JPS63231313A - Acoustooptic element - Google Patents

Acoustooptic element

Info

Publication number
JPS63231313A
JPS63231313A JP6266487A JP6266487A JPS63231313A JP S63231313 A JPS63231313 A JP S63231313A JP 6266487 A JP6266487 A JP 6266487A JP 6266487 A JP6266487 A JP 6266487A JP S63231313 A JPS63231313 A JP S63231313A
Authority
JP
Japan
Prior art keywords
temp
acousto
temperature control
input transducer
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6266487A
Other languages
Japanese (ja)
Inventor
Katsuhiro Ochiai
落合 克弘
Yuzuru Tanabe
譲 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP6266487A priority Critical patent/JPS63231313A/en
Publication of JPS63231313A publication Critical patent/JPS63231313A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To maintain the specified temp. of an acoustooptic medium by providing temp. control elements by bringing said elements into contact with the two side face parts, except optical faces through which a light beam passes, of the acoustooptic medium as well as the surface to be mounted with an input transducer or reflection face. CONSTITUTION:The temp. control elements 7a-7c are brought into all of the faces, except the optical faces through which the light beam passes, of the acoustooptic medium 6, i.e., the two side face parts 5, the surface 2 to be mounted with the input transducer and the ultrasonic reflection face 1. The face 1 and the two faces 5 contact the element 7a through a good heat conductive material. The face 2a likewise contacts the element 7b. The output of a thermistor 9 (temp. control sensor 8) is compared with a prescribed reference voltage by a differential amplifier 11 and the differential output is inputted via a voltage amplifier 12 and a power amplifier 14 to an electronic cold heat element 15 (temp. control elements 7a-7c), by which the temp. over the entire part of the acoustooptic medium is maintained uniformly.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は温度制御素子を有する音響光学素子に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an acousto-optic device having a temperature control element.

[従来の技術]。[Conventional technology].

従来の音響光学素子は、音響光学媒体を直接容器体ある
いは筐体に接着材等で固定したり、可動部材等に載置し
て該可動部材等を容器体あるいは筐体に取り付ける構造
となっており、積極的に音響光学媒体を温度制御しては
いなかった。
Conventional acousto-optic elements have a structure in which the acousto-optic medium is directly fixed to a container or housing with an adhesive or the like, or is placed on a movable member and the movable member is attached to the container or housing. Therefore, the temperature of the acousto-optic medium was not actively controlled.

[発明の解決しようとする問題点] 従来の音響光学素子は、前述のような構成を有している
ので、音響光学素子の駆動時に、入力用トランスデユー
サ−の圧電体の電気機械変換振動や該入力用トランスデ
ユーサ−への電力供給時の電気抵抗により発生した熱、
あるいは音響光学媒体自体の超音波による振動から発生
した熱のため、透過光の回折角や強度がゆらぐという問
題点を有していた。
[Problems to be Solved by the Invention] Since the conventional acousto-optic device has the above-described configuration, when the acousto-optic device is driven, electromechanical transduction vibration of the piezoelectric body of the input transducer is generated. heat generated by electrical resistance during power supply to the input transducer,
Another problem is that the diffraction angle and intensity of transmitted light fluctuate due to heat generated from ultrasonic vibrations of the acousto-optic medium itself.

[問題点を解決するための手段] 本発明は、前述の問題点を解決すべくなされたものであ
り、音響光学媒体の光ビームが通過する光学面を除いた
面のうち、2つの側面部と少なくとも入力トランスデュ
ーサーの取り付け面か超音波反射面のどちらかに、温度
制御素子を接触させるか又は近傍に設けることを特徴と
する音響光学素子を提供するものである。
[Means for Solving the Problem] The present invention has been made to solve the above-mentioned problem. The present invention provides an acousto-optic element characterized in that a temperature control element is provided in contact with or in the vicinity of at least either the mounting surface of the input transducer or the ultrasonic reflecting surface.

[作用] 本発明において、音響光学媒体の光ビームが通過する光
学面を除いた面のうち、2つの側面部と少なくとも入力
トランスデューサーの取り付け面と超音波反射面のどち
らかに、温度制御素子を接触させるか近傍に設けること
によって、音響光学媒体の温度を一定に保ち、音響光学
媒体内に温度勾配、温度変動を発生させない。従って、
光ビームの回折角や強度のゆらぎを抑制できる。
[Function] In the present invention, a temperature control element is provided on two side surfaces of the acousto-optic medium excluding the optical surface through which the light beam passes, or on at least one of the input transducer mounting surface and the ultrasonic reflecting surface. By bringing it into contact with or providing it nearby, the temperature of the acousto-optic medium is kept constant and no temperature gradient or temperature fluctuation occurs within the acousto-optic medium. Therefore,
Fluctuations in the diffraction angle and intensity of the light beam can be suppressed.

[実施例コ 本発明の実施例を第1図と第2図に示す。第1図(a)
は音響光学素子の平面図を示し、(b)はAA’線にお
ける側断面図、(C)は正面図を示す。第2図は温度制
御回路のブロック図を示す。
[Example] An example of the present invention is shown in FIGS. 1 and 2. Figure 1(a)
shows a plan view of the acousto-optic element, (b) shows a side sectional view taken along line AA', and (C) shows a front view. FIG. 2 shows a block diagram of the temperature control circuit.

音響光学媒体6の光ビームが通過する光学面3を除いた
面、即ち2つの側面部5と入力トランスデューサー取り
付け面2と超音波反射面1のすべてに温度制御素子7a
〜7cを接触させている。超音波反射面1及び2つの側
面部5は、良熱伝導性材料を介して温度制御素子7aに
接している。入力トランスデューサー取り付け面2は、
絶縁性の良熱伝導性材料を介して温度制御素子7bに接
している。本実施例に示す音響光学素子は、10本のレ
ーザ光を同時に各々変調するマルチ音響光学素子である
。それ故、10本のレーザ光の通過する光学面3は、従
来の1本のレーザ光が通過する光学面と比較して、その
幅と面積が大きくなっている0本実施例においては、1
0本のレーザ光を変調しているが、変調するレーザ光の
数は10本に限られるものではない。温度制御素子7a
〜7cは、放熱構造材4,4′の一部分に取り付けられ
ている。放熱構造材4,4′の材料としては、黒アルマ
イト表面加工したアルミニウムを使用しているが、真鍮
等の熱伝導率の良い金属材料や同じく熱伝導率の良い高
分子化合物材料を使用することもできる。放熱構造材4
は、音響光学媒体6よりも体積の大きい直方体材料に、
音響光学素子の超音波反射面1と同様な斜面の底部を有
する溝を設け、線溝に音響光学媒体6を嵌め込んでおり
、該放熱構造材4の、音響光学媒体6の超音波反射面1
と2つの側面部5に対応する位置に温度制御素子7a 
、 7cを設けている。放熱構造材4は、直方体材料に
限定されるものではなく、四角錐や円錐形材料等のもの
も使用できる。又、温度制御素子7a、7cは、超音波
反射面1.2つの側面部5と同形で同面積としているが
、面積を大きくしても良いし、面積を小さくしても良く
、音響光学媒体6の発熱量に応じて最小の面積で効率良
く温度制御できることが好ましい、又、形状については
同形あるいは相似形のものが有効であるが、格子状等に
しても均一に温度制御できると考えられる。
Temperature control elements 7a are provided on all surfaces of the acousto-optic medium 6 except for the optical surface 3 through which the light beam passes, that is, the two side surfaces 5, the input transducer mounting surface 2, and the ultrasonic reflecting surface 1.
~7c is in contact. The ultrasonic reflecting surface 1 and the two side surfaces 5 are in contact with the temperature control element 7a via a material with good thermal conductivity. The input transducer mounting surface 2 is
It is in contact with the temperature control element 7b via an insulating and highly thermally conductive material. The acousto-optic device shown in this example is a multi-acousto-optic device that simultaneously modulates ten laser beams. Therefore, in this embodiment, the optical surface 3 through which ten laser beams pass has a larger width and area than the conventional optical surface through which one laser beam passes.
Although zero laser beams are modulated, the number of laser beams to be modulated is not limited to ten. Temperature control element 7a
~7c are attached to a portion of the heat dissipation structural members 4, 4'. Aluminum with a black alumite surface treatment is used as the material for the heat dissipation structural members 4 and 4', but a metal material with good thermal conductivity such as brass or a polymer compound material with good thermal conductivity should also be used. You can also do it. Heat dissipation structure material 4
is a rectangular parallelepiped material whose volume is larger than that of the acousto-optic medium 6,
A groove having a sloped bottom similar to the ultrasonic reflecting surface 1 of the acousto-optic element is provided, and an acousto-optic medium 6 is fitted into the line groove, and the ultrasonic reflecting surface of the acousto-optic medium 6 of the heat dissipation structure material 4 is provided. 1
and a temperature control element 7a at a position corresponding to the two side surfaces 5.
, 7c is provided. The heat dissipation structure material 4 is not limited to a rectangular parallelepiped material, and materials such as a quadrangular pyramidal or conical material can also be used. Further, the temperature control elements 7a and 7c have the same shape and area as the ultrasonic reflecting surface 1 and the two side surfaces 5, but the area may be increased or decreased, and the acousto-optic medium It is preferable to be able to efficiently control the temperature with a minimum area according to the amount of heat generated in step 6.Also, it is effective to use the same or similar shapes, but it is thought that uniform temperature control can be achieved by using a lattice shape, etc. .

放熱構造材4′は、直方体材料の一面が入力トランスデ
ューサー2′の全面を覆うように接触しており、該入力
トランスデューサー2′に対応する位置に温度制御素子
7bを設けている。温度制御素子7bは、形状と面積が
入力トランスデューサー2′と同形、同面積であるが、
面積を大きくしても良いし、面積を小さくしても良く、
入力トランスデューサー2′及び音響光学媒体6の発熱
量に応じて最小の面積で効率良く温度制御できることが
好ましい、又、形状については同形あるいは相似形のも
のが有効であるが、格子状等にしても均一に温度制御で
きると考えられる。放熱構造材4′は、温度制御素子7
bの外周を覆い得る一面を有する立体であれば使用でき
る。放熱構造材4,4゛に空洞部を設けて、該空洞部に
水等の液体を注入したり、外部とパイプを介して水等の
液体を循環させれば放熱に有効である。又、放熱構造材
4,4′の表面を波型に加工して表面積を大きくすれば
、更に放熱効率が向上するものと考えられる。
One surface of the rectangular parallelepiped material of the heat dissipation structure 4' is in contact with the input transducer 2' so as to cover the entire surface thereof, and a temperature control element 7b is provided at a position corresponding to the input transducer 2'. The temperature control element 7b has the same shape and area as the input transducer 2', but
The area can be increased or decreased,
It is preferable that the temperature can be controlled efficiently with a minimum area according to the amount of heat generated by the input transducer 2' and the acousto-optic medium 6.Also, it is effective to use the same or similar shapes, but it is preferable to use a grid-like or similar shape. It is thought that the temperature can also be controlled uniformly. The heat dissipation structure material 4' is a temperature control element 7
Any solid body can be used as long as it has one surface that can cover the outer periphery of b. It is effective to dissipate heat by providing a cavity in the heat dissipating structural members 4, 4' and injecting a liquid such as water into the cavity, or by circulating the liquid such as water through a pipe to the outside. Furthermore, it is believed that the heat radiation efficiency can be further improved if the surfaces of the heat radiation structural members 4, 4' are processed into a corrugated shape to increase the surface area.

放熱構造材4の温度制御素子7a、 7cと音響光学媒
体6の2つの側面部5、超音波反射面lは導熱性シリコ
ーングリスを介して接している。
The temperature control elements 7a, 7c of the heat dissipation structure 4, the two side surfaces 5 of the acousto-optic medium 6, and the ultrasonic reflecting surface l are in contact with each other via heat conductive silicone grease.

又、入力トランスデューサーの取り付け面2と放熱構造
材4゛の温度制御素子7bは絶縁性の導熱性シリコーン
シートを介して接している。絶縁性の導熱性シリコーン
シートを使用しているので、放熱構造材4′の温度制御
素子7bが金属材料の場合、圧電体の電極部に接触して
短絡することもないし、駆動時の圧電体の振動を吸収す
るクッションとしても効果がある。
Further, the mounting surface 2 of the input transducer and the temperature control element 7b of the heat dissipating structure member 4' are in contact with each other via an insulating heat conductive silicone sheet. Since an insulating heat conductive silicone sheet is used, if the temperature control element 7b of the heat dissipation structure 4' is made of a metal material, it will not come into contact with the electrode part of the piezoelectric body and cause a short circuit, and the piezoelectric body will not be damaged during operation. It is also effective as a cushion that absorbs vibrations.

放熱構造材4,4′及びそれぞれに取り付けられた温度
制御素子7a〜7Cは、どちらか一方のみ設けても相当
の効果を有すると考えられるので、音響光学素子の取り
付け部のスペースの関係上あるいはコストダウンを図る
場合どちらか一方のみ設けても良い。
It is considered that the heat dissipation structural members 4, 4' and the temperature control elements 7a to 7C attached to each of them have a considerable effect even if only one of them is provided. In order to reduce costs, only one of them may be provided.

温度制御用センサー8は放熱構造材4,4′中に、音響
光学媒体8の超音波反射面1.2つの側面部5と入力ト
ランスデューサー2′のそれぞれの近傍に、温度制御素
子7a〜7cに接しないよう設ける。
The temperature control sensor 8 includes temperature control elements 7a to 7c in the heat dissipation structure 4, 4', near the ultrasonic reflecting surface 1, the two side surfaces 5, and the input transducer 2' of the acousto-optic medium 8, respectively. Provided so that it does not touch.

この例では、温度制御素子7a〜7cは、音響光学媒体
8の超音波反射面1.2つの側面部5と導熱性シリコー
ングリスを介して、又入力トランスデューサー2′と絶
縁性の導熱性シリコンシートを介して接しているが、放
熱構造材4.4′中に設けて直接接しないようにして、
間接的に温度制御することもできる。
In this example, the temperature control elements 7a to 7c are connected to the ultrasonic reflecting surface 1 of the acousto-optic medium 8 via the two side surfaces 5 and thermally conductive silicone grease, and to the input transducer 2' via an insulating thermally conductive silicone grease. Although they are in contact with each other through a sheet, they are provided in the heat dissipation structure material 4.4' so that they do not come in direct contact with each other.
Temperature can also be controlled indirectly.

第2図は、温度制御回路のブロック図である。差動増幅
器11の非反転端子(+)には、温度設定用抵抗10に
よって音響光学素子の設定温度に対応したある抵抗値を
選択して、該抵抗値によって決定される基準電圧を入力
する。サーミスタ9は、第1図における温度制御用セン
サー8であり、音響光学素子の温度変化によってその抵
抗値が変化するので、差動増幅器11の反転端子(−)
への入力電圧が変化する。よって、差動増幅器11の非
反転端子(+)の基準電圧よりも、反転端子(−)の入
力電圧が小さくなると、差動増幅器11は基準電圧と入
力電圧の電圧差だけの正電圧を出力し、非反転端子(+
)の基準電圧よりも反転端子(−)の入力電圧が大きく
なると差動増幅器11は基準電圧と入力電圧の電圧差だ
けの負電圧を出力する。差動増幅器11がある電圧値を
出力すると、電圧増幅アンプ12によってさらに該出力
電圧値を増幅する。PIDフィードバック回路13は、
電圧増幅アンプ12の発振を防止する。又、PIDフィ
ードバック回路13は音響光学媒体の温度変化による温
度制御回路系全体の発振を防止する目的も有する。電圧
増幅アンプ12の出力は、電圧増幅アンプ14によって
電流及び電圧共に増幅され電子冷熱素子15に入力する
。電子冷熱素子15は第1図の温度制御素子?a〜7c
に相当し、ペルチェ効果素子であり、入力電流値に比例
して吸熱あるいは発熱を行なう、電子冷熱素子15は、
発熱作用を行なうものでも良く、音響光学媒体全体が均
一な温度分布となるよう作用して、不均一な温度分布に
よる各党ビームの回折角や強度のゆらぎを小さくできれ
ば良い。したがって、この場合ペルチェ効果素子でなく
とも、抵抗加熱素子等も使用できる。温度制御回路は本
実施例に限られるものではなく、適宜別途構成を取り得
る。
FIG. 2 is a block diagram of the temperature control circuit. A certain resistance value corresponding to the set temperature of the acousto-optic element is selected by the temperature setting resistor 10, and a reference voltage determined by the resistance value is inputted to the non-inverting terminal (+) of the differential amplifier 11. The thermistor 9 is the temperature control sensor 8 in FIG.
The input voltage to changes. Therefore, when the input voltage at the inverting terminal (-) of the differential amplifier 11 becomes smaller than the reference voltage at the non-inverting terminal (+), the differential amplifier 11 outputs a positive voltage equal to the voltage difference between the reference voltage and the input voltage. and the non-inverting terminal (+
) When the input voltage at the inverting terminal (-) becomes larger than the reference voltage of the differential amplifier 11, the differential amplifier 11 outputs a negative voltage equal to the voltage difference between the reference voltage and the input voltage. When the differential amplifier 11 outputs a certain voltage value, the voltage amplification amplifier 12 further amplifies the output voltage value. The PID feedback circuit 13 is
This prevents the voltage amplification amplifier 12 from oscillating. The PID feedback circuit 13 also has the purpose of preventing oscillation of the entire temperature control circuit system due to temperature changes in the acousto-optic medium. The output of the voltage amplification amplifier 12 is amplified in both current and voltage by the voltage amplification amplifier 14 and input to the electronic cooling element 15 . Is the electronic cooling element 15 the temperature control element shown in Fig. 1? a~7c
The electronic cooling element 15, which corresponds to , is a Peltier effect element, and absorbs or generates heat in proportion to the input current value.
It may be one that generates heat, as long as it acts so that the entire acousto-optic medium has a uniform temperature distribution and can reduce fluctuations in the diffraction angle and intensity of each party beam due to non-uniform temperature distribution. Therefore, in this case, a resistance heating element or the like can be used instead of the Peltier effect element. The temperature control circuit is not limited to this embodiment, and may be configured separately as appropriate.

[発明の効果] 本発明は、前述の構造を有することによって、音響光学
媒体を設定温度に対して±0.1°Cで温度コントロー
ルしており、これによって音響光学媒体への入射前には
平行であった10本のレーザ光が、音響光学媒体を通過
することによって、透過光の回折角がゆらぎ扇状に拡が
ってしまったり、透過光の強度が変動することが改善さ
れるという優れた効果を示す。
[Effects of the Invention] By having the above-described structure, the present invention controls the temperature of the acousto-optic medium within ±0.1°C with respect to the set temperature. An excellent effect in that the diffraction angle of the transmitted light fluctuates and spreads into a fan shape when the 10 parallel laser beams pass through the acousto-optic medium, and the fluctuations in the intensity of the transmitted light are improved. shows.

本発明によって、両端の透過光の拡がりの角度が0.0
5mrad以下に、また透過光の強度の変動が1%以下
に改善された。
According to the present invention, the angle of spread of transmitted light at both ends is 0.0.
The variation in the intensity of transmitted light was improved to 5 mrad or less, and the variation in the intensity of transmitted light was improved to 1% or less.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第2図は、本発明の実施例の図を示し、第1図
(a)は音響光学素子の平面図、(b、)はAA′線に
おける側断面図、(C)は正面図、第2図は温度制御回
路のブロック図を示す。 1・・・超音波反射面、 2・・・入力トランスデューサー取り付け面、2′・・
・入力トランスデューサー、 3・・・光学面、  4,4′・・・放熱構造材、5・
・・側面部、  8・・・音響光学媒体7a〜7C・・
・温度制御素子、 8・・・温度制御用センサー、 8・・・サーミスタ、 lO・・・温度設定用抵抗、1
1・・・差動増幅器、 12・・・電圧増幅アンプ、1
3・・・PIDIDフィードバッフ、14・・・電力増
幅アンプ、 15・・・電子冷熱素子(Cン 輩 1 医
1 and 2 show diagrams of an embodiment of the present invention, FIG. 1(a) is a plan view of the acousto-optic element, (b,) is a side sectional view taken along the line AA', and (C) is a plan view of the acousto-optic element. The front view, FIG. 2, shows a block diagram of the temperature control circuit. 1...Ultrasonic reflecting surface, 2...Input transducer mounting surface, 2'...
・Input transducer, 3... Optical surface, 4, 4'... Heat dissipation structure material, 5.
... Side part, 8... Acousto-optic media 7a to 7C...
・Temperature control element, 8...Temperature control sensor, 8...Thermistor, lO...Temperature setting resistor, 1
1...Differential amplifier, 12...Voltage amplification amplifier, 1
3...PIDID feedback, 14...Power amplification amplifier, 15...Electronic cooling element

Claims (1)

【特許請求の範囲】 音響光学媒体の光ビームが通過する光学面 を除いた面のうち、2つの側面部と少なくとも入力トラ
ンスデューサーの取り付け面か超音波反射面のどちらか
に、温度制御素子を接触させるか又は近傍に設けること
を特徴とする音響光学素子。
[Claims] Temperature control elements are provided on two side surfaces of the acousto-optic medium excluding the optical surface through which the light beam passes, and at least on either the input transducer mounting surface or the ultrasonic reflecting surface. An acousto-optic element characterized by being placed in contact with or in the vicinity.
JP6266487A 1987-03-19 1987-03-19 Acoustooptic element Pending JPS63231313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6266487A JPS63231313A (en) 1987-03-19 1987-03-19 Acoustooptic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6266487A JPS63231313A (en) 1987-03-19 1987-03-19 Acoustooptic element

Publications (1)

Publication Number Publication Date
JPS63231313A true JPS63231313A (en) 1988-09-27

Family

ID=13206785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6266487A Pending JPS63231313A (en) 1987-03-19 1987-03-19 Acoustooptic element

Country Status (1)

Country Link
JP (1) JPS63231313A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307855A (en) * 1993-04-26 1994-11-04 Topcon Corp Automatic tracking measuring machine
JP2002169118A (en) * 2000-12-04 2002-06-14 Asahi Optical Co Ltd Acoustic device stabilization system in laser beam drawing device
JP2006226920A (en) * 2005-02-18 2006-08-31 Olympus Corp Multiphoton excitation type observation device, and light source device for multiphoton excitation type observation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307855A (en) * 1993-04-26 1994-11-04 Topcon Corp Automatic tracking measuring machine
JP2002169118A (en) * 2000-12-04 2002-06-14 Asahi Optical Co Ltd Acoustic device stabilization system in laser beam drawing device
JP2006226920A (en) * 2005-02-18 2006-08-31 Olympus Corp Multiphoton excitation type observation device, and light source device for multiphoton excitation type observation

Similar Documents

Publication Publication Date Title
JP2000156538A (en) Temperature-controlled microchip laser assembly and associated submount assembly
JP2001274489A (en) Heat dissipating device for optical fiber
US20130279170A1 (en) Laser light source module
JPS63231313A (en) Acoustooptic element
JP3624797B2 (en) Temperature control device
JPS63302584A (en) Temperature controller for laser diode
JP2004347137A (en) Peltier element fixing method and its cooling device, as well as laser oscillator
JP2681278B2 (en) Solid-state laser device
JP2000501521A (en) Diode-pumped frequency-doubled solid-state laser.
JPH08220406A (en) Thermostatic holder and optical device using the same
JP2986242B2 (en) Semiconductor laser with temperature controller
JPH09186379A (en) Heat exchanger for cooling laser and laser device
JP2891109B2 (en) Heating equipment
JPH0341787A (en) Solid-state laser
JPS63208824A (en) Acoustooptic element
JPH10117041A (en) Measuring apparatus of current versus optical output characteristic of semiconductor laser element
JPH06301426A (en) Temperature controller for solid element
CN218850081U (en) Temperature control device for solid gain medium of laser
JPH0532917B2 (en)
JPH0895104A (en) Laser resonator
RU2592057C1 (en) Universal radiator of solid-state laser
JPH04273176A (en) Electric-light conversion device
JPH11125800A (en) Optical element temperature distribution controller
JP2012038788A (en) Cooling use piezoelectric actuator drive circuit
JPH08255953A (en) Semiconductor laser unit