に形成している。長時間の運転により、前記シール板5の内周部が不可避的に摩滅し、もはや前記摺動面9と接触しなくなった場合でも、該シール板5の弾性復元性によって、摩滅したシール板5の内周部が前記円筒面12の外周に位置し、該円筒面12と軽微に接触又は微小間隙を有して非接触となり、従来と同様のラビリンスシールを構成するようになる。それにより、前記シール板5が摩滅しても作動流体の致命的な漏洩を防ぐことができる。   Furthermore, in the present invention, the cylindrical surface 12 is continuously formed on the side of the sliding surface 9 of the sleeve 4 opposite to the object to be sealed. Even when the inner peripheral portion of the seal plate 5 is inevitably worn out due to long-time operation and is no longer in contact with the sliding surface 9, the worn seal plate 5 is worn by the elastic restoring property of the seal plate 5. The inner peripheral portion of the cylindrical surface 12 is positioned on the outer periphery of the cylindrical surface 12 and is slightly in contact with the cylindrical surface 12 or is not in contact with a small gap, thereby forming a labyrinth seal similar to the conventional one. Thereby, even if the seal plate 5 is worn out, it is possible to prevent a fatal leakage of the working fluid.

本発明の軸封装置の軸振れ、軸移動に対する追随性を図2に基づいて説明する。図2(a)及び(b)は軸振れが生じた場合を示し、(a)は回転シャフトが下方へ変位した場合、(b)は回転シャフトが上方へ変位した場合を示し、何れの場合も常にシール板5の内周部とスリーブ4の摺動面9が接触した状態を保ち、シール性を確保している。また、図2(c)及び(d)は軸移動が生じた場合を示し、(c)は回転シャフトが被封止物と反対側へ変位した場合,(d)は回転シャフトが被封止物側へ変位した場合を示し、何れの場合も常にシール板5の内周部とスリーブ4の摺動面9が接触した状態を保ち、シール性を確保している。尚、図2は、回転シャフトの変位を誇張して表現しているが、実際の変位は約1mm以下であるが、偏芯や軸振れの影響で2mm以上の変位がある場合もあり、その場合にも本発明は良好なシール性を確保できる。   The followability of the shaft seal device of the present invention with respect to shaft runout and shaft movement will be described with reference to FIG. FIGS. 2 (a) and 2 (b) show a case where shaft runout occurs, (a) shows a case where the rotating shaft is displaced downward, and (b) shows a case where the rotating shaft is displaced upward. However, the inner peripheral portion of the seal plate 5 and the sliding surface 9 of the sleeve 4 are always kept in contact with each other, and the sealing performance is ensured. 2 (c) and 2 (d) show a case where axial movement occurs, (c) shows the case where the rotating shaft is displaced to the opposite side to the object to be sealed, and (d) shows the case where the rotating shaft is sealed. In this case, the inner peripheral portion of the seal plate 5 and the sliding surface 9 of the sleeve 4 are always in contact with each other, and the sealing performance is ensured. 2 exaggerates the displacement of the rotating shaft, the actual displacement is about 1 mm or less, but there may be a displacement of 2 mm or more due to the influence of eccentricity or shaft runout. Even in this case, the present invention can ensure good sealing performance.

更に具体的な軸封装置の第1実施形態を図3に基づいて説明する。前記シール体3は、前記シール板5の外周部を、合成樹脂製の環状保持部7の成形時にインサート成形によって一体化するが、その際にシール板5の前後に環状の第1リング板13と第2リング板14で挟んで同時に環状保持部7で保持する。第1リング板13は、前記シール板5と略同形の板状部材であり、中心孔15の直径はシール板5の中心孔6よりも大きく設定している。また、前記第2リング板14の中心孔16の直径は、前記回転シャフト1の外周面と一定のクリアランスを確保できる大きさに設定し、基部は軸方向に厚みを有し、前記シール板5の半径方向内方部分との間に空間部17が形成されるようになっている。また、前記環状保持部7には、前記ケーシング2へ直接ネジ止めするための取付孔18,…を複数形成している。一方、前記スリーブ4は、本体部8の被封止物側端に前記摺動面9を形成し、それに連続して円筒面12を形成し、本体部8の被封止物と反対側部分には前記円筒面12に対して段部を設けて拡径部19を形成し、該拡径部19に半径方向へ貫通した螺孔20を形成し、該螺孔20に螺合したネジ21を前記回転シャフト1の外周面に圧接して固定できるようになっている。   A more specific embodiment of the shaft seal device will be described with reference to FIG. The seal body 3 integrates the outer peripheral portion of the seal plate 5 by insert molding at the time of molding the annular holding portion 7 made of synthetic resin. At that time, the annular first ring plate 13 is formed before and after the seal plate 5. And the second ring plate 14 and simultaneously held by the annular holding portion 7. The first ring plate 13 is a plate-like member having substantially the same shape as the seal plate 5, and the diameter of the center hole 15 is set larger than that of the center hole 6 of the seal plate 5. The diameter of the center hole 16 of the second ring plate 14 is set to a size that can ensure a certain clearance from the outer peripheral surface of the rotary shaft 1, the base portion has a thickness in the axial direction, and the seal plate 5 A space portion 17 is formed between the inner portion in the radial direction. Further, the annular holding portion 7 is formed with a plurality of attachment holes 18 for screwing directly to the casing 2. On the other hand, the sleeve 4 is formed with the sliding surface 9 at the end of the body portion 8 on the side of the object to be sealed, and continuously with the cylindrical surface 12. The cylindrical surface 12 is provided with a stepped portion to form an enlarged diameter portion 19, a screw hole 20 penetrating in the radial direction is formed in the enlarged diameter portion 19, and a screw 21 screwed into the screw hole 20. Can be fixed in pressure contact with the outer peripheral surface of the rotary shaft 1.

図3に示すように、前記シール体3をケーシング2に取付け、前記スリーブ4を回転シャフト1に固定した状態で、前記第1リング板13の内周部は前記スリーブ4の拡径部19の段部近傍で、前記円筒面12との間に微小なクリアランスを有して位置し、前記第2リング板14の内周部は前記回転シャフト1の外周面との間に微小なクリアランスを有して位置し、そして前記シール板5の内周部は前記摺動面9に軽微に接触している。この場合、前記シール板5と摺動面9との接触によって良好なシール性を有するが、本実施形態では更に前記第1リング板13と第2リング板14及び空間部17によりラビリンスシールを構成し、前記シール板5に対する負荷を減らし、更にシール性の信頼度を高めている。   As shown in FIG. 3, in the state where the seal body 3 is attached to the casing 2 and the sleeve 4 is fixed to the rotary shaft 1, the inner peripheral portion of the first ring plate 13 is the diameter-expanded portion 19 of the sleeve 4. In the vicinity of the step portion, it is positioned with a small clearance between the cylindrical surface 12 and the inner peripheral portion of the second ring plate 14 has a small clearance with the outer peripheral surface of the rotary shaft 1. The inner peripheral portion of the seal plate 5 is in slight contact with the sliding surface 9. In this case, the seal plate 5 and the sliding surface 9 have a good sealing property due to the contact, but in this embodiment, the first ring plate 13, the second ring plate 14 and the space portion 17 constitute a labyrinth seal. In addition, the load on the seal plate 5 is reduced, and the reliability of the sealing performance is further increased.

本実施形態の場合も、図4に示すように、前記シール板5の内周部が摩滅した場合、前記シール板5は摺動面9から離れて前記第1リング板13と略平行になり、円筒面12との間でラビリンスシールを構成するようになる。ここで、前記シール板5の内周部と摺動面9との接触面圧は、前記第1リング板13にスリーブ4の拡径部19の段部が接触する位置を基準として設定できる。   Also in this embodiment, as shown in FIG. 4, when the inner peripheral portion of the seal plate 5 is worn, the seal plate 5 is separated from the sliding surface 9 and becomes substantially parallel to the first ring plate 13. A labyrinth seal is formed with the cylindrical surface 12. Here, the contact surface pressure between the inner peripheral portion of the seal plate 5 and the sliding surface 9 can be set based on the position where the stepped portion of the enlarged diameter portion 19 of the sleeve 4 contacts the first ring plate 13.

図5は、図3の構造の軸封装置を軸方向に二つタンデムに配置した使用例を示している。更に多数の軸封装置をタンデムの配置することができ、その個数は要求されるシール性及びその信頼度によって適宜選択できる。図5において、符号22は各環状保持部7の取付孔18を貫通してまとめてケーシング2に取付けるボルトである。   FIG. 5 shows a usage example in which two shaft sealing devices having the structure of FIG. 3 are arranged in tandem in the axial direction. Further, a large number of shaft sealing devices can be arranged in tandem, and the number of the shaft sealing devices can be appropriately selected according to the required sealing performance and reliability. In FIG. 5, reference numeral 22 denotes a bolt that is attached to the casing 2 through the attachment holes 18 of the annular holding portions 7.

図6は、本発明の軸封装置の第2実施形態を示し、前記シール体3に二枚のシール板5,5を組み込み、それに応じて前記スリーブ4に摺動面9と円筒面12を二対形成したものである。前記シール体3の環状保持部7は、金属製のハウジジング23内に第1シール板5A、第2シール板5B、リング板24をそれぞれの間にパッキン25を介在させて固定した構造となっている。前記スリーブ4は、本体部8の被封止物側から順に、前記第1シール板5Aの内周部に接触する第1摺動面9Aと第1円筒面12A、前記第2シール板5Bの内周部に接触する第2摺動面9Bと第2円筒面12Bを形成し、更に被封止物と反対側側に拡径部19を形成した構造である。前記第1円筒面12Aと第2摺動面9Bは連続している。前記リング板24の内周部は、前記拡径部19の外周面に近接してあり、この部分でラビリンスシールを構成している。その他の構成は、前記同様であるので、同一構成には同一符号を付して、その説明は省略する。   FIG. 6 shows a second embodiment of the shaft seal device according to the present invention, in which two seal plates 5 and 5 are incorporated in the seal body 3, and accordingly, a sliding surface 9 and a cylindrical surface 12 are formed on the sleeve 4. Two pairs are formed. The annular holding portion 7 of the seal body 3 has a structure in which a first seal plate 5A, a second seal plate 5B, and a ring plate 24 are fixed in a metal housing 23 with a packing 25 interposed therebetween. Yes. The sleeve 4 includes a first sliding surface 9A, a first cylindrical surface 12A, and a second sealing plate 5B, which are in contact with the inner peripheral portion of the first sealing plate 5A in order from the object to be sealed side of the body portion 8. In this structure, the second sliding surface 9B and the second cylindrical surface 12B that are in contact with the inner peripheral portion are formed, and the enlarged diameter portion 19 is further formed on the side opposite to the object to be sealed. The first cylindrical surface 12A and the second sliding surface 9B are continuous. The inner peripheral portion of the ring plate 24 is close to the outer peripheral surface of the enlarged diameter portion 19, and this portion constitutes a labyrinth seal. Since other configurations are the same as those described above, the same reference numerals are given to the same configurations, and descriptions thereof are omitted.

図7は、図6の軸封装置を長時間運転し、第1シール板5Aと第2シール板5Bの内周部が摩滅した場合にも前記同様にラビリンスシールを構成することの説明図である。図7(a)は、軸封装置の使用直後の状態を示し、図7(b)は、第1シール板5Aと第2シール板5Bの内周部が摩滅した場合を示し、第1シール板5Aの内周部と第1円筒面12A及び第2シール板5Bの内周部と第2円筒面12Bとでそれぞれラビリンスシールを構成する。この場合、前記第2円筒面12Bの被封止物と反対側に第3摺動面(図示せず)を他の摺動面と同一ピッチで形成しておくことにより、第1シール板5Aと第2シール板5Bの内周部が摩滅した場合に、前記スリーブ4を被封止物側へ前述のピッチと等しい距離だけ移動させて付け替えることにより、摩滅した前記第1シール板5Aの内周部が第2摺動面9Bに所定の接触面圧で接触するとともに、摩滅した前記第2シール板5Bの内周部が第3摺動面に所定の接触面圧で接触し、再度初期に近いシール性が発現するのである。   FIG. 7 is an explanatory view of configuring the labyrinth seal in the same manner as described above even when the shaft seal device of FIG. 6 is operated for a long time and the inner peripheral portions of the first seal plate 5A and the second seal plate 5B are worn. is there. FIG. 7A shows a state immediately after use of the shaft seal device, and FIG. 7B shows a case where the inner peripheral portions of the first seal plate 5A and the second seal plate 5B are worn away. The inner peripheral portion of the plate 5A and the first cylindrical surface 12A and the inner peripheral portion of the second seal plate 5B and the second cylindrical surface 12B constitute a labyrinth seal. In this case, the first seal plate 5A is formed by forming a third sliding surface (not shown) at the same pitch as the other sliding surfaces on the opposite side of the second cylindrical surface 12B to the object to be sealed. When the inner peripheral portion of the second seal plate 5B is worn out, the sleeve 4 is moved to the object to be sealed by a distance equal to the above-mentioned pitch to replace the inner portion of the worn first seal plate 5A. The peripheral portion contacts the second sliding surface 9B with a predetermined contact surface pressure, and the worn inner peripheral portion of the second seal plate 5B contacts the third sliding surface with a predetermined contact surface pressure. A seal property close to that appears.

図6に示した軸封装置は、第1シール板5Aと第2シール板5Bの中心孔の直径が異なるものであるが、図8及び図9は同じ形状の二枚のシール板5,5を用いる場合の実施形態である。図8の前記シール体3の環状保持部7は、金属製のハウジジング23内にシール板5,5をパッキン25を介在させて固定し、該ハウジジング23の被封止物と反対側の半径方向壁部分26を内方へ延設した構造となっている。図8の前記スリーブ4は、摺動面9と円筒面12を軸方向に繰り返して形成した構造となっている。その他の構成は、前記同様であるので、同一構成には同一符号を付して、その説明は省略する。ここで、前記環状保持部7のハウジジング23の半径方向壁部分26とスリーブ4の拡径部19の外周面とでラビリンスシールを構成している。   The shaft seal device shown in FIG. 6 has different diameters of the center holes of the first seal plate 5A and the second seal plate 5B, but FIGS. 8 and 9 show two seal plates 5 and 5 having the same shape. It is an embodiment in the case of using. The annular holding portion 7 of the seal body 3 in FIG. 8 fixes the sealing plates 5 and 5 in a metal housing 23 with a packing 25 interposed therebetween, and the radial direction of the housing 23 opposite to the object to be sealed The wall portion 26 has a structure extending inward. The sleeve 4 shown in FIG. 8 has a structure in which a sliding surface 9 and a cylindrical surface 12 are repeatedly formed in the axial direction. Since other configurations are the same as those described above, the same reference numerals are given to the same configurations, and descriptions thereof are omitted. Here, the radial wall portion 26 of the housing 23 of the annular holding portion 7 and the outer peripheral surface of the enlarged diameter portion 19 of the sleeve 4 constitute a labyrinth seal.

図9の前記シール体3の環状保持部7は、合成樹脂製であり、二枚のシール板5,5の外周部をインサート成形によって一体化して固定し、環状保持部7の外周面には環状溝27を形成している。そして、前記環状溝27にOリング28を嵌着し、前記ケーシング2の環状段部10に気密状態で嵌合して固定金具11で押えて取付ける。また、図9のスリーブ4は、図8に示したものと同様である。その他の構成は、前記同様であるので、同一構成には同一符号を付して、その説明は省略する。ここで、前記前記環状保持部7の内周面と前記スリーブ4の拡径部19の外周面との間隔を小さくしてラビリンスシールを構成している。   The annular holding portion 7 of the seal body 3 in FIG. 9 is made of synthetic resin, and the outer peripheral portions of the two seal plates 5 and 5 are integrally fixed by insert molding. An annular groove 27 is formed. Then, an O-ring 28 is fitted into the annular groove 27, fitted into the annular step portion 10 of the casing 2 in an airtight state, and attached by being pressed by the fixing bracket 11. Further, the sleeve 4 of FIG. 9 is the same as that shown in FIG. Since other configurations are the same as those described above, the same reference numerals are given to the same configurations, and descriptions thereof are omitted. Here, a labyrinth seal is configured by reducing the distance between the inner peripheral surface of the annular holding portion 7 and the outer peripheral surface of the enlarged diameter portion 19 of the sleeve 4.

図10は、ブロアーや圧力扇等のように軸受29と扇30との距離が長く、軸振れが大きな用途に使用する使用例を示し、このケーシング2には軸封装置を組み込むスペースがない場合を示している。このような場合、図3に示した構造のシール体3をケーシング2の外側に取付けることが可能であるが、図示したものは、ケーシング2の外面に複数のシール板5,5の外周部をパッキン31を介在させて所定間隔を維持し、外側から押さえ板32をあてがって、直接ボルト33を押さえ板32、シール板5A,5B及びパッキン31を貫通させて締め付けている。この場合、パッキン31や押さえ板32が前述の環状保持部7となる。そして、本実施形態のスリーブ4は、図6と同様に、本体部8の被封止物側側から順に、第1摺動面9Aと第1円筒面12A、第2摺動面9Bと第2円筒面12Bを形成したものである。軸受29等の金属部分の錆腐食を嫌う場合に利用できる。   FIG. 10 shows an example of use in which the bearing 29 and the fan 30 have a long distance such as a blower or a pressure fan, and the shaft runout is large. When the casing 2 has no space for installing the shaft seal device Is shown. In such a case, it is possible to attach the sealing body 3 having the structure shown in FIG. 3 to the outside of the casing 2, but in the illustrated case, the outer peripheral portions of the plurality of sealing plates 5, 5 are provided on the outer surface of the casing 2. The packing 31 is interposed to maintain a predetermined interval, the pressing plate 32 is applied from the outside, and the bolt 33 is directly passed through the pressing plate 32, the seal plates 5A and 5B, and the packing 31 and tightened. In this case, the packing 31 and the pressing plate 32 serve as the above-described annular holding portion 7. And the sleeve 4 of this embodiment is the same as FIG. 6, the 1st sliding surface 9A, the 1st cylindrical surface 12A, the 2nd sliding surface 9B, and 1st from the to-be-sealed object side of the main-body part 8 in order. Two cylindrical surfaces 12B are formed. It can be used when rust corrosion of metal parts such as the bearing 29 is disliked.

図11に示した例は、シール体3は図11のものと類似するが、スリーブ4を使用せずに、軸受34で支持されてケーシング2から突出した回転シャフト1の端部に、直接面取りして傾斜した摺動面35を形成し、前記ケーシング2の外面に取付けたシール体3のシール板5の内周部を接触させたものである。勿論、前記回転シャフト1の端部に前記同様のスリーブ4を取付けて、その摺動面9にシール板5の内周部を接触させることも可能である。このように、本発明の軸封装置は、ダストシールとしても使用することができ、圧延ロール等の軸端カバーとして使うと、ロールの軸受34に冷却水が侵入するのを防止することができる。   In the example shown in FIG. 11, the seal body 3 is similar to that of FIG. 11, but without using the sleeve 4, the chamfer is directly chamfered on the end of the rotating shaft 1 supported by the bearing 34 and protruding from the casing 2. Thus, the inclined sliding surface 35 is formed, and the inner peripheral portion of the seal plate 5 of the seal body 3 attached to the outer surface of the casing 2 is brought into contact. Of course, it is also possible to attach the same sleeve 4 to the end portion of the rotating shaft 1 and bring the inner peripheral portion of the seal plate 5 into contact with the sliding surface 9 thereof. Thus, the shaft seal device of the present invention can also be used as a dust seal, and when used as a shaft end cover such as a rolling roll, it is possible to prevent the cooling water from entering the bearing 34 of the roll.

本発明の軸封装置の概念を示す簡略断面図である。It is a simplified sectional view showing the concept of the shaft seal device of the present invention. 同じくシール性を示す原理図であり、(a)は回転シャフトが軸振れで下方へ変位した状態の断面図、(b)は回転シャフトが軸振れで上方へ変位した状態の断面図、(c)は回転シャフトが軸移動で被封止物と反対側へ変位した状態の断面図、(d)は回転シャフトが軸移動で被封止物側へ変位した状態の断面図である。It is a principle figure which similarly shows sealing performance, (a) is a sectional view in a state where the rotating shaft is displaced downward due to axial runout, (b) is a sectional view in a state where the rotating shaft is displaced upward due to axial runout, (c) ) Is a cross-sectional view of the state where the rotary shaft is displaced to the opposite side of the object to be sealed by axial movement, and (d) is a cross-sectional view of the state where the rotary shaft is displaced to the side of the object to be sealed by axial movement. 本発明の軸封装置の第1実施形態を示す部分断面図である。It is a fragmentary sectional view showing a 1st embodiment of a shaft seal device of the present invention. 同じくシール板の内周部が摩滅した状態を示す部分断面図である。It is a fragmentary sectional view which shows the state where the inner peripheral part of the sealing board was worn out similarly. 同じく軸封装置をタンデムに配置した状態を示す部分断面図である。It is a fragmentary sectional view showing the state where the shaft seal device was similarly arranged in tandem. 本発明の軸封装置の第2実施形態を示す部分断面図である。It is a fragmentary sectional view showing a 2nd embodiment of a shaft seal device of the present invention. 同じく第2実施形態の軸封装置の使用状態を示し、(a)は使用直後の状態を示す部分断面図、(b)はシール板の内周部が摩滅した状態を示す部分断面図である。Similarly, it shows the usage state of the shaft seal device of the second embodiment, (a) is a partial cross-sectional view showing a state immediately after use, (b) is a partial cross-sectional view showing a state in which the inner peripheral portion of the seal plate is worn out. . 本発明の第3実施形態を示す部分断面図である。It is a fragmentary sectional view showing a 3rd embodiment of the present invention. 本発明の第4実施形態を示す部分断面図である。It is a fragmentary sectional view showing a 4th embodiment of the present invention. 本発明の使用例を示す部分断面図である。It is a fragmentary sectional view which shows the usage example of this invention. 本発明の更に別の使用例を示す部分断面図である。It is a fragmentary sectional view which shows another example of use of this invention.

符号の説明Explanation of symbols

1 回転シャフト、 2 ケーシング、
3 シール体、 4 スリーブ、
5 シール板、 5A 第1シール板、
5B 第2シール板、 6 中心孔、
7 環状保持部、 8 本体部、
9 摺動面、 9A 第1摺動面、
9B 第2摺動面、 10 環状段部、
11 固定金具、 12 円筒面、
12A 第1円筒面、 12B 第2円筒面、
13 第1リング板、 14 第2リング板、
15 中心孔、 16 中心孔、
17 空間部、 18 取付孔、
19 拡径部、 20 螺孔、
21 ネジ、 22 ボルト、
23 ハウジジング、 24 リング板、
25 パッキン、 26 半径方向壁部分、
27 環状溝、 28 Oリング、
29 軸受、 30 扇、
31 パッキン、 32 押さえ板、
33 ボルト、 34 軸受、
35 摺動面。
1 rotating shaft, 2 casing,
3 Seal body, 4 Sleeve,
5 seal plate, 5A first seal plate,
5B 2nd seal plate, 6 center hole,
7 annular holding part, 8 body part,
9 sliding surface, 9A first sliding surface,
9B 2nd sliding surface, 10 annular step part,
11 fixing bracket, 12 cylindrical surface,
12A 1st cylindrical surface, 12B 2nd cylindrical surface,
13 first ring plate, 14 second ring plate,
15 center hole, 16 center hole,
17 space part, 18 mounting hole,
19 expanded diameter part, 20 screw hole,
21 screws, 22 bolts,
23 housing, 24 ring plate,
25 packing, 26 radial wall part,
27 annular groove, 28 O-ring,
29 bearings, 30 fans,
31 packing, 32 holding plate,
33 bolts, 34 bearings,
35 Sliding surface.

Claims (8)

回転シャフトとケーシングの間をシールする軸封装置であって、弾性記憶特性を備えた合成樹脂で作製され、前記回転シャフトの直径よりも大きな中心孔を有する偏平円板状のシール板の外周部を環状保持部に固定したシール体と、前記回転シャフトに外挿固定する本体部の一部に、半径方向外側になるにつれて被封止物と反対側へ傾斜した摺動面を有するスリーブとからなり、前記シール体の環状保持部を前記ケーシングに取付け、被封止物と反対側から前記スリーブの摺動面が前記シール板の内周部に接触するように前記回転シャフトに固定することを特徴とする軸封装置。   A shaft seal device for sealing between a rotating shaft and a casing, which is made of a synthetic resin having elastic memory characteristics, and has an outer peripheral portion of a flat disk-shaped sealing plate having a center hole larger than the diameter of the rotating shaft A seal body fixed to the annular holding portion, and a sleeve having a sliding surface inclined to the opposite side to the object to be sealed toward the outer side in the radial direction on a part of the main body portion to be extrapolated to the rotating shaft. The annular holding portion of the seal body is attached to the casing, and is fixed to the rotating shaft so that the sliding surface of the sleeve comes into contact with the inner peripheral portion of the seal plate from the side opposite to the object to be sealed. A shaft seal device. 前記環状保持部に複数のシール板を軸方向に間隔を隔てて固定したシール体と、各シール板に対応した傾斜摺動面を軸方向に間隔を隔てて設けたスリーブとからなる請求項1記載の軸封装置。   2. A seal body in which a plurality of seal plates are fixed to the annular holding portion at intervals in the axial direction, and a sleeve in which inclined sliding surfaces corresponding to the seal plates are provided at intervals in the axial direction. The shaft seal device described. 前記スリーブを回転シャフトに固定する軸方向位置で前記摺動面に対するシール板の接触面圧を調節してなる請求項1又は2記載の軸封装置。   The shaft seal device according to claim 1 or 2, wherein a contact surface pressure of the seal plate with respect to the sliding surface is adjusted at an axial position where the sleeve is fixed to the rotating shaft. 前記シール板の厚さが0.3〜1.5mmであり、該シール板の内周部に前記スリーブの摺動面が接触してから該シール板の厚みの0.5〜10倍だけ該スリーブを被封止物側へ変位させて固定してなる請求項1〜3何れかに記載の軸封装置。   The thickness of the seal plate is 0.3 to 1.5 mm, and the thickness of the seal plate is 0.5 to 10 times after the sliding surface of the sleeve comes into contact with the inner periphery of the seal plate. The shaft seal device according to any one of claims 1 to 3, wherein the sleeve is displaced and fixed toward the object to be sealed. 前記シール板の内周部と前記スリーブの摺動面との接触幅が0.5〜5.0mmである請求項1〜4何れかに記載の軸封装置。   The shaft seal device according to any one of claims 1 to 4, wherein a contact width between an inner peripheral portion of the seal plate and a sliding surface of the sleeve is 0.5 to 5.0 mm. 前記スリーブの摺動面の半径方向に対する傾斜角度が0〜45°であり、好ましくは10〜30°である請求項1〜5何れかに記載の軸封装置。   The shaft seal device according to any one of claims 1 to 5, wherein an inclination angle of the sliding surface of the sleeve with respect to a radial direction is 0 to 45 °, preferably 10 to 30 °. 前記スリーブの摺動面の被封止物と反対側に円筒面を連続的に形成してなる請求項1〜6何れかに記載の軸封装置。   The shaft seal device according to any one of claims 1 to 6, wherein a cylindrical surface is continuously formed on a side opposite to the object to be sealed of the sliding surface of the sleeve. 前記シール体の環状保持部の一部若しくは該環状保持部に固定したリング板と、前記スリーブの外周面若しくは前記回転シャフトの外周面との間隔を極小に設定し、ラビリンスシール機能を付与してなる請求項1〜7何れかに記載の軸封装置。
A labyrinth seal function is provided by setting a distance between a part of the annular holding portion of the seal body or a ring plate fixed to the annular holding portion and the outer peripheral surface of the sleeve or the outer peripheral surface of the rotating shaft to a minimum. The shaft seal device according to any one of claims 1 to 7.
JP2008294813A 2008-11-18 2008-11-18 Shaft seal device Pending JP2010121683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008294813A JP2010121683A (en) 2008-11-18 2008-11-18 Shaft seal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008294813A JP2010121683A (en) 2008-11-18 2008-11-18 Shaft seal device

Publications (1)

Publication Number Publication Date
JP2010121683A true JP2010121683A (en) 2010-06-03

Family

ID=42323199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008294813A Pending JP2010121683A (en) 2008-11-18 2008-11-18 Shaft seal device

Country Status (1)

Country Link
JP (1) JP2010121683A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057672A (en) * 2010-09-07 2012-03-22 Sumitomo Heavy Ind Ltd Series of rotating device, additional unit of rotating device, and sealing device of rotating device
JP2012102768A (en) * 2010-11-08 2012-05-31 Mitsubishi Electric Corp Gear device for railway vehicle
CN106194278A (en) * 2016-07-29 2016-12-07 中国航空工业集团公司沈阳发动机设计研究所 A kind of gas-turbine unit densification device
CN108278275A (en) * 2018-02-05 2018-07-13 洛阳新强联回转支承股份有限公司 A kind of extra large size bearing changeable type textile rubber oil seals
CN112469931A (en) * 2018-08-15 2021-03-09 苏尔寿管理有限公司 Closing device for sealing a shaft of a rotating machine and rotating machine
CN114754077A (en) * 2022-04-24 2022-07-15 华能澜沧江水电股份有限公司 Oil mist prevention device for thrust bearing of hydroelectric generating set and using method thereof
CN116816491A (en) * 2023-08-31 2023-09-29 潍坊富源增压器有限公司 Turbocharger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144754A (en) * 1974-08-16 1976-04-16 Nobindasutora Ag
JPS5229340U (en) * 1975-08-21 1977-03-01
JPS643123U (en) * 1987-06-23 1989-01-10
JP2001349442A (en) * 2000-06-07 2001-12-21 Sharp Corp Seal structure of rotation member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144754A (en) * 1974-08-16 1976-04-16 Nobindasutora Ag
JPS5229340U (en) * 1975-08-21 1977-03-01
JPS643123U (en) * 1987-06-23 1989-01-10
JP2001349442A (en) * 2000-06-07 2001-12-21 Sharp Corp Seal structure of rotation member

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057672A (en) * 2010-09-07 2012-03-22 Sumitomo Heavy Ind Ltd Series of rotating device, additional unit of rotating device, and sealing device of rotating device
JP2012102768A (en) * 2010-11-08 2012-05-31 Mitsubishi Electric Corp Gear device for railway vehicle
CN106194278A (en) * 2016-07-29 2016-12-07 中国航空工业集团公司沈阳发动机设计研究所 A kind of gas-turbine unit densification device
CN108278275A (en) * 2018-02-05 2018-07-13 洛阳新强联回转支承股份有限公司 A kind of extra large size bearing changeable type textile rubber oil seals
CN112469931A (en) * 2018-08-15 2021-03-09 苏尔寿管理有限公司 Closing device for sealing a shaft of a rotating machine and rotating machine
CN112469931B (en) * 2018-08-15 2023-11-07 苏尔寿管理有限公司 Closing device for sealing a shaft of a rotary machine and rotary machine
CN114754077A (en) * 2022-04-24 2022-07-15 华能澜沧江水电股份有限公司 Oil mist prevention device for thrust bearing of hydroelectric generating set and using method thereof
CN114754077B (en) * 2022-04-24 2023-11-17 华能澜沧江水电股份有限公司 Oil mist preventing device for thrust bearing of hydroelectric generating set and application method of oil mist preventing device
CN116816491A (en) * 2023-08-31 2023-09-29 潍坊富源增压器有限公司 Turbocharger
CN116816491B (en) * 2023-08-31 2024-01-26 潍坊富源增压器有限公司 Turbocharger

Similar Documents

Publication Publication Date Title
EP1934474B1 (en) Combined labyrinth seal and screw-type gasket bearing sealing arrangement
JP6861730B2 (en) Sliding parts
JP2010121683A (en) Shaft seal device
US10605105B2 (en) Bi-directional shaft seal
JPWO2019221226A1 (en) Seal ring
US10947974B2 (en) Vacuum scroll pump
JPWO2019221231A1 (en) Seal ring
WO2016059883A1 (en) Sealing device
JP2015537178A (en) Seal member, method of manufacturing seal member, and seal assembly including seal member
US8651496B2 (en) Seal
WO2012132731A1 (en) Sealing device and sealing structure
JP6140179B2 (en) Mechanical seal device
CN102797678B (en) Shaft sealing structure and rotary fluid machine
JP2010084802A (en) Rotary seal
KR102536592B1 (en) Shaft seal
CN110088514B (en) Device for sealing objects
JP5092166B2 (en) Shaft seal device
JP2004332920A (en) Sealing structure and end-face seal
JP5689744B2 (en) Shaft seal structure and rotary fluid machine
JP2007309351A (en) Rolling bearing
JP2009270679A (en) Sealing structure and sealing device
JP2017206964A (en) Labyrinth seal structure
JP2012246979A (en) Shaft sealing structure and rotary fluid machine
JP2014095421A (en) Electricity generator
JP2010159824A (en) Rotary shaft sealing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205