JP4582623B2 - Flowmeter - Google Patents

Flowmeter Download PDF

Info

Publication number
JP4582623B2
JP4582623B2 JP2004201321A JP2004201321A JP4582623B2 JP 4582623 B2 JP4582623 B2 JP 4582623B2 JP 2004201321 A JP2004201321 A JP 2004201321A JP 2004201321 A JP2004201321 A JP 2004201321A JP 4582623 B2 JP4582623 B2 JP 4582623B2
Authority
JP
Japan
Prior art keywords
flow rate
flow
fluid
liquid level
electromotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004201321A
Other languages
Japanese (ja)
Other versions
JP2006023181A (en
Inventor
豊 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP2004201321A priority Critical patent/JP4582623B2/en
Publication of JP2006023181A publication Critical patent/JP2006023181A/en
Application granted granted Critical
Publication of JP4582623B2 publication Critical patent/JP4582623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、通常非満水状態で流れる流路の途中に接続されて、流路を流れる液体の流量を計測するための流量計に関する。   The present invention relates to a flowmeter for measuring the flow rate of a liquid that is connected in the middle of a flow path that normally flows in a non-full state and flows through the flow path.

従来、この種の流量計としては、所謂、パーマボーラスフリューム式流量計が知られている。このパーマボーラスフリューム式流量計は、流路の途中に絞り部を設けることで流れが射流となる部分をつくると、絞り部の上流側の液位と流量との間に一定の関係が成立することを利用して、この液位を測定することで流量を求めている(例えば、非特許文献1参照)。
松山 裕、「実用流量測定」、第1版、財団法人省エネルギーセンター、1999年6月15日、p.191,194−196
Conventionally, a so-called permabolous flume type flow meter is known as this type of flow meter. In this permbolus flume type flow meter, if a portion where the flow becomes a jet is created by providing a constriction in the middle of the flow path, a certain relationship is established between the liquid level and the flow rate upstream of the constriction. Therefore, the flow rate is obtained by measuring the liquid level (see, for example, Non-Patent Document 1).
Yutaka Matsuyama, “Practical flow rate measurement”, 1st edition, Energy Conservation Center, June 15, 1999, p. 191, 194-196

ところで、上述した従来の流量計は、大流量域において比較的正確に流量を計測することができるが、小流量域では正確に流量を計測することができないという問題があった。   By the way, the above-described conventional flowmeter can measure the flow rate relatively accurately in the large flow rate region, but has a problem that the flow rate cannot be measured accurately in the small flow rate region.

本発明は、上記事情に鑑みてなされたもので、小流量域でも正確に流量を計測することが可能な流量計の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a flowmeter capable of accurately measuring a flow rate even in a small flow rate region.

上記目的を達成するためになされた請求項1の流量計は、流体が流れる流路の途中に設けられて、流体に限界流を作るためのフリュームと、フリュームの上流側における流体の液位を計測するための液位計測手段と、フリュームの内側に磁界を発生させるための磁界発生手段と、フリュームの内側に対向配置された1対の電極とを備え、1対の電極間に生じた起電力に基づいて所定の流量域における流体の流量を計測可能とすると共に、所定の流量域より大きい流量域では、流体の液位に基づいて流量を計測可能とした流量計において、起電力に基づいて流量を演算するデータ処理部を備え、データ処理部には、液位計測手段が計測した流体の液位の単位時間当たりの変化量が基準値より小さかった場合に、起電力に基づいた流量の演算結果を採用すると共に、流体の液位の単位時間当たりの変化量が、基準値よりも大きかった場合には、その間の起電力に基づいた流量の演算結果を棄却する演算結果選別手段を備えたところに特徴を有する。 In order to achieve the above object, a flow meter according to claim 1 is provided in the middle of a flow path through which a fluid flows, and a flume for creating a limit flow in the fluid, and a fluid level upstream of the flume. A liquid level measuring means for measuring, a magnetic field generating means for generating a magnetic field inside the flume, and a pair of electrodes arranged opposite to each other inside the flume, are generated between the pair of electrodes. thereby possible to measure the flow rate of the fluid at a given flow rate region based on the power, the greater flow rate region than a predetermined flow rate range, in the flow meter the flow rate was measurable on the basis of the liquid level of the fluid, the electromotive force A data processing unit that calculates a flow rate based on the electromotive force when the amount of change per unit time of the fluid level measured by the liquid level measurement unit is smaller than a reference value. Flow rate calculation result In addition to the above, when the amount of change in the fluid level per unit time is greater than the reference value, there is a calculation result selection means that rejects the calculation result of the flow rate based on the electromotive force during that time. Has characteristics.

[請求項1の効果]
請求項1の発明によれば、フリュームにより流路内の流体は限界流になっているので、流路内において流体の流速と液位との間には一定の関係が成立する。ここで、非満水状態における流体の流量は、流速と流れの断面積との積から求めることができる。また、流れの断面積は液位から求めることができる。
[Effect of claim 1]
According to the first aspect of the present invention, since the fluid in the flow path becomes a limit flow due to the flume, a certain relationship is established between the flow velocity of the fluid and the liquid level in the flow path. Here, the flow rate of the fluid in the non-full state can be obtained from the product of the flow velocity and the cross-sectional area of the flow. The cross-sectional area of the flow can be obtained from the liquid level.

さて、流路を流れる流体の流量が比較的少なく、所定の流量域に含まれる場合には、流体の通過によって1対の電極間に生じた起電力を計測する。この起電力の大きさは、所謂、電磁誘導の法則によって流体の流速と一定の関係となっているので、起電力から流速を求めることができる。また、上記したように流体の流速は液位と一定の関係となっているので、流速から液位が求まり、流れの断面積を求めることができる。これにより、流路の内部が非満水状態であっても、起電力から流体の流量を得ることができる。即ち、所謂、非満水型の電磁式流量計として機能させることができる。ここで、非満水型の電磁式流量計は、小流量域から大流量域に亘って高い測定精度を有するので、比較的少ない流量である所定の流量域においても精度よく流量を計測することができる。
一方、流路を流れる流体の流量が増加して、所定の流量域より大きくなった場合には、フリュームを通過する流体の液位を計測し、その液位に基づいて流量を得ることができる。即ち、所謂、フリューム式流量計として機能させることができる。
When the flow rate of the fluid flowing through the flow path is relatively small and included in a predetermined flow rate range, the electromotive force generated between the pair of electrodes due to the passage of the fluid is measured. Since the magnitude of the electromotive force has a fixed relationship with the fluid flow velocity according to the so-called electromagnetic induction law, the flow velocity can be obtained from the electromotive force. Further, as described above, since the fluid flow rate has a fixed relationship with the liquid level, the liquid level can be obtained from the flow rate, and the cross-sectional area of the flow can be obtained. Thereby, even if the inside of a flow path is a non-full state, the flow volume of the fluid can be obtained from an electromotive force. That is, it can function as a so-called non-full water type electromagnetic flow meter. Here, since the non-full-type electromagnetic flow meter has high measurement accuracy from a small flow rate range to a large flow rate range, the flow rate can be accurately measured even in a predetermined flow rate range where the flow rate is relatively small. it can.
On the other hand, when the flow rate of the fluid flowing through the flow path increases and becomes larger than a predetermined flow rate range, the liquid level of the fluid passing through the flume can be measured, and the flow rate can be obtained based on the liquid level. . That is, it can function as a so-called flume type flow meter.

ここで、非満水型の電磁式流量計は、使用前にその使用流量の全域に亘って実際に通水を行って実測調整をしておく必要がある。このため、非満水型の電磁式流量計のみで小流量域から大流量域までの全ての流量域を測定可能とするには、実測調整用の通水設備も大規模なものとなる。   Here, a non-full-type electromagnetic flow meter needs to be actually adjusted by actually passing water over the entire range of the used flow rate before use. For this reason, in order to be able to measure all the flow areas from a small flow area to a large flow area only with a non-full-type electromagnetic flow meter, the water flow equipment for actual adjustment becomes large-scale.

これに対し、フリューム式流量計は、実測調整が不要であり、また、小流量域の測定精度は低いが、大流量域の測定精度は比較的高い。   On the other hand, the flume type flow meter does not require actual adjustment, and the measurement accuracy in the small flow region is low, but the measurement accuracy in the large flow region is relatively high.

そして、本発明では、流量が所定の流量域より大きくなったら、電極間に生じた起電力に基づく流量計測から液位に基づく流量計測に切り替えることができるので、実測調整は、比較的少ない流量である所定の流量域だけ行えばよい。従って、実測調整用の通水設備の規模を小さくすることができると共に、実測調整の手間を軽減することができる。   In the present invention, when the flow rate becomes larger than a predetermined flow rate range, it is possible to switch from the flow rate measurement based on the electromotive force generated between the electrodes to the flow rate measurement based on the liquid level. It suffices to perform only the predetermined flow rate range. Accordingly, it is possible to reduce the scale of the water flow facility for actual measurement adjustment and to reduce the trouble of actual measurement adjustment.

しかも、フリューム式流量計として機能させる際に用いるフリュームを、非満水型の電磁式流量計として機能させるときにも利用することができる。
さらには、演算結果選別手段により、液位計測手段が計測した流体の液位の単位時間当たりの変化量が基準値より小さかった場合には、その正確な起電力に基づく流量の演算結果が採用される一方、流体の液位の単位時間当たりの変化量が基準値よりも大きかった場合には、そのために不正確となった起電力に基づく流量の演算結果が棄却される。これにより、不正確な流量の演算結果が排除され、正確な流量の演算結果のみが採用されるので、より信用度が高い流量の計測結果を得ることが可能になる。
In addition, the flume used when functioning as a flume type flow meter can also be used when functioning as a non-full type electromagnetic flow meter.
Furthermore, if the amount of change per unit time in the fluid level measured by the fluid level measurement means is smaller than the reference value by the computation result sorting means, the computation result of the flow rate based on the exact electromotive force is adopted. On the other hand, when the amount of change per unit time of the fluid level is larger than the reference value, the calculation result of the flow rate based on the electromotive force that has become inaccurate is rejected. As a result, the calculation result of the inaccurate flow rate is eliminated, and only the calculation result of the accurate flow rate is adopted, so that the measurement result of the flow rate with higher reliability can be obtained.

以下、本発明の一実施形態を図1〜図5に基づいて説明する。
本実施形態の流量計10に備えた流路構成部材11は、図1に示すように、上方に開放した溝構造をなし、流路構成部材11の内側空間が流体が流れる流路12になっている。そして、11の両端に、配管(例えば、下水配管)が連結され、その配管を流れる流体(例えば、下水)を流路12に通過させることで流量が計測される。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the flow path component 11 provided in the flow meter 10 of the present embodiment has a groove structure opened upward, and the inner space of the flow path component 11 becomes a flow path 12 through which fluid flows. ing. And piping (for example, sewage piping) is connected to both ends of 11, and the flow rate is measured by allowing fluid (for example, sewage) flowing through the piping to pass through the flow path 12.

流路構成部材11は、所謂、パーマボーラスフリューム構造をなしている。即ち、流路構成部材11のうち軸方向の途中部分には、流路構成部材11の内側空間を絞ったスロート部14が備えられている。スロート部14の上流側には、スロート部14に向かうに従って流路構成部材11の内側空間を徐々に絞った収縮部13が備えられ、スロート部14の下流側にはスロート部14から離れるに従って流路構成部材11の内側空間を徐々に広げた拡大部15が備えられている。図3に示すように、流路構成部材11のうち、スロート部14の底部には、流路構成部材11の内側に盛り上がったクレスト部60が備えられており、収縮部13及び拡大部15の底部には、クレスト部60から離れるに従って下るように傾斜したテーパー部61,61が形成されている。これら収縮部13、スロート部14、拡大部15によって本発明に係る「フリューム」が構成されている。   The flow path constituting member 11 has a so-called perma bolus flume structure. That is, a throat portion 14 that narrows the inner space of the flow path component 11 is provided in the middle of the flow path component 11 in the axial direction. On the upstream side of the throat portion 14, there is provided a contraction portion 13 that gradually narrows the inner space of the flow path constituting member 11 toward the throat portion 14, and on the downstream side of the throat portion 14 An enlarged portion 15 is provided that gradually widens the inner space of the path constituent member 11. As shown in FIG. 3, a crest portion 60 swelled on the inner side of the flow path component member 11 is provided at the bottom of the throat portion 14 of the flow path component member 11. At the bottom portion, tapered portions 61 and 61 are formed so as to be inclined as they are separated from the crest portion 60. The contracted portion 13, the throat portion 14, and the enlarged portion 15 constitute a “flume” according to the present invention.

流路構成部材11のスロート部14よりも上流側でかつ流路構成部材11の上方位置には、本発明の「液位計測手段」に相当する超音波水位計16が備えられている。そして、流路構成部材11の内部を流れる流体は、スロート部14に近づくに従って流速を増し、スロート部14において限界流になる。つまり、超音波水位計16は、液体の流れが限界流となったスロート部14よりも上流側の液位を計測しており、この液位から流路構成部材11内を流れる液体の流量を求めるように構成されている。即ち、流量計10が、所謂、フリューム式流量計として機能するようになっている。ここで、限界流となったスロート部14よりも上流側で液位を計測している理由は、この位置でも流速と液位との間の一意的な関係が維持されていると同時に、液位が安定しているからである。   An ultrasonic water level meter 16 corresponding to the “liquid level measuring means” of the present invention is provided upstream of the throat portion 14 of the flow path component member 11 and above the flow path component member 11. The fluid flowing inside the flow path component 11 increases in flow rate as it approaches the throat portion 14 and becomes a limit flow in the throat portion 14. That is, the ultrasonic water level meter 16 measures the liquid level upstream of the throat portion 14 where the flow of the liquid has become a critical flow, and the flow rate of the liquid flowing in the flow path component 11 from this liquid level is measured. It is configured to ask for. That is, the flow meter 10 functions as a so-called flume type flow meter. Here, the reason why the liquid level is measured on the upstream side of the throat portion 14 that has become the limit flow is that the unique relationship between the flow velocity and the liquid level is maintained at this position, This is because the position is stable.

さて、図3に示すように、流路構成部材11のうちスロート部14の底部(クレスト部60)には、励磁コイル23(本発明の「磁界発生手段」に相当する)が内蔵されている。励磁コイル23は、流路構成部材11の内側空間に、液体の流れに交差する方向に磁界を発生させる。   Now, as shown in FIG. 3, an excitation coil 23 (corresponding to “magnetic field generating means” of the present invention) is built in the bottom portion (crest portion 60) of the throat portion 14 of the flow path component member 11. . The exciting coil 23 generates a magnetic field in a direction crossing the liquid flow in the inner space of the flow path component 11.

図3に示すように、スロート部14のうち励磁コイル23の上方には、1対の電極24,24が備えられている(同図には、一方の電極24のみが図示されている)。図2に示すように、電極24は、平板状をなしてスロート部14の内側面14A,14Aに敷設され、流路構成部材11の内側空間(流路12)を挟んで水平方向に対向配置されている。そして、流路構成部材11の内側(より詳細には、スロート部14)で限界流となった流体が、励磁コイル23によって発生された磁界を通過したときに電極24,24間に生じる起電力が計測され、この起電力から流路12を流れる液体の流量を計測することが可能となっている。即ち、流量計10が、所謂、非満水型の電磁式流量計として機能するようになっている。なお、電極24,24は、スロート部14における内側面14Aに面一となるように取り付けられており、スロート部14において液体の流れが乱れることが防止されている。   As shown in FIG. 3, a pair of electrodes 24 and 24 are provided above the exciting coil 23 in the throat portion 14 (only one electrode 24 is shown in the figure). As shown in FIG. 2, the electrode 24 has a flat plate shape and is laid on the inner side surfaces 14 </ b> A and 14 </ b> A of the throat portion 14. Has been. The electromotive force generated between the electrodes 24 and 24 when the fluid that has reached the limit flow inside the flow path component 11 (more specifically, the throat portion 14) passes through the magnetic field generated by the excitation coil 23. It is possible to measure the flow rate of the liquid flowing through the flow path 12 from this electromotive force. That is, the flow meter 10 functions as a so-called non-full type electromagnetic flow meter. The electrodes 24 and 24 are attached so as to be flush with the inner side surface 14 </ b> A of the throat portion 14, and the liquid flow is prevented from being disturbed in the throat portion 14.

ところで、本発明の流量計10は、図4に示すようにデータ処理部30を備えている。超音波水位計16又は電極24,24によって計測された値(液体の液位及び起電力)は、データ処理部30に取り込まれる。データ処理部30では、液位又は起電力に基づいて流量を求め、表示部34に出力する。   Incidentally, the flow meter 10 of the present invention includes a data processing unit 30 as shown in FIG. Values (liquid level and electromotive force) measured by the ultrasonic water level gauge 16 or the electrodes 24 and 24 are taken into the data processing unit 30. The data processing unit 30 obtains the flow rate based on the liquid level or electromotive force and outputs the flow rate to the display unit 34.

詳細には、データ処理部30には、起電力又は液位に基づいて流量を演算する演算回路31が備えられている。また、データ処理部30には、流量計10が電極24,24間の起電力に基づいて流量を計測している(非満水型の電磁式流量計として機能している)場合に、演算回路31による演算結果を、超音波水位計16により計測された液位に基づいて補正する補正回路33(本発明の「補正手段」に相当する)が備えられている。   Specifically, the data processing unit 30 includes an arithmetic circuit 31 that calculates a flow rate based on an electromotive force or a liquid level. The data processing unit 30 includes an arithmetic circuit when the flow meter 10 measures the flow rate based on the electromotive force between the electrodes 24 and 24 (functions as a non-full electromagnetic flow meter). A correction circuit 33 (corresponding to the “correction means” of the present invention) that corrects the calculation result by 31 based on the liquid level measured by the ultrasonic water level gauge 16 is provided.

補正回路33では、超音波水位計16による液位の計測値に基づいて図示しない補正用データテーブルから補正データを取り出し、その補正データによって演算回路31による演算結果を補正している。即ち、起電力に基づく流量の演算結果を、液位の計測値に応じて補正している。これにより、液位の影響を排除したより精度の高い流量の計測結果を得ることが可能となる。   The correction circuit 33 extracts correction data from a correction data table (not shown) based on the liquid level measurement value obtained by the ultrasonic water level gauge 16 and corrects the calculation result of the calculation circuit 31 using the correction data. That is, the calculation result of the flow rate based on the electromotive force is corrected according to the measured value of the liquid level. This makes it possible to obtain a more accurate flow rate measurement result that eliminates the influence of the liquid level.

また、データ処理部30には、流量計10が起電力に基づいて流量を計測している場合に、超音波水位計16により計測された液位の変化量に応じて、演算回路31による演算結果を選別する選別回路32(本発明の「演算結果選別手段」に相当する)が備えられている。   In addition, the data processing unit 30 performs calculation by the arithmetic circuit 31 according to the amount of change in the liquid level measured by the ultrasonic water level meter 16 when the flow meter 10 measures the flow rate based on the electromotive force. A sorting circuit 32 for sorting the results (corresponding to “calculation result sorting means” of the present invention) is provided.

即ち、選別回路32では、超音波水位計16によって計測された液体の液位の単位時間当たりの変化量が、予め設定された基準値以下であった場合には、演算回路31による流量の演算結果を採用して補正回路33に出力する。一方、液体の液位の単位時間当たりの変化量が基準値以上であった場合には、演算回路31にて演算された不正確な起電力に基づく流量の演算結果を棄却する。これにより、データ処理部30から不正確な流量の演算結果が出力されず、正確な流量の演算結果のみが出力されるので、より信頼度の高い流量の計測結果を得ることが可能となる。   That is, in the sorting circuit 32, when the change amount per unit time of the liquid level measured by the ultrasonic water level gauge 16 is equal to or less than a preset reference value, the calculation of the flow rate by the arithmetic circuit 31 is performed. The result is adopted and output to the correction circuit 33. On the other hand, when the amount of change in the liquid level per unit time is equal to or greater than the reference value, the calculation result of the flow rate based on the incorrect electromotive force calculated by the calculation circuit 31 is rejected. Thereby, since the calculation result of the inaccurate flow rate is not output from the data processing unit 30 and only the calculation result of the accurate flow rate is output, it is possible to obtain the measurement result of the flow rate with higher reliability.

さらに、本発明の流量計10は、起電力に基づく流量計測状態(非満水型の電磁式流量計として機能した状態)と、液位に基づく流量計測状態(フリューム式流量計として機能した状態)とに切り替える切り替え手段36を備えている。   Furthermore, the flow meter 10 of the present invention includes a flow rate measurement state based on electromotive force (a state that functions as a non-full type electromagnetic flow meter) and a flow rate measurement state based on a liquid level (a state that functions as a flume flow meter). Switching means 36 for switching between and is provided.

切り替え手段36は、流路構成部材11に流れる液体の流量が次第に増加して、データ処理部30による流量の計測結果が、例えば、流路構成部材11が非満水状態で最大となる流量(以下、「最大非満水流量」という)の3%の流量(本発明の「所定の流量域の上限流量」に相当する)となった時点で、流量計10を、起電力に基づく流量計測状態から、液位に基づく流量計測状態に切り替える。   The switching means 36 gradually increases the flow rate of the liquid flowing through the flow path component 11, and the flow rate measurement result by the data processing unit 30 is, for example, a flow rate at which the flow path component 11 is maximum when the flow path component 11 is not full (hereinafter referred to as “flow rate”). When the flow rate becomes 3% of the flow rate (referred to as the “maximum non-full water flow rate”) (corresponding to “the upper limit flow rate of the predetermined flow rate range” of the present invention), the flow meter 10 is moved from the flow measurement state based on the electromotive force. Switch to the flow rate measurement state based on the liquid level.

つまり、流量計10は、流路構成部材11の最大非満水流量の0〜3%の流量(本発明の「所定の流量域」に相当する)を、所謂、非満水型の電磁式流量計として計測するので、非満水型の電磁式流量計に対して予め必要となる実測調整は、流路構成部材11の最大非満水流量の0〜3%という比較的小さい流量域だけで済む。例えば、流路構成部材11の最大非満水流量が1000m/hであった場合には、0〜30m/hまでの流量域についてのみ実測調整を行えばよい。従って、実測調整用の通水設備の規模を小さくすることができると共に、実測調整の手間を軽減することができる。 That is, the flow meter 10 uses a flow rate of 0 to 3% of the maximum non-full water flow rate of the flow path component 11 (corresponding to the “predetermined flow rate range” of the present invention), so-called non-full electromagnetic flow meter. Therefore, the actual measurement adjustment required in advance for the non-full water type electromagnetic flow meter is only required in a relatively small flow rate range of 0 to 3% of the maximum non-full water flow rate of the flow path component 11. For example, when the maximum non-full water flow rate of the flow path component 11 is 1000 m 3 / h, the actual measurement adjustment may be performed only in the flow rate range from 0 to 30 m 3 / h. Accordingly, it is possible to reduce the scale of the water flow facility for actual measurement adjustment and to reduce the trouble of actual measurement adjustment.

また、例えば、流量計10が液位に基づいて流量を計測している場合に、流路構成部材11に流れる液体の流量が次第に減少し、データ処理部30による流量の計測結果が、流路構成部材11の最大非満水流量の、例えば、2%の流量(本発明の「切替流量」に相当する)となった場合には、切り替え手段36は、流量計10を液位に基づく流量計測状態から、起電力に基づく流量計測状態に切り替える。   For example, when the flow meter 10 measures the flow rate based on the liquid level, the flow rate of the liquid flowing through the flow path component 11 gradually decreases, and the flow rate measurement result by the data processing unit 30 is When the maximum non-full water flow rate of the constituent member 11 is, for example, 2% flow rate (corresponding to the “switching flow rate” of the present invention), the switching means 36 measures the flow rate based on the liquid level. Switch from state to flow rate measurement state based on electromotive force.

このように、流量計10を起電力に基づく流量計測状態から、液位に基づく流量計測状態に切り替わる流量(流路構成部材11の最大非満水流量の3%)と、液位に基づく流量計測状態から、起電力に基づく流量計測状態に切り替わる流量(流路構成部材11の最大非満水流量の2%)とに差を設けることで、流量の微少な変動によって、起電力に基づく流量計測と液位に基づく流量計測との切り替わりが頻繁に起こることが防止される。以上が本発明の流量計10の構成の説明である。   As described above, the flow rate of the flow meter 10 from the flow rate measurement state based on the electromotive force to the flow rate measurement state based on the liquid level (3% of the maximum non-full water flow rate of the flow path component 11) and the flow rate measurement based on the liquid level. By providing a difference in flow rate (2% of the maximum non-full water flow rate of the flow path component 11) from the state to the flow rate measurement state based on the electromotive force, the flow rate measurement based on the electromotive force is caused by slight fluctuations in the flow rate. The frequent switching to the flow rate measurement based on the liquid level is prevented. The above is the description of the configuration of the flow meter 10 of the present invention.

次に、本実施形態の流量計10の作用・効果を説明する。
図5には、下水道に本発明の流量計10を設置した場合の概念図が示されている。同図において、符号100は、下水処理場である。下水処理場100からは、複数の自治体(A市、B町、C町、D町)にまたがって下水本管101が延びており、下水本管101には各家庭、工場等の排出源から延びた下水管102が接続されている。そして、下水本管101のうち、下水処理場100の入口と各自治体(A市、B町、C町、D町)同士の境界部に、本発明の流量計10が設置され、これら複数の流量計10の計測値に基づいて、各自治体毎の下水排出量が算出されている。
Next, the operation and effect of the flow meter 10 of this embodiment will be described.
FIG. 5 shows a conceptual diagram when the flow meter 10 of the present invention is installed in the sewer. In the figure, reference numeral 100 denotes a sewage treatment plant. From the sewage treatment plant 100, a sewage main 101 extends over a plurality of local governments (A city, B town, C town, D town). An extended sewage pipe 102 is connected. And the flowmeter 10 of this invention is installed in the boundary part of each entrance (A city, B town, C town, D town) among the entrance of the sewage treatment plant 100 and each local government (A city, B town, C town, D town) among these sewage mains 101, and these some Based on the measurement value of the flow meter 10, the sewage discharge amount for each local government is calculated.

ここで、流路構成部材11の最大非満水流量は、下水道普及率が100%達成された場合の最大流量に基づいて決定されるため、下水処理場100の稼働開始直後では、流路構成部材11に流れる下水の流量は、最大非満水流量に対して極めて少なくなっている。   Here, since the maximum non-full water flow rate of the flow channel component 11 is determined based on the maximum flow rate when the sewer diffusion rate is achieved 100%, the flow channel component member immediately after the start of the operation of the sewage treatment plant 100. The flow rate of the sewage flowing to 11 is extremely small relative to the maximum non-full water flow rate.

さて、下水本管101から流量計10に流入した下水は、流路構成部材11のスロート部14内で限界流となる。下水本管101を流れる下水が流路構成部材11の最大非満水流量の3%未満である場合には、流量計10は、起電力に基づく流量計測状態(非満水の電磁式流量計として機能した状態)となる。即ち、スロート部14で限界流となった下水が磁界を通過する際に電極24,24間に生じた起電力に基づいて下水の流量が求められる。これにより、下水本管101(流路構成部材11)に流れる下水の流量が比較的少ない状態でも、流量を精度よく求めることができる。   Now, the sewage flowing into the flow meter 10 from the sewage main pipe 101 becomes a limit flow in the throat portion 14 of the flow path component 11. When the sewage flowing through the sewage main pipe 101 is less than 3% of the maximum non-full water flow rate of the flow path component 11, the flow meter 10 functions as a flow rate measurement state based on electromotive force (non-full water electromagnetic flow meter). State). That is, the flow rate of sewage is determined based on the electromotive force generated between the electrodes 24 and 24 when the sewage that has become a critical flow at the throat portion 14 passes through the magnetic field. Thereby, even if the flow volume of the sewage which flows into the sewage main pipe 101 (flow path component 11) is comparatively small, a flow volume can be calculated | required accurately.

下水道普及率の上昇に伴って下水本管101に流れる下水の流量が上昇し、流路構成部材11の最大非満水流量の3%以上の流量となった場合には、切り替え手段36により、流量計10は、液位に基づく流量計測状態(フリューム式流量計として機能した状態)に切り替わる。即ち、流路構成部材11を通過する下水の液位を超音波水位計16によって計測し、その液位から流量を求める。   When the flow rate of sewage flowing into the sewage main pipe 101 increases with the increase in the sewerage penetration rate and becomes a flow rate of 3% or more of the maximum non-full water flow rate of the flow path component 11, the flow rate is changed by the switching means 36. The meter 10 switches to a flow rate measurement state based on the liquid level (a state in which it functions as a flume type flow meter). That is, the level of the sewage that passes through the flow path component 11 is measured by the ultrasonic water level meter 16, and the flow rate is obtained from the level.

流量計10が液位に基づく流量計測状態に切り替わった後で、下水の流量が減少し、例えば、流路構成部材11の最大非満水流量の2.5%の流量になった場合には、切り替え手段36は、流量計10を液位に基づく流量計測状態に保持し、起電力に基づく流量計測状態には切り替わらない。   After the flow meter 10 is switched to the flow rate measurement state based on the liquid level, the flow rate of sewage decreases, for example, when the flow rate of the flow path component 11 becomes 2.5% of the maximum non-full water flow rate, The switching means 36 holds the flow meter 10 in the flow rate measurement state based on the liquid level, and does not switch to the flow rate measurement state based on the electromotive force.

下水の流量がさらに減少し、流路構成部材11の最大非満水流量の2%の流量となった場合には、切り替え手段36によって流量計10が再度、起電力に基づく流量計測状態に切り替わる。即ち、下水の流量に応じて、流量計10を最適な計測状態に切り替えることが可能となる。   When the flow rate of sewage further decreases and becomes a flow rate of 2% of the maximum non-full water flow rate of the flow path component 11, the flow meter 10 is switched again to the flow rate measurement state based on the electromotive force by the switching means 36. That is, the flow meter 10 can be switched to an optimal measurement state according to the flow rate of sewage.

このように本実施形態によれば、流量が比較的少なく、流路構成部材11の最大非満水流量の3%未満の場合には、流量計10が、所謂、非満水型の電磁式流量計として機能し、電極24,24間に生じた起電力に基づいて流量計測を行う。また、流量が増加して、流路構成部材11の最大非満水流量の3%以上となったら、流量計10は超音波水位計16による液位の計測結果に基づいて流量を計測する。これにより、小流量域から大流量域まで精度よく流量を計測することが可能となる。また、非満水型の電磁式流量計に対して使用前に必要となる実測調整は、小流量域(流路構成部材11の最大非満水流量の0〜3%の流量)だけで済む。従って、実測調整のための設備の規模を小さくすることができると共に、実測調整の手間を軽減することができる。   Thus, according to the present embodiment, when the flow rate is relatively small and less than 3% of the maximum non-full water flow rate of the flow path component 11, the flow meter 10 is a so-called non-full electromagnetic flow meter. The flow rate is measured based on the electromotive force generated between the electrodes 24 and 24. Further, when the flow rate increases and becomes 3% or more of the maximum non-full water flow rate of the flow path component member 11, the flow meter 10 measures the flow rate based on the liquid level measurement result by the ultrasonic water level meter 16. As a result, the flow rate can be accurately measured from the small flow rate range to the large flow rate range. Further, the actual adjustment required before use for the non-full type electromagnetic flow meter is only required in a small flow rate range (0 to 3% of the maximum non-full flow rate of the flow path component 11). Accordingly, it is possible to reduce the scale of the facility for actual measurement adjustment and to reduce the trouble of actual measurement adjustment.

また、起電力に基づく流量計測と液位に基づく流量計測とに切り替える際に、流量計10の構造上の変更を必要としないので、切り替えの為に下水本管101内で人が作業する必要が無くかつ、下水の流れを止める必要も無い。つまり、計測状態の切り替え時にも流路構成部材11に液体を流し続けることができ連続的に流量を計測することが可能となる。   In addition, when switching between flow rate measurement based on electromotive force and flow rate measurement based on liquid level, it is not necessary to change the structure of the flow meter 10, so that a person needs to work in the sewage main pipe 101 for switching. There is no need to stop the flow of sewage. That is, even when the measurement state is switched, the liquid can continue to flow through the flow path component member 11, and the flow rate can be continuously measured.

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)上記一実施形態では、流路構成部材11は、溝形状をなしていたが、筒形状であってもよい。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.
(1) In the above embodiment, the flow path component member 11 has a groove shape, but may have a cylindrical shape.

(2)上記一実施形態では、流量計10が起電力に基づく流量計測状態から液位に基づく流量計測状態に切り替わる流量は、流路構成部材11の最大非満水流量の3%の流量であったが、流路構成部材11の最大非満水流量の2〜5%に含まれる流量であれば、これに限るものではない。 (2) In the above embodiment, the flow rate at which the flow meter 10 switches from the flow rate measurement state based on the electromotive force to the flow rate measurement state based on the liquid level is 3% of the maximum non-full water flow rate of the flow path component 11. However, the flow rate is not limited to this as long as the flow rate is included in 2 to 5% of the maximum non-full water flow rate of the flow path component member 11.

(3)上記一実施形態では、流量計10が液位に基づく流量計測状態から起電力に基づく流量計測状態に切り替わる流量は、流路構成部材11の満水状態における流量の2%の流量であったが、流量計10が起電力に基づく流量計測状態から液位に基づく流量計測状態に切り替わる流量よりも小さい流量であれば、これに限るものではない。 (3) In the above-described embodiment, the flow rate at which the flow meter 10 switches from the flow rate measurement state based on the liquid level to the flow rate measurement state based on the electromotive force is a flow rate of 2% of the flow rate when the flow path component member 11 is full. However, the flow meter 10 is not limited to this as long as the flow rate is smaller than the flow rate at which the flow rate measurement state based on the electromotive force is switched to the flow rate measurement state based on the liquid level.

(4)上記一実施形態では、流路構成部材11はパーマボーラスフリューム構造をなしていたが、液位に基づいて流量を計測可能な構成であればよく、所謂、パーシャルフリューム構造をなしていてもよい。 (4) In the above-described embodiment, the flow path component 11 has a perma bolus flume structure. However, the flow path component 11 may have a so-called partial flume structure as long as the flow rate can be measured based on the liquid level. Also good.

また、所謂、フリューム構造に限るものではなく、図6に示す流路構成部材90のように、堰構造をなしていてもよい。即ち、断面矩形状の流路91の途中に、上辺に切り欠き93を有する堰板92を流体の流れに対して直角になるように設けた構造としてもよい。なお、堰板は、図6に示した所謂、三角堰でもよいし、四角堰や全幅堰でもよい。   Moreover, it is not restricted to what is called a flume structure, You may comprise the dam structure like the flow-path structural member 90 shown in FIG. That is, a structure in which a weir plate 92 having a notch 93 on the upper side is provided in the middle of the channel 91 having a rectangular cross section so as to be perpendicular to the fluid flow. The dam plate may be a so-called triangular dam shown in FIG. 6, a square dam or a full-width dam.

(5)上記一実施形態では、超音波水位計16を流路12の上方に配置していたが、流路構成部材11のスロート部14よりも上流側の底部に配置してもよい。 (5) In the above-described embodiment, the ultrasonic water level gauge 16 is disposed above the flow path 12, but may be disposed at the bottom upstream of the throat portion 14 of the flow path component 11.

(6)上記一実施形態では、液位計測手段として超音波水位計16を用いていたが、他の液位計測手段を用いてもよい。例えば、図7の(A)に示すように、流路12のスロート部14よりも上流側の底部に水圧によって水位を計測する圧力式水位計70を設けてもよい。また、図7の(B)に示すように、流路構成部材11と流路構成部材11とは別に設けられた水位検出槽81との底部同士を導水管82で連絡し、水位検出槽81に浮かべたフロート83の位置によって流路構成部材11内の水位を検出する所謂、フロート式水位計80を用いてもよい。 (6) In the above embodiment, the ultrasonic water level gauge 16 is used as the liquid level measuring means, but other liquid level measuring means may be used. For example, as shown in FIG. 7A, a pressure-type water level meter 70 that measures the water level by water pressure may be provided at the bottom of the flow path 12 on the upstream side of the throat portion 14. Further, as shown in FIG. 7B, the bottoms of the flow path component member 11 and the water level detection tank 81 provided separately from the flow path component member 11 are communicated with each other by a water conduit 82, and the water level detection tank 81 is connected. A so-called float-type water level meter 80 that detects the water level in the flow path component 11 based on the position of the float 83 floating on the surface may be used.

本発明の一実施形態に係る流量計の斜視図The perspective view of the flowmeter which concerns on one Embodiment of this invention. 流量計の正断面図Front section of flow meter 流量計の側断面図Side cross section of flow meter 流量計の電気的構成を示すブロック図Block diagram showing the electrical configuration of the flow meter 下水道における流量計の設置例を示す概念図Conceptual diagram showing an installation example of a flow meter in the sewer 他の実施形態(4)に係る流量計の正断面図Front sectional view of a flowmeter according to another embodiment (4) 他の実施形態(6)に係る流量計の(A)側断面図及び(B)正断面図(A) Side sectional view and (B) Front sectional view of a flowmeter according to another embodiment (6)

符号の説明Explanation of symbols

10 流量計
12 流路
16 超音波水位計(液位計測手段)
23 励磁コイル(磁界発生手段)
24,24 電極
30 データ処理部
32 選別回路(演算結果選別手段)
33 補正回路(補正手段)
36 切り替え手段
70 圧力式水位計(液位計測手段)
80 フロート式水位計(液位計測手段)
10 Flow meter 12 Flow path 16 Ultrasonic water level meter (liquid level measuring means)
23 Excitation coil (magnetic field generating means)
24, 24 Electrode 30 Data processor 32 Sorting circuit (Calculation result sorting means)
33 Correction circuit (correction means)
36 switching means 70 pressure type water level gauge (liquid level measuring means)
80 Float type water level gauge (liquid level measuring means)

Claims (1)

流体が流れる流路の途中に設けられて、前記流体に限界流を作るためのフリュームと、
前記フリュームの上流側における前記流体の液位を計測するための液位計測手段と、
前記フリュームの内側に磁界を発生させるための磁界発生手段と、
前記フリュームの内側に対向配置された1対の電極とを備え、
前記1対の電極間に生じた起電力に基づいて所定の流量域における前記流体の流量を計測可能とすると共に、
前記所定の流量域より大きい流量域では、前記流体の液位に基づいて流量を計測可能とした流量計において、
前記起電力に基づいて流量を演算するデータ処理部を備え、
前記データ処理部には、前記液位計測手段が計測した前記流体の液位の単位時間当たりの変化量が基準値より小さかった場合に、前記起電力に基づいた流量の演算結果を採用すると共に、
前記流体の液位の単位時間当たりの変化量が、前記基準値よりも大きかった場合には、その間の前記起電力に基づいた流量の演算結果を棄却する演算結果選別手段を備えたことを特徴とする流量計。
A flume provided in the middle of the flow path through which the fluid flows to create a limiting flow in the fluid;
A liquid level measuring means for measuring the liquid level of the fluid upstream of the flume;
Magnetic field generating means for generating a magnetic field inside the flume;
A pair of electrodes opposed to each other inside the flume,
Based on the electromotive force generated between the pair of electrodes, the flow rate of the fluid in a predetermined flow rate range can be measured,
Wherein the predetermined larger flow area than the flow rate range, in the flow meter the flow rate was measurable on the basis of the liquid level of the fluid,
A data processing unit that calculates a flow rate based on the electromotive force,
The data processing unit employs a flow rate calculation result based on the electromotive force when a change amount per unit time of the fluid level measured by the fluid level measuring unit is smaller than a reference value. ,
When the amount of change per unit time of the fluid level of the fluid is larger than the reference value, it is provided with calculation result selection means for rejecting the calculation result of the flow rate based on the electromotive force during that time. A flow meter.
JP2004201321A 2004-07-08 2004-07-08 Flowmeter Expired - Lifetime JP4582623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004201321A JP4582623B2 (en) 2004-07-08 2004-07-08 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004201321A JP4582623B2 (en) 2004-07-08 2004-07-08 Flowmeter

Publications (2)

Publication Number Publication Date
JP2006023181A JP2006023181A (en) 2006-01-26
JP4582623B2 true JP4582623B2 (en) 2010-11-17

Family

ID=35796554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004201321A Expired - Lifetime JP4582623B2 (en) 2004-07-08 2004-07-08 Flowmeter

Country Status (1)

Country Link
JP (1) JP4582623B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4889340B2 (en) * 2006-03-29 2012-03-07 中国電力株式会社 Cooling water circulation device
KR101208330B1 (en) * 2010-06-22 2012-12-05 주식회사 우진 Method for measuring non-full flow using multiple sensors
CN107036667B (en) * 2017-03-09 2020-05-22 浙江钛合工程技术有限公司 Electromagnetic flowmeter and pressure sensor combined device and installation method
CN110345996B (en) * 2019-05-16 2020-12-04 北京林业大学 Flow measuring device and method for water flow of water collecting area
KR102496884B1 (en) * 2020-11-17 2023-02-07 대한민국 Forest flow rate measuring device of catchment type
KR102496880B1 (en) * 2020-11-17 2023-02-07 대한민국 Installation method of forest flow measuring device of water gate type
KR102632009B1 (en) * 2021-06-28 2024-02-01 대한민국 Installation method of forest flow measurement device for Erosion control dam

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195516U (en) * 1983-06-10 1984-12-26 横河電機株式会社 Permanent bolus freeme flow meter
JPH02161313A (en) * 1988-12-15 1990-06-21 Yamatake Honeywell Co Ltd Composite flowmeter
JPH05273015A (en) * 1992-03-27 1993-10-22 Aichi Tokei Denki Co Ltd Weir type electromagnetic flowmeter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195516U (en) * 1983-06-10 1984-12-26 横河電機株式会社 Permanent bolus freeme flow meter
JPH02161313A (en) * 1988-12-15 1990-06-21 Yamatake Honeywell Co Ltd Composite flowmeter
JPH05273015A (en) * 1992-03-27 1993-10-22 Aichi Tokei Denki Co Ltd Weir type electromagnetic flowmeter

Also Published As

Publication number Publication date
JP2006023181A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP4582623B2 (en) Flowmeter
CN108351239B (en) Flow measuring device based on eddy current flow measuring principle
CN102209884A (en) Bi-directional fluidic oscillator flow meter
DK1536211T3 (en) Method for operating a magnetic inductive flow meter
EP0800061A3 (en) Vortex flowmeter
KR101208330B1 (en) Method for measuring non-full flow using multiple sensors
JP4570029B2 (en) Flowmeter
CN111566453B (en) Flowmeter arrangement according to the vortex measurement principle, measuring tube therefor and method for measuring the flow or velocity of a medium
JPH05273015A (en) Weir type electromagnetic flowmeter
JPH10170320A (en) Flowmeter
KR100732117B1 (en) FLOW rate DETECTOR
JP3398251B2 (en) Flowmeter
JP2002277300A (en) Flow rate measuring apparatus
CN109945941B (en) Ore pulp calibration device
KR101820050B1 (en) Flow rate measuring apparatus in drainpipe using temperature diference
JPH06241855A (en) Electromagnetic flowmeter for not-fully-filled water
JP5580396B2 (en) Fluid sensor and fluid measuring device
Sanford et al. GAS MASS FLOW METERING AN ALTERNATIVE APPROACH
JPH07286874A (en) Electromagnetic flowmeter
Wang Research of measurement mechanism of the flow in pipe based on multi-path ultrasonic
JPH07306068A (en) Electromagnetic flowmeter
JPH09196721A (en) Non-high-water flowmeter
RU75735U1 (en) ULTRASONIC FLOW METER
Lengricht et al. Field Instrumentation and Remote Sensing for Discharge Measurements
JPS6140490A (en) Flow measuring method of pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100826

R150 Certificate of patent or registration of utility model

Ref document number: 4582623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250