JP4581151B2 - Hydrogen storage alloy for battery and manufacturing method thereof - Google Patents

Hydrogen storage alloy for battery and manufacturing method thereof Download PDF

Info

Publication number
JP4581151B2
JP4581151B2 JP10761598A JP10761598A JP4581151B2 JP 4581151 B2 JP4581151 B2 JP 4581151B2 JP 10761598 A JP10761598 A JP 10761598A JP 10761598 A JP10761598 A JP 10761598A JP 4581151 B2 JP4581151 B2 JP 4581151B2
Authority
JP
Japan
Prior art keywords
alloy
phase
amount
alloys
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10761598A
Other languages
Japanese (ja)
Other versions
JPH11307090A (en
Inventor
聡 倉中
明宏 前田
良夫 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP10761598A priority Critical patent/JP4581151B2/en
Publication of JPH11307090A publication Critical patent/JPH11307090A/en
Application granted granted Critical
Publication of JP4581151B2 publication Critical patent/JP4581151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル水素蓄電池の負極に用いられる水素吸蔵合金およびその製造法に関するものである。
【0002】
【従来の技術】
水素吸蔵合金は、ニッケル水素蓄電池の負極として実用化が行われている。現行のニッケル水素蓄電池には主に希土類系合金(AB5型)が使われている。さらに負極の高容量化を目指し、ラーベス相合金(AB2型)などの各種の合金系について研究が進められている。
【0003】
これらの合金の内で、単体でも水素化特性に優れたVとTiをベースとして、電池用とするためにNiを添加し、電気化学活性を付加したV−Ti−Ni系合金が注目されている。このV−Ti−Ni系合金の中では、TiV2及びZrV2から改良の進んだラーベス相合金のグループがある(例えば、特開昭61−45563号公報など)。
【0004】
これに対し、V単体の構造を変えずに改良を進めた体心立方格子型構造(以下、bcc構造と略す)を持つV−Ti−Ni系合金のグループ(以下、V−Ti−Ni系bcc合金と略す)は、さらに水素吸蔵量が大きいため開発が進められ、いくつかの合金組成が提案されている(例えば、特開平6−228699号公報など)。
【0005】
このようなV−Ti−Ni系bcc合金では、特性を上げるために、TiやNiの量を増やした場合、主相以外に偏析相であるTiNi合金相などが存在する。(塚原、まてりあ、vol.36、P109−111(1997))この偏析は電極反応即ち、充電や放電などの電気化学反応の能力があり、電極反応自体には非常に効果的な作用を有するが、水素化特性が劣るため、この偏析相の分だけ水素吸蔵量が落ちるという問題があった。
【0006】
また、水素の吸蔵・放出に伴い主相は体積が膨張・収縮するが、偏析相は体積が変化しないため、異相粒界で歪みがたまり、クラックが発生し、クラック面からの酸化・溶出がおこりやすいという問題があった。さらに、TiNi合金相はニッケル水素蓄電池用に使用した場合、アルカリに弱いため電解液中で溶出しやすく異相粒界がはがれるため、さらにクラックが発生し、サイクル特性に劣るという問題があった。
【0007】
上記のような問題に対し、様々な提案がなされている。以下に、その代表的な提案を説明する。
【0008】
V−Ti−Ni系bcc合金粉末の表面にメカノケミカル反応などによりNi粉末やTiNi粉末を配置したり、NiまたはNi−M合金(MはCo,Sn,Zn,およびMoの少なくとも1種の元素)をメッキする方法が提案されている(例えば、特開平9−231965号公報)。
【0009】
この方法では、TiNi相からTiが溶出し、母相と偏析相が分離しても、合金表面に配置されたNiが電気化学的な水素の吸蔵・放出の活性点になるため、容量低下が起こらず、長期にわたって高容量を維持することができるとされている。しかし、この場合では偏析相のはがれやクラックの発生は根本的には解決しておらず、さらに偏析相による水素吸蔵量の減少が解決されていない。
【0010】
またV−Ti−Ni系bcc合金に対し、偏析相を逆に利用するため、Cr,Mn,Fe,Co,Cu及びNbの少なくとも1種の元素を添加することにより、偏析相のTiNi合金相を3次元網目骨格とし、集電機能を持たせた合金が提案されている(例えば特開平7−268513号公報)。
【0011】
この合金では、前述のTiNi合金相がアルカリに弱いという問題に対しては、Cr,Mn,Fe,Co,Cu及びNbの元素を添加することにより、Ti−Ni合金相からTiの溶出を抑制している。さらにZr、Hf及びTaの少なくとも1種の元素を添加し、偏析相をAB2型ラーベス相を主たる相にした合金がある(例えば特開平7−268514号公報)。
【0012】
また、前記の合金系に対し、さらに加熱処理を加え、アルカリ溶液に対する耐食性を増す方法(特開平8−269655号公報)及び前記の合金系に対し、合金内に含まれる酸素濃度を1500ppm以下にすることによりサイクル特性を改善した合金がある(特開平9−259876号公報)。
【0013】
しかし、いずれの提案でも、偏析相による水素吸蔵量の減少、クラックの発生によるサイクル寿命の劣化の問題は解決されていない。
【0014】
以上の一連の3次元網目骨格とし、集電機能を持たせた合金であるV−Ti−Ni系bcc合金に対し、VをNbで置換する範囲を限定し、さらに(V,Nb)TiおよびNiの組成を限定することで3次元網目構造を持たないことを特徴とした合金も提案されている(例えば特開平8−157998号公報)。
【0015】
この合金は、母相内に点在する第2相や単相から構成されており、同じ様な組成で3次元網目骨格を持つV−Ti−Ni系bcc合金に対して、水素吸蔵・放出によるクラックの発生を抑制することができ、クラック面からの酸化・溶出を抑制することによりサイクル特性の優れた合金となっている。しかし、この合金においても母相内に点在する第2相が存在する場合は、偏析相による水素吸蔵量の減少、異相粒界にたまった歪みによるクラック発生の問題は解決されていない。またメルトスピニング法やアトマイズ法により急冷凝固する方法による合金は、単相になっており充放電サイクルに対する劣化は少なくなっている。しかし、このNbを含んだ合金の組成範囲では、最大放電電気量は理由は定かではないが、第2相が存在する場合に比べ逆に劣っている。
【0016】
【発明が解決しようとする課題】
以上、述べたとおり本発明は、上記V−Ti−Ni系bcc合金に対して、第2相の析出を無くすることにより、最大水素吸蔵量、電池用としては最大放電電気量を増加させ、偏析相の溶出や異相粒界にたまった歪みによるクラック発生によりサイクル特性が劣化するのを抑制することを目的とする。
【0017】
【課題を解決するための手段】
前述の課題を解決する手段として、本発明の合金の製造法は、単一組成の金属材料のみ、あるいは、組成の判明している合金材料に前記単一組成の金属材料を加え、一般式VxTiyNiz(但し、50≦x≦80、12≦y≦30、8≦z≦25、かつx+y+z=100)またはVx−aTiy−bNiz−cDaJbQc(但し、DはNbまたはTaの少なくとも1種の元素、JはZrまたはHfの少なくとも1種の元素、QはCr,Mn,Fe,CoまたはCuの少なくとも1種の元素、ここで、50≦x≦80、12≦y≦30、8≦z≦25、0≦a≦5、0≦b≦5、0≦c≦5かつ(x−a)+(y−b)+(z−c)+a+b+c=100)で表せる組成になるように調製する第1の工程と調整後の原材料を混合し、不活性ガス雰囲気内で、メカニカルアロイングにより、体心立方格子型構造の結晶構造を持つ単一な合金相に合金化する第2の工程を少なくとも含む水素吸蔵合金の製造法である。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態について、図1から図6及び表1から表3を用いて具体的に説明する。
【0024】
(実施の形態1)
本発明による第1の形態においては、合金全体の組成としてV65.8Ti21.9Ni12.3という組成を持つ合金で、詳細に説明する。先ず、本発明による実施例1の水素吸蔵合金とその製造法として、遊星ボールミル法で製造した合金とその製造法の詳細について説明する。さらに、比較例1として、従来より最も一般的に使われているアーク融解法で製造した合金とその製造法の詳細について説明する。V−Ti−Ni系合金は、前述の文献(特開平8−269655号公報及び特開平9−259876号公報)にあるとおり熱処理の有無や含有酸素濃度により、特性が変化する。特性の比較に関しては、実施例1と比較例1のほかに、比較例2として特開平6−228699号公報に記載されたものと同一組成の合金を引用したが、発明の効果を明確にするために、実施例1と比較例1金属材料は同じグレードの市販材料を用いて、熱処理は行わなかった。
【0025】
(実施例1)
先ず、前述の合金全体の組成としてV65.8Ti21.9Ni12.3という組成になるように、市販の金属材料を用い、V、TiおよびNiをそれぞれ7.85g、2.46g及び1.69gを秤量した。これらの金属材料を混合し、遊星ボールミル法によりアルゴン雰囲気中でメカニカルアロイングした。使用した遊星ボールミル装置はフリッチュ社製P−7である。ミル容器としてはフリッチュ社純正45ccステンレスポット(以下、ポットと略す)を使用した。また、粉砕用ボールも同じくフリッチュ社純正15mmステンレスボールを7個使用した。P−7自体をアルゴン雰囲気に置換されたグローブズボックス内に置くことで、アルゴン雰囲気内でのミリングを可能にした。P−7は、遠心加速度が可変であるが、9Gに設定し、23時間ミリングした。ミリング後はポット内に自由粉が少なかったので、付着粉を適時、機械的に削り取り特性比較に供した。
【0026】
(比較例1)
先ず、前述の合金全体の組成としてV65.8Ti21.9Ni12.3という組成になるように、市販の金属材料を用い、V、TiおよびNiをそれぞれ65.40g、20.50g及び14.10gを秤量した。これらの金属材料を混合し、アーク溶解法により溶解鋳造し、前述の合金組成比を持つ合金を得た。使用したアーク炉は大亜真空製ACM−14−S2型である。アーク溶解は、減圧したアルゴン雰囲気下で行い、上下を反転し、5回溶解した。できた合金インゴットは、ボタン状で99.98gであった。
【0027】
以下、この実施例1と比較例1を用い、本実施の形態について説明する。
実施例1の構造を見るために、試料の一部に対し、粉末X線回折をおこなった。図1に、前記試料の粉末X線回折図形を示す。図1のX線回折図形においては反射ピーク(以下、ピークと略す)としてはbcc構造のピーク1のみが見られ、完全に単一な相になっている。比較例1はボタン状のため、機械的粉砕を試みたが展延性が大きく、困難であったため水素化粉砕を試みた。比較例1の合金を、500℃で真空ポンプ脱ガス後、500℃に保持したまま4MPaの水素を導入し、室温まで冷却し、室温で真空ポンプ脱ガスし、粉末を得た。この構造を見るために、試料の一部に対し、粉末X線回折をおこなった。図2に、前記試料の粉末X線回折図形を示す。金属相のピーク2と水素化物相のピーク3の他に第2相としてのTiNi相のピーク4が確認された。
【0028】
比較のため、実施例1においても比較例1と同様に水素化した試料の一部に対し、粉末X線回折をおこなった。図3に、前記試料の粉末X線回折図形を示す。
金属相のピーク2、水素化物相のピーク3のみであり、比較例1の様なTiNi相のピーク4は当然のことながら見られない。金属相のピーク2は、水素化前と比べて、若干ピークが移動しており水素を幾分含有しているものと思われる。
【0029】
以下、特性の評価に関して説明する。
先ず水素吸蔵量を測定するために、水素圧組成等温線(以下、PCTと略す)測定装置を用い、実施例1及び比較例1の水素化特性を測定した。PCT測定では、500℃、3時間真空ポンプ脱ガス後の真空原点法で測定した。
【0030】
図4に実施例1の測定温度40℃におけるPCT線図を示し、図5に比較例1の測定温度40℃におけるPCT線図を示す。図4および図5から、これらの合金のプラトー圧は同じ様な値となり、良好なプラトー特性を示した。この特性について比較例2のプラトー特性を特開平6−228699号公報に記載のPCT線図より読みとり比較すると、ほぼ同じプラトー圧である。実施例1は少しプラトー圧が低いが、これは実施例1は単相であるのに、比較例1および2は2相になっているため、水素吸蔵能を持つ相自体の組成がずれているためである。実際の組成のズレよりは第2相がちょうど水素親和力の大きいTiと水素親和力の少ないNiからなっているのでプラトー圧の違いは少ない。比較例2に比べ、比較例1は若干水素吸蔵量が少ないが、これは熱処理の有無と、材料に含まれる酸素濃度などの不純物によるものと思われる。実施例1は、比較例1および2に比べ水素吸蔵量が約10%多く、単相になった効果が見られる。
【0031】
次に、電池用負極としての特性を見るために、ハーフセルテストを行った。合金粉1gに対し、導電剤としてカーボニルニッケルを3g加え、バインダーとしてポリエチレンを120mg加える。これらの混合物を、集電材のとしての発泡ニッケルと共に冷間プレスし、ペレットを作製した。このペレットを負極として、対極に負極容量規制とするため、負極の10倍程度の過剰な電気容量を持つ水酸化ニッケル電極を使用した。電解液は31wt%KOH溶液を使用し、電解液が豊富な開放系での充放電試験を行った。充電は100mA/gで5.5時間、放電は合金50mA/gで端子電圧が0.8Vまでとした。このようの条件で行ったハーフセルテストにおける実施例1および比較例1のサイクル特性を図6に示す。最大放電電気量は、実施例1が435mA/h、比較例1が395mA/hであった。また、放電条件が違うが比較例2の放電電気量は408mA/hである。特開平6−228699号公報にはサイクル特性については記載されていないため、比較例2のサイクル特性の比較はできない。図6から明らかな様に実施例1は比較例1に比べ、放電容量も大きく、サイクル特性も良い。これは、本発明の合金が単相になっている効果が出たものと考えられる。
【0032】
なお、本実施の形態においては遊星ボールミル法でメカニカルアロイングを行ったが、その他のボールミル法、例えば、振動ミル、撹拌ミルでも機械的な応力を加えることができれば、本実施の形態の合金と同様の作用・効果を持つ合金が製造できる。
【0033】
(実施の形態2)
本実施の形態では、実施の形態1における実施例1と同じ方法で実施例21から実施例25の5種の合金を製造した。合金全体の組成が違うため秤量する分量だけが違うが、その他の製造条件は実施の形態1における実施例1と全く同じである。さらに、実施の形態1における比較例1と同じ方法で比較例21から比較例25の5種の合金を製造した。この比較例においても、合金全体の組成が違うため秤量する分量だけが違うが、その他の製造条件は実施の形態1における比較例1と全く同じである。ここで、実施例と比較例で同一の番号を持つものは、同じ合金全体の組成であり、表1にその合金全体の組成を示す。これらの合金は、実施の形態1で説明した粉末X線回折で同じように測定したところ、実施例21から実施例25の合金は全てbcc構造のピークのみで単相であったのに対し、比較例21から比較例25の合金には全てbcc構造のピーク以外のピークが観測され、2相あるいはそれ以上の合金相からなる合金であった。
【0034】
次ぎに、電池用負極としての特性を見るために、実施例21から実施例25の5種の合金及び比較例21から比較例25の5種の合金を実施の形態1と同じ方法でハーフセルテストを行った。ペレット作製条件、充放電条件等の実験条件は実施の形態1と全く同じ条件である。これらの合金の測定された最大放電電気量と50サイクル目での容量維持率を同じく表1に示す。
【0035】
【表1】

Figure 0004581151
【0036】
表1から実施例21から実施例25の合金は、同じ合金全体の組成を持つ同じ番号の比較例21から比較例25の合金と比べて大きい最大放電電気量と高い容量維持率を有していた。これは、本実施の形態の合金はbcc構造の結晶構造を持つ単一な合金相からなるV、Ti及びNiの3種を含む電池用水素吸蔵合金であるため、V−Ti−Ni系bcc合金に特有の偏析相による水素吸蔵量の減少、異相粒界にたまった歪みによるクラック発生の課題が解決されたためと考えられる。
【0037】
なお、本発明の合金の作用・効果は、この実施の形態の範囲に限定されるものではないが、Vの分量が少なくなりTiの分量が多くなると、プラトー圧が低くなり、結果として最大放電電気量が小さくなる。また、Vの分量が多くなりTiの分量が少なくなるとV−Ti−Ni系bcc合金自体が単相になりやすくなるので本発明の効果が少なくなる。また、Niの分量が少なくなるとアルカリ溶液中での電気化学的活性が落ち、結果として最大放電電気量が小さくなる。さらにNiの分量が多くなると、合金の水素吸蔵量が少なくなるためやはり最大放電電気量が小さくなる。実施例21から実施例25は、いずれも約250mAh/gの最大放電電気量であり、V−Ti−Ni3元系組成において実施例21から実施例25で示される組成範囲より実施例1(V65.8Ti21.9Ni12.3)側の合金は最大放電電気量が多くなり、反対側の組成範囲の合金は最大電気量が少なくなる。したがって、本発明の合金は、V、Ti及びNiの3種の組成範囲が一般式VxTiyNiz(但し、50≦x≦80、12≦y≦30、8≦z≦25、かつx+y+z=100)で表される範囲にある時、最大放電電気量が250mAh/g以上となり、実用の電池用水素吸蔵合金としては好ましい。
【0038】
(実施の形態3)
本実施の形態では、V−Ti−Ni系bcc合金に対し、他元素の添加の効果について説明する。
【0039】
合金の製造に関しては、本実施の形態でも、実施の形態2と同様に実施の形態1における実施例1と同じ方法で実施例31から実施例39の9種の合金を製造した。合金全体の組成が違うため秤量する分量だけが違うが、その他の製造条件は実施の形態1における実施例1と全く同じである。さらに、実施の形態1における比較例1と同じ方法で比較例31から比較例39の9種の合金を製造した。
この比較例においても合金全体の組成が違うため秤量する分量だけが違うが、その他の製造条件は実施の形態1における比較例1と全く同じである。ここで、実施例と比較例で同一の番号を持つものは、同じ合金全体の組成であり、表2にV−Ti−Ni系bcc合金合金に対し、NbまたはTaを5at%添加した合金の全体の組成を示し、表3にV−Ti−Ni系bcc合金合金に対し、ZrまたはHfを5at%添加した合金の全体の組成を示し、表4にV−Ti−Ni系bcc合金合金に対し、Cr,Mn,Fe,CoまたはCuを5at%添加した合金の全体の組成を示す。これらの合金は、実施の形態1で説明した粉末X線回折で同じように測定したところ、実施例31から実施例39の合金は全てbcc構造のピークのみで単相であったのに対し、比較例31から比較例39の合金には全てbcc構造のピーク以外のピークが観測され、2相あるいはそれ以上の合金相からなる合金であった。
【0040】
次に、電池用負極としての特性を見るために、実施例31から実施例39の9種の合金及び比較例31から比較例39の9種の合金を実施の形態1と同じ方法でハーフセルテストを行った。ペレット作製条件、充放電条件等の実験条件は実施の形態1と全く同じ条件である。これらの合金の測定された最大放電電気量と50サイクル目での容量維持率を同じく表2から表4に示す。
【0041】
表2及び表3及び表4から実施例31から実施例39の合金は、同じ合金全体の組成を持つ同じ番号の比較例31から比較例39の合金と比べて大きい最大放電容量と高い容量維持率を有していた。これは、本実施の形態の合金はbcc構造の結晶構造を持つ単一な合金相からなるV、Ti及びNiの3種を含む電池用水素吸蔵合金であるため、V−Ti−Ni系bcc合金に特有の偏析相による水素吸蔵量の減少、異相粒界にたまった歪みによるクラック発生の課題が解決されたためと考えられる。
【0042】
【表2】
Figure 0004581151
【0043】
【表3】
Figure 0004581151
【0044】
【表4】
Figure 0004581151
【0045】
さらに、V−Ti−Ni系bcc合金に対し、他元素の添加の効果は、実施例31から実施例39の合金が同じ合金全体の組成を持つ同じ番号の比較例31から比較例39の合金と比べて、まったく同じ効果を示し、本発明により単相になったための悪影響はなかった。つまり、Vを同族元素であり、Vよりも原子半系の大きいNbまたはTaで一部置換した場合、合金の水素化特性でプラトー圧力が下がるため、実際に使用できる水素吸蔵量が増えるため最大放電電気量も増える。さらに、Vのアルカリ対する耐性を上げることができ、容量維持率が高くなる。また、同様にTiを同族元素であり、Tiよりも原子半系の大きいZr、Hfで一部置換した場合は、合金の水素化特性でプラトー圧力が下がるため、実際に使用できる水素吸蔵量が増えるため最大放電電気量も増える。
【0046】
NiをCr,Mn,Fe,CoおよびCuで一部置換した場合は、それぞれアルカリ溶液中での安定性と放電活性の違いから、Mnのみ最大放電電気量が増え、その他のCr,Fe,CoおよびCuは、容量維持率が高くなった。
【0047】
なお、本発明の合金の作用・効果は、この実施の形態の範囲に限定されるものではないが、さらに、前述の添加元素の分量が多くなると、最大放電容量が増えたVをNbまたはTaで一部置換した場合、およびTiをZr、Hfで一部置換した場合においても、プラトー圧力が下がりすぎて逆に放電に使えなくなり、結果として最大放電電気量が小さくなる。さらにMnの分量が多くなると、容量維持率が著しく小さくなる。またCr,Fe,CoおよびCuの分量が多くなると、合金の水素吸蔵量が少なくなるため、最大放電電気量が小さくなる。
【0048】
このように上記に述べた場合は、本発明の効果の優位性が無くなる。したがって、本発明の合金は、前述の実施の形態2の結果とあわせ、一般式Vx-aTiy-bNiz-cDaJbQc(但し、DはNbまたはTaの少なくとも1種の元素、JはZrまたはHfの少なくとも1種の元素、QはCr,Mn,Fe,CoまたはCuの少なくとも1種の元素、ここで、50≦x≦80、12≦y≦30、8≦z≦25、0≦a≦5、0≦b≦5、0≦c≦5かつ(x−a)+(y−b)+(z−c)+a+b+c=100)で表される範囲にあるのが実用の電池用水素吸蔵合金として本発明の効果が有意に見られ、好ましい。
【0049】
(実施の形態4)
本実施の形態では、V−Ti−Ni系bcc合金に対し、合金の表面層にNi層を配した効果について説明する。
【0050】
V−Ti−Ni系bcc合金ではNiの分量が少ないと、水素吸蔵量は多くても、アルカリ電解液中での電気化学活性が悪いため、最大放電電気量は小さくなってしまう。しかし、合金の表面層にNi層を配することで電気活性は上がる。
勿論このNi層の分だけ水素吸蔵量は落ちるが、電気化学活性の上昇分でカバーできる範囲にあれば、最大放電電気量はあがる。
【0051】
実施の形態2及び3で作製した実施例の合金全種の計14種の合金に対し、メカノフュージョン法により5wt%の超微粒子Ni(粒径0.03μm)を表面層として配した。これらの合金を比較例40から54とする。
【0052】
次に、電池用負極としての特性を見るために、実施例40から実施例54の14種の合金を実施の形態1と同じ方法でハーフセルテストを行った。ペレット作成条件、充放電条件等の実験条件は実施の形態1と全く同じ条件である。これらの合金の測定された最大放電電気量と50サイクル目での容量維持率を表5に示す。
【0053】
【表5】
Figure 0004581151
【0054】
表5と表2及び表3及び表4から実施例41から実施例54の合金は、Ni層を配する前の合金と比べて高い最大放電電気量を有していた。容量維持率は有意な差はなく、電池内での電気化学活性の向上による最大放電電気量の増加に効果があった。
【0055】
なお、本発明の合金の作用・効果は、この実施の形態の範囲に限定されるものではないが、さらに、Niが増えると、水素吸蔵量自体が減るため水素吸蔵合金全体の10wt%以下であるのが望ましい。
【0056】
【発明の効果】
以上、述べたとおり本発明の合金は、V−Ti−Ni系bcc合金に対して、メカニカルアロイングにより、第2相の析出を無くし、最大水素吸蔵量、および最大放電電気量を増加させ、サイクル特性の劣化も抑制することができるという有利な効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施例1の合金の粉末X線回折図
【図2】比較例1の合金の水素化粉砕品のX線回折図
【図3】本発明の実施例1の合金の水素化粉砕品のX線回折図
【図4】本発明の実施例1の合金のPCT線図
【図5】比較例1の合金のPCT線図
【図6】本発明の実施例1の合金及び比較例1の合金を使用した電極のサイクル特性を示した図
【符号の説明】
1 bcc構造のピーク
2 金属相のピーク
3 水素化物相のピーク
4 TiNi相のピーク[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen storage alloy used for a negative electrode of a nickel metal hydride storage battery and a method for producing the same.
[0002]
[Prior art]
The hydrogen storage alloy has been put into practical use as a negative electrode for nickel metal hydride storage batteries. Current nickel-metal hydride storage batteries mainly use rare earth alloys (AB 5 type). Furthermore, various alloy systems such as Laves phase alloy (AB 2 type) are being studied with the aim of increasing the capacity of the negative electrode.
[0003]
Among these alloys, V-Ti-Ni alloys that are based on V and Ti, which have excellent hydrogenation characteristics, are added with Ni for battery use, and have added electrochemical activity. Yes. Among these V-Ti-Ni alloys, there is a group of Laves phase alloys improved from TiV 2 and ZrV 2 (for example, JP-A 61-45563).
[0004]
On the other hand, a group of V-Ti-Ni alloys (hereinafter referred to as V-Ti-Ni alloys) having a body-centered cubic lattice structure (hereinafter abbreviated as bcc structure) improved without changing the structure of V alone. The bcc alloy (abbreviated as “bcc alloy”) has been further developed because of its large hydrogen storage capacity, and several alloy compositions have been proposed (for example, JP-A-6-228699).
[0005]
In such a V-Ti-Ni-based bcc alloy, when the amount of Ti or Ni is increased in order to improve the characteristics, a TiNi alloy phase that is a segregation phase exists in addition to the main phase. (Tsukahara, materialized, vol.36, P109-111 (1997)) This segregation phase electrode reaction i.e., are capable of electrochemical reaction such as charge and discharge, a very effective action on the electrode reaction itself However, since the hydrogenation characteristics are inferior, there is a problem that the hydrogen storage amount decreases by the amount of this segregation phase.
[0006]
In addition, the volume of the main phase expands and contracts with the absorption and release of hydrogen, but the segregation phase does not change in volume, so strain accumulates at the interphase grain boundaries, cracks occur, and oxidation and elution from the crack surface occur. There was a problem that it was easy to happen. Further, when the TiNi alloy phase is used for a nickel metal hydride storage battery, there is a problem that cracks are generated and the cycle characteristics are inferior because it is easy to elute in the electrolytic solution because of its weakness to alkali and the phase boundary is peeled off.
[0007]
Various proposals have been made for the above problems. Below, the typical proposal is demonstrated.
[0008]
Ni powder or TiNi powder is arranged on the surface of the V-Ti-Ni bcc alloy powder by mechanochemical reaction or the like, or Ni or Ni-M alloy (M is at least one element of Co, Sn, Zn, and Mo) ) Has been proposed (for example, JP-A-9-231965).
[0009]
In this method, even if Ti elutes from the TiNi phase and the matrix phase and the segregated phase are separated, the Ni disposed on the alloy surface becomes an active point for electrochemical hydrogen storage / release, so the capacity is reduced. It does not happen and can maintain a high capacity over a long period of time. However, in this case, the separation of segregation phase and the occurrence of cracks have not been fundamentally solved, and further, the reduction of the hydrogen storage amount due to the segregation phase has not been solved.
[0010]
Further, in order to reversely use the segregation phase with respect to the V-Ti-Ni bcc alloy, by adding at least one element of Cr, Mn, Fe, Co, Cu and Nb, the segregation phase TiNi alloy phase. An alloy having a three-dimensional network skeleton and a current collecting function has been proposed (for example, JP-A-7-268513).
[0011]
In this alloy, for the problem that the TiNi alloy phase is weak against alkali, the addition of Cr, Mn, Fe, Co, Cu and Nb elements suppresses the elution of Ti from the Ti-Ni alloy phase. is doing. Further, there is an alloy in which at least one element of Zr, Hf and Ta is added and the segregation phase is mainly an AB 2 type Laves phase (for example, JP-A-7-268514).
[0012]
Further, the oxygen concentration contained in the alloy is reduced to 1500 ppm or less with respect to a method (JP-A-8-269655) for increasing the corrosion resistance against an alkaline solution by further heating the alloy system and the alloy system. By doing so, there is an alloy whose cycle characteristics are improved (Japanese Patent Laid-Open No. 9-259876).
[0013]
However, none of the proposals solves the problem of the decrease in the hydrogen storage amount due to the segregation phase and the deterioration of the cycle life due to the occurrence of cracks.
[0014]
The V-Ti-Ni-based bcc alloy, which is an alloy having the above-described series of three-dimensional network skeletons and having a current collecting function, limits the range in which V is replaced with Nb, and further includes (V, Nb) Ti and An alloy characterized by not having a three-dimensional network structure by limiting the composition of Ni has also been proposed (for example, JP-A-8-157998).
[0015]
This alloy is composed of the second and single phases interspersed in the parent phase, and it absorbs and releases hydrogen from a V-Ti-Ni bcc alloy with a similar composition and a three-dimensional network skeleton. It is possible to suppress the generation of cracks due to the above, and it is an alloy having excellent cycle characteristics by suppressing oxidation / elution from the crack surface. However, even in this alloy, when the second phase interspersed in the matrix phase exists, the problem of the decrease in the hydrogen storage amount due to the segregation phase and the generation of cracks due to the strain accumulated in the heterogeneous grain boundary has not been solved. In addition, an alloy obtained by a method of rapid solidification by a melt spinning method or an atomizing method has a single phase and is less deteriorated with respect to a charge / discharge cycle. However, in the composition range of the alloy containing Nb, the reason for the maximum amount of electric discharge is not clear, but it is inferior to that in the case where the second phase exists.
[0016]
[Problems to be solved by the invention]
As described above, the present invention eliminates the precipitation of the second phase with respect to the V-Ti-Ni-based bcc alloy, thereby increasing the maximum hydrogen storage amount and the maximum discharge electricity amount for batteries, The purpose is to suppress the deterioration of cycle characteristics due to the elution of segregated phases and the generation of cracks due to the strain accumulated in the heterogeneous grain boundaries.
[0017]
[Means for Solving the Problems]
As a means for solving the above-mentioned problems, a method for producing an alloy of the present invention includes adding a single-composition metal material to a single-composition metal material or an alloy material whose composition is known, and adding the general-composition VxTiyNiz. (Where 50 ≦ x ≦ 80, 12 ≦ y ≦ 30, 8 ≦ z ≦ 25, and x + y + z = 100) or Vx-aTiy-bNiz-cDaJbQc (where D is at least one element of Nb or Ta, J Is at least one element of Zr or Hf, Q is at least one element of Cr, Mn, Fe, Co or Cu, where 50 ≦ x ≦ 80, 12 ≦ y ≦ 30, 8 ≦ z ≦ 25, 0 ≦ a ≦ 5, 0 ≦ b ≦ 5, 0 ≦ c ≦ 5 and (x−a) + (y−b) + (z−c) + a + b + c = 100) Mix the process and raw materials after adjustment, and inactivate In a gas atmosphere, by mechanical alloying, it is a manufacturing method of the hydrogen storage alloy at least containing a second step of alloying in a single alloy phase having a crystal structure of body-centered cubic lattice structure.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to FIGS. 1 to 6 and Tables 1 to 3. FIG.
[0024]
(Embodiment 1)
In the first embodiment of the present invention, an alloy having a composition of V 65.8 Ti 21.9 Ni 12.3 as a composition of the whole alloy will be described in detail. First, as a hydrogen storage alloy of Example 1 according to the present invention and its manufacturing method, an alloy manufactured by the planetary ball mill method and its manufacturing method will be described in detail. Further, as Comparative Example 1, an alloy manufactured by the arc melting method that has been most commonly used in the past and details of the manufacturing method will be described. The characteristics of V-Ti-Ni alloys vary depending on the presence or absence of heat treatment and the concentration of oxygen contained, as described in the above-mentioned documents (Japanese Patent Laid-Open Nos. 8-269655 and 9-259876). Regarding the comparison of properties, in addition to Example 1 and Comparative Example 1, an alloy having the same composition as that described in JP-A-6-228699 is cited as Comparative Example 2, but the effect of the invention is clarified. Therefore, the metal material of Example 1 and Comparative Example 1 was made of the same grade of commercial material and was not heat-treated.
[0025]
Example 1
First, a commercially available metal material was used so that the composition of the whole alloy was V 65.8 Ti 21.9 Ni 12.3 , and 7.85 g, 2.46 g, and 1.69 g of V, Ti, and Ni were weighed, respectively. . These metal materials were mixed and mechanically alloyed in an argon atmosphere by the planetary ball mill method. The planetary ball mill apparatus used is P-7 manufactured by Fritsch. As the mill container, a Fritsch genuine 45cc stainless steel pot (hereinafter abbreviated as pot) was used. In addition, 7 fritsch genuine 15 mm stainless steel balls were also used for the grinding balls. Milling in an argon atmosphere was enabled by placing P-7 itself in a Globes box that was replaced with an argon atmosphere. P-7 has variable centrifugal acceleration, but was set to 9G and milled for 23 hours. Since there was little free powder in the pot after milling, the adhering powder was mechanically scraped off and used for property comparison.
[0026]
(Comparative Example 1)
First, commercially available metal materials were used so that the composition of the whole alloy was V 65.8 Ti 21.9 Ni 12.3 , and V, Ti, and Ni were weighed 65.40 g, 20.50 g, and 14.10 g, respectively. . These metal materials were mixed and melt cast by the arc melting method to obtain an alloy having the above-described alloy composition ratio. The arc furnace used is ACM-14-S2 type manufactured by Daia Vacuum. Arc melting was performed in a reduced-pressure argon atmosphere. The alloy ingot thus produced was 99.98 g in a button shape.
[0027]
Hereinafter, the present embodiment will be described with reference to Example 1 and Comparative Example 1.
In order to see the structure of Example 1, powder X-ray diffraction was performed on a part of the sample. FIG. 1 shows a powder X-ray diffraction pattern of the sample. In the X-ray diffraction pattern of FIG. 1, only the peak 1 of the bcc structure is seen as a reflection peak (hereinafter abbreviated as a peak), which is a completely single phase. Since Comparative Example 1 was button-shaped, mechanical pulverization was attempted. However, since the spreadability was large and difficult, hydrogen pulverization was attempted. The alloy of Comparative Example 1 was degassed at 500 ° C., and 4 MPa of hydrogen was introduced while being kept at 500 ° C., cooled to room temperature, and degassed at room temperature to obtain a powder. In order to see this structure, powder X-ray diffraction was performed on a part of the sample. FIG. 2 shows a powder X-ray diffraction pattern of the sample. In addition to the peak 2 of the metal phase and the peak 3 of the hydride phase, a peak 4 of the TiNi phase as the second phase was confirmed.
[0028]
For comparison, also in Example 1, powder X-ray diffraction was performed on a part of the hydrogenated sample as in Comparative Example 1. FIG. 3 shows a powder X-ray diffraction pattern of the sample.
Only the peak 2 of the metal phase and the peak 3 of the hydride phase, and the peak 4 of the TiNi phase as in Comparative Example 1 is not seen as a matter of course. The peak 2 of the metal phase is slightly shifted compared with that before hydrogenation and seems to contain some hydrogen.
[0029]
Hereinafter, evaluation of characteristics will be described.
First, in order to measure the hydrogen storage amount, the hydrogenation characteristics of Example 1 and Comparative Example 1 were measured using a hydrogen pressure composition isotherm (hereinafter abbreviated as PCT) measuring device. In PCT measurement, it measured by the vacuum origin method after vacuum pump degassing for 3 hours at 500 degreeC.
[0030]
FIG. 4 shows a PCT diagram of Example 1 at a measurement temperature of 40 ° C., and FIG. 5 shows a PCT diagram of Comparative Example 1 at a measurement temperature of 40 ° C. From FIG. 4 and FIG. 5, the plateau pressure of these alloys became the same value and showed a good plateau characteristic. Regarding this characteristic, when the plateau characteristic of Comparative Example 2 is read and compared from the PCT diagram described in JP-A-6-228699, the plateau pressure is almost the same. In Example 1, the plateau pressure is slightly low, but since Example 1 is a single phase, Comparative Examples 1 and 2 are in two phases, so the composition of the phase itself having a hydrogen storage capacity is shifted. Because it is. The difference in plateau pressure is small because the second phase is composed of Ti having a high hydrogen affinity and Ni having a low hydrogen affinity, rather than the actual composition deviation. Compared to Comparative Example 2, Comparative Example 1 has a slightly smaller amount of hydrogen occlusion, which is presumably due to the presence or absence of heat treatment and impurities such as oxygen concentration contained in the material. In Example 1, the amount of hydrogen occlusion was about 10% larger than those in Comparative Examples 1 and 2, and the effect of becoming a single phase is seen.
[0031]
Next, in order to see the characteristic as a negative electrode for batteries, a half cell test was performed. To 1 g of the alloy powder, 3 g of carbonyl nickel is added as a conductive agent, and 120 mg of polyethylene is added as a binder. These mixtures were cold pressed together with foamed nickel as a current collector to produce pellets. In order to use this pellet as a negative electrode and to control the negative electrode capacity at the counter electrode, a nickel hydroxide electrode having an excess electric capacity about 10 times that of the negative electrode was used. As the electrolytic solution, a 31 wt% KOH solution was used, and a charge / discharge test was performed in an open system rich in electrolytic solution. Charging was performed at 100 mA / g for 5.5 hours, and discharging was performed at an alloy of 50 mA / g up to a terminal voltage of 0.8V. FIG. 6 shows the cycle characteristics of Example 1 and Comparative Example 1 in the half-cell test performed under such conditions. The maximum electric discharge amount was 435 mA / h in Example 1 and 395 mA / h in Comparative Example 1. Moreover, although the discharge conditions are different, the discharge electricity amount of Comparative Example 2 is 408 mA / h. Since JP-A-6-228699 does not describe the cycle characteristics, the cycle characteristics of Comparative Example 2 cannot be compared. As apparent from FIG. 6, Example 1 has a larger discharge capacity and better cycle characteristics than Comparative Example 1. This is considered to be the effect that the alloy of the present invention is in a single phase.
[0032]
In this embodiment, the mechanical alloying is performed by the planetary ball mill method. However, if mechanical stress can be applied by other ball mill methods such as a vibration mill and a stirring mill, the alloy of the present embodiment Alloys with similar actions and effects can be manufactured.
[0033]
(Embodiment 2)
In the present embodiment, five types of alloys of Examples 21 to 25 were manufactured by the same method as Example 1 in the first embodiment. Although only the amount to be weighed is different because the composition of the whole alloy is different, other manufacturing conditions are exactly the same as those of Example 1 in the first embodiment. Furthermore, five types of alloys of Comparative Example 21 to Comparative Example 25 were manufactured by the same method as Comparative Example 1 in the first embodiment. Also in this comparative example, since the composition of the whole alloy is different, only the amount to be weighed is different, but the other manufacturing conditions are exactly the same as those of Comparative Example 1 in the first embodiment. Here, what has the same number in an Example and a comparative example is the composition of the same whole alloy, and Table 1 shows the composition of the whole alloy. These alloys were measured in the same manner by the powder X-ray diffraction described in the first embodiment. As a result, all of the alloys of Examples 21 to 25 were single-phase with only the peak of the bcc structure. In the alloys of Comparative Examples 21 to 25, peaks other than the peak of the bcc structure were observed, and the alloys were composed of two or more alloy phases.
[0034]
Next, in order to see the characteristics as the negative electrode for a battery, the half-cell test was performed on the five alloys of Examples 21 to 25 and the five alloys of Comparative Examples 21 to 25 in the same manner as in the first embodiment. Went. Experimental conditions such as pellet preparation conditions and charge / discharge conditions are exactly the same as those in the first embodiment. Table 1 also shows the measured maximum discharge electricity amount and the capacity retention ratio at the 50th cycle of these alloys.
[0035]
[Table 1]
Figure 0004581151
[0036]
The alloys of Examples 21 to 25 from Table 1 have a larger maximum discharge electricity amount and a higher capacity retention rate than the alloys of Comparative Examples 21 to 25 of the same number having the same overall alloy composition. It was. This is because the alloy of the present embodiment is a hydrogen storage alloy for batteries containing three types of V, Ti, and Ni, which are composed of a single alloy phase having a bcc crystal structure. This is thought to be due to the reduction of the amount of hydrogen occlusion due to the segregation phase peculiar to the alloy and the problem of crack generation due to the strain accumulated at the interphase grain boundaries.
[0037]
The action and effect of the alloy of the present invention is not limited to the scope of this embodiment, but when the amount of V decreases and the amount of Ti increases, the plateau pressure decreases, resulting in maximum discharge. Electricity is reduced. Further, when the amount of V is increased and the amount of Ti is decreased, the V-Ti-Ni bcc alloy itself tends to be a single phase, and thus the effect of the present invention is reduced. Further, when the amount of Ni is reduced, the electrochemical activity in the alkaline solution is lowered, and as a result, the maximum discharge electricity amount is reduced. Further, when the amount of Ni increases, the hydrogen storage amount of the alloy decreases, so that the maximum discharge electricity amount also decreases. Each of Examples 21 to 25 has a maximum electric discharge amount of about 250 mAh / g. In the V-Ti-Ni ternary system composition, Example 1 (V The alloy on the 65.8 Ti 21.9 Ni 12.3 ) side has a higher maximum discharge quantity, and the alloy in the composition range on the opposite side has a lower maximum quantity of electricity. Therefore, in the alloy of the present invention, the three composition ranges of V, Ti, and Ni are represented by the general formula VxTiyNiz (where 50 ≦ x ≦ 80, 12 ≦ y ≦ 30, 8 ≦ z ≦ 25, and x + y + z = 100). When it is within the range, the maximum discharge electricity amount is 250 mAh / g or more, which is preferable as a practical battery hydrogen storage alloy.
[0038]
(Embodiment 3)
In the present embodiment, the effect of adding other elements to the V—Ti—Ni bcc alloy will be described.
[0039]
Regarding the manufacture of the alloys, also in this embodiment, nine types of alloys of Examples 31 to 39 were manufactured by the same method as in Example 1 in Embodiment 1 as in Embodiment 2. Although only the amount to be weighed is different because the composition of the whole alloy is different, other manufacturing conditions are exactly the same as those of Example 1 in the first embodiment. Furthermore, nine types of alloys of Comparative Example 31 to Comparative Example 39 were manufactured by the same method as Comparative Example 1 in the first embodiment.
Also in this comparative example, the composition of the whole alloy is different, so only the amount to be weighed is different, but the other manufacturing conditions are exactly the same as in Comparative Example 1 in the first embodiment. Here, what has the same number in an Example and a comparative example is the composition of the same whole alloy, and in Table 2, 5b% of Nb or Ta is added to the V-Ti-Ni-based bcc alloy alloy. Table 3 shows the overall composition, Table 3 shows the overall composition of the alloy obtained by adding 5 at% of Zr or Hf to the V-Ti-Ni bcc alloy alloy, and Table 4 shows the V-Ti-Ni bcc alloy alloy. On the other hand, the overall composition of the alloy to which 5 at% of Cr, Mn, Fe, Co or Cu is added is shown. When these alloys were measured in the same manner by the powder X-ray diffraction described in the first embodiment, the alloys of Examples 31 to 39 were all single-phase with only the peak of the bcc structure, In the alloys of Comparative Examples 31 to 39, peaks other than the peak of the bcc structure were observed, and the alloys were composed of two or more alloy phases.
[0040]
Next, in order to see the characteristics as the negative electrode for the battery, the half-cell test was performed on the nine alloys of Example 31 to Example 39 and the nine alloys of Comparative Example 31 to Comparative Example 39 in the same manner as in the first embodiment. Went. Experimental conditions such as pellet preparation conditions and charge / discharge conditions are exactly the same as those in the first embodiment. Tables 2 to 4 show the measured maximum discharge electricity amount and the capacity retention rate at the 50th cycle of these alloys.
[0041]
The alloys of Examples 31 to 39 from Table 2 and Table 3 and Table 4 have a larger maximum discharge capacity and higher capacity maintenance than the alloys of Comparative Examples 31 to 39 having the same overall composition and the same numbers. Had a rate. This is because the alloy of the present embodiment is a hydrogen storage alloy for batteries containing three types of V, Ti, and Ni, which are composed of a single alloy phase having a bcc crystal structure. This is thought to be due to the reduction of the amount of hydrogen occlusion due to the segregation phase peculiar to the alloy and the problem of crack generation due to the strain accumulated at the interphase grain boundaries.
[0042]
[Table 2]
Figure 0004581151
[0043]
[Table 3]
Figure 0004581151
[0044]
[Table 4]
Figure 0004581151
[0045]
Further, the effect of addition of other elements to the V-Ti-Ni-based bcc alloy is that the alloys of Examples 31 to 39 have the same overall composition, and the alloys of Comparative Examples 31 to 39 with the same numbers are used. Compared to the above, the same effect was exhibited, and there was no adverse effect due to the single phase according to the present invention. In other words, when V is a homologous element and partially substituted with Nb or Ta, which has a larger atomic semi-system than V, the plateau pressure is lowered due to the hydrogenation characteristics of the alloy, so the actual usable hydrogen storage amount increases. The amount of electricity discharged also increases. Further, the resistance of V to alkali can be increased, and the capacity retention rate is increased. Similarly, when Ti is a similar element and is partially substituted with Zr or Hf, which has a larger atomic semi-system than Ti, the plateau pressure is lowered due to the hydrogenation characteristics of the alloy, so the hydrogen storage capacity that can actually be used is Since it increases, the maximum amount of electricity discharged increases.
[0046]
When Ni is partially substituted with Cr, Mn, Fe, Co and Cu, due to the difference in stability and discharge activity in an alkaline solution, the maximum discharge electricity amount increases only for Mn, and other Cr, Fe, Co And Cu had a high capacity retention rate.
[0047]
The action and effect of the alloy of the present invention is not limited to the scope of this embodiment. However, when the amount of the additive element is increased, the maximum discharge capacity V is increased by Nb or Ta. Also, when Ti is partially substituted with Ti, and when Ti is partially substituted with Zr and Hf, the plateau pressure is too low to be used for discharge, and as a result, the maximum amount of electric discharge becomes small. Further, when the amount of Mn increases, the capacity retention rate becomes remarkably small. Further, when the amount of Cr, Fe, Co, and Cu increases, the hydrogen storage amount of the alloy decreases, so that the maximum discharge electricity amount decreases.
[0048]
As described above, the superiority of the effect of the present invention is lost. Therefore, the alloy of the present invention has a general formula Vx-aTiy-bNiz-cDaJbQc (where D is at least one element of Nb or Ta, J is at least Zr or Hf, in addition to the results of the second embodiment described above. One element, Q is at least one element of Cr, Mn, Fe, Co or Cu, where 50 ≦ x ≦ 80, 12 ≦ y ≦ 30, 8 ≦ z ≦ 25, 0 ≦ a ≦ 5, As a practical hydrogen storage alloy for batteries, 0 ≦ b ≦ 5, 0 ≦ c ≦ 5 and (x−a) + (y−b) + (z−c) + a + b + c = 100) The effect of the present invention is significantly seen and preferable.
[0049]
(Embodiment 4)
In the present embodiment, the effect of disposing a Ni layer on the surface layer of the alloy for the V-Ti-Ni bcc alloy will be described.
[0050]
If the amount of Ni is small in the V-Ti-Ni bcc alloy, even if the amount of hydrogen occlusion is large, the electrochemical activity in the alkaline electrolyte is poor, so the maximum amount of discharge electricity is small. However, the electrical activity is increased by arranging the Ni layer on the surface layer of the alloy.
Of course, the amount of hydrogen occlusion decreases by the amount of this Ni layer, but the maximum amount of discharged electricity increases if it is within the range that can be covered by the increase in electrochemical activity.
[0051]
5 wt% of ultrafine particles Ni (particle size: 0.03 μm) were arranged as a surface layer by a mechano-fusion method on all 14 types of alloys of the examples of the examples produced in Embodiments 2 and 3. These alloys are referred to as Comparative Examples 40 to 54.
[0052]
Next, in order to see the characteristics as the negative electrode for a battery, 14 types of alloys of Examples 40 to 54 were subjected to a half cell test in the same manner as in the first embodiment. Experimental conditions such as pellet preparation conditions and charge / discharge conditions are exactly the same as those in the first embodiment. Table 5 shows the measured maximum discharge electricity amount and the capacity retention rate at the 50th cycle of these alloys.
[0053]
[Table 5]
Figure 0004581151
[0054]
From Table 5, Table 2, Table 3, and Table 4, the alloys of Examples 41 to 54 had a higher maximum discharge electricity amount than the alloys before the Ni layer was disposed. There was no significant difference in capacity retention rate, which was effective in increasing the maximum amount of discharged electricity by improving the electrochemical activity in the battery.
[0055]
The action / effect of the alloy of the present invention is not limited to the range of this embodiment, but further, when Ni increases, the hydrogen storage amount itself decreases, so that it is 10 wt% or less of the entire hydrogen storage alloy. It is desirable.
[0056]
【The invention's effect】
As described above, the alloy of the present invention eliminates the precipitation of the second phase by mechanical alloying with respect to the V—Ti—Ni-based bcc alloy, and increases the maximum hydrogen storage amount and the maximum discharge electricity amount, An advantageous effect is obtained that deterioration of cycle characteristics can be suppressed.
[Brief description of the drawings]
1 is a powder X-ray diffraction pattern of an alloy of Example 1 of the present invention. FIG. 2 is an X-ray diffraction pattern of a hydro-pulverized product of an alloy of Comparative Example 1. FIG. X-ray diffraction pattern of hydrogenated pulverized product Fig. 4 PCT diagram of alloy of Example 1 of the present invention Fig. 5 PCT diagram of alloy of Comparative Example 1 Fig. 6 Alloy of Example 1 of the present invention Figure showing cycle characteristics of an electrode using the alloy of Comparative Example 1
1 Peak of bcc structure 2 Peak of metal phase 3 Peak of hydride phase 4 Peak of TiNi phase

Claims (1)

単一組成の金属材料のみ、あるいは、組成の判明している合金材料に前記単一組成の金属材料を加え、一般式VxTiyNiz(但し、50≦x≦80、12≦y≦30、8≦z≦25、かつx+y+z=100)またはVx−aTiy−bNiz−cDaJbQc(但し、DはNbまたはTaの少なくとも1種の元素、JはZrまたはHfの少なくとも1種の元素、QはCr,Mn,Fe,CoまたはCuの少なくとも1種の元素、ここで、50≦x≦80、12≦y≦30、8≦z≦25、0≦a≦5、0≦b≦5、0≦c≦5かつ(x−a)+(y−b)+(z−c)+a+b+c=100)で表せる組成になるように調製する第1の工程と調製後の原材料を混合し、不活性ガス雰囲気内でメカニカルアロイングにより、体心立方格子型構造の結晶構造を持つ単一な合金相に合金化する第2の工程を少なくとも含む水素吸蔵合金の製造法。  A single-composition metal material or an alloy material whose composition is known is added to the single-composition metal material, and the general formula VxTiyNiz (where 50 ≦ x ≦ 80, 12 ≦ y ≦ 30, 8 ≦ z ≦ 25, and x + y + z = 100) or Vx-aTiy-bNiz-cDaJbQc (where D is at least one element of Nb or Ta, J is at least one element of Zr or Hf, Q is Cr, Mn, Fe , Co or Cu, wherein 50 ≦ x ≦ 80, 12 ≦ y ≦ 30, 8 ≦ z ≦ 25, 0 ≦ a ≦ 5, 0 ≦ b ≦ 5, 0 ≦ c ≦ 5 and (Xa) + (y−b) + (z−c) + a + b + c = 100) The first step prepared so as to have a composition expressed by (x−a) + (y−b) + a + b + c = 100) and the raw material after the preparation are mixed, Body-centered cubic lattice by alloying Preparation of the hydrogen storage alloy at least containing a second step of alloying in a single alloy phase having a crystal structure of the structure.
JP10761598A 1998-04-17 1998-04-17 Hydrogen storage alloy for battery and manufacturing method thereof Expired - Fee Related JP4581151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10761598A JP4581151B2 (en) 1998-04-17 1998-04-17 Hydrogen storage alloy for battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10761598A JP4581151B2 (en) 1998-04-17 1998-04-17 Hydrogen storage alloy for battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11307090A JPH11307090A (en) 1999-11-05
JP4581151B2 true JP4581151B2 (en) 2010-11-17

Family

ID=14463672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10761598A Expired - Fee Related JP4581151B2 (en) 1998-04-17 1998-04-17 Hydrogen storage alloy for battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4581151B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3775639B2 (en) * 2000-02-22 2006-05-17 株式会社日本製鋼所 Method for producing hydrogen storage alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323333A (en) * 1991-04-23 1992-11-12 Kurimoto Ltd Method and device for producing hydrogen storage alloy
JPH08157998A (en) * 1994-11-30 1996-06-18 Imura Zairyo Kaihatsu Kenkyusho:Kk Hydrogen storage alloy and its production
JPH09231965A (en) * 1996-02-20 1997-09-05 Matsushita Electric Ind Co Ltd Hydrogen storage alloy electrode and its manufacture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2773851B2 (en) * 1993-02-05 1998-07-09 株式会社イムラ材料開発研究所 Hydrogen storage alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323333A (en) * 1991-04-23 1992-11-12 Kurimoto Ltd Method and device for producing hydrogen storage alloy
JPH08157998A (en) * 1994-11-30 1996-06-18 Imura Zairyo Kaihatsu Kenkyusho:Kk Hydrogen storage alloy and its production
JPH09231965A (en) * 1996-02-20 1997-09-05 Matsushita Electric Ind Co Ltd Hydrogen storage alloy electrode and its manufacture

Also Published As

Publication number Publication date
JPH11307090A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
EP1253654B1 (en) Alloy for hydrogen storage, secondary battery, hybrid car and electric vehicle
JP5466015B2 (en) Nickel metal hydride storage battery and method for producing hydrogen storage alloy
KR100276016B1 (en) Hydrogen-absorbing alloy and secondary battery
US4609599A (en) New lanthanum and nickel based alloys, their manufacture and their electrochemical applications
JPWO2007018292A1 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
JP5718006B2 (en) Hydrogen storage alloy and nickel metal hydride secondary battery
JP6276031B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
JP2011127185A (en) Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery
JP3828922B2 (en) Low Co hydrogen storage alloy
JPH0821379B2 (en) Hydrogen storage electrode
US6773667B2 (en) Hydrogen-occluding alloy and process for producing the same
JP3603013B2 (en) Hydrogen storage alloy and nickel hydrogen secondary battery
JP4581151B2 (en) Hydrogen storage alloy for battery and manufacturing method thereof
US5916519A (en) Hydrogen storage alloy containing iron
WO2016130561A1 (en) Hydrogen storage alloys
JPS62271349A (en) Hydrogen occlusion electrode
JP5179777B2 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JP2004285406A (en) Hydrogen storage alloy and electrode for nickel-hydrogen battery using the same
JPH0650634B2 (en) Hydrogen storage electrode
JP5224581B2 (en) Nickel metal hydride storage battery
JPH0675398B2 (en) Sealed alkaline storage battery
JP2008258121A6 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JPH0949034A (en) Production of hydrogen storage alloy
JP2762699B2 (en) Hydrogen storage Ni-Zr alloy
JPH0393158A (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees