JP4585684B2 - Acousto-optic device stationary system in laser beam lithography system - Google Patents

Acousto-optic device stationary system in laser beam lithography system Download PDF

Info

Publication number
JP4585684B2
JP4585684B2 JP2000368332A JP2000368332A JP4585684B2 JP 4585684 B2 JP4585684 B2 JP 4585684B2 JP 2000368332 A JP2000368332 A JP 2000368332A JP 2000368332 A JP2000368332 A JP 2000368332A JP 4585684 B2 JP4585684 B2 JP 4585684B2
Authority
JP
Japan
Prior art keywords
laser beam
acousto
aom
modulation signal
optic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000368332A
Other languages
Japanese (ja)
Other versions
JP2002169118A (en
JP2002169118A5 (en
Inventor
裕之 鷲山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2000368332A priority Critical patent/JP4585684B2/en
Publication of JP2002169118A publication Critical patent/JP2002169118A/en
Publication of JP2002169118A5 publication Critical patent/JP2002169118A5/ja
Application granted granted Critical
Publication of JP4585684B2 publication Critical patent/JP4585684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、レーザビーム描画装置のレーザビームを変調するために用いられる音響光学素子の定常化に関する。
【0002】
【従来の技術】
従来レーザビーム描画装置では、描画面に2次元の画像を描画するため、光源から照射されるレーザビームを、超音波の印加の有無によって入射光を回折させる音響光学素子(以下、AOM(acousto-optic modulator)という)を用いて、描画を行うオン状態と描画を行わないオフ状態とに変調しつつ、ポリゴンミラー等の偏向手段によって偏向させ、描画面上を所定の方向に走査させている。
【0003】
図1は、レーザビーム描画装置における光変調の様子を表している。まず制御部4は描画内容に対応する描画データに基づいて変調信号を生成する。ドライバ5は、制御部4から送信される変調信号を受信する。そしてドライバ5は、該変調信号に対応してAOM3に超音波を印加する。AOM3に入射するレーザビームは、超音波非印加時には回折せず直進する0次光となってAOM3から射出される。またレーザビームは、超音波印加時にはAOM3内で所定の方向に回折する一次回折光となってAOM3から射出される。従来のレーザビーム描画装置では被描画体上を露光する、つまり描画する描画光として一次回折光を使用している。
【0004】
なお、本明細書ではAOMの回折作用により発生する光のうち、一次回折光と0次光のみを考慮し、パワーの弱い他の多次回折光については考慮しないものとする。
【0005】
レーザビームを変調するAOMは、超音波を印加すると発熱する特徴を有する。さらにAOMの温度変化に伴って、一次回折光の回折する方向が所定の方向から変位する現象が発生する(図1中矢印p参照)。該現象を放置していては、光路上、AOMの下流に位置する偏向手段に対するレーザビームの入射位置が予定された所定位置からずれることになる。つまりレーザビームは、AOMが温度変化することによって描画面上に載置された被描画体の所定の走査ライン上を走査できなくなる。また、偏向手段に対する入射位置のずれによって、所定のビームスポット形状が得られなくなる。つまり高精度で描画品質の高い描画が行えない。
【0006】
【発明が解決しようとする課題】
そこで本発明は上記の事情に鑑み、音響光学素子から射出されるレーザビームが描画面における所定の走査ライン上を走査するように一次回折光の回折方向を安定させる音響光学素子定常化システムを提供することを目的とする。
【0007】
【課題を解決するための手段】
このため、請求項1に記載のレーザビーム描画装置における音響光学素子定常化システムは、超音波が印加されることにより駆動し、入射するレーザビームを回折する音響光学素子を有し、副走査方向に移動する描画面上で該音響光学素子から射出される回折光を主走査方向に走査させることにより、描画面上に載置された被描画体に所定の描画を行うレーザビーム描画装置に適用される。該システムは、レーザビームを照射する光源と、光源と音響光学素子との間に設けられ、レーザビームを調光する調光手段と、描画動作時にはレーザビームを透光し、非描画動作時にはレーザビームを遮光するよう調光手段を駆動制御するとともに、被描画体の描画動作中であるか否かを問わず、常に所定の変調信号によって音響光学素子を駆動制御する制御手段とを有することを特徴とする。
【0008】
第1の観点によれば、非描画動作時でもAOMは描画動作時の描画データによって生成される変調信号と略同一のデューティ比を備える変調信号に対応して超音波が印加され、予め温度上昇した状態にあるため、描画動作時は超音波印加によって温度変化しても、一次回折光の回折方向が変化しない定常状態にあるAOMを提供することができる。
【0009】
第2の観点によれば、上記システムは、音響光学素子を強制駆動させる駆動データを記憶する記憶手段をさらに有する。この場合、制御手段は、描画動作時には、各走査において所定の描画内容に対応した被描画体への露光、非露光が行われるように、所定の描画内容に対応する描画データを変調信号に変換して音響光学素子を駆動制御し、非描画動作時には、記憶手段から読み出した駆動データを変調信号に変換して音響光学素子を駆動制御することができる。
【0010】
上記駆動データは、描画データとは全く無関係であっても良いが、駆動データを変換して得られる変調信号のデューティ比は、描画データを変換して得られる変調信号のデューティ比と略同一であることが望ましい。非描画動作時も、描画動作時に与えられる変調信号のデューティ比と同じデューティ比を持つ変調信号で駆動制御すれば、AOMに不必要な負担をかけずにすむ。無駄な温度変化に伴うAOMの寿命の短縮や他の部材への影響を低減することができる。
【0011】
また、上記音響光学定常化システムは、複数のレーザビームを変調することができる、いわゆるマルチチャンネル式AOMにも適用することができる。
【0012】
【発明の実施の形態】
まず、本発明にかかるAOM定常化システムを搭載するレーザビーム描画装置100について説明する。図2はレーザビーム描画装置100の概略構成図である。レーザビーム描画装置100は、光源1、メカニカルシャッタ2、AOM3、制御部4、ドライバ5、メモリ6とを備えるAOM定常化システム50に加え、ポリゴンミラー7、fθレンズ8、描画テーブル9、ミラー10、光検出器11とを有している。描画テーブル9上には、被描画体Dが載置されている。
【0013】
なお、本実施形態におけるAOM3、制御部4、ドライバ5は、上述した従来のレーザビーム描画装置に設けられるものと同一のものであるため、図1と同一の符号を付してある。
【0014】
従来、被描画体Dへの描画動作は、以下のようにして行われる。なお、以下の本文では、説明の便宜上、被描画体D一枚に所定の描画パターンを描画することを描画動作といい、一走査する間に変調されたレーザビームが被描画体Dに入射する(描画する)ことを露光、入射しない(描画しない)ことを非露光という。光源1から照射されるレーザビーム(図2中矢印線)は、シャッタ2を介して、AOM3に入射する。光源1は、レーザビーム描画装置100の電源がオンされるとオフされるまで、レーザビームを照射しつづける状態にあるため、描画動作時以外はシャッタ2によって遮光される構成になっている。シャッタ2は、制御部4によって駆動制御される。
【0015】
制御部4は、所定の描画内容に対応する描画データが外部入力手段(不図示)によって入力されると、その描画データに基づいて変調信号を生成し、変調信号をドライバ5に送信することにより、AOM3を駆動制御する。
【0016】
ドライバ5およびAOM3の動作については、従来技術の項で既に述べたので、ここでの説明は省略する(図1参照)。被描画体Dを露光する一次回折光は、ポリゴンミラー7に導かれる。
【0017】
ポリゴンミラー7は、複数の偏向面を有する。ポリゴンミラー7は、図示しないモータの駆動によって、一定方向に回転しており、入射するレーザビーム(一次回折光)を偏向する。
【0018】
ポリゴンミラー7の各偏向面により偏向されるレーザビームは、fθレンズ8を介して、被描画体D上を主走査方向に走査する。レーザビームが被描画体D上を走査する間、描画テーブル9が主走査方向に対し垂直な方向(図2紙面に対して垂直な方向)に平行移動することにより、2次元の画像が被描画体D上に描かれる。
【0019】
なお、描画領域外に配置されたミラー10にfθレンズ8を介して入射したレーザビームは、光検出器11に受光される。光検出器11は、受光すると所定の信号を制御部4に送信する。制御部4は、光検出器11からの信号に基づいて、走査ごとの露光開始位置を特定し、変調信号の送信タイミングを調整している。
【0020】
このように、従来、AOM3は、描画動作時のみ駆動している。ここで、AOM3には次に述べるような性質を有する。図3は、特定のAOM3に超音波を印加しつづけたときの一次回折光の回折方向の変化を表したもので、横軸が超音波印加時間つまりAOM3の温度変化、縦軸が回折方向の変位(単位:mrad)を示す。図3に示すように、超音波をAOM3に印加しつづけると発熱に伴い一次回折光の回折方向が変化しつづけ、やがて所定の位置で略安定する。安定した後は、超音波を印加しつづけても温度は平衡であるため、回折方向は変わらない。
【0021】
以下の本文では、一次回折光の回折方向が変化しつづける状態を過渡状態といい、一次回折光の回折方向が所定位置で略安定した状態を定常状態という。レーザビーム描画装置に搭載されるAOMには、個体差があるが、どのAOMであっても図3に示すような性質を持つ。過渡状態にある時間についても搭載されるAOMごとに個体差はあるものの、およそ被描画体D一枚を描画する時間に等しい。
【0022】
一次回折光の回折方向が安定していなければ、被描画体Dを高精度で描画することはできない。そのため、AOM3は常に所定温度以上、つまり定常状態でなければならない。しかし上記の通り、従来は、実際に描画動作が行われるときにのみAOM3を駆動させていたため、描画動作中に温度変化が起こり、AOM3が定常状態になる前に描画動作が終了してしまう。つまり、一次回折光の回折方向が変化している状態で被描画体D上を走査するため、描画データどおりの高精細な描画結果が得られない。描画動作終了後は次の描画動作が行われるまでAOM3は駆動されず自然に冷却されるため、次の被描画体Dを描画するときも、やはりAOM3は過渡状態にあり、温度変化による回折方向の変化が生じてしまう。
【0023】
そこで、本発明は、レーザビーム描画装置100の電源がオン状態のときは、描画動作の如何を問わず、制御部4に、ドライバ5を介してAOM3を駆動制御させることにより、描画動作時のAOM3を定常状態に維持している。
【0024】
具体的には、制御部4は、描画動作時には、従来の通り描画データに基づいて変調信号を生成し、該変調信号によってAOM3を駆動制御する。さらに制御部4は、描画動作をしない時(非描画動作時)にもAOM3に適度な超音波を印加してAOM3を過渡状態にならないようにしている。非描画動作時とは、電源をオンしてから最初の被描画体Dに対する描画動作を行うまでの間や、描画終了した被描画体Dを搬送し次の被描画体Dが描画テーブル9に載置されるまでの間等を意味する。
【0025】
非描画動作時の変調信号を生成するために、本実施形態はEEPROM等の不揮発性メモリ6に駆動データを記憶させておく。駆動データとは、描画データとは無関係のデータで、AOM3を強制的に駆動させるためのデータである。
【0026】
単にAOM3を定常状態に維持するのであれば、駆動データは、常にAOM3に超音波を印加するデータであれば足りる。しかしAOM3に超音波を印加しつづけると、過度に発熱して、AOM3自身が故障したり、他の部材へ悪影響を及ぼしたりして描画精度を落とす原因になるため適切ではない。一般に、被描画体Dに描画される描画パターンは、レーザビーム描画装置100ごとに大概定まっている。そこで、各レーザビーム描画装置100で最も頻繁に使用される描画データによって生成される変調信号と略同一のデューティ比を備える変調信号を生成できる駆動データを、レーザビーム描画装置100出荷時の初期設定においてメモリ6に記憶する。
【0027】
非描画動作時、制御部4は、メモリ6から読み出した駆動データに基づいて変調信号を生成する。該変調信号をドライバ5に送信することで、非描画動作時であっても、AOM3を駆動制御する。上記の通り、該変調信号は、描画時に用いられる変調信号と略同一のデューティ比であるので、過度な負担をかけずAOM3に適度な超音波を印加し定常状態にすることができる。
【0028】
図4は、上記した制御部4のAOM3の駆動制御を表したタイミングチャートである。図4に示すように、レーザビーム描画装置100の電源がオンの間は(図4(1))、描画動作時は描画データに基づいて生成される変調信号に従って(図4(3))、非描画動作時は駆動データに基づいて生成される変調信号に従って(図4(4))、AOM3は常時駆動制御される(図4(5))。
【0029】
AOM3は常時駆動制御されているが、描画動作が実行されるときにのみ(描画データに基づく変調信号によってAOM3が駆動されるときにのみ)、制御部4の制御によりシャッタ2が開きレーザビームがAOM3に入射する(図4(2))ため、駆動データに基づき変調制御されるAOM3にレーザビームが入射することはない。つまり、非描画動作時にAOM3を駆動しても描画テーブル9上にレーザビームが入射することはない。そのため、搬送または載置途中の被描画体Dに不必要な露光がされるおそれはない。
【0030】
ここで、図4(3)、(4)は、変調信号そのものの波形を示すのではなく、変調信号が制御部4からドライバ5に送信されるタイミングを示している。つまり、図4(3)、(4)中の斜線で囲まれたブロック内にあるとき、描画データ等に基づいて細かく振動する波形を有する変調信号がドライバ5に送信されていることを意味する。同様に、図4(6)も、描画動作が実行されるタイミングを示すものである。つまり、図4(6)の斜線で囲まれたブロック内にあるとき、図4(3)の変調信号に基づいて変調されたレーザビームが被描画体D上を走査し、露光・非露光を繰り返すことで、所定の描画パターンが得られる。
【0031】
以上が本発明の実施形態である。本発明はこれらの実施形態に限定されるものではなく趣旨を逸脱しない範囲で様々な変形が可能である。
【0032】
例えば、上記実施形態では単一のレーザビームで描画を行う描画装置について説明したが、光源1から照射されるレーザビームをビームスプリッタ等を用いて互いに平行な複数のビームに分割し、該複数のビームを用いて非描画体Dに所定の描画を行う描画装置(マルチビーム描画装置)に搭載されるAOMに対しても適用可能である。
【0033】
さらに、上記実施形態では、駆動データに基づいて非描画動作時のAOM3の駆動制御をしているが、駆動データを使用せずにAOM3の駆動制御をすることも可能である。例えば、上記実施形態においてメモリ6に保存される駆動データの代わりに、前回の描画動作で使用された描画データをメモリ6に保存しておき、その描画データに基づいて、非描画動作時のAOM3の駆動制御を行っても良い。
【0034】
また、AOM3の温度を検出する温度検出センサを設けて、実際のAOM3の温度からAOM3の定常化を図ることもできる。AOM3近傍に配設された温度検出センサは、AOM3の温度を検出し、制御部4に検出結果を送信する。この変形例では、制御部4は、搭載されているAOM3が定常状態に安定する温度をデータとして予め備えている。制御部4は、温度検出センサからの検出結果を定常状態に安定する温度にするような変調信号を自動的に生成し、必要に応じてAOM3に超音波を印加させることにより、非描画動作時のAOM3の駆動制御を行う。この変形例では、温度検出により、実際にAOM3が定常状態にあるかどうかを制御部4が判断する。そのため、判断結果をレーザビーム描画装置100の表示手段に表示して、ユーザが視覚的にAOM3の定常状態を確認する構成にすることも可能である。
【0035】
【発明の効果】
上述のとおり、本発明によれば、非描画動作時にも駆動データに基づく変調信号によって、AOMを駆動制御し、AOMを常時定常状態に維持することにより、描画動作時に描画光となる一次回折光のAOM内での回折方向を常に安定させ、高精細かつ高品質の描画結果を得ることができる。
【0036】
マルチビーム描画装置では、分割された各ビーム同士の間隔、つまり非描画体D上に形成される各ビームスポットの間隔がより均等であればあるほど、高精細な描画パターンを描画することができる。従って本発明をマルチビーム描画装置に適用することにより、AOMから射出される複数の一次回折光の回折方向が常に安定させることができ、より高精細な描画結果を得ることができる。
【図面の簡単な説明】
【図1】AOMの動作を表す。
【図2】本発明の実施形態のAOM定常化システムを搭載するレーザビーム描画装置の概略構成図である。
【図3】AOMの性質を表すグラフである。
【図4】本発明の実施形態のAOMの駆動制御を表すタイミングチャートである。
【符号の説明】
1 光源
2 メカニカルシャッタ
3 AOM
4 制御部
5 ドライバ
6 メモリ
50 AOM定常化システム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the stabilization of an acousto-optic element used for modulating a laser beam of a laser beam drawing apparatus.
[0002]
[Prior art]
In a conventional laser beam drawing apparatus, in order to draw a two-dimensional image on a drawing surface, an acousto-optic element (hereinafter referred to as AOM (acousto--) that diffracts incident light from a laser beam emitted from a light source depending on whether or not an ultrasonic wave is applied. optic modulator) is used to modulate an on state in which drawing is performed and an off state in which drawing is not performed, and is deflected by deflecting means such as a polygon mirror to scan the drawing surface in a predetermined direction.
[0003]
FIG. 1 shows a state of light modulation in the laser beam drawing apparatus. First, the control unit 4 generates a modulation signal based on drawing data corresponding to drawing contents. The driver 5 receives the modulated signal transmitted from the control unit 4. The driver 5 applies an ultrasonic wave to the AOM 3 corresponding to the modulation signal. The laser beam incident on the AOM 3 is emitted from the AOM 3 as zero-order light that travels straight without being diffracted when no ultrasonic wave is applied. The laser beam is emitted from the AOM 3 as first-order diffracted light diffracted in a predetermined direction in the AOM 3 when an ultrasonic wave is applied. In a conventional laser beam drawing apparatus, first-order diffracted light is used as drawing light for exposing the drawing object, that is, drawing.
[0004]
In the present specification, only the first-order diffracted light and the 0th-order light among the light generated by the diffraction action of the AOM are considered, and the other multi-order diffracted light having low power is not considered.
[0005]
An AOM that modulates a laser beam has a feature of generating heat when an ultrasonic wave is applied. Furthermore, with the change in temperature of the AOM, a phenomenon occurs in which the direction of diffraction of the first-order diffracted light is displaced from a predetermined direction (see arrow p in FIG. 1). If this phenomenon is left unattended, the incident position of the laser beam on the deflecting means located downstream of the AOM on the optical path will deviate from the predetermined position. That is, the laser beam cannot scan on a predetermined scanning line of the drawing object placed on the drawing surface when the temperature of the AOM changes. Also, a predetermined beam spot shape cannot be obtained due to the deviation of the incident position with respect to the deflecting means. That is, drawing with high accuracy and high drawing quality cannot be performed.
[0006]
[Problems to be solved by the invention]
Therefore, in view of the above circumstances, the present invention provides an acoustooptic device steadying system that stabilizes the diffraction direction of the first-order diffracted light so that the laser beam emitted from the acoustooptic device scans a predetermined scanning line on the drawing surface. The purpose is to do.
[0007]
[Means for Solving the Problems]
For this reason, the acoustooptic element steadying system in the laser beam drawing apparatus according to claim 1 includes an acoustooptic element that is driven by application of ultrasonic waves and diffracts the incident laser beam, and is in the sub-scanning direction. Applied to a laser beam drawing apparatus that performs predetermined drawing on the drawing object placed on the drawing surface by scanning the diffracted light emitted from the acousto-optic element in the main scanning direction on the drawing surface moving to Is done. The system is provided between a light source for irradiating a laser beam, a light control means for adjusting the laser beam, and a laser beam for a drawing operation and a laser for a non-drawing operation. Control means for controlling the drive of the dimming means so as to block the beam and always controlling the drive of the acousto-optic element by a predetermined modulation signal regardless of whether or not the drawing object is being drawn. Features.
[0008]
According to the first aspect, even during the non-drawing operation, the AOM applies ultrasonic waves corresponding to the modulation signal having substantially the same duty ratio as the modulation signal generated by the drawing data during the drawing operation , and the temperature rises in advance. Therefore, it is possible to provide an AOM in a steady state in which the diffraction direction of the first-order diffracted light does not change even when the temperature is changed by applying ultrasonic waves during the drawing operation.
[0009]
According to a second aspect, the system further includes storage means for storing drive data for forcibly driving the acousto-optic element. In this case, during the drawing operation, the control means converts the drawing data corresponding to the predetermined drawing content into a modulation signal so that the object to be drawn corresponding to the predetermined drawing content is exposed or not exposed in each scan. Thus, the acousto-optic element can be driven and controlled, and the drive data read from the storage means can be converted into a modulation signal during the non-drawing operation to control the acousto-optic element.
[0010]
The drive data may be completely independent of the drawing data, but the duty ratio of the modulation signal obtained by converting the drive data is substantially the same as the duty ratio of the modulation signal obtained by converting the drawing data. It is desirable to be. Even during the non-drawing operation, if the drive control is performed with the modulation signal having the same duty ratio as the modulation signal given during the drawing operation, an unnecessary burden is not imposed on the AOM. It is possible to shorten the life of the AOM accompanying the useless temperature change and to reduce the influence on other members.
[0011]
Moreover, the acousto-optic constant system can modulate a plurality of laser beams can be applied to a so-called multi-channel type AOM.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
First, the laser beam drawing apparatus 100 equipped with the AOM steadying system according to the present invention will be described. FIG. 2 is a schematic configuration diagram of the laser beam drawing apparatus 100. The laser beam drawing apparatus 100 includes a polygon mirror 7, an fθ lens 8, a drawing table 9, and a mirror 10 in addition to an AOM steadying system 50 including a light source 1, a mechanical shutter 2, an AOM 3, a control unit 4, a driver 5, and a memory 6. , And a photodetector 11. A drawing object D is placed on the drawing table 9.
[0013]
Note that the AOM 3, the control unit 4, and the driver 5 in the present embodiment are the same as those provided in the above-described conventional laser beam drawing apparatus, and are therefore given the same reference numerals as in FIG.
[0014]
Conventionally, the drawing operation on the drawing object D is performed as follows. In the following text, for convenience of description, drawing a predetermined drawing pattern on one drawing object D is called drawing operation, and a laser beam modulated during one scan enters the drawing object D. (Drawing) is called exposure, and not entering (not drawing) is called non-exposure. A laser beam (arrow line in FIG. 2) emitted from the light source 1 enters the AOM 3 via the shutter 2. Since the light source 1 is in a state of continuously irradiating the laser beam until the power is turned off when the power of the laser beam drawing apparatus 100 is turned on, the light source 1 is configured to be shielded by the shutter 2 except during the drawing operation. The shutter 2 is driven and controlled by the control unit 4.
[0015]
When drawing data corresponding to predetermined drawing content is input by an external input unit (not shown), the control unit 4 generates a modulation signal based on the drawing data and transmits the modulation signal to the driver 5. , AOM3 is driven and controlled.
[0016]
Since the operation of the driver 5 and the AOM 3 has already been described in the section of the prior art, description thereof is omitted here (see FIG. 1). The first-order diffracted light that exposes the drawing object D is guided to the polygon mirror 7.
[0017]
The polygon mirror 7 has a plurality of deflection surfaces. The polygon mirror 7 is rotated in a certain direction by driving a motor (not shown), and deflects an incident laser beam (first-order diffracted light).
[0018]
The laser beam deflected by each deflection surface of the polygon mirror 7 scans the drawing object D in the main scanning direction via the fθ lens 8. While the laser beam scans over the drawing object D, the drawing table 9 moves in a direction perpendicular to the main scanning direction (direction perpendicular to the paper surface of FIG. 2), thereby drawing a two-dimensional image. It is drawn on the body D.
[0019]
The laser beam incident on the mirror 10 disposed outside the drawing area via the fθ lens 8 is received by the photodetector 11. When the photodetector 11 receives light, the photodetector 11 transmits a predetermined signal to the control unit 4. The control unit 4 specifies the exposure start position for each scan based on the signal from the photodetector 11 and adjusts the transmission timing of the modulation signal.
[0020]
Thus, conventionally, the AOM 3 is driven only during the drawing operation. Here, AOM3 has the following properties. FIG. 3 shows a change in the diffraction direction of the first-order diffracted light when an ultrasonic wave is continuously applied to a specific AOM 3. The horizontal axis represents the ultrasonic application time, that is, the temperature change of the AOM 3, and the vertical axis represents the diffraction direction. Indicates displacement (unit: mrad). As shown in FIG. 3, when the ultrasonic wave is continuously applied to the AOM 3, the diffraction direction of the first-order diffracted light continues to change with heat generation, and eventually becomes substantially stable at a predetermined position. After stabilization, the diffraction direction does not change because the temperature is in equilibrium even if ultrasonic waves are continuously applied.
[0021]
In the following text, a state in which the diffraction direction of the first-order diffracted light continues to change is referred to as a transient state, and a state in which the diffraction direction of the first-order diffracted light is substantially stable at a predetermined position is referred to as a steady state. Although there are individual differences in the AOMs mounted on the laser beam drawing apparatus, any AOM has properties as shown in FIG. The time in the transient state is also approximately equal to the time for drawing one drawing object D, although there are individual differences for each AOM mounted.
[0022]
If the diffraction direction of the primary diffracted light is not stable, the drawing object D cannot be drawn with high accuracy. Therefore, the AOM 3 must always be above a predetermined temperature, that is, in a steady state. However, as described above, conventionally, since the AOM 3 is driven only when the drawing operation is actually performed, a temperature change occurs during the drawing operation, and the drawing operation ends before the AOM 3 becomes a steady state. That is, since the object D is scanned in a state where the diffraction direction of the first-order diffracted light is changed, a high-definition drawing result according to the drawing data cannot be obtained. After the drawing operation is completed, the AOM 3 is not driven until the next drawing operation is performed, and is naturally cooled. Therefore, when the next drawing object D is drawn, the AOM 3 is still in a transient state and the diffraction direction due to the temperature change. Changes will occur.
[0023]
Therefore, according to the present invention, when the power of the laser beam drawing apparatus 100 is in an on state, the AOM 3 is driven and controlled by the control unit 4 via the driver 5 regardless of the drawing operation. AOM3 is maintained in a steady state.
[0024]
Specifically, at the time of the drawing operation, the control unit 4 generates a modulation signal based on the drawing data as in the past, and drives and controls the AOM 3 with the modulation signal. Further, the control unit 4 applies an appropriate ultrasonic wave to the AOM 3 even when the drawing operation is not performed (during the non-drawing operation) so that the AOM 3 is not in a transient state. During the non-drawing operation, the drawing object 9 is conveyed to the drawing table 9 after the drawing object D is drawn after the power is turned on until the drawing operation is performed on the first drawing object D. It means the time until it is placed.
[0025]
In this embodiment, drive data is stored in a non-volatile memory 6 such as an EEPROM in order to generate a modulation signal during a non-drawing operation. The drive data is data irrelevant to the drawing data and is data for forcibly driving the AOM 3.
[0026]
If the AOM 3 is simply maintained in a steady state, the drive data may be data that always applies an ultrasonic wave to the AOM 3. However, if ultrasonic waves are continuously applied to the AOM 3, excessive heat generation will cause the AOM 3 itself to malfunction or adversely affect other members, leading to a reduction in drawing accuracy. In general, the drawing pattern drawn on the drawing object D is generally determined for each laser beam drawing apparatus 100. Therefore, drive data that can generate a modulation signal having substantially the same duty ratio as the modulation signal generated by the drawing data that is most frequently used in each laser beam drawing apparatus 100 is set as an initial setting when the laser beam drawing apparatus 100 is shipped. Is stored in the memory 6.
[0027]
During the non-drawing operation, the control unit 4 generates a modulation signal based on the drive data read from the memory 6. By transmitting the modulation signal to the driver 5, the AOM 3 is driven and controlled even during the non-drawing operation. As described above, since the modulation signal has substantially the same duty ratio as that of the modulation signal used at the time of drawing, an appropriate ultrasonic wave can be applied to the AOM 3 without applying an excessive load and the steady state can be obtained.
[0028]
FIG. 4 is a timing chart showing drive control of the AOM 3 of the control unit 4 described above. As shown in FIG. 4, while the laser beam drawing apparatus 100 is powered on (FIG. 4 (1)), during the drawing operation, according to the modulation signal generated based on the drawing data (FIG. 4 (3)), During the non-drawing operation, the AOM 3 is always driven and controlled (FIG. 4 (5)) according to the modulation signal generated based on the drive data (FIG. 4 (4)).
[0029]
The AOM 3 is always driven and controlled, but only when the drawing operation is executed (only when the AOM 3 is driven by the modulation signal based on the drawing data), the shutter 2 is opened by the control of the control unit 4 and the laser beam is emitted. Since the light enters the AOM 3 (FIG. 4B), the laser beam does not enter the AOM 3 that is modulated and controlled based on the drive data. That is, the laser beam does not enter the drawing table 9 even if the AOM 3 is driven during the non-drawing operation. Therefore, there is no possibility that unnecessary exposure is performed on the drawing object D during conveyance or placement.
[0030]
Here, FIGS. 4 (3) and 4 (4) do not show the waveform of the modulated signal itself, but show the timing at which the modulated signal is transmitted from the control unit 4 to the driver 5. That is, it means that a modulated signal having a waveform that vibrates finely based on drawing data or the like is transmitted to the driver 5 when it is within the block surrounded by the diagonal lines in FIGS. 4 (3) and 4 (4). . Similarly, FIG. 4 (6) also shows the timing at which the drawing operation is executed. That is, when the laser beam modulated based on the modulation signal shown in FIG. 4 (3) scans the drawing object D when it is in the block surrounded by the oblique lines in FIG. 4 (6), exposure / non-exposure is performed. By repeating, a predetermined drawing pattern is obtained.
[0031]
The above is the embodiment of the present invention. The present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention.
[0032]
For example, in the above-described embodiment, a drawing apparatus that performs drawing with a single laser beam has been described. However, the laser beam emitted from the light source 1 is divided into a plurality of parallel beams using a beam splitter or the like, and the plurality of the plurality of beams are divided. The present invention can also be applied to an AOM mounted on a drawing apparatus (multi-beam drawing apparatus) that performs predetermined drawing on a non-drawing object D using a beam.
[0033]
Furthermore, in the above embodiment, the drive control of the AOM 3 during the non-drawing operation is performed based on the drive data. However, the drive control of the AOM 3 can be performed without using the drive data. For example, instead of the drive data stored in the memory 6 in the above embodiment, the drawing data used in the previous drawing operation is stored in the memory 6 and the AOM 3 during the non-drawing operation is stored based on the drawing data. The drive control may be performed.
[0034]
In addition, a temperature detection sensor for detecting the temperature of the AOM 3 can be provided to stabilize the AOM 3 from the actual temperature of the AOM 3. A temperature detection sensor disposed in the vicinity of the AOM 3 detects the temperature of the AOM 3 and transmits a detection result to the control unit 4. In this modified example, the control unit 4 is preliminarily provided with the temperature at which the mounted AOM 3 is stabilized in a steady state as data. The control unit 4 automatically generates a modulation signal that brings the detection result from the temperature detection sensor to a temperature that stabilizes in a steady state, and applies an ultrasonic wave to the AOM 3 as necessary, thereby performing a non-drawing operation. The drive control of the AOM 3 is performed. In this modification, the control unit 4 determines whether the AOM 3 is actually in a steady state based on temperature detection. Therefore, it is possible to display the determination result on the display unit of the laser beam drawing apparatus 100 so that the user can visually confirm the steady state of the AOM 3.
[0035]
【The invention's effect】
As described above, according to the present invention, the first-order diffracted light that becomes the drawing light during the drawing operation can be controlled by controlling the driving of the AOM with the modulation signal based on the drive data even during the non-drawing operation and maintaining the AOM in a steady state. The diffraction direction in the AOM can be always stabilized, and a high-definition and high-quality drawing result can be obtained.
[0036]
In the multi-beam drawing apparatus, a higher-definition drawing pattern can be drawn as the intervals between the divided beams, that is, the intervals between the beam spots formed on the non-drawing body D are more uniform. . Therefore, by applying the present invention to a multi-beam drawing apparatus, the diffraction directions of a plurality of first-order diffracted lights emitted from the AOM can always be stabilized, and a higher-definition drawing result can be obtained.
[Brief description of the drawings]
FIG. 1 shows the operation of an AOM.
FIG. 2 is a schematic configuration diagram of a laser beam drawing apparatus equipped with the AOM steadying system of the embodiment of the present invention.
FIG. 3 is a graph showing the properties of AOM.
FIG. 4 is a timing chart showing AOM drive control according to the embodiment of the present invention.
[Explanation of symbols]
1 Light source 2 Mechanical shutter 3 AOM
4 Controller 5 Driver 6 Memory 50 AOM Steady System

Claims (5)

超音波が印加されることにより駆動し、入射するレーザビームを回折する音響光学素子を有し、副走査方向に移動する描画面上で前記音響光学素子から射出される回折光を主走査方向に走査させることにより、前記描画面上に載置された被描画体に所定の描画を行うレーザビーム描画装置において、
前記レーザビームを照射する光源と、
前記光源と前記音響光学素子との間に設けられ、前記レーザビームを調光する調光手段と、
描画動作時には前記レーザビームを透光し、非描画動作時には前記レーザビームを遮光するよう前記調光手段を駆動制御するとともに、描画動作中であるか否かを問わず、常に描画動作時の描画データによって生成される変調信号と略同一のデューティ比を備える変調信号によって前記音響光学素子を駆動制御する制御手段と、
を有することを特徴とするレーザビーム描画装置における音響光学素子定常化システム。
It has an acousto-optic element that is driven by applying ultrasonic waves and diffracts the incident laser beam, and diffracted light emitted from the acousto-optic element on the drawing surface that moves in the sub-scanning direction In the laser beam drawing apparatus that performs predetermined drawing on the drawing object placed on the drawing surface by scanning,
A light source for irradiating the laser beam;
A dimming means provided between the light source and the acoustooptic device for dimming the laser beam;
During the drawing operation and the translucent said laser beam, together with the time of non-drawing operation for driving and controlling the light control means such that shields the laser beam, regardless of whether it is in drawing operation, always drawn during the drawing operation Control means for driving and controlling the acousto-optic element with a modulation signal having a duty ratio substantially the same as the modulation signal generated by the data ;
An acousto-optic element steadying system in a laser beam drawing apparatus.
請求項1に記載のレーザビーム描画装置における音響光学素子定常化システムにおいて、
音響光学素子を強制駆動させる駆動データを記憶する記憶手段をさらに有し、
前記制御手段は、描画動作時には、各走査において所定の描画内容に対応した前記被描画体への露光、非露光が行われるように、所定の描画内容に対応する描画データを前記変調信号に変換して前記音響光学素子を駆動制御し、非描画動作時には、前記記憶手段から読み出した前記駆動データを前記変調信号に変換して前記音響光学素子を駆動制御すること、を特徴とするレーザビーム描画装置における音響光学素子定常化システム。
In the acousto-optic element stationary system in the laser beam drawing apparatus according to claim 1,
Storage means for storing drive data for forcibly driving the acousto-optic element;
The control means converts drawing data corresponding to predetermined drawing contents into the modulation signal so that exposure and non-exposure to the drawing object corresponding to the predetermined drawing contents are performed in each scanning during the drawing operation. Then, the acousto-optic device is driven and controlled, and the drive data read from the storage means is converted into the modulation signal and the acousto-optic device is driven and controlled during non-drawing operation. Acousto-optic element stationary system in apparatus.
請求項2に記載のレーザビーム描画装置における音響光学素子定常化システムにおいて、
前記制御手段は、描画時に前記描画データを前記記憶手段に記憶させ、非描画時には、前記記憶手段に記憶された前記描画データを前記駆動データとして使用することを特徴とするレーザビーム描画装置における音響光学素子定常化システム。
In the acousto-optic element stationary system in the laser beam drawing apparatus according to claim 2 ,
The control means stores the drawing data in the storage means at the time of drawing, and uses the drawing data stored in the storage means as the driving data at the time of non-drawing. Optical element stationary system.
請求項1から請求項3のいずれかに記載のレーザビーム描画装置における音響光学素子定常化システムにおいて、
前記音響光学素子は、描画動作時、複数のレーザビームを変調し、
前記レーザビーム描画装置は、前記音響光学素子から射出される複数の回折光を同時に被描画体上で走査させることにより、描画を行うことを特徴とする、レーザビーム描画装置における音響光学素子定常化システム。
In the acoustooptic device stationary system in the laser beam drawing apparatus according to any one of claims 1 to 3 ,
The acoustooptic device modulates a plurality of laser beams during a drawing operation,
The laser beam drawing apparatus performs drawing by simultaneously scanning a plurality of diffracted lights emitted from the acoustooptic element on a drawing object, and making the acoustooptic element steady in the laser beam drawing apparatus system.
請求項1に記載のレーザビーム描画装置における音響光学素子定常化システムにおいて、
前記音響光学素子の温度を検出する温度検出手段をさらに有し、
前記制御手段は、描画動作時には、各走査において所定の描画内容に対応した前記被描画体への露光、非露光が行われるように、所定の描画内容に対応する描画データを前記変調信号に変換して前記音響光学素子を駆動制御し、非描画動作時には、前記温度検出手段により検出される実際の温度が、前記音響光学素子が定常状態であるときの所定温度と一致するように、前記変調信号を自動生成し、前記音響光学素子を駆動制御すること、を特徴とする音響光学素子定常化システム。
In the acousto-optic element stationary system in the laser beam drawing apparatus according to claim 1,
A temperature detecting means for detecting the temperature of the acoustooptic device;
The control means converts drawing data corresponding to predetermined drawing contents into the modulation signal so that exposure and non-exposure to the drawing object corresponding to the predetermined drawing contents are performed in each scanning during the drawing operation. and said acousto-optic device is driven and controlled by, at the time of non-writing operation, the actual temperature detected by said temperature detecting means such that said acousto-optic device matches a predetermined temperature when a steady state, the modulation An acoustooptic element steadying system characterized by automatically generating a signal and drivingly controlling the acoustooptic element.
JP2000368332A 2000-12-04 2000-12-04 Acousto-optic device stationary system in laser beam lithography system Expired - Fee Related JP4585684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000368332A JP4585684B2 (en) 2000-12-04 2000-12-04 Acousto-optic device stationary system in laser beam lithography system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000368332A JP4585684B2 (en) 2000-12-04 2000-12-04 Acousto-optic device stationary system in laser beam lithography system

Publications (3)

Publication Number Publication Date
JP2002169118A JP2002169118A (en) 2002-06-14
JP2002169118A5 JP2002169118A5 (en) 2007-12-27
JP4585684B2 true JP4585684B2 (en) 2010-11-24

Family

ID=18838604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000368332A Expired - Fee Related JP4585684B2 (en) 2000-12-04 2000-12-04 Acousto-optic device stationary system in laser beam lithography system

Country Status (1)

Country Link
JP (1) JP4585684B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144951A (en) * 2005-11-30 2007-06-14 Ricoh Co Ltd Image forming apparatus
DE102007053199A1 (en) * 2007-11-06 2009-05-14 Leica Microsystems Cms Gmbh Device and method for controlling an acousto-optic component
KR102138223B1 (en) * 2011-07-05 2020-07-28 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 Systems and methods for providing temperature stability of acousto-optic beam deflectors and acousto-optic modulators during use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4890539A (en) * 1972-03-01 1973-11-26
JPS61189575A (en) * 1985-02-19 1986-08-23 Canon Inc Image forming device
JPS6319962A (en) * 1986-07-12 1988-01-27 Konica Corp Picture recording device utilizing stepping motor
JP2000047117A (en) * 1998-06-18 2000-02-18 Carl Zeiss Jena Gmbh Laser scanning type microscope equipped with aotf
JP2002072160A (en) * 2000-06-19 2002-03-12 Leica Microsystems Heidelberg Gmbh Method and device for stabilizing temperature of optical parts and scanning microscope equipped with stabilizing means

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173920A (en) * 1984-09-19 1986-04-16 Fuji Photo Film Co Ltd Stabilizing device for quantity of laser exposure
JPS63231313A (en) * 1987-03-19 1988-09-27 Asahi Glass Co Ltd Acoustooptic element
JPS63316877A (en) * 1987-06-19 1988-12-26 Fujitsu Ltd Image forming device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4890539A (en) * 1972-03-01 1973-11-26
JPS61189575A (en) * 1985-02-19 1986-08-23 Canon Inc Image forming device
JPS6319962A (en) * 1986-07-12 1988-01-27 Konica Corp Picture recording device utilizing stepping motor
JP2000047117A (en) * 1998-06-18 2000-02-18 Carl Zeiss Jena Gmbh Laser scanning type microscope equipped with aotf
JP2002072160A (en) * 2000-06-19 2002-03-12 Leica Microsystems Heidelberg Gmbh Method and device for stabilizing temperature of optical parts and scanning microscope equipped with stabilizing means

Also Published As

Publication number Publication date
JP2002169118A (en) 2002-06-14

Similar Documents

Publication Publication Date Title
JP2001201704A (en) Optical scanner
US20050001895A1 (en) Image recording method and image recording device
JP4585684B2 (en) Acousto-optic device stationary system in laser beam lithography system
US5822105A (en) Scanner
US6366385B2 (en) Multi-beam scanning optical system and image forming apparatus using the same
US6768505B2 (en) Method and apparatus for exposing printing forms
US6057548A (en) Increased quality thermal image recording technique
JPS63316877A (en) Image forming device
JPH08321929A (en) Optical scanning recorder
US6552741B2 (en) Optical scanning device, image scanning method and photographic processing device
KR100813960B1 (en) Optical scanning apparatus and image forming apparatus employing the same
JPH0752453A (en) Image recording device
JP2000241726A (en) Optical scanner and image output device
US6384950B1 (en) Optical system for scanning
JP3646851B2 (en) Plate making device
US5396276A (en) Optical beam scanning apparatus
KR100265730B1 (en) Laser scanning system
JP3783586B2 (en) Exposure equipment
JP3474302B2 (en) Light beam deflection scanner
JP4635349B2 (en) Exposure apparatus, photographic processing apparatus including the same, and exposure control method
JPH04194813A (en) Picture element density changing optical device
JP2006251643A (en) Laser printing method and printer
JP2006156537A (en) Semiconductor laser drive
JP2002055294A (en) Optical write-in device
JPH06106760A (en) Thermal recording method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060907

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061023

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Ref document number: 4585684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees