JP4582498B2 - Glass substrate - Google Patents

Glass substrate Download PDF

Info

Publication number
JP4582498B2
JP4582498B2 JP2004070772A JP2004070772A JP4582498B2 JP 4582498 B2 JP4582498 B2 JP 4582498B2 JP 2004070772 A JP2004070772 A JP 2004070772A JP 2004070772 A JP2004070772 A JP 2004070772A JP 4582498 B2 JP4582498 B2 JP 4582498B2
Authority
JP
Japan
Prior art keywords
glass substrate
glass
substrate
less
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004070772A
Other languages
Japanese (ja)
Other versions
JP2005255478A (en
Inventor
晋吉 三和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2004070772A priority Critical patent/JP4582498B2/en
Publication of JP2005255478A publication Critical patent/JP2005255478A/en
Application granted granted Critical
Publication of JP4582498B2 publication Critical patent/JP4582498B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Surface Treatment Of Glass (AREA)

Description

本発明は接触剥離しても静電気の帯電を引き起こしにくいガラス基板、特にディスプレイ用ガラス基板に関する。   The present invention relates to a glass substrate, and more particularly to a glass substrate for a display, which is less likely to cause electrostatic charging even when contact peeling is performed.

ガラス基板は液晶ディスプレイ等のフラットパネルディスプレイの基板として広く使用されている。特にフラットパネルディスプレイ、中でも液晶ディスプレイにおいてはアルカリ酸化物を含有しない無アルカリガラス基板が用いられる。   Glass substrates are widely used as substrates for flat panel displays such as liquid crystal displays. In particular, non-alkali glass substrates containing no alkali oxide are used in flat panel displays, particularly liquid crystal displays.

上記したような用途では、以下の特性がガラス基板に求められる。(1)フォトリソ−エッチング工程で使用される種々の酸、アルカリ等の薬液に対する耐薬品性に優れていること。(2)成膜、アニール等の工程で、ガラス基板は数100℃に加熱される。その際にガラスが熱収縮しない為に歪点が高いこと。現在の多結晶シリコンTFT−LCDでは、その工程温度は約400〜600℃であり、これらの用途に用いる基板用ガラスの歪点は600℃以上の値が望ましい。   In the applications as described above, the following characteristics are required for the glass substrate. (1) Excellent chemical resistance to chemicals such as various acids and alkalis used in the photolithographic etching process. (2) The glass substrate is heated to several hundred degrees Celsius in processes such as film formation and annealing. In that case, the strain point is high because the glass does not heat shrink. In the present polycrystalline silicon TFT-LCD, the process temperature is about 400-600 degreeC, and the strain point of the glass for substrates used for these uses has a desirable value of 600 degreeC or more.

又これらを溶融し、薄い板状に成形してガラス基板を製造するためには以下の特性が要求される。(3)ガラス中に泡、ぶつ、脈理等の透明基板ガラスとして好ましくない溶融欠陥を発生しにくいように、溶融性に優れていること。(4)ガラス基板中に溶融、あるいは成形中に発生する異物を避けるため耐失透性に優れていること。
特開2001−343632号公報 特開2002−72922号公報
Moreover, the following characteristics are required in order to melt these and shape | mold into a thin plate shape and to manufacture a glass substrate. (3) The glass has excellent meltability so that it does not easily cause melting defects that are not desirable as transparent substrate glass such as bubbles, bumps and striae in the glass. (4) Excellent devitrification resistance in order to avoid foreign matters generated during melting or molding in the glass substrate.
JP 2001-343632 A Japanese Patent Laid-Open No. 2002-72922

ところで無アルカリガラス基板においては、ガラス基板の静電気の帯電が問題になることが多い。もともと絶縁体であるガラスは非常に帯電しやすいが、アルカリ酸化物成分をほとんど含有しない無アルカリガラスはその中でも特に帯電しやすく、かつ一旦帯電した静電気が逃げずに維持される傾向がある。液晶ディスプレイなどフラットパネルディスプレイの製造工程において、ガラス基板の帯電は様々な工程で引き起こされるが、製膜工程などにおける金属や絶縁体のプレートとの接触剥離で起こるいわゆる剥離帯電が大きな問題となっている。プレートとガラス基板の接触、剥離による帯電は常圧の大気中の工程はもちろんのこと、基板表面の薄膜のエッチングをおこなう工程や製膜工程など、真空の工程中でも発生し問題となる。このような工程中で帯電したガラス基板に導電性の物質が近づくと放電が起こる。帯電している静電気の電圧は数10kVにも達するため、放電によってガラス基板表面の素子や電極線、或いは場合によってはガラスそのものの破壊(絶縁破壊あるいは静電破壊)が起こり表示不良の原因となる。液晶ディスプレイの中でもTFT−LCDに代表されるアクティブマトリクスタイプの液晶ディスプレイは、ガラス基板表面に薄膜トランジスタなどの微細な半導体素子や電子回路を形成するが、この素子や回路は静電破壊に非常に弱いため特に問題となる。また帯電した基板は環境中に存在するダストを引き寄せ基板表面の汚染の原因ともなる。   By the way, in an alkali-free glass substrate, electrostatic charging of the glass substrate often becomes a problem. Originally, the glass that is an insulator is very easily charged, but the alkali-free glass containing almost no alkali oxide component is particularly easily charged, and the charged static electricity tends to be maintained without escape. In the manufacturing process of flat panel displays such as liquid crystal displays, charging of the glass substrate is caused by various processes, but so-called peeling charging that occurs due to contact peeling with a metal or insulator plate in a film forming process or the like becomes a big problem. Yes. Charging due to contact and peeling between the plate and the glass substrate occurs in a vacuum process such as a process for etching a thin film on the substrate surface or a film forming process, as well as a process in atmospheric pressure. When a conductive substance approaches the charged glass substrate in such a process, discharge occurs. Since the charged electrostatic voltage reaches several tens of kV, the discharge causes destruction of the elements and electrode wires on the surface of the glass substrate, or in some cases the glass itself (insulation breakdown or electrostatic breakdown), which causes display defects. . Among liquid crystal displays, active matrix type liquid crystal displays typified by TFT-LCDs form fine semiconductor elements such as thin film transistors and electronic circuits on the glass substrate surface, but these elements and circuits are very vulnerable to electrostatic breakdown. This is particularly problematic. In addition, the charged substrate attracts dust present in the environment and causes contamination of the substrate surface.

ガラス基板の帯電防止策としてはイオナイザを用いて電荷を中和する、あるいは環境中の湿度を上げ、たまった電荷を空中に放電させる方法などがよく用いられている。しかしこれらの対策はコストアップの要因になる他、工程中に帯電を引き起こす場所が多岐にわたるため、効果的な対策を打つことが難しいという問題が残る。さらにプラズマプロセスのような真空プロセス中ではこれらの手段を用いることができない。従って液晶ディスプレイを初めとするフラットパネルディスプレイ用途には、帯電しにくいガラス基板が強く求められている。(特許文献1、2参照)
本発明の目的は、プロセス中での帯電を引き起こしにくいガラス基板を提供することである。
As an antistatic measure for the glass substrate, a method of neutralizing the charge using an ionizer or increasing the humidity in the environment to discharge the accumulated charge into the air is often used. However, these countermeasures increase the cost, and there are various places where charging is caused during the process, so that it is difficult to take effective countermeasures. Furthermore, these means cannot be used in a vacuum process such as a plasma process. Therefore, for flat panel display applications such as liquid crystal displays, there is a strong demand for glass substrates that are not easily charged. (See Patent Documents 1 and 2)
An object of the present invention is to provide a glass substrate that is less likely to cause charging during the process.

本発明のガラス基板は、電極線や各種デバイスが形成される第一の表面と、これらが形成されない第二の表面とを有するガラス基板において、オーバーフローダウンドロー法で成形されてなると共に、第一の表面の表面粗さRaが0.2nm以下であり、第二の表面が化学処理されており、且つ第二の表面の表面粗さRaが0.3nm以上nm以下であることを特徴とする。 The glass substrate of the present invention is formed by an overflow down draw method on a glass substrate having a first surface on which electrode wires and various devices are formed and a second surface on which these are not formed. surface roughness Ra der following 0.2nm surface of is, the second surface has been chemically treated, and wherein the surface roughness Ra of the second surface is 1 nm or less or more 0.3nm And

た第一の表面は、火造り面であることが好ましい。 Also the first surface is preferably a fire-polished surface.

また本発明のガラス基板は、基板端面の酸化セリウム付着量が5μg以下であることが好ましい。   The glass substrate of the present invention preferably has a cerium oxide adhesion amount of 5 μg or less on the substrate end face.

また本発明のガラス基板は、アルカリ酸化物の含有量が合計0.1質量%以下であることが好ましい。   The glass substrate of the present invention preferably has a total content of alkali oxides of 0.1% by mass or less.

また本発明のガラス基板は、フラットディスプレイ用ガラス基板、特に液晶ディスプレイ用ガラス基板として使用されることが好ましい Moreover, it is preferable that the glass substrate of this invention is used as a glass substrate for flat displays, especially a glass substrate for liquid crystal displays .

本発明のガラス基板は、剥離帯電量が低く、液晶ディスプレイ等の製造工程で生じる静電気の帯電を抑制できる。このため基板上の素子、配線の破壊を防ぐことができるので、これら電子機器を歩留まり良く製造できる。従って、本発明のガラス基板は液晶ディスプレイ、ELディスプレイ等のフラットパネルディスプレイ用の基板として好適である。   The glass substrate of the present invention has a low peel charge amount and can suppress static electricity generated in the manufacturing process of a liquid crystal display or the like. For this reason, destruction of elements and wirings on the substrate can be prevented, so that these electronic devices can be manufactured with high yield. Therefore, the glass substrate of the present invention is suitable as a substrate for flat panel displays such as liquid crystal displays and EL displays.

ガラス基板の帯電、特に剥離帯電を減少させる方法としては微視的に見てガラス基板と相手のステージとの接触面積を減少させることが最も効果的である。ガラス基板とステージが強い力で接触した際、両者の界面で電子のやり取りが起こる。これが引き剥がされるときに帯電として現れる。そこでガラス基板のステージと接触する面(本発明では第二の表面に相当する)の表面粗さを適正範囲に調整してやることにより、接触面積を減少することができ、その結果帯電量を低減できる。   As a method of reducing the charging of the glass substrate, particularly the peeling charging, it is most effective to reduce the contact area between the glass substrate and the other stage as viewed microscopically. When the glass substrate and the stage come into contact with each other with a strong force, electrons are exchanged at the interface between the two. This appears as a charge when peeled off. Therefore, by adjusting the surface roughness of the surface of the glass substrate that contacts the stage (corresponding to the second surface in the present invention) to an appropriate range, the contact area can be reduced, and as a result, the charge amount can be reduced. .

ガラス基板の剥離帯電防止に有効なガラス表面の粗さはRaで0.3nm以上である。ガラス表面の粗さが大きければ大きいほど帯電量は小さくなる傾向があるが、大きすぎると別の問題が発生する。ガラス基板表面の粗さが大きいということはガラス表面に大きな欠陥があるということでありガラス基板の強度低下を招く恐れがあり望ましくない。   The roughness of the glass surface effective for preventing peeling-off of the glass substrate is Ra of 0.3 nm or more. The larger the roughness of the glass surface, the smaller the charge amount, but if it is too large, another problem occurs. A large roughness on the surface of the glass substrate means that there is a large defect on the glass surface, which may cause a decrease in strength of the glass substrate, which is not desirable.

一方、各種ステージと接触しない側の面(本発明においては第一の表面に相当する)については非常な高精度の表面が望まれる。この面は一般的には基板の優先保証面、または「おもて面」と呼ばれる。基板の優先保証面には例えば薄膜トランジスタタイプの液晶ディスプレイ(TFT−LCD)では各種の配線膜や画素を駆動するデバイスが薄膜で形成される。もし優先保証面にキズや汚れがあったり表面粗さが大きかったりすると配線膜の断線の原因となったりTFTの形成不良などが発生し、表示不良の原因となる。特に近年、TV用の広視野角技術として着目されているIPS方式の液晶ディスプレイやあるいは超高精細の液晶ディスプレイはガラス表面のキズや汚れに非常に厳しい。従って優先保証面については表面粗さRaが0.2nm以下であることが求められる。更にこの優先保証面が例えば既知のダウンドロー成形で成形した火造り(アズフォーム)面であれば最も望ましい。既知のダウンドロー成形のうち最も適切な方法は現在ではオーバーフローダウンドロー法である。その他の板ガラス成形方法、例えばフロート法でもアズフォーム面をつくることは可能であるが、現状では板ガラス表面のスズによる汚染や微小な表面のうねりと呼ばれる凹凸がTFT−LCDの表示性能を低下させるため、優先保証面を研磨しなければ製品とはならない。   On the other hand, a very high precision surface is desired for the surface that does not come into contact with various stages (corresponding to the first surface in the present invention). This surface is generally referred to as the priority guarantee surface or “front surface” of the substrate. For example, in a thin film transistor type liquid crystal display (TFT-LCD), various wiring films and devices for driving pixels are formed as thin films on the priority guarantee surface of the substrate. If the priority guarantee surface is scratched or dirty, or if the surface roughness is large, it may cause disconnection of the wiring film, defective TFT formation, etc., leading to display defects. In particular, in recent years, an IPS liquid crystal display or an ultra-high-definition liquid crystal display, which has been attracting attention as a wide viewing angle technology for TV, is extremely severe with respect to scratches and dirt on the glass surface. Accordingly, the surface roughness Ra is required to be 0.2 nm or less for the priority guarantee surface. Further, it is most desirable if this priority guarantee surface is a fired (as-foam) surface formed by, for example, a known downdraw molding. The most appropriate method of known downdraw molding is now the overflow downdraw method. Although it is possible to create an as-foam surface by other plate glass forming methods such as the float method, at present, unevenness called tin contamination on the surface of the plate glass or microscopic surface undulations deteriorates the display performance of the TFT-LCD. If the priority guarantee surface is not polished, it will not become a product.

本発明を達成する方法は化学的な基板の処理である。即ち、適切な無機酸、有機酸、無機アルカリ、有機アルカリ、フッ酸系の溶液から1種類または数種類を組み合わせてガラス表面を処理する方法である。最も効果的な薬液はフッ酸を含む薬液である。フッ酸中には硫酸、硝酸などを添加することが可能である。またフッ化アンモニウム水溶液との混合溶液であるバッファードフッ酸を用いることもできる。これによればガラス端面への異物の固着の恐れ無しにガラス表面の粗度を改善することができる。また物理研磨では基板の粗さが粗くなるだけでなく基板に潜傷と呼ばれる微細なクラックが発生し、これが断線の原因となったり、ガラス基板の強度低下の原因となったりするが、化学処理による表面粗度化の方法を用いれば、このようなキズの発生を防ぐこともできる。 How you achieve the present invention is a process of chemical substrates. That is, it is a method of treating the glass surface by combining one kind or several kinds from an appropriate inorganic acid, organic acid, inorganic alkali, organic alkali, or hydrofluoric acid solution. The most effective chemical solution is a chemical solution containing hydrofluoric acid. It is possible to add sulfuric acid, nitric acid or the like to the hydrofluoric acid. Further, buffered hydrofluoric acid which is a mixed solution with an ammonium fluoride aqueous solution can also be used. According to this, the roughness of the glass surface can be improved without fear of sticking of foreign matter to the glass end face. Physical polishing not only increases the roughness of the substrate but also causes microcracks called latent scratches on the substrate, which may cause disconnection and decrease the strength of the glass substrate. If the method of surface roughness by is used, it is possible to prevent such scratches.

化学処理により基板表面を粗くする場合に問題となるのがガラスの優先保証面が侵食されることである。一般に化学処理は、「どぶ漬け」と呼ばれるガラスを処理液中に浸漬する方法によって行われるため、場合によってはガラスの優先保証面である「おもて面」が同時に侵食されて問題になることが考えられる。これを防ぐためには以下の二つの方法が考えられる。ひとつはガラス表面にコーティングを施しておく方法である。例えばフッ酸系の薬液で処理をする場合、「おもて面」に予め金属Cr膜やITO膜、あるいはフォトレジストなどの有機膜を成膜しておけば、「おもて面」は侵食されずに済む。その後、適切な方法で膜を除去すればよい。例えばフォトレジストの場合、有機アルカリ系のフォトレジスト剥離液を用いてガラス表面からこれを除去することになる。また、この第1層をLCDメーカーで成膜する第一層と共通にすることにより、膜を剥離することなく製品として出荷することもできる。またもう一つの案は装置的な工夫をして基板の片面だけを化学処理する方法である。例えば基板を垂直に立て、優先保証面は純水で、非優先保障面はフッ酸で、いずれもシャワーを用いて化学処理することにより、基板の非優先保証面のみを処理することが可能である。フッ酸系の薬液以外では強アルカリ性の薬液が比較的有効である。   When the substrate surface is roughened by chemical treatment, the problem is that the preferential guarantee surface of the glass is eroded. In general, chemical treatment is performed by immersing the glass called “Doubu-zuke” in the treatment solution, and in some cases, the “front surface”, which is the priority guarantee surface of the glass, is simultaneously eroded and becomes a problem. Can be considered. To prevent this, the following two methods can be considered. One is to coat the glass surface. For example, when processing with a hydrofluoric acid type chemical, if the metal Cr film, ITO film, or organic film such as photoresist is formed on the “front surface” in advance, the “front surface” will be eroded. You do n’t have to. Thereafter, the film may be removed by an appropriate method. For example, in the case of a photoresist, this is removed from the glass surface using an organic alkaline photoresist stripping solution. In addition, by sharing the first layer with the first layer formed by the LCD manufacturer, it can be shipped as a product without peeling off the film. Another proposal is a method of chemically treating only one side of a substrate by devising an apparatus. For example, it is possible to treat only the non-priority guarantee surface of the board by standing vertically, pure guarantee surface is pure water, non-priority guarantee surface is hydrofluoric acid, and both are chemically processed using a shower. is there. Other than hydrofluoric acid chemicals, strong alkaline chemicals are relatively effective.

また上記した化学処理以外にも、例えば第二の面のみをプラズマ処理または物理研磨することで、所定の表面粗さにする方法も考えられる。 Also besides the above-mentioned chemical treatment, for example, by only the second surface to a plasma treatment or a physical polishing, also conceivable to predetermined surface roughness.

[試料の調製]
次表に本発明のガラス基板の実施例を示す。表中のNo.2、3は本発明の実施例であり、No.1は比較例、No.4は参考例である。
[Sample preparation]
The following table shows examples of the glass substrate of the present invention. No. in the table. 2 and 3 are examples of the present invention. 1 is a comparative example . 4 is a reference example .

試料No.1には、市場に流通している液晶ディスプレイ用無アルカリガラス基板OA−10(日本電気硝子株式会社製 アルカリ酸化物含有量0.1質量%以下)を使用した。基板サイズは370〜470mm、基板の肉厚は0.7mmである。このガラス基板はオーバーフローダウンドロー法で成形されており、かつその基板表面は両面とも火造り面であり、表面粗さはRaで0.1nmであった。   Sample No. 1 used was a non-alkali glass substrate OA-10 for liquid crystal displays (manufactured by Nippon Electric Glass Co., Ltd., an alkali oxide content of 0.1% by mass or less) that is distributed in the market. The substrate size is 370 to 470 mm, and the thickness of the substrate is 0.7 mm. This glass substrate was formed by the overflow downdraw method, and both surfaces of the substrate were fired surfaces, and the surface roughness Ra was 0.1 nm.

No.2、3は、このガラス基板をバッファードフッ酸中に浸漬することにより作製した。バッファードフッ酸は市販の63BHF(HF含有量6%、NH4F含有量30%)を用いた。浸漬条件は25℃、10分(No.2)および30分(No.3)である。処理後の基板を純水にて洗浄、乾燥して本試験の評価に用いた。 No. 2 and 3 were prepared by immersing this glass substrate in buffered hydrofluoric acid. As the buffered hydrofluoric acid, commercially available 63BHF (HF content: 6%, NH 4 F content: 30%) was used. The immersion conditions are 25 ° C., 10 minutes (No. 2), and 30 minutes (No. 3). The treated substrate was washed with pure water and dried to be used for the evaluation of this test.

また、No.4は研磨により表面を処理した。オスカー型の研磨装置を用い、研磨剤として酸化セリウムおよび純水を、研磨布としてポリウレタンを用いた。30分表面を研磨した後、洗浄、乾燥して評価に用いた。   No. No. 4 treated the surface by polishing. An Oscar-type polishing apparatus was used, cerium oxide and pure water were used as the polishing agent, and polyurethane was used as the polishing cloth. After polishing the surface for 30 minutes, it was washed and dried and used for evaluation.

[表面粗さの測定]
ガラス基板の表面粗さは、触針式の表面粗さ計(Taylor−Hobson社製タリステップ)を用いてカットオフ9μmで測定した。なお測定値は、基板内の数箇所の表面粗さを測定しその平均値で示した。
[Measurement of surface roughness]
The surface roughness of the glass substrate was measured at a cutoff of 9 μm using a stylus type surface roughness meter (Talystep manufactured by Taylor-Hobson). In addition, the measured value measured the surface roughness of several places in a board | substrate, and showed it with the average value.

[剥離帯電評価]
本実施例における剥離帯電評価には、図1に示すような装置を用いた。この装置は以下の構成を有している。
[Peeling charge evaluation]
An apparatus as shown in FIG. 1 was used for peeling charge evaluation in this example. This apparatus has the following configuration.

ガラス基板Gの支持台1は、ガラス基板4隅を支持するテフロン(登録商標)製のパッド2を備えている。また支持台1には、昇降自在な金属アルミニウム製のテーブル3が設けられており、テーブル3を上下させることによって、ガラス基板Gとテーブル3を接触、剥離させ、ガラス基板Gを帯電させることができる。なおテーブル3はアースされている。またテーブル3には孔(図示せず)が形成されており、この孔がダイアフラム型の真空ポンプ(図示せず)に接続されている。真空ポンプを駆動させると、テーブル3の孔から空気が吸引され、これによってガラス基板Gをテーブル3に真空吸着させることができる。またガラス基板Gの上方10mmの位置には表面電位計4が設置され、これによってガラス基板G中央部に発生する帯電量を連続測定する。またガラス基板Gの上方にはイオナイザ付きエアーガン5が設置されており、これによってガラス基板Gの帯電を徐電できる。   The support 1 for the glass substrate G includes a pad 2 made of Teflon (registered trademark) that supports the corners of the glass substrate 4. Further, the support table 1 is provided with a table 3 made of metal aluminum that can be raised and lowered. By moving the table 3 up and down, the glass substrate G and the table 3 can be brought into contact with each other and peeled to charge the glass substrate G. it can. The table 3 is grounded. A hole (not shown) is formed in the table 3, and this hole is connected to a diaphragm type vacuum pump (not shown). When the vacuum pump is driven, air is sucked from the hole of the table 3, and thereby the glass substrate G can be vacuum-adsorbed to the table 3. Further, a surface potential meter 4 is installed at a position 10 mm above the glass substrate G, thereby continuously measuring the amount of charge generated at the center of the glass substrate G. Further, an air gun 5 with an ionizer is installed above the glass substrate G, whereby charging of the glass substrate G can be gradually reduced.

この装置を用いて剥離耐電量を測定する方法を説明する。なお実験は25℃、湿度40%の環境で行う。この帯電量は雰囲気、特に大気中の湿度に影響を受けて大きく変化するので特に湿度には気を配る必要がある。   A method for measuring the peeling withstand voltage using this apparatus will be described. The experiment is performed in an environment of 25 ° C. and humidity of 40%. Since this amount of charge varies greatly depending on the atmosphere, particularly the humidity in the atmosphere, it is necessary to pay particular attention to the humidity.

(1) ガラス基板Gを、物理研磨面或いは化学処理面を下側にして支持台1に載置する。   (1) The glass substrate G is placed on the support base 1 with the physical polishing surface or the chemical treatment surface facing down.

(2) 次にイオナイザ付きエアーガン5により、ガラス基板Gを徐電する。   (2) Next, the glass substrate G is gradually charged by the air gun 5 with an ionizer.

(3) テーブル3を上昇させてガラス基板Gに接触させるとともに真空吸着させて、テーブル3とガラス基板Gを20秒間密着させる。   (3) The table 3 is raised and brought into contact with the glass substrate G and vacuum-adsorbed to bring the table 3 and the glass substrate G into close contact with each other for 20 seconds.

(4) テーブル3を下降させることでガラス基板Gを剥離し、ガラス基板G中央部に発生する帯電量を表面電位計4で連続的に測定する。   (4) The glass substrate G is peeled by lowering the table 3, and the charge amount generated at the center of the glass substrate G is continuously measured with the surface potentiometer 4.

(5) (3)(4)を繰り返すことにより、計5回の剥離評価を連続して行う。   (5) By repeating (3) and (4), a total of five peeling evaluations are continuously performed.

各測定における最大帯電量を求め、これらを積算して剥離帯電量とする。   The maximum charge amount in each measurement is obtained, and these are integrated to obtain the peel charge amount.

[酸化セリウム付着量]
各ガラスの基板端面に付着する研磨剤の量を評価するために、ガラス基板端面部を全て切り出し、これを加熱沸騰した硝酸+過酸化水素水中で処理してCeを溶出させた。この液中のCe含有量をICP発光分光分析により分析し、CeO重量に換算することで酸化セリウム付着量を求めた。なお、物理的研磨は低コストでかつ効果的に表面を荒らすことができる。その一方で、研磨剤によりガラス表面や端面、特にガラス端面が汚染されやすいという問題がある。ガラス基板端面は通常面取りという機械加工が施されており、この部分に研磨剤が固着する。この研磨剤が液晶ディスプレイの製造プロセスにおいて端面より再分離し、ガラス表面に回りこむ。これがパーティクルとなってTFTや配線膜の汚染や、断線の原因となる。従って物理的研磨によってガラス表面を粗くする場合には端面を鏡面にすることによって研磨剤の付着を防ぐかもしくは端面を特殊な洗浄方法で完全に洗浄する必要がある。具体的にはガラス基板端面の酸化セリウム付着量が5μg以下になるように留意することが望ましい。
[Cerium oxide adhesion]
In order to evaluate the amount of the abrasive adhering to the substrate end face of each glass, the entire glass substrate end face portion was cut out, and this was treated with heated boiling nitric acid + hydrogen peroxide water to elute Ce. The Ce content in this liquid was analyzed by ICP emission spectroscopic analysis, and the cerium oxide adhesion amount was determined by converting it to CeO 2 weight. Note that physical polishing can effectively roughen the surface at low cost. On the other hand, there is a problem that the glass surface and end face, particularly the glass end face, are easily contaminated by the abrasive. The end surface of the glass substrate is usually machined to be chamfered, and the abrasive is fixed to this portion. The abrasive is re-separated from the end face in the manufacturing process of the liquid crystal display and wraps around the glass surface. This becomes particles and causes contamination of the TFT and the wiring film, and disconnection. Therefore, when the glass surface is roughened by physical polishing, it is necessary to prevent the adhesion of the abrasive by making the end surface a mirror surface or to completely clean the end surface by a special cleaning method. Specifically, it is desirable to pay attention so that the adhesion amount of cerium oxide on the end face of the glass substrate is 5 μg or less.

[評価結果]
本発明の実施例は、いずれも剥離帯電量が比較的低い値を示した。それに比べNo.1の試料では、基板の帯電量が高い結果を示した。
[Evaluation results]
In all of the examples of the present invention, the peel charge amount was relatively low. In comparison, no. Sample No. 1 showed a high charge amount of the substrate.

剥離耐電量の測定に用いる装置を示す説明図であり、(a)はガラス基板を載置した状態を示す説明図、(b)はガラス基板とテーブルを密着させた状態を示す説明図である。It is explanatory drawing which shows the apparatus used for measurement of peeling electric strength, (a) is explanatory drawing which shows the state which mounted the glass substrate, (b) is explanatory drawing which shows the state which stuck the glass substrate and the table. .

符号の説明Explanation of symbols

G ガラス基板
1 支持台
2 パッド
3 テーブル
4 表面電位計
5 イオナイザ付きエアーガン
G Glass substrate 1 Support base 2 Pad 3 Table 4 Surface potential meter 5 Air gun with ionizer

Claims (6)

電極線や各種デバイスが形成される第一の表面と、これらが形成されない第二の表面とを有するガラス基板において、
オーバーフローダウンドロー法で成形されてなると共に、
第一の表面の表面粗さRaが0.2nm以下であり、
第二の表面が化学処理されており、且つ第二の表面の表面粗さRaが0.3nm以上nm以下であることを特徴とするガラス基板。
In a glass substrate having a first surface on which electrode wires and various devices are formed, and a second surface on which these are not formed,
Molded by the overflow downdraw method,
Surface roughness Ra of the first surface Ri der less 0.2 nm,
A glass substrate, wherein the second surface is chemically treated, and the surface roughness Ra of the second surface is 0.3 nm or more and 1 nm or less.
基板端面の酸化セリウム付着量が5μg以下であることを特徴とする請求項1に記載のガラス基板。   The glass substrate according to claim 1, wherein the adhesion amount of cerium oxide on the end face of the substrate is 5 μg or less. 第一の面が火造り面であることを特徴とする請求項1または2に記載のガラス基板。   The glass substrate according to claim 1 or 2, wherein the first surface is a fire-making surface. アルカリ酸化物の含有量が合計0.1質量%以下であることを特徴とする請求項1〜のいずれかに記載のガラス基板。 Glass substrate according to any one of claims 1 to 3, wherein the content of alkali oxides is total 0.1 wt% or less. フラットディスプレイ用ガラス基板として使用されることを特徴とする請求項1〜のいずれかに記載のガラス基板。 It uses as a glass substrate for flat displays, The glass substrate in any one of Claims 1-4 characterized by the above-mentioned. 液晶ディスプレイ用ガラス基板として使用されることを特徴とする請求項1〜のいずれかに記載のガラス基板。 It is used as a glass substrate for liquid crystal displays, The glass substrate in any one of Claims 1-5 characterized by the above-mentioned.
JP2004070772A 2004-03-12 2004-03-12 Glass substrate Expired - Lifetime JP4582498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004070772A JP4582498B2 (en) 2004-03-12 2004-03-12 Glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004070772A JP4582498B2 (en) 2004-03-12 2004-03-12 Glass substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009080907A Division JP2009167098A (en) 2009-03-30 2009-03-30 Glass substrate

Publications (2)

Publication Number Publication Date
JP2005255478A JP2005255478A (en) 2005-09-22
JP4582498B2 true JP4582498B2 (en) 2010-11-17

Family

ID=35081574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004070772A Expired - Lifetime JP4582498B2 (en) 2004-03-12 2004-03-12 Glass substrate

Country Status (1)

Country Link
JP (1) JP4582498B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5066895B2 (en) * 2006-11-14 2012-11-07 旭硝子株式会社 Glass substrate for display and manufacturing method thereof
JP5183320B2 (en) * 2008-06-27 2013-04-17 Hoya株式会社 Manufacturing method of glass substrate of cover glass for portable device
JP2010243381A (en) * 2009-04-08 2010-10-28 Avanstrate Inc Glass plate evaluation method based on electrification characteristic, glass plate production method using the same, and device for evaluation
US20120058306A1 (en) * 2009-05-07 2012-03-08 Shinkichi Miwa Glass substrate and method for producing same
JP5780487B2 (en) * 2009-06-01 2015-09-16 日本電気硝子株式会社 Manufacturing method of glass substrate
JP5366088B2 (en) * 2009-09-16 2013-12-11 セイコーインスツル株式会社 Thermal head and printer
EP2463253B1 (en) * 2010-01-12 2019-11-06 Nippon Electric Glass Co., Ltd. Glass film laminate, method of producing the same, and method of producing glass film
US9120700B2 (en) 2010-03-26 2015-09-01 Corning Incorporated Non-contact etching of moving glass sheets
JP5687088B2 (en) * 2011-02-21 2015-03-18 AvanStrate株式会社 Manufacturing method of glass substrate
US9676649B2 (en) * 2011-08-26 2017-06-13 Corning Incorporated Glass substrates with strategically imprinted B-side features and methods for manufacturing the same
CN103373818B (en) * 2012-04-17 2017-05-17 安瀚视特控股株式会社 Method for making glass substrate for display, glass substrate and display panel
KR101522452B1 (en) * 2012-04-17 2015-05-21 아반스트레이트 가부시키가이샤 Method for making glass substrate for display, glass substrate and display panel
KR102141879B1 (en) * 2012-09-10 2020-08-07 에이지씨 가부시키가이샤 Glass substrate for display and method for manufacturing glass substrate for display
JP5572195B2 (en) * 2012-09-28 2014-08-13 AvanStrate株式会社 Glass substrate and glass substrate manufacturing method
JP5572196B2 (en) * 2012-09-28 2014-08-13 AvanStrate株式会社 Glass substrate and glass substrate manufacturing method
WO2014179153A1 (en) * 2013-04-30 2014-11-06 Corning Incorporated Surface treatments for low electrostatic discharge fusion drawn glass
US10261371B2 (en) 2013-07-24 2019-04-16 Avanstrate Inc. Method for manufacturing glass substrate, glass substrate, and panel for display
KR102166837B1 (en) 2013-12-10 2020-10-16 아반스트레이트 가부시키가이샤 Method for producing glass substrate for display and apparatus for producing glass substrate for display
KR102516142B1 (en) * 2018-01-23 2023-03-29 니폰 덴키 가라스 가부시키가이샤 Glass substrate and its manufacturing method
US20200407274A1 (en) * 2018-03-07 2020-12-31 Corning Incorporated Textured glass surfaces for reduced electrostatic charging

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343632A (en) * 2000-06-02 2001-12-14 Sharp Corp Method for manufacturing liquid crystal display device
JP2002531360A (en) * 1998-11-30 2002-09-24 コーニング インコーポレイテッド Glass for flat panel display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002531360A (en) * 1998-11-30 2002-09-24 コーニング インコーポレイテッド Glass for flat panel display
JP2001343632A (en) * 2000-06-02 2001-12-14 Sharp Corp Method for manufacturing liquid crystal display device

Also Published As

Publication number Publication date
JP2005255478A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
JP4582498B2 (en) Glass substrate
TWI543948B (en) Glass substrate and fabricating method thereof
JP5780487B2 (en) Manufacturing method of glass substrate
KR101838339B1 (en) Method for making glass substrate for display, glass substrate and display panel
JP6663596B2 (en) Supporting glass substrate for semiconductor and laminated substrate using the same
US9126858B2 (en) Method for making glass substrate for display, glass substrate and display panel
JP4378769B2 (en) Glass substrate
JP2014201445A (en) Glass substrate for display, method for manufacturing the same, and method for manufacturing a panel for display using the same
JP7256473B2 (en) Glass substrate and manufacturing method thereof
JP2014201446A (en) Glass substrate for display, method for manufacturing the same, and method for manufacturing a panel for display
JP6263534B2 (en) Glass substrate manufacturing method, glass substrate, and display panel
KR100382585B1 (en) Susceptor and surface processing method
JP6870617B2 (en) Display glass substrate and its manufacturing method
JP2009167098A (en) Glass substrate
JP5774562B2 (en) Manufacturing method of glass substrate
JP5572195B2 (en) Glass substrate and glass substrate manufacturing method
JP5058242B2 (en) Surface treatment method
JP2015067512A (en) Glass substrate for display and method for manufacturing glass substrate for display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4582498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

EXPY Cancellation because of completion of term