JPH06241855A - Electromagnetic flowmeter for not-fully-filled water - Google Patents

Electromagnetic flowmeter for not-fully-filled water

Info

Publication number
JPH06241855A
JPH06241855A JP2636893A JP2636893A JPH06241855A JP H06241855 A JPH06241855 A JP H06241855A JP 2636893 A JP2636893 A JP 2636893A JP 2636893 A JP2636893 A JP 2636893A JP H06241855 A JPH06241855 A JP H06241855A
Authority
JP
Japan
Prior art keywords
fluid
water level
flow rate
excitation
measurement condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2636893A
Other languages
Japanese (ja)
Other versions
JP3164684B2 (en
Inventor
豊 ▲吉▼田
Yutaka Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP02636893A priority Critical patent/JP3164684B2/en
Publication of JPH06241855A publication Critical patent/JPH06241855A/en
Application granted granted Critical
Publication of JP3164684B2 publication Critical patent/JP3164684B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a flowmeter wherein its measuring accuracy is good and it can measure a water level and the conductivity of a fluid or a hydraulic grade by a method wherein exciting coils are installed on the upper side and the lower side of a flow passage, one pair of electrodes are installed on the right and the left of the flow passage and a voltage generated across the electrodes is amplified. CONSTITUTION:Exciting coils U, L are installed respectively on the upper side and the lower side of a flow passage 1, and one pair of electrodes 2 are installed on the right and the left of the flow passage 1. A voltage generated across the electrodes 2 is amplified by an amplifier 7, the value of its input impedance Z is changed, and two or more kinds of different values can be taken. When the exciting coils U, L are excited and the input impedance Z is set at a first value, an output voltage 1E, from the amplifier 7 is expressed by Ef=F(Q, h, g, C) as the function F of a flowing-down flow rate Q, a water level (h), a hydraulic grade (g) and the conductivity C of a fluid. When the input impedance is set at a second value, an output voltage Eg is expressed by Eg=G(Q, h), g, C) as the function G of the conductivity G of the fluid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は流路を非満水状態で流れ
る流体の流下流量・水位・動水勾配及び導電率を計測す
る電磁流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic flow meter for measuring a flow rate, a water level, a hydraulic gradient and a conductivity of a fluid flowing in a non-full state of a flow path.

【0002】[0002]

【従来の技術】出願人は、流路を非満水状態で流れる流
体の流量を電磁流量計の原理を用いて計測する非満水用
電磁流量計を提案した(特願平3−335050号)。
2. Description of the Related Art The applicant has proposed an electromagnetic flowmeter for non-full water which measures the flow rate of a fluid flowing in a non-full state in a flow path by using the principle of an electromagnetic flow meter (Japanese Patent Application No. 3-335050).

【0003】この従来技術は、図3に示すような構成を
もっていた。1は断面が円形の流路、2,2は流路1の
中心を通る垂直線に対し左右対称の位置に設けた1対の
電極、UとLは流路1の上側と下側にそれぞれ設けた励
磁コイルで、交互に励磁され、空間的に異なる不均一な
磁束密度分布を異なる期間の間に発生する。符号4はこ
のような構造の流量検出器を示す。
This prior art had a structure as shown in FIG. 1 is a channel having a circular cross section, 2 and 2 are a pair of electrodes provided symmetrically with respect to a vertical line passing through the center of the channel 1, and U and L are respectively above and below the channel 1. The provided excitation coils are alternately excited to generate spatially different non-uniform magnetic flux density distributions during different periods. Reference numeral 4 indicates a flow rate detector having such a structure.

【0004】5は励磁回路で、タイミング回路6の信号
に応じて上側と下側の励磁コイルUとLとを交互に励磁
する。7は電極2,2間に誘起した電圧を増幅して出力
するアンプ、S1 は切替スイッチでタイミング回路6の
信号で切替作動し、前記2つの励磁コイルUとLの励磁
時期を切替える切替スイッチS2 と同期し、上側の励磁
コイルUが励磁されているときにa側に、下側の励磁コ
イルLが励磁されているときにb側に切替えられる。
Reference numeral 5 denotes an exciting circuit, which alternately excites the upper and lower exciting coils U and L in response to a signal from the timing circuit 6. Reference numeral 7 is an amplifier for amplifying and outputting the voltage induced between the electrodes 2 and 2, and S 1 is a changeover switch for changing over the excitation timing of the two exciting coils U and L by switching operation by the signal of the timing circuit 6. In synchronism with S 2 , it is switched to the a side when the upper exciting coil U is excited and to the b side when the lower exciting coil L is excited.

【0005】8Aと8Bは切替スイッチS1 のa接点と
b接点の出力電圧εU とεL とを夫々入力してサンプル
ホールドするサンプル&ホールド回路、9はサンプル&
ホールド回路8A,8Bからのアナログ信号をディジタ
ル信号に変換するA/D変換回路、10は補正演算を行
なうプログラムを備えた補正演算回路、11は演算結果
としての流量信号を出力する出力端子である。
Reference numerals 8A and 8B are sample & hold circuits for inputting and outputting the output voltages ε U and ε L of the contacts a and b of the changeover switch S 1 , respectively, and 9 is a sample & hold circuit.
An A / D conversion circuit for converting an analog signal from the hold circuits 8A and 8B into a digital signal, 10 is a correction calculation circuit provided with a program for performing a correction calculation, and 11 is an output terminal for outputting a flow rate signal as a calculation result. .

【0006】アンプ7の出力電圧εU とεL との比εL
/εU は、水位hと一定の関係にあり、図4のように水
位hを横軸に、比εL /εU を縦軸にとると両者の関係
を示す1本の曲線イを得る。
Ratio of output voltage ε U and ε L of amplifier 7 ε L
/ Ε U has a constant relationship with the water level h. As shown in FIG. 4, when the water level h is plotted along the horizontal axis and the ratio ε L / ε U is plotted along the vertical axis, a single curve a indicating the relationship between the two is obtained. .

【0007】又、出力電圧εU と実流量Qとの比εU
Qは流量計の感度で、この感度をkであらわすと、水位
hと感度kは図5のように曲線ロで示す関数関係にあ
る。なお、図4と図5は、横軸の水位hを流路1の直径
(内径)Dに対する比率で表している。そして、流路1
を図6に示すように適当な勾配tanθに固定して、た
だ管路に取付け、水位hを0から1.0Dまで変えて出
力比εL /εU と感度kを測定して曲線イ、ロを予め求
めておく。
The ratio of the output voltage ε U and the actual flow rate Q ε U /
Q is the sensitivity of the flowmeter, and when this sensitivity is represented by k, the water level h and the sensitivity k have a functional relationship shown by a curve B as shown in FIG. 4 and 5, the water level h on the horizontal axis is represented by the ratio to the diameter (inner diameter) D of the flow path 1. And channel 1
6 is fixed to an appropriate gradient tan θ and is simply attached to the pipe, the water level h is changed from 0 to 1.0 D, the output ratio ε L / ε U and the sensitivity k are measured, and the curve a, B is obtained in advance.

【0008】次に流量検出器4を流量を計測すべき管路
に接続して計測したときの出力比がεL0/εU0=P0
あったとすると、そのときの水位h0 は図4の曲線イか
ら知ることができる。更に図5の曲線ロから、水位h0
のときの感度k0 を知り、真の流量Q0 を Q0 =εU0/k0 …… として補正演算回路10で求めるのが、先に出願した従
来技術の主旨である。
Next, assuming that the output ratio is ε L0 / ε U0 = P 0 when the flow rate detector 4 is connected to the pipe for measuring the flow rate, the water level h 0 at that time is shown in FIG. You can know it from the curve a. Further, from the curve B of FIG. 5, the water level h 0
It is the gist of the prior art filed previously that the sensitivity calculation k 0 at that time is determined and the true flow rate Q 0 is calculated by the correction calculation circuit 10 as Q 0 = ε U0 / k 0 .

【0009】ところが、一定範囲の管路勾配では水位h
と流量Qの間に1対1の対応が付くから、図4の横軸
は、その測定したときの勾配における流量Qで置き換え
られると考えて、図4に代わる図7を前記従来技術では
作成した。
However, the water level h
Since there is a one-to-one correspondence between the flow rate Q and the flow rate Q, the horizontal axis in FIG. 4 is considered to be replaced by the flow rate Q in the measured gradient, and FIG. did.

【0010】そして、前記従来技術における具体例で
は、図4の曲線イの代りに、予め求めた出力比εL /ε
U のデータを、対応する図7の横軸の流量Qのデータと
共に補正演算回路10のメモリーに記憶し、これらの記
憶データを用いて次のように真の流量Q0 を算出するよ
うにした。
In the specific example of the prior art described above, instead of the curve a in FIG. 4, the output ratio ε L / ε determined in advance is used.
The U data is stored in the memory of the correction arithmetic circuit 10 together with the corresponding data of the flow rate Q on the horizontal axis of FIG. 7, and the true flow rate Q 0 is calculated as follows using these stored data. .

【0011】すなわち、図5の曲線ロに代えて、図8の
ように、横軸に流量Q、縦軸に出力
That is, instead of the curve B in FIG. 5, as shown in FIG. 8, the horizontal axis represents the flow rate Q and the vertical axis represents the output.

【外1】 [Outer 1]

【0012】そのために、補正演算回路10のメモリー
には出力電圧εU と、対応する流量Qとが前記出力比ε
L /εU とともに数値テーブルとして記憶してある。こ
のように、前記従来技術では、水位hの数値を具体的に
用いないで真の流量Q0 を求めていた。図4と図5にお
ける水位hは単に従来技術の主旨を概念的に説明するた
めに、出力比εL /εU から感度kを求める為の介在項
としての役割を示しただけで、具体的には前記従来技術
は図7と図8で説明したように水位hを用いることなく
真の流量Q0 を算出している。
Therefore, the output voltage ε U and the corresponding flow rate Q are stored in the memory of the correction arithmetic circuit 10 as the output ratio ε.
It is stored as a numerical table together with L / ε U. As described above, in the conventional technique, the true flow rate Q 0 is obtained without using the numerical value of the water level h specifically. The water level h in FIGS. 4 and 5 merely shows a role as an intervening term for obtaining the sensitivity k from the output ratio ε L / ε U for the purpose of conceptually explaining the purpose of the conventional technique. In the above-mentioned conventional technique, the true flow rate Q 0 is calculated without using the water level h as described with reference to FIGS. 7 and 8.

【0013】このことは、図4の曲線イや図7の曲線が
管路勾配tanθに無関係であると考えられていたため
であった。
This is because it was considered that the curve A in FIG. 4 and the curve in FIG. 7 were irrelevant to the pipeline gradient tan θ.

【0014】[0014]

【発明が解決しようとする課題】流量計では流路に障害
物を生じないで測定できることが望まれる。前記従来の
技術では堰のような障害物を生じないで非満水状態の流
体の流量が計測でき、更に電磁流量計の原理を用いてい
るので、正流・逆流とも測定可能という利点がある。
SUMMARY OF THE INVENTION It is desirable for a flow meter to be able to perform measurement without causing obstacles in the flow path. In the above-mentioned conventional technique, the flow rate of the fluid in a non-full state can be measured without generating an obstacle such as a weir, and since the principle of the electromagnetic flow meter is used, there is an advantage that both forward flow and reverse flow can be measured.

【0015】ところが、本発明者らは前記従来技術を改
良し、より流量計測の精度を上げるべく鋭意検討を重ね
た結果、以下に気が付いた。即ち、実際に管路勾配が変
ると、同一水位であっても平均流速が変化するため流速
分布が微妙に変化する。従って、図4、図5及び図7の
曲線は各管路勾配が変化するに従って変化する。
However, the inventors of the present invention have made the following improvements by improving the above-mentioned conventional technique and making extensive studies to improve the accuracy of flow rate measurement. That is, when the pipeline gradient actually changes, the average flow velocity changes even at the same water level, so the flow velocity distribution changes subtly. Therefore, the curves in FIGS. 4, 5 and 7 change as the gradient of each conduit changes.

【0016】この変化が流量計測誤差の原因となってい
た。又、前記従来技術では、用いる流量検出器4の電極
とアース間の位置関係、電極形状と励磁磁束密度分布の
関係が、両者ともにその対称性が失われ易いので、流体
の導電率の変化による流量計測誤差が生じるという問題
点があった。
This change caused the flow rate measurement error. Further, in the above-mentioned conventional technique, the positional relationship between the electrode and the ground of the flow rate detector 4 used, and the relationship between the electrode shape and the exciting magnetic flux density distribution are liable to lose their symmetry. There was a problem that a flow rate measurement error occurred.

【0017】そして、前記従来技術による非満水用電磁
流量計は下水道などにおける流量計測に好適であるが、
これらの用途では、水位や、水質の一つの指標となる流
体の導電率や、管路の状態を表す指標となる水面の勾
配、すなわち動水勾配などが測定できることが望まれて
いる。
The electromagnetic flowmeter for non-full water according to the prior art is suitable for measuring the flow rate in sewers,
In these applications, it is desired to be able to measure the water level, the conductivity of a fluid, which is one of the indicators of water quality, and the gradient of the water surface, which is an indicator of the condition of the pipeline, that is, the hydraulic gradient.

【0018】そこで、本発明は、流量計測精度が良く、
しかも水位・流体の導電率又は動水勾配までも計測可能
な非満水用電磁流量計を提供することを目的とする。
Therefore, according to the present invention, the flow rate measurement accuracy is good,
Moreover, it is an object of the present invention to provide an electromagnetic flowmeter for non-filling water, which can measure even the water level, the conductivity of the fluid, and even the hydraulic gradient.

【0019】[0019]

【課題を解決するための手段】前記目的を達成するため
に、本発明の非満水用電磁流量計は次のように構成し
た。
In order to achieve the above-mentioned object, the electromagnetic flowmeter for non-full water of the present invention is constructed as follows.

【0020】すなわち、第1の発明では、流路(1)の
上側に設けた励磁コイル(U)と下側に設けた励磁コイ
ル(L)と、流路(1)の左右に設けた一対の電極
(2),(2)と、電極(2),(2)間に発生した電
圧を増幅するとともにその入力インピーダンス(Z)の
値を変化させて2種類以上の異なった値をとることがで
きるアンプ(7)とを具備した電磁流量計であって、流
路(1)を流れ下る流体の流下流量をQ、水位をh、流
体の液面の勾配を動水勾配g、流体の導電率をCとあら
わしたとき、次のイ〜ハで示す流量信号Ef〜Eh をア
ンプ7の出力電圧として求める。
That is, in the first invention, the exciting coil (U) provided on the upper side of the flow channel (1), the exciting coil (L) provided on the lower side, and the pair provided on the left and right sides of the flow channel (1). Amplifies the voltage generated between the electrodes (2), (2) and the electrodes (2), (2) and changes the value of its input impedance (Z) to take two or more different values. And an amplifier (7) capable of controlling the flow rate of the fluid flowing down the flow path (1) as Q, the water level as h, the fluid level gradient as the hydraulic gradient g, and the fluid When the conductivity is represented by C, the flow rate signals E f to E h shown in the following (a) to (c) are obtained as the output voltage of the amplifier 7.

【0021】イ.両励磁コイル(U)(L)を励磁し、
入力インピーダンス(Z)を一方の値とした第一の測定
条件におけるアンプ(7)の出力電圧Ef を求める。こ
のとき、出力電圧Ef は流下流量Q、水位h、動水勾配
g及び流体の導電率Cの関数Fとして次の第1式であら
わされる。
A. Both excitation coils (U) (L) are excited,
The output voltage E f of the amplifier (7) under the first measurement condition with the input impedance (Z) as one value is obtained. At this time, the output voltage E f is expressed by the following first equation as a function F of the flow rate Q, the water level h, the hydraulic gradient g, and the conductivity C of the fluid.

【0022】Ef =F(Q,h,g,C)……(1) ロ.前記イに示す第1の測定条件に対し、入力インピー
ダンス(Z)の値を他方の値に変化させた第2の測定条
件におけるアンプ(7)の出力電圧Eg を求める。この
とき出力電圧Eg は流下流量Q、水位h、動水勾配g及
び流体の導電率Cの関数Gとして、(1)式と独立な下
記(2)式であらわされる。
E f = F (Q, h, g, C) (1) b. The output voltage E g of the amplifier (7) under the second measurement condition in which the value of the input impedance (Z) is changed to the other value with respect to the first measurement condition shown in (a) above is obtained. At this time, the output voltage E g is expressed by the following equation (2) independent of the equation (1) as a function G of the flow rate Q, the water level h, the hydraulic gradient g, and the conductivity C of the fluid.

【0023】Eg =G(Q,h,g,C)……(2) ハ.前記イに示す第1の測定条件に対し、下側の励磁コ
イル(L)の励磁を止めた第3の測定条件とすること
で、Fの関数形を変えて下記(3)式を得る。E h はこ
のときの出力電圧である。
Eg= G (Q, h, g, C) (2) c. For the first measurement condition shown in (a) above, the lower excitation coil
Use the third measurement condition with the excitation of the coil (L) stopped.
Then, the function form of F is changed to obtain the following expression (3). E hHako
Is the output voltage at.

【0024】Eh =H(Q,h,g,C)……(3) ニ.自然流下の管路では水理学的要請により、流下流量
Q、水位h、及び動水勾配gの間には一定の関係があ
り、流下流量Qは水位hと動水勾配gの関数qとして次
の(4)式であらわされる。
E h = H (Q, h, g, C) (3) d. Due to hydraulic requirements, there is a constant relationship between the flow rate Q, the water level h, and the hydraulic gradient g in a naturally flowing pipeline. The flow rate Q is calculated as a function q of the water level h and the hydraulic gradient g. It is expressed by equation (4).

【0025】Q=q(h,g)……(4) ホ.上述の関数F、G、H及びqは、既知の流下流量Q
・水位h・動水勾配g及び流体の導電率Cに基いて予め
実測により数値関数として求めておく。
Q = q (h, g) (4) E. The above-mentioned functions F, G, H and q are the known downflow rate Q.
-A numerical function is obtained in advance by actual measurement based on the water level h, the hydraulic gradient g, and the conductivity C of the fluid.

【0026】ヘ.未知の四つの量、流下流量Q・水位h
・動水勾配g・導電率Cを求めるには、測定条件を第
1,第2,第3の測定条件と変化させ、流量に応じた出
力信号Ef ・Eg ・Eh を求め、上記(1)〜(4)の
四つの連立方程式を解くことで未知の四つの量を得るよ
うにした。
F. Four unknown quantities, downflow Q and water level h
In order to obtain the hydraulic gradient g and the conductivity C, the measurement conditions are changed from the first, second and third measurement conditions, and the output signals E f , E g , E h corresponding to the flow rate are obtained, and The four unknown quantities were obtained by solving the four simultaneous equations (1) to (4).

【0027】第1,第2,第3の測定条件を決める励磁
態様と、入力インピーダンス(Z)の値の決め方の組み
合わせを変えることで、前記第1の発明の他に第2〜第
9の発明が考えられ、これらの発明も第1の発明と同様
に四つの連立方程式を解くことで、未知の四つの量、流
下流量Q・水位h・動水勾配g・流体の導電率Cを求め
ることができる。
By changing the combination of the excitation mode for determining the first, second, and third measurement conditions and the method for determining the value of the input impedance (Z), the second to ninth aspects are provided in addition to the first aspect of the invention. Inventions are conceivable. In these inventions as well, similar to the first invention, by solving four simultaneous equations, four unknown quantities, the flow rate Q, the water level h, the hydraulic gradient g, and the conductivity C of the fluid are obtained. be able to.

【0028】これらの第2〜第6の発明は、第1の発明
が請求項1に対応しているのと同様に、それぞれ請求項
2〜6に対応していて、測定条件を決める励磁態様と、
入力インピーダンス(Z)の選定で特定される。
These second to sixth inventions correspond to claims 2 to 6, respectively, in the same manner as the first invention corresponds to claim 1, and are excitation modes for determining measurement conditions. When,
It is specified by selecting the input impedance (Z).

【0029】そこで、これらの発明を第1の発明と共に
表形式で表1に示す。
Therefore, these inventions are shown in Table 1 in the form of a table together with the first invention.

【0030】[0030]

【表1】 上記表1で、請求項1〜6に対応する第1〜第6の発明
が特定されるので、これらの発明を文章で長々と記述す
ることは避ける。
[Table 1] Since the first to sixth inventions corresponding to claims 1 to 6 are specified in the above Table 1, these inventions will not be described at length in the text.

【0031】要するに、第1〜第6の発明が、ずばり請
求項1〜6に該当する。そして、第7の発明では、前記
第1〜第6の発明のうち何れか一つの発明の(1)〜
(4)の四つの連立方程式を解くことで、未知の四つの
量の代りに、流下流量Qと、水位h・動水勾配g・流体
の流量Cのうちの少なくとも一つの量とを得るようにし
た。
In summary, the first to sixth inventions fall under the first to sixth aspects. And 7th invention WHEREIN: (1) of any one invention among said 1st-6th invention-
By solving the four simultaneous equations in (4), instead of the unknown four quantities, the downflow rate Q and at least one of the water level h, the hydraulic gradient g, and the fluid flow rate C are obtained. I chose

【0032】[0032]

【実施例】図1の第1実施例で、1は断面が円形の流
路、2,2は流路1の左右に対象に設けた1対の電極
で、少なくともその流路の底部に近い方の端は、測定し
ようとする最低水位においても流下する流体に接触する
ようにしておく。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the first embodiment of FIG. 1, 1 is a channel having a circular cross section, 2 and 2 are a pair of electrodes provided on the left and right sides of the channel 1 at least near the bottom of the channel. The other end should be in contact with the flowing fluid even at the lowest water level to be measured.

【0033】また電極の円周方向の大きさは関数形F・
G・Hの形に影響を与える。関数形によって連立方程式
の解き易さに差が生じる。
The size of the electrode in the circumferential direction is the functional form F.
Affects the shape of GH. There is a difference in the ease of solving simultaneous equations depending on the functional form.

【0034】Uは上側の励磁コイル、Lは下側の励磁コ
イル、5は励磁回路で、タイミング回路6の信号に応じ
て作動し、第1と第2の測定条件のときは両励磁コイル
UとLを励磁する。そして第3の測定条件のときは下側
の励磁コイルLの励磁を止めて上側の励磁コイルUだけ
を励磁する。
U is an upper exciting coil, L is a lower exciting coil, and 5 is an exciting circuit, which operates according to the signal of the timing circuit 6, and both exciting coils U under the first and second measurement conditions. And L is excited. Then, under the third measurement condition, the excitation of the lower excitation coil L is stopped and only the upper excitation coil U is excited.

【0035】7は、変更可能の入力インピーダンスZを
備えたアンプで、入力インピーダンスZは2種類以上の
異った値をとることができる。9はA/D変換回路、1
0は演算回路、10Aはメモリー、10Bは出力回路、
11は出力端子、6はタイミング回路で、励磁回路5、
アンプ7、A/D変換回路9及び演算回路10に同期信
号を送出する。
Reference numeral 7 is an amplifier having a changeable input impedance Z, and the input impedance Z can take two or more different values. 9 is an A / D conversion circuit, 1
0 is an arithmetic circuit, 10A is a memory, 10B is an output circuit,
11 is an output terminal, 6 is a timing circuit, and an exciting circuit 5,
A synchronization signal is sent to the amplifier 7, the A / D conversion circuit 9 and the arithmetic circuit 10.

【0036】図2は図1の第1実施例に対し、入力イン
ピーダンスZの代りに、各電極2,2からアンプ7にい
たる2本の導線とアースとの間に短絡抵抗Rと、スイッ
チSを設け、タイミング回路6からの信号にしたがって
スイッチSを開閉することで、アンプ7の入力インピー
ダンスが変ったのと同じ働きをさせるようになっている
点だけが異なる。
FIG. 2 differs from the first embodiment of FIG. 1 in that instead of the input impedance Z, a short-circuit resistance R and a switch S are provided between the two conductors from each electrode 2, 2 to the amplifier 7 and ground. Is provided and the switch S is opened / closed according to a signal from the timing circuit 6, so that the same operation as that when the input impedance of the amplifier 7 is changed is performed.

【0037】そこで、以下で図2の第2実施例につい
て、その作用を説明する。励磁回路5はタイミング回路
6からの信号にしたがって、上下の励磁コイルUとLを
励磁する。ある期間下側励磁コイルの励磁を止める。
Therefore, the operation of the second embodiment of FIG. 2 will be described below. The exciting circuit 5 excites the upper and lower exciting coils U and L according to the signal from the timing circuit 6. Turn off the lower side excitation coil for a certain period.

【0038】タイミング回路6は、アンプ7の入力イン
ピーダンスの変更と励磁に必要なタイミングのほか、A
/D変換や演算回路の信号処理に必要なタイミングを発
生する。
The timing circuit 6 changes the input impedance of the amplifier 7 and the timing required for excitation, and
Generates timing required for / D conversion and signal processing of the arithmetic circuit.

【0039】流量信号(アンプ7の出力電圧)はA/D
変換されて演算回路10へ取り込まれる。メモリー10
Aには、関数F・G・H・qが数値テーブルとして格納
されている。また、(1)〜(4)の連立方程式を解く
ためのプログラムが格納されている。
The flow rate signal (output voltage of the amplifier 7) is A / D
It is converted and taken into the arithmetic circuit 10. Memory 10
In A, the functions F, G, H, and q are stored as a numerical table. Also, a program for solving the simultaneous equations (1) to (4) is stored.

【0040】演算回路10は上記プログラムに従って
(1)〜(4)の連立方程式を解く。出力回路10Bは
上記演算結果を適当な形で外部に出力する。(1)〜
(4)の連立方程式を解くには、流下流量Q・水位h・
動水勾配g・流体の導電率Cが一定と見なせるような短
い時間の間に、測定条件を第1,第2,第3と変化させ
る必要があり、タイミング回路6はそのように働らく。
The arithmetic circuit 10 solves the simultaneous equations (1) to (4) according to the above program. The output circuit 10B outputs the above calculation result to the outside in an appropriate form. (1) ~
To solve the simultaneous equations in (4), downflow rate Q, water level h,
It is necessary to change the measurement conditions to the first, second, and third within a short time so that the hydraulic gradient g and the electrical conductivity C of the fluid can be regarded as constant, and the timing circuit 6 operates as such.

【0041】演算回路10は第1,第2,第3の測定条
件に従って発生する流量信号(出力電圧)Ef ・Eg
h を区別して取り込む。メモリー10Aには、流下流
量Q・水位h・動水勾配g・流体の導電率Cに適当な値
を設定しつつ、その設定値をいろいろ変えながら実測に
よって求めた数値関数F・G・Hの値が、その設定値Q
・h・g・Cを与えることによって引き出せるように格
納記憶されている。
The arithmetic circuit 10 generates a flow rate signal (output voltage) E f · E g ·, which is generated according to the first, second and third measurement conditions.
Eh is distinguished and taken in. In the memory 10A, while setting appropriate values for the flow rate Q, the water level h, the hydraulic gradient g, and the conductivity C of the fluid, the numerical functions F, G, H of the numerical functions F, G, H obtained by actual measurement while varying the set values are set. The value is the set value Q
Stored and stored so that it can be pulled out by giving h, g, C.

【0042】連立方程式の解法は、種々考えられるが次
に一例を挙げる。 1).先ず、(1)式において、h・g・Cに適当な値
を仮定する。 Ef =F(Q,h,g,C)……(1) ここで、Ef との比較において(1)式を満すQをメモ
リー10A上の数値関数Fより求める。
There are various possible solutions to the simultaneous equations, but an example is given below. 1). First, in equation (1), an appropriate value for h · g · C is assumed. E f = F (Q, h, g, C) (1) Here, in the comparison with E f , Q satisfying the expression (1) is obtained from the numerical function F on the memory 10A.

【0043】すなわち、h,g,Cを仮定したことによ
り数値関数下の自由度は流下流量Q一次元だけになる。
この関数の値がEf と一致するようなQを求める。この
ことは適当な補間操作などを使って容易にできる。(以
下2)〜4)の手順においても同じことが言える。)そ
こで求まった値をQ0 と書く。 2).今求めたQ0 と最初に仮定したh,g,Cのう
ち、g,Cを(2)式へ代入してやる。
That is, by assuming h, g, and C, the degree of freedom under the numerical function is only the one-dimensional flow rate Q.
Find Q such that the value of this function matches E f . This can be easily done by using an appropriate interpolation operation or the like. The same can be said for the procedures (2) to 4) below. ) Write the value found there as Q 0 . 2). Out of Q 0 just obtained and h, g, and C initially assumed, g and C are substituted into the equation (2).

【0044】Eg =G(Q0 ,h,g,C)……(2) ここで、Eg との比較において(2)式を満すhをメモ
リー10A上の数値関数Gによって求める。求まった値
をh0 と書く。 3).こうして、求めたQ0 ・h0 と、最初に仮定した
h,g,Cのうちのgを(2)式へ代入してやる。
E g = G (Q 0 , h, g, C) (2) Here, h satisfying the equation (2) in comparison with E g is obtained by the numerical function G on the memory 10A. The value obtained is written as h 0 . 3). In this way, the obtained Q 0 · h 0 and g of h, g, and C initially assumed are substituted into the equation (2).

【0045】 Eh =H(Q0 ,h0 ,g,C)……(3) ここで、Eh との比較において(3)式を満すCをメモ
リー10A上の数値関数Hによって求める。求まった値
をC0 と書く。 4).(4)式へ、求めたQ0 ,h0 を代入してやる。
E h = H (Q 0 , h 0 , g, C) (3) Here, in the comparison with E h , C satisfying the expression (3) is obtained by the numerical function H on the memory 10A. . The value obtained is written as C 0 . 4). The obtained Q 0 and h 0 are substituted into the equation (4).

【0046】Q0 =q(h0 ,g)……(4) ここで、メモリー10A上の数値関数qにより、(4)
式を満すgを求める。求まった値をg0 と書く。 5).これで、全ての値Q0 ・h0 ・g0 ・C0 が求め
られた。
Q 0 = q (h 0 , g) (4) Here, by the numerical function q on the memory 10A, (4)
Find g that satisfies the expression. Write the obtained value as g 0 . 5). With this, all the values Q 0 · h 0 · g 0 · C 0 were obtained.

【0047】1)〜4)の手順をひとつのループとす
る。今求めたQ0 ・h0 ・g0 ・C0のうち、h0 ・g
0 ・C0 を仮定する値として、再びこのループを回すこ
とにより、手順4)が終了したときに獲られるQ0 ・h
0 ・g0 ・C0 は連立方程式の真の解に近づく。このよ
うな収束演算を繰り返すことで、必要な精度で流下流量
0 ・水位h0 ・動水勾配g0 ・流体の導電率C0 を得
る。
The steps 1) to 4) are made into one loop. Of the calculated Q 0 · h 0 · g 0 · C 0 , h 0 · g
By assuming this value to be 0 · C 0 and turning this loop again, Q 0 · h obtained when step 4) is completed
0 · g 0 · C 0 approaches the true solution of the simultaneous equations. Such convergence calculation is repeated to obtain a falling rate Q 0 · water level h 0, hydraulic gradient g conductivity C 0 of 0 · fluid with the necessary accuracy.

【0048】第2〜第6の発明で、四つの連立方程式よ
り四つの未知の量Q0 ・h0 ・g 0 ・C0 を求めるに
は、上述の第1の発明の実施例における解法と類似の手
法で解くことが可能なことは明らかであるので、説明を
省略する。
In the second to sixth inventions, four simultaneous equations
Four unknown quantities Q0・ H0・ G 0・ C0To ask for
Is similar to the solution in the first embodiment of the invention described above.
It is clear that it can be solved by the law, so please explain
Omit it.

【0049】[0049]

【発明の効果】本発明の非満水用電磁流量計は上述のよ
うに構成されているので、非満水で流れる管路の流下流
量をより正確に計量することができる。又、水位の計測
や、水質の一つの指標となる流体の導電率や、管路の状
態を表わす指標となる動水勾配を流下流量とあわせて測
定できる。
Since the electromagnetic flowmeter for non-full water of the present invention is configured as described above, it is possible to more accurately measure the flow-down flow rate of the pipe line flowing in non-full water. In addition, it is possible to measure the water level, the conductivity of the fluid, which is one of the indicators of water quality, and the hydraulic gradient, which is an indicator of the condition of the pipeline, together with the flow rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の図。FIG. 1 is a diagram of a first embodiment of the present invention.

【図2】本発明の第2実施例の図。FIG. 2 is a diagram of a second embodiment of the present invention.

【図3】従来技術の図。FIG. 3 is a diagram of prior art.

【図4】水位対出力比線図。FIG. 4 is a water level vs. output ratio diagram.

【図5】水位対感度線図。FIG. 5 is a water level vs. sensitivity diagram.

【図6】管路勾配を説明する略図。FIG. 6 is a schematic diagram illustrating a pipeline gradient.

【図7】流量対出力比線図。FIG. 7 is a flow rate vs. output ratio diagram.

【図8】流量対出力線図。FIG. 8 is a flow rate vs. output diagram.

【符号の説明】[Explanation of symbols]

1 流路 2 電極 7 アンプ 10 演算回路 10A メモリー U,L 励磁コイル Z 入力インピーダンス 1 flow path 2 electrode 7 amplifier 10 arithmetic circuit 10A memory U, L exciting coil Z input impedance

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 流路(1)の上側に設けた励磁コイル
(U)と下側に設けた励磁コイル(L)と、流路(1)
の左右に設けた一対の電極(2),(2)と、電極
(2),(2)間に発生した電圧を増幅するとともにそ
の入力インピーダンス(Z)の値を変化させて2種類以
上の異なった値をとることができるアンプ(7)とを具
備した電磁流量計であって、 流路(1)を流れ下る流体の流下流量をQ、水位をh、
流体の液面の勾配を動水勾配g、流体の導電率をCとあ
らわしたとき、次のイ〜ハで示す流量信号Ef〜Eh
アンプ7の出力電圧として求める。 イ.両励磁コイル(U)(L)を励磁し、入力インピー
ダンス(Z)を一方の値とした第一の測定条件における
アンプ(7)の出力電圧Ef を求める。このとき、出力
電圧Ef は流下流量Q、水位h、動水勾配g及び流体の
導電率Cの関数Fとして次の第1式であらわされる。 Ef =F(Q,h,g,C)……(1) ロ.前記イに示す第1の測定条件に対し、入力インピー
ダンス(Z)の値を他方の値に変化させた第2の測定条
件におけるアンプ(7)の出力電圧Eg を求める。この
とき出力電圧Eg は流下流量Q、水位h、動水勾配g及
び流体の導電率Cの関数Gとして、(1)式と独立な下
記(2)式であらわされる。 Eg =G(Q,h,g,C)……(2) ハ.前記イに示す第1の測定条件に対し、下側の励磁コ
イル(L)の励磁を止めた第3の測定条件とすること
で、Fの関数形を変えて下記(3)式を得る。E h はこ
のときの出力電圧である。 Eh =H(Q,h,g,C)……(3) ニ.自然流下の管路では水理学的要請により、流下流量
Q、水位h、及び動水勾配gの間には一定の関係があ
り、流下流量Qは水位hと動水勾配gの関数qとして次
の(4)式であらわされる。 Q=q(h,g)……(4) ホ.上述の関数F、G、H及びqは、既知の流下流量Q
・水位h・動水勾配g及び流体の導電率Cに基いて予め
実測により数値関数として求めておく。 ヘ.未知の四つの量、流下流量Q・水位h・動水勾配g
・流体の導電率Cを求めるには、測定条件を第1,第
2,第3の測定条件と変化させ、流量に応じた出力信号
f ・Eg ・Eh を求め、上記(1)〜(4)の四つの
連立方程式を解くことで未知の四つの量を得るようにし
た非満水用電磁流量計。
1. An exciting coil provided above a flow path (1)
(U), the exciting coil (L) provided on the lower side, and the flow path (1)
A pair of electrodes (2), (2) provided on the left and right of the
While amplifying the voltage generated between (2) and (2),
The input impedance (Z) value of
With an amplifier (7) that can take different values above
An electromagnetic flowmeter provided, wherein the flow rate of the fluid flowing down the flow path (1) is Q, the water level is h,
The gradient of the fluid surface is the hydraulic gradient g, and the conductivity of the fluid is C.
Flow rate signal E shown in the followingf~ EhTo
It is calculated as the output voltage of the amplifier 7. I. Both excitation coils (U) and (L) are excited and input impedance
Under the first measurement condition where the dance (Z) is one value
Output voltage E of amplifier (7)fAsk for. At this time, the output
Voltage EfIs the flow rate Q, the water level h, the hydraulic gradient g, and the fluid
It is expressed as a function F of the conductivity C by the following first equation. Ef= F (Q, h, g, C) (1) b. Input impedance against the first measurement condition shown in b.
The second measurement condition in which the value of dance (Z) is changed to the other value
Output voltage E of amplifier (7)gAsk for. this
When output voltage EgIs the flow rate Q, water level h, hydraulic gradient g and
As a function G of the conductivity C of the fluid and the fluid,
It is represented by the expression (2). Eg= G (Q, h, g, C) (2) c. For the first measurement condition shown in (a) above, the lower excitation coil
Use the third measurement condition with the excitation of the coil (L) stopped.
Then, the function form of F is changed to obtain the following expression (3). E hHako
Is the output voltage at. Eh= H (Q, h, g, C) (3) d. Due to hydraulic demand, the flow rate of natural flow down
There is a certain relationship between Q, water level h, and hydraulic gradient g.
And the flow rate Q is defined as the function q of the water level h and the hydraulic gradient g.
It is expressed by equation (4). Q = q (h, g) (4) E. The above-mentioned functions F, G, H and q are the known downflow rate Q.
・ Based on the water level h, hydraulic gradient g, and conductivity C of the fluid
It is obtained as a numerical function by actual measurement. F. Four unknown quantities, downflow Q, water level h, hydraulic gradient g
-To obtain the conductivity C of the fluid, the measurement conditions are
Output signal according to the flow rate by changing the second and third measurement conditions
Ef・ Eg・ EhThe four of the above (1) to (4)
By solving the simultaneous equations, we obtain four unknown quantities.
Electromagnetic flow meter for non full water.
【請求項2】 請求項1のロに示す第2の測定条件のう
ち、励磁を上側の励磁コイル(U)だけとした非満水用
電磁流量計。
2. An electromagnetic flowmeter for non-full water, wherein only the upper side excitation coil (U) is excited in the second measurement condition shown in (b) of claim 1.
【請求項3】 請求項1のハに示す第3の測定条件のう
ち、励磁を下側の励磁コイル(L)だけとした非満水用
電磁流量計。
3. An electromagnetic flowmeter for non-full water, wherein only the lower side excitation coil (L) is excited in the third measurement condition shown in (c) of claim 1.
【請求項4】 請求項1のロに示す第2の測定条件と、
同ハに示す第3の測定条件のうち、励磁を下側の励磁コ
イル(L)だけとした非満水用電磁流量計。
4. The second measurement condition shown in B of claim 1,
Of the third measurement conditions shown in the same C, an electromagnetic flowmeter for non-full water in which only the lower excitation coil (L) was used for excitation.
【請求項5】 請求項1のイに示す第1の測定条件のう
ち、励磁を上側の励磁コイル(U)だけとし、同請求項
のロに示す第2の測定条件のうち、励磁を上側の励磁コ
イル(U)だけとし、更に同請求項のハに示す第3の測
定条件のうち、励磁を下側の励磁コイル(L)だけとし
た非満水用電磁流量計。
5. Of the first measurement conditions shown in claim 1, the excitation is limited to the upper side excitation coil (U), and the second measurement condition shown in (b) of the claim is set to excitation the upper side. The electromagnetic flowmeter for non-full water, in which only the exciting coil (U) is used, and in the third measurement condition shown in C of the same claim, only the lower exciting coil (L) is used for excitation.
【請求項6】 請求項1のイに示す第1の測定条件のう
ち、励磁を上側の励磁コイル(U)だけとし、更に同請
求項ロに示す第2の測定条件とハに示す第3の測定条件
のうち、励磁を下側の励磁コイル(L)だけとした非満
水用電磁流量計。
6. Among the first measurement conditions shown in (a) of claim 1, only the upper side excitation coil (U) is excited, and the second measurement condition shown in (b) and the third measurement condition shown in (c). Of the above measurement conditions, the electromagnetic flowmeter for non-full water in which only the lower excitation coil (L) was used for excitation.
【請求項7】 (1)〜(4)の四つの連立方程式を解
くことで、未知の四つの量の代りに、流下流量Qと、水
位h・動水勾配g・流体の導電率Cのうちの少なくとも
一つの量とを得るようにした請求項1〜6のうち、何れ
か一つの非満水用電磁流量計。
7. By solving the four simultaneous equations of (1) to (4), instead of the unknown four quantities, the downflow rate Q, the water level h, the hydraulic gradient g, and the conductivity C of the fluid are calculated. The electromagnetic flowmeter for non-full water according to any one of claims 1 to 6, wherein at least one of them is obtained.
JP02636893A 1993-02-16 1993-02-16 Calculation method of electromagnetic flow meter for non-full water Expired - Lifetime JP3164684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02636893A JP3164684B2 (en) 1993-02-16 1993-02-16 Calculation method of electromagnetic flow meter for non-full water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02636893A JP3164684B2 (en) 1993-02-16 1993-02-16 Calculation method of electromagnetic flow meter for non-full water

Publications (2)

Publication Number Publication Date
JPH06241855A true JPH06241855A (en) 1994-09-02
JP3164684B2 JP3164684B2 (en) 2001-05-08

Family

ID=12191563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02636893A Expired - Lifetime JP3164684B2 (en) 1993-02-16 1993-02-16 Calculation method of electromagnetic flow meter for non-full water

Country Status (1)

Country Link
JP (1) JP3164684B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7369949B2 (en) 2005-10-17 2008-05-06 Yamatake Corporation Electromagnetic flowmeter
US7487052B2 (en) 2004-09-22 2009-02-03 Yamatake Corporation State detection device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5559499B2 (en) 2009-09-04 2014-07-23 アズビル株式会社 Condition detection device
JP2013076995A (en) * 2011-09-14 2013-04-25 Ricoh Co Ltd Optical scanner and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7487052B2 (en) 2004-09-22 2009-02-03 Yamatake Corporation State detection device
US7369949B2 (en) 2005-10-17 2008-05-06 Yamatake Corporation Electromagnetic flowmeter

Also Published As

Publication number Publication date
JP3164684B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP3263296B2 (en) Electromagnetic flow meter
US6634238B2 (en) Method of operating an electromagnetic flowmeter
US7946184B2 (en) Electromagnetic flowmeter having temperature measurement value for correcting electrical conductivity value
WO1993005367A1 (en) Electromagnetic flowmeter for water conveyance in semifull state
JP2003315121A (en) Electromagnetic flowmeter
US5263374A (en) Flowmeter with concentrically arranged electromagnetic field
CN114829883A (en) Method for operating a magnetically inductive flow meter
JPH06241855A (en) Electromagnetic flowmeter for not-fully-filled water
JPH1090025A (en) Float type flow meter
RU2631916C1 (en) Method of controlling fluid media flow measurement by electromagnetic flowmeter
JP2974478B2 (en) Flow measurement method in non-full condition, flow detector and electromagnetic flow meter used for this method
JPH01292214A (en) Electromagnetic flowmeter
JP4446223B2 (en) Electromagnetic flow meter
WO1993005368A1 (en) Electromagnetic flowmeter for water conveyance in semifull state
JP2945476B2 (en) Electromagnetic flow meter for non-full water
JP3337118B2 (en) Electromagnetic flow meter
RU2146041C1 (en) Electromagnetic flowmeter
JPH05172598A (en) Vortex flowmeter
JPH06229795A (en) Electromagnetic flowmeter for unfilled pipe line
JPH06288802A (en) Electromagnetic flowmeter
JPH0821754A (en) Two-wire type electromagnetic flowmeter
JP2000074712A (en) Non-water filled-up electromagnetic flowmeter
SU974248A1 (en) Device for determination continuity of liquid flow
JPH07286874A (en) Electromagnetic flowmeter
JP3133133B2 (en) Non-full electromagnetic flowmeter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080302

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090302

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100302

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 12

EXPY Cancellation because of completion of term