JP3624797B2 - Temperature control device - Google Patents

Temperature control device Download PDF

Info

Publication number
JP3624797B2
JP3624797B2 JP2000168383A JP2000168383A JP3624797B2 JP 3624797 B2 JP3624797 B2 JP 3624797B2 JP 2000168383 A JP2000168383 A JP 2000168383A JP 2000168383 A JP2000168383 A JP 2000168383A JP 3624797 B2 JP3624797 B2 JP 3624797B2
Authority
JP
Japan
Prior art keywords
peltier element
temperature
elastic pressing
base
pressing portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000168383A
Other languages
Japanese (ja)
Other versions
JP2001349636A (en
Inventor
憲秀 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2000168383A priority Critical patent/JP3624797B2/en
Publication of JP2001349636A publication Critical patent/JP2001349636A/en
Application granted granted Critical
Publication of JP3624797B2 publication Critical patent/JP3624797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Lasers (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ペルチェ素子を用いて温度制御を行う場合のペルチェ素子の固定方法に関し、レーザ機器、光学機器、精密機器、通信機器、家電機器その他における温度制御に広く適用することができる。
【0002】
【従来の技術】
例えばレーザ機器、光学機器、精密機器、電子機器、通信機器、家電機器等における局部冷却や比較的小規模の冷却、温度制御にペルチェ素子がしばしば利用されている。
【0003】
具体的な例を挙げると、例えば、波長変換固体レーザ装置に用いられるKNbO等の非線形光学素子は、温度によって位相整合条件が変化するので、常に安定した出力を得るには、非線形光学素子の温度を一定にコントロールする必要がある。またレーザ発振素子の特性の安定化や共振器用ミラーの間隔の安定化等のためにも精密な温度制御が要求される。
【0004】
ペルチェ素子は、熱電効果を有するP型、N型のペルチェ素子材料を電気及び熱の良導体を介して対にして単位の冷却構体を構成したもので、電流の方向により一端が吸熱、発熱面を形成し、通常、吸熱面を温度制御側のヒートシンクに、発熱面を放熱板に接触固定させて用いられるが、ペルチェ素子とヒートシンクとの接触面及びペルチェ素子と放熱板との接触面は良好な熱接触を保ち、接触面での熱抵抗を極力小さくしなければならない。
従来このペルチェ素子とヒートシンクまたは放熱体とのこれらの接触面は熱伝導性の接着剤で接合固定したり、ねじで締め付けて両者間を押圧固定して熱接触させる方法がよく用いられている。
【0005】
【発明が解決しようとする課題】
ペルチェ素子を熱伝導性の接着剤で固定する方法では、ペルチェ素子と熱接触体との熱膨張係数の違いにより、そりを生じて局部的に熱接触が不良となったり、ペルチェ素子自体にクラックや破損等の損傷を生じることがあった。
またネジで締め付ける方法では、締め付け具合の調整が難しく、締め付けが緩すぎるとペルチェ素子がずれたり、強過ぎるとペルチェ素子を破壊するおそれがあった。
【0006】
また、例えば図5のような光学系をペルチェ素子で温度調整する場合、従来の方法(熱伝導性接着剤)ではペルチェ素子とベースの熱膨張係数の違いにより、そりを生じて光学軸がずれてしまったり、共振器長が変化してしまう。
本発明は、上記のような問題点を解消し、ペルチェ素子の固定が安定な温度調整装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明に係る温度調整装置は、ペルチェ素子と、該ペルチェ素子からの熱伝導を促進する伝熱部材と、該ペルチェ素子により温度調整される被温調対象物と、該ペルチェ素子の吸熱または発熱面を該被温調対象物に接触させ両者を相互に弾性的に押圧して接触面方向には互いに拘束することなく固定保持する弾性押圧部と、からなる温度調整装置において、該弾性押圧部は板ばねと該板ばねを該伝熱部材に固定する固定部材、或いは、つるまきばねと該つるまきばねと被温調対象物を貫通して該伝熱部材に固定する固定部材からなり、該弾性押圧部を複数箇所に設けたことを特徴としている。
【0008】
【発明の実施の形態】
以下本発明の温度調整装置の実施態様について説明する。
図1は、本発明の温度調整装置の基本的実施形態を示し、放熱板となる良熱伝導性の平面基板(ベース)1の上にペルチェ素子2が載置され、さらにペルチェ素子2の上に良熱伝導性平板のヒートシンク3が載置されてペルチェ冷却積層体1−2−3が構成されている。ヒートシンク3の表面は、この積層体を互いに密着させるための弾性押圧部材4aの一端により押圧され、弾性押圧部材4aの他端は固定部材4bによりベース1に固定されている。この弾性押圧部4により、ペルチェ素子2の吸熱発熱両面はヒートシンク3、ベース1にそれぞれ押圧接触固定させられる。
【0009】
弾性押圧部材4aとしては、充分な強度、靱性と弾性係数を持つ板バネが最適であるが、つるまきバネ等も好適である。また両者を併用することも可能である。さらに磁気吸引力も単独に、或いは上記のバネと併用して利用可能である。なお、図1では、4bは単なる固定部材として示しているが、弾性力の調節機構を持たせておくことが望ましい。
【0010】
弾性押圧部4は、図1では1個しか示されていないが、必要に応じて複数個分布して設けることが望ましい。これにより、押圧力の局部的集中を防止し、更に押圧力の2次元分布の均等性を向上することができる。弾性押圧部4は、ヒートシンク3の例えば各側面に沿って、数個程度ずつ設置してもよい。
【0011】
次にこの発明の具体的な実施の形態について、図面を参照しながら詳細に説明する。
図2は、本発明の温度調整装置を適用したLD励起波長変換型固体レーザ装置の概略構成図である。図2において、光軸L上にLD励起波長変換型固体レーザ装置を構成する各光学素子が所定の位置関係に配置されている。20は励起光源となる半導体レーザ(レーザダイオードチップ、以下LDチップという)、21はLDチップ20からのレーザ光を固体レーザ媒質に照射するための集光光学系である。22はLDチップ20からの照射光により基本波レーザ光を誘導放出する固体レーザ媒質であり、例えばNd:YAGを用いる。固体レーザ媒質22の入力側には上記基本波レーザ光及びその第二高調波(SH波)を全反射させるHR高反射コーティング膜23が形成されている。24は固体レーザ媒質22の基本波出力からSH波を発生させるための非線形光学結晶であり、例えばKNbOを用いる。25は上記の基本波を全反射させ且つSH波を透過させる特性を有する波長選択性ミラーであり、凹面鏡面に上記目的の波長選択性のコーティングが施されている。26はコリメートされた所定形状のレーザ光出力を得るためのコリメータレンズである。
【0012】
LDチップ20から出射されたレーザビームは集光用レンズ21によって固体レーザ媒質22に集光照射されて、固体レーザ媒質22から基本波が誘導放出され、この基本波が波長選択性ミラー25により反射されて、同じ経路を逆にたどって固体レーザ媒質22のHR高反射コーティング膜23で反射されるように構成され、これにより、固体レーザ媒質22のHR高反射コーティング膜23と波長選択性ミラー25との間に基本波に対するレーザ共振器が形成される。そして、固体レーザ媒質22からの基本波が非線形光学結晶24で波長変換されて得たSH波のレーザビームが波長選択性ミラー25を透過し、コリメータレンズ26によりコリメートされて出射される。
【0013】
次に本発明の温度調整装置を適用したLD励起波長変換型固体レーザ装置の光学系の温度制御について説明する。31は、LD励起波長変換型固体レーザ装置の共通のベースであり、充分な大きさと強度を持った良熱伝導性の滑らかな剛体金属平板で構成される。このベース31上にペルチェ素子32(32A、32B)が載置され、さらにペルチェ素子32上に光学系用のベース33(33A、33B)が載置されて、ペルチェ素子32が共通のベース31と光学系用のベース33との間に、後述の方式により弾性的に押圧固定され、光学系が温度制御される。なお共通のベース31と同様に、光学系用のベース33は、熱伝導の良い滑らかな金属板剛体等によりそれぞれ形成され、一方、ベース31は放熱板の機能も兼ねている。
【0014】
ペルチェ素子32、光学系用のベース33は、図の如く、比較的小さい左側の部分32A、33Aと、比較大きな右側の部分32B、33Bとに分割され、光軸Lの方向に多少の間隔をおいて配置されている。左側のベース33A上にはLDチップ20が配置され、右側のベース33B上には他の光学要素等21ないし26が配置され、左右のベース33A、33Bはそれぞれに適した独自温度に制御可能となる。従って、LDチップ20は、ベース33Aを介してペルチェ素子32Aにより温度コントロールされており、適切な波長のレーザビーム(例えば波長860nm付近の赤外光)を発生するように、チューニングされている。一方、非線形光学結晶24は、ベース33Bを介してペルチェ素子32Bに取り付けられて、最も効率のよい波長変換が行われる温度にコントロールされている。
【0015】
40は上記光学系におけるペルチェ素子の固定のための弾性押圧部である。ベース33Aの側端部が十分な強度と靭性、弾性係数を有する金属板等の板バネ41の一端により押圧されている。板バネ41は上向きにふくらんだ形状に構成され、その他端には透孔(図示せず)が設けられ、ベース31の端部表面に固定された段差付きねじ棒43の上部のねじ部分がこの透孔に挿入されている。ねじ棒43は、上部がねじに形成され、下部は比較的径の大きい円柱状に形成されており、中間の段差ストッパー部分に板バネ41の他端を押し当て、ナット42を締め付けることにより、板バネ41の右端部が適宜十分な押圧力でベース33Aを下方に押圧し、ペルチェ素子32をベース31とベース33Aとの間に固定させるように構成されている。押圧力はナット42とねじにより安定に維持されるとともに、必要に応じて時々調整することも可能である。なお、弾性押圧部40は、ベース33Aの左側端面にのみ図示したが、適宜各端面に分布して設けられ、またベース33Bの箇所にも、同様に必要数分布設置される(図4で詳述する)。
【0016】
上記構成においては、ペルチェ素子の熱接触面が接着材により接合されていないので、ペルチェ素子と熱接触部材との間は接触面方向には直接には互いに拘束されず、温度変化等によりそりを生じて、熱接触の不良が発生したり、ペルチェ素子に損傷を生じるおそれはない。またネジにより直接締め付ける場合のようにペルチェ素子を破壊するおそれもない。従って、光学系全体としても、所期の性能を安定に保持することができる。
【0017】
図3の(A)、(B)は、ペルチェ素子の押圧固定部40の他の実施形態を示し、(A)図では、図2のねじ棒43の代わりにねじ棒44を用い、板バネ41と共通のベース31との間に板バネ41に比べて比較的強いつるまきバネ45をねじ44を包囲して設置したものである。これにより、図2と同様の効果を得るとともに、図2の場合よりもナット42の可動範囲を長くし、押圧力の調整範囲を拡大することができる。
【0018】
図3の(B)は、共通のベース31の端部にねじ部材48を固定するか、またはねじ込み可能に構成し、光学系用のベース33の側端部にねじ部材48が自由に通る孔を設け、ねじ部材48の頭部46とベース33との間に適当な強さのつるまきバネ47を挿入して、ベース31とベース33とをペルチェ素子32の方向に弾性的に押圧するようにしたものである。なお、ねじ部材48の頭部46の代わりにナットを用いてもよい。(B)の構成によれば、上記図3の(A)や図2と同様の機能を達成できると共に、これらよりやや簡単な構成にできる。
【0019】
図4は図2、図3における弾性押圧部40の配置位置の実施形態を示す。長手方向の両端部に各弾性押圧部40Aないし40D、および側面に40Eないし40Hを設けてもよい。或いは両者併せて設けてもよいが、いずれにしても、光学要素の配置及び動作に支障とならず、かつ熱接触面における弾性押圧力の2次元分布ができるだけ均等になるように設置位置、設置数を選定する。
【0020】
以上のように、本発明により、良好かつ安定な熱接触をペルチェ素子と熱接触部材との間に保ちながら、ペルチェ素子を固定することができる温度調整装置を構成することができる。
なお、上記の実施形態では、LDチップからの出力光により、固体レーザ媒質を励起するとともに、固体レーザ媒質を含む共振器内に非線型光学素子を配置し、固体レーザ媒質から誘導放出される基本波を波長変換して得られる第二高調波を波長選択性ミラーを介して外部に出力するLD励起固体レーザ装置に適用した場合について説明したが、LDチップからの基本波レーザ光を非線形光学結晶に照射し、これにより波長変換して得られた第二高調波のレーザ光出力を得るタイプのレーザ装置の光学系等に等に適用することも可能であり、また他のレーザ機器、光学機器、精密機器、通信機器、家電機器その他における温度制御に広く適用可能である。
【0021】
【発明の効果】
本発明によれば、弾性部材により一定の力で固定できると同時に、厚さ方向に熱膨張した場合においても、一定の力で固定できるので、緩みや締め付け過ぎによる破壊を生じない。また、横方向の熱膨張に関してもペルチェ素子が上下の材料に接着されていないので、熱膨張係数の違いによるそりや素子へのダメージを気にする必要がない。また、熱接触面に接着剤等が介在しないので、接触面における熱抵抗も殆ど生じない。
【図面の簡単な説明】
【図1】本発明の温度調整装置の概略的構成図である。
【図2】本発明の温度調整装置の具体的実施形態を示す。
【図3】本発明の温度調整装置の要部の弾性押圧部の他の実施形態を示す。
【図4】本発明の温度調整装置の要部弾性押圧部の配置例を示す。
【図5】従来の温度調整装置の一例を示す。
【符号の説明】
1…ベース
2…ペルチェ素子
3…ヒートシンク
4…弾性押圧部
4a…弾性押圧部材
4b…固定部材
20…LDチップ
22…固体レーザ媒質
23…HR高反射コーティング膜
24…非線形光学結晶
25…波長選択性ミラー
31、33、33A、33B…ベース
32、32A、32B…ペルチェ素子
40(40A〜40H)…弾性押圧部
41…板バネ
42…ナット
43、44…ねじ棒
45、47…つるまきバネ
48…ねじ部材
L…光軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for fixing a Peltier element when temperature control is performed using a Peltier element, and can be widely applied to temperature control in laser equipment, optical equipment, precision equipment, communication equipment, home appliances, and the like.
[0002]
[Prior art]
For example, Peltier elements are often used for local cooling, relatively small-scale cooling, and temperature control in laser equipment, optical equipment, precision equipment, electronic equipment, communication equipment, home appliances, and the like.
[0003]
As a specific example, for example, a nonlinear optical element such as KNbO 3 used in a wavelength conversion solid-state laser device has a phase matching condition that changes depending on temperature. It is necessary to control the temperature constantly. In addition, precise temperature control is required for stabilizing the characteristics of the laser oscillation element and stabilizing the interval between the resonator mirrors.
[0004]
A Peltier element is a unit cooling structure that consists of a P-type and N-type Peltier element material having thermoelectric effect through a good electrical and thermal conductor, and one end absorbs heat and generates a heat generation surface depending on the direction of current. Normally, the heat absorption surface is used as a heat sink on the temperature control side and the heat generation surface is used as a contact with the heat sink, but the contact surface between the Peltier element and the heat sink and the contact surface between the Peltier element and the heat sink are good. Thermal contact must be maintained and the thermal resistance at the contact surface must be minimized.
Conventionally, the contact surface between the Peltier element and the heat sink or heat radiator is often bonded and fixed with a heat conductive adhesive, or is tightened with a screw and pressed between the two to be in thermal contact.
[0005]
[Problems to be solved by the invention]
In the method of fixing the Peltier element with a thermally conductive adhesive, the Peltier element and the thermal contact body have a thermal expansion coefficient that causes warpage, resulting in local thermal contact failure or cracks in the Peltier element itself. Damage may occur.
Further, in the method of tightening with a screw, it is difficult to adjust the tightening degree. If the tightening is too loose, the Peltier element may be displaced, and if it is too strong, the Peltier element may be destroyed.
[0006]
For example, when the temperature of an optical system as shown in FIG. 5 is adjusted with a Peltier element, the conventional method (thermally conductive adhesive) causes warpage due to the difference in thermal expansion coefficient between the Peltier element and the base, causing the optical axis to shift. Or the resonator length changes.
An object of the present invention is to solve the above problems and to provide a temperature adjusting device in which the Peltier element is stably fixed.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a temperature adjusting device according to the present invention includes a Peltier element, a heat transfer member that promotes heat conduction from the Peltier element, and a temperature-controlled object that is temperature-controlled by the Peltier element. A temperature comprising: an elastic pressing portion that contacts the heat-adjusting or heat-generating surface of the Peltier element with the object to be temperature-adjusted and elastically presses both of them and does not restrain each other in the contact surface direction. In the adjusting device, the elastic pressing portion is a plate spring and a fixing member that fixes the plate spring to the heat transfer member, or a helical spring, the helical spring, and the temperature-controlled object that penetrates the heat transfer member. The elastic pressing portion is provided at a plurality of locations.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the temperature control device of the present invention will be described.
FIG. 1 shows a basic embodiment of a temperature control device of the present invention, in which a Peltier element 2 is mounted on a flat substrate (base) 1 having good heat conductivity as a heat sink, and further on the Peltier element 2. Further, a Peltier-cooled laminated body 1-2-3 is configured by placing a heat sink 3 having a good thermal conductivity on the flat plate. The surface of the heat sink 3 is pressed by one end of an elastic pressing member 4a for bringing the laminate into close contact with each other, and the other end of the elastic pressing member 4a is fixed to the base 1 by a fixing member 4b. By this elastic pressing portion 4, the both endothermic heat generation surfaces of the Peltier element 2 are pressed and fixed to the heat sink 3 and the base 1, respectively.
[0009]
As the elastic pressing member 4a, a leaf spring having sufficient strength, toughness and elastic modulus is optimal, but a helical spring or the like is also suitable. Moreover, it is also possible to use both together. Further, the magnetic attractive force can be used alone or in combination with the above spring. In FIG. 1, 4b is shown as a simple fixing member, but it is desirable to have an elastic force adjusting mechanism.
[0010]
Although only one elastic pressing portion 4 is shown in FIG. 1, it is desirable to provide a plurality of elastic pressing portions as needed. Thereby, local concentration of the pressing force can be prevented, and the uniformity of the two-dimensional distribution of the pressing force can be improved. For example, several elastic pressing portions 4 may be provided along each side surface of the heat sink 3.
[0011]
Next, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 2 is a schematic configuration diagram of an LD excitation wavelength conversion type solid-state laser device to which the temperature adjusting device of the present invention is applied. In FIG. 2, the optical elements constituting the LD excitation wavelength conversion type solid-state laser device are arranged on the optical axis L in a predetermined positional relationship. Reference numeral 20 denotes a semiconductor laser (laser diode chip, hereinafter referred to as LD chip) serving as an excitation light source, and 21 denotes a condensing optical system for irradiating laser light from the LD chip 20 to the solid-state laser medium. Reference numeral 22 denotes a solid-state laser medium that stimulates and emits fundamental laser light by the irradiation light from the LD chip 20, and uses, for example, Nd: YAG. An HR high reflection coating film 23 is formed on the input side of the solid-state laser medium 22 to totally reflect the fundamental laser beam and its second harmonic (SH wave). Reference numeral 24 denotes a nonlinear optical crystal for generating an SH wave from the fundamental wave output of the solid-state laser medium 22, and for example, KNbO 3 is used. Reference numeral 25 denotes a wavelength-selective mirror having the characteristics of totally reflecting the fundamental wave and transmitting the SH wave, and the concave mirror surface is coated with the desired wavelength-selective coating. Reference numeral 26 denotes a collimator lens for obtaining a collimated laser beam output having a predetermined shape.
[0012]
The laser beam emitted from the LD chip 20 is focused and irradiated on the solid-state laser medium 22 by the condensing lens 21, and the fundamental wave is stimulated and emitted from the solid-state laser medium 22, and the fundamental wave is reflected by the wavelength selective mirror 25. Then, the HR high reflection coating film 23 of the solid-state laser medium 22 is reflected by the HR high-reflection coating film 23 of the solid-state laser medium 22 by following the same path in reverse. Between these, a laser resonator for the fundamental wave is formed. Then, an SH wave laser beam obtained by wavelength conversion of the fundamental wave from the solid-state laser medium 22 by the nonlinear optical crystal 24 passes through the wavelength selective mirror 25 and is collimated by the collimator lens 26 and emitted.
[0013]
Next, temperature control of the optical system of the LD excitation wavelength conversion type solid-state laser device to which the temperature adjusting device of the present invention is applied will be described. Reference numeral 31 denotes a common base for the LD excitation wavelength conversion type solid-state laser device, which is composed of a smooth metal plate having a sufficient size and strength and good heat conductivity. A Peltier element 32 (32A, 32B) is placed on the base 31, and an optical system base 33 (33A, 33B) is placed on the Peltier element 32 so that the Peltier element 32 is shared with the common base 31. It is elastically pressed and fixed between the optical system base 33 and the optical system by a method described later, and the temperature of the optical system is controlled. As with the common base 31, the optical system base 33 is formed of a smooth metal plate rigid body or the like having good heat conduction, while the base 31 also functions as a heat sink.
[0014]
The Peltier element 32 and the optical system base 33 are divided into relatively small left portions 32A and 33A and comparatively large right portions 32B and 33B as shown in the figure, with a slight gap in the direction of the optical axis L. Arranged. The LD chip 20 is disposed on the left base 33A, and other optical elements 21 to 26 are disposed on the right base 33B. The left and right bases 33A and 33B can be controlled to their own unique temperatures. Become. Accordingly, the temperature of the LD chip 20 is controlled by the Peltier element 32A via the base 33A, and is tuned so as to generate a laser beam having an appropriate wavelength (for example, infrared light having a wavelength of about 860 nm). On the other hand, the nonlinear optical crystal 24 is attached to the Peltier element 32B via the base 33B, and is controlled to a temperature at which the most efficient wavelength conversion is performed.
[0015]
Reference numeral 40 denotes an elastic pressing portion for fixing the Peltier element in the optical system. A side end portion of the base 33A is pressed by one end of a plate spring 41 such as a metal plate having sufficient strength, toughness, and elastic modulus. The leaf spring 41 is formed in a shape that bulges upward, and a through hole (not shown) is provided at the other end, and the upper thread portion of the stepped screw rod 43 fixed to the end surface of the base 31 is this. It is inserted into the through hole. The screw rod 43 has an upper portion formed into a screw and a lower portion formed in a cylindrical shape having a relatively large diameter. By pressing the other end of the leaf spring 41 against an intermediate step stopper portion and tightening the nut 42, The right end portion of the leaf spring 41 is configured to press the base 33A downward with a sufficient pressing force as appropriate, and to fix the Peltier element 32 between the base 31 and the base 33A. The pressing force is stably maintained by the nut 42 and the screw and can be adjusted from time to time as necessary. Although the elastic pressing portion 40 is illustrated only on the left end surface of the base 33A, it is appropriately distributed on each end surface, and the necessary number distribution is similarly installed on the base 33B (detailed in FIG. 4). Describe).
[0016]
In the above configuration, since the thermal contact surface of the Peltier element is not joined by the adhesive, the Peltier element and the thermal contact member are not directly constrained to each other in the contact surface direction. It does not occur that there is a risk of thermal contact failure or damage to the Peltier element. Further, there is no possibility of destroying the Peltier element as in the case of directly tightening with a screw. Therefore, the desired performance can be stably maintained for the entire optical system.
[0017]
3A and 3B show another embodiment of the pressing and fixing portion 40 of the Peltier element. In FIG. 3A, a screw rod 44 is used instead of the screw rod 43 of FIG. A helical spring 45, which is relatively stronger than the leaf spring 41, is installed between the base 41 and the common base 31 so as to surround the screw 44. As a result, the same effects as those in FIG. 2 can be obtained, and the movable range of the nut 42 can be made longer than in the case of FIG. 2 and the adjustment range of the pressing force can be expanded.
[0018]
FIG. 3B shows a hole in which the screw member 48 is fixed to the end of the common base 31 or can be screwed, and the screw member 48 freely passes through the side end of the base 33 for the optical system. And a helical spring 47 having an appropriate strength is inserted between the head 46 of the screw member 48 and the base 33 so as to elastically press the base 31 and the base 33 in the direction of the Peltier element 32. It is a thing. A nut may be used instead of the head portion 46 of the screw member 48. According to the structure of (B), while being able to achieve the function similar to the above-mentioned (A) of FIG. 3 and FIG. 2, it can be made a slightly simpler structure.
[0019]
FIG. 4 shows an embodiment of the arrangement position of the elastic pressing portion 40 in FIGS. You may provide each elastic press part 40A thru | or 40D in the both ends of a longitudinal direction, and 40E thru | or 40H in a side surface. Alternatively, they may be provided together, but in any case, the installation position and installation are such that the arrangement and operation of the optical elements are not hindered and the two-dimensional distribution of the elastic pressing force on the thermal contact surface is as uniform as possible. Select the number.
[0020]
As described above, according to the present invention, it is possible to configure a temperature adjustment device that can fix a Peltier element while maintaining good and stable thermal contact between the Peltier element and the thermal contact member.
In the above-described embodiment, the solid laser medium is excited by the output light from the LD chip, and the nonlinear optical element is disposed in the resonator including the solid laser medium, so that the fundamental light is stimulated and emitted from the solid laser medium. The case where the second harmonic obtained by converting the wavelength of the wave is applied to an LD-pumped solid-state laser device that outputs it to the outside via a wavelength-selective mirror has been described. Can be applied to an optical system or the like of a laser device of a type that obtains a laser beam output of a second harmonic obtained by wavelength conversion by this, and other laser equipment and optical equipment It can be widely applied to temperature control in precision equipment, communication equipment, home appliances and others.
[0021]
【The invention's effect】
According to the present invention, the elastic member can be fixed with a constant force, and at the same time, even when thermally expanded in the thickness direction, the elastic member can be fixed with a constant force, so that no damage due to loosening or excessive tightening occurs. In addition, regarding the thermal expansion in the lateral direction, since the Peltier element is not bonded to the upper and lower materials, it is not necessary to worry about warpage or damage to the element due to the difference in thermal expansion coefficient. In addition, since no adhesive or the like is present on the thermal contact surface, there is almost no thermal resistance on the contact surface.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a temperature adjusting device of the present invention.
FIG. 2 shows a specific embodiment of the temperature adjusting device of the present invention.
FIG. 3 shows another embodiment of the elastic pressing part of the main part of the temperature adjusting device of the present invention.
FIG. 4 shows an arrangement example of a main elastic pressing portion of the temperature adjusting device of the present invention.
FIG. 5 shows an example of a conventional temperature adjusting device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Base 2 ... Peltier element 3 ... Heat sink 4 ... Elastic press part 4a ... Elastic press member 4b ... Fixed member 20 ... LD chip 22 ... Solid laser medium 23 ... HR highly reflective coating film 24 ... Nonlinear optical crystal 25 ... Wavelength selectivity Mirrors 31, 33, 33A, 33B ... bases 32, 32A, 32B ... Peltier element 40 (40A-40H) ... elastic pressing part 41 ... leaf spring 42 ... nuts 43, 44 ... screw rods 45, 47 ... helical spring 48 ... Screw member L ... Optical axis

Claims (2)

ペルチェ素子と、該ペルチェ素子からの熱伝導を促進する伝熱部材と、該ペルチェ素子により温度調整される被温調対象物と、該ペルチェ素子の吸熱または発熱面を該被温調対象物に接触させ両者を相互に弾性的に押圧して接触面方向には互いに拘束することなく固定保持する弾性押圧部と、からなる温度調整装置において、該弾性押圧部は板ばねと該板ばねを該伝熱部材に固定する固定部材からなり、該弾性押圧部を複数箇所に設けたことを特徴とする温度調整装置。A Peltier element, a heat transfer member for promoting heat conduction from the Peltier element, a temperature-controlled object whose temperature is adjusted by the Peltier element, and a heat absorption or heat generation surface of the Peltier element as the temperature-controlled object An elastic pressing portion that is elastically pressed against each other and fixedly held without restraining each other in the contact surface direction. The elastic pressing portion includes a leaf spring and the leaf spring. A temperature adjusting device comprising a fixing member for fixing to a heat transfer member, wherein the elastic pressing portion is provided at a plurality of locations. ペルチェ素子と、該ペルチェ素子からの熱伝導を促進する伝熱部材と、該ペルチェ素子により温度調整される被温調対象物と、該ペルチェ素子の吸熱または発熱面を該被温調対象物に接触させ両者を相互に弾性的に押圧して接触面方向には互いに拘束することなく固定保持する弾性押圧部と、からなる温度調整装置において、該弾性押圧部はつるまきばねと該つるまきばねと被温調対象物を貫通して該伝熱部材に固定する固定部材からなり、該弾性押圧部を複数箇所に設けたことを特徴とする温度調整装置。A Peltier element, a heat transfer member for promoting heat conduction from the Peltier element, a temperature-controlled object whose temperature is adjusted by the Peltier element, and a heat absorption or heat generation surface of the Peltier element as the temperature-controlled object An elastic pressing portion that is elastically pressed against each other and fixedly held without restraining each other in the contact surface direction, wherein the elastic pressing portion is a helical spring and the helical spring And a temperature adjusting device, wherein the elastic pressing portion is provided at a plurality of locations.
JP2000168383A 2000-06-06 2000-06-06 Temperature control device Expired - Lifetime JP3624797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000168383A JP3624797B2 (en) 2000-06-06 2000-06-06 Temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000168383A JP3624797B2 (en) 2000-06-06 2000-06-06 Temperature control device

Publications (2)

Publication Number Publication Date
JP2001349636A JP2001349636A (en) 2001-12-21
JP3624797B2 true JP3624797B2 (en) 2005-03-02

Family

ID=18671394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000168383A Expired - Lifetime JP3624797B2 (en) 2000-06-06 2000-06-06 Temperature control device

Country Status (1)

Country Link
JP (1) JP3624797B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111854222A (en) * 2020-07-20 2020-10-30 西安交通大学 Elastic heating refrigerating system and refrigerating method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003281589A1 (en) * 2002-07-18 2004-02-09 Nikon Corporation Optical device and method of assembling the device
JP2005114298A (en) * 2003-10-10 2005-04-28 Citizen Watch Co Ltd Temperature adjusting device
JP4506472B2 (en) * 2005-01-12 2010-07-21 ヤマハ株式会社 Temperature control device for analysis chip
JP4890927B2 (en) * 2006-04-28 2012-03-07 京セラキンセキ株式会社 Piezoelectric oscillator
KR101050999B1 (en) * 2009-02-02 2011-07-21 최병규 Peltier device cold and hot water system using the structure
CN104466628B (en) * 2014-12-11 2018-01-09 北京华宇德信光电技术有限公司 A kind of laser gain crystal flexible heat sink device
EP3205956A1 (en) * 2016-02-15 2017-08-16 Anheuser-Busch InBev S.A. Thermoelectric cooling apparatus
JP2017208393A (en) * 2016-05-17 2017-11-24 オムロンオートモーティブエレクトロニクス株式会社 Solid-state laser device and method for manufacturing solid-state laser device
JP7288119B2 (en) * 2018-05-16 2023-06-06 リコーインダストリアルソリューションズ株式会社 Lens unit and image projection device
JP7074559B2 (en) * 2018-05-16 2022-05-24 リコーインダストリアルソリューションズ株式会社 Lens unit and image projection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111854222A (en) * 2020-07-20 2020-10-30 西安交通大学 Elastic heating refrigerating system and refrigerating method thereof

Also Published As

Publication number Publication date
JP2001349636A (en) 2001-12-21

Similar Documents

Publication Publication Date Title
JP3624797B2 (en) Temperature control device
TWI231075B (en) Laser beam generator and manufacturing method thereof
US5561684A (en) Laser diode pumped solid state laser construction
US5084886A (en) Side-pumped laser system with independent heat controls
US5872803A (en) Laser diode pumped solid-state laser apparatus
US6130902A (en) Solid state laser chip
JP2022508764A (en) Systems and Methods for Dealing with Pumping of Thermal Interface Materials in High Power Laser Systems
Sanders et al. High power coherent two‐dimensional semiconductor laser array
JP2007081233A (en) Laser oscillator
JP2554741B2 (en) Semiconductor laser array device
JP2019500656A (en) Light source configured for stabilization against external operating conditions
EP0814546A1 (en) Wavelength-conversion laser
JPH05198870A (en) Semiconductor laser pumping solid laser equipment
JP3121920U (en) Laser pointer
KR100993790B1 (en) A Submount for packaging of microchip laser
JPH0341787A (en) Solid-state laser
JP4900309B2 (en) Semiconductor laser device
JP2986242B2 (en) Semiconductor laser with temperature controller
JPH11312832A (en) Semiconductor-laser exciting solid laser
JPH0895104A (en) Laser resonator
JPH0685357A (en) Solid laser oscillator
JP3448894B2 (en) Solid element temperature control device and solid element temperature control method
JPH0888428A (en) Laser diode pumping solid laser
JP2501694B2 (en) Second harmonic generator in solid-state laser equipment
JPH1154836A (en) Semiconductor laser equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3624797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

EXPY Cancellation because of completion of term