JP4579774B2 - Manufacturing method of multilayer electronic component - Google Patents

Manufacturing method of multilayer electronic component Download PDF

Info

Publication number
JP4579774B2
JP4579774B2 JP2005170511A JP2005170511A JP4579774B2 JP 4579774 B2 JP4579774 B2 JP 4579774B2 JP 2005170511 A JP2005170511 A JP 2005170511A JP 2005170511 A JP2005170511 A JP 2005170511A JP 4579774 B2 JP4579774 B2 JP 4579774B2
Authority
JP
Japan
Prior art keywords
photosensitive
conductor pattern
film
insulator
insulator film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005170511A
Other languages
Japanese (ja)
Other versions
JP2006344860A (en
Inventor
茂 西山
秀朗 大井
文男 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP2005170511A priority Critical patent/JP4579774B2/en
Publication of JP2006344860A publication Critical patent/JP2006344860A/en
Application granted granted Critical
Publication of JP4579774B2 publication Critical patent/JP4579774B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、絶縁体層と導体パターンを積層し、積層体内に導体パターンによって回路素子が形成された積層型電子部品の製造方法に関するものである。   The present invention relates to a method for manufacturing a laminated electronic component in which an insulating layer and a conductor pattern are laminated and a circuit element is formed by the conductor pattern in the laminate.

インダクタ(コイル)の分野でも小型化の要求に対応するために、巻線を用いないタイプの積層型電子部品が実用化されているが、さらなる小型化・薄型化が求められている。これらコイルを内蔵する積層型電子部品の製造方法としては、絶縁体ペーストと導体ペーストを交互に印刷して積層体を形成する印刷積層法、表面にコイル用導体パターンが形成されたセラミックグリーンシートを複数枚積層して積層体が形成され、セラミックグリーンシートに形成されたスルーホール内の導体を介してコイル用導体パターン間が接続されるシート積層法及び、焼成基板上に厚膜フォトリソグラフィー技術や薄膜技術を用いて積層体を形成する方法(例えば、特許文献1を参照。)の3つが知られている。
特開平8-316080号公報
In the field of inductors (coils), in order to meet the demand for miniaturization, multilayer electronic components that do not use windings have been put into practical use, but further miniaturization and thinning are required. As a method of manufacturing a multilayer electronic component incorporating these coils, a printing lamination method in which an insulator paste and a conductor paste are alternately printed to form a laminate, and a ceramic green sheet having a coil conductor pattern formed on the surface is used. A laminated body is formed by laminating a plurality of sheets, and a sheet laminating method in which conductor patterns for coils are connected via conductors in through holes formed in a ceramic green sheet, and a thick film photolithography technique on a fired substrate, Three methods of forming a laminate using a thin film technique (for example, see Patent Document 1) are known.
JP-A-8-316080

印刷積層法では、絶縁体ペーストと導体ペーストの印刷を繰り返して積層しているために、積層数の増加に伴い、印刷面の平坦性が悪化し、線幅が50μm未満のコイル用導体パターンを安定的に形成することができなかった。また、印刷の滲みやダレの影響でコイル用導体パターンの線幅が不安定になり、0603サイズ(0.6×0.3×0.3mm)よりも小型の積層型電子部品を製造するのは困難だった。
シート積層法では、コイル用導体パターンの印刷面であるセラミックグリーンシートの平坦性が良いために印刷積層法の場合に比較してコイル用導体パターンの線幅を細くできるが、安定的にコイル用導体パターンを形成するためには線幅を40μm以上にする必要があった。また、コイル用導体パターンの線幅を小さくすると、スルーホール径も小さくなり、スルーホール内への導体充填が不十分となりやすく、断線が発生しやすかった。さらに、セラミックグリーンシートの積層ずれをなくす必要がある上、コイル用導体パターンが形成されている位置とコイル用導体パターンが形成されていない位置とで段差が生じるといった問題もあり、印刷積層法の場合と同様に0603サイズ(0.6×0.3×0.3mm)よりも小型の積層型電子部品を製造するのは困難だった。
In the printing laminating method, since the insulating paste and the conductor paste are repeatedly printed, the flatness of the printed surface deteriorates as the number of layers increases, and the coil conductor pattern with a line width of less than 50 μm is formed. It could not be formed stably. Also, the line width of the coil conductor pattern becomes unstable due to printing blur and sagging, and a multilayer electronic component smaller than 0603 size (0.6 × 0.3 × 0.3 mm) is manufactured. Was difficult.
In the sheet lamination method, the flatness of the ceramic green sheet, which is the printed surface of the coil conductor pattern, is good, so the line width of the coil conductor pattern can be made narrower than in the case of the printing lamination method. In order to form a conductor pattern, it was necessary to make the line width 40 μm or more. Further, when the line width of the coil conductor pattern is reduced, the through hole diameter is also reduced, the conductor filling in the through hole is likely to be insufficient, and disconnection is likely to occur. Furthermore, it is necessary to eliminate the stacking deviation of the ceramic green sheets, and there is a problem that a step is generated between the position where the coil conductor pattern is formed and the position where the coil conductor pattern is not formed. As in the case, it was difficult to manufacture a multilayer electronic component smaller than 0603 size (0.6 × 0.3 × 0.3 mm).

焼成基板上に薄膜技術を用いて積層体を形成する方法では、コイル用導体パターンの線幅を10μm以下にすることができるが、絶縁体層と導体パターンの層数を多くすることができず、0603サイズ(0.6×0.3×0.3mm)よりも小型の積層型電子部品においては所定のインダクタンス値を得ることができなかった。また、0603サイズ(0.6×0.3×0.3mm)よりも小型の積層型電子部品において所定のインダクタンス値が得られた場合でも、コイル用導体パターンの線幅が細くなるために、コイル用導体パターンの厚みを厚くすることができず、導体抵抗が増加してコイルのQ値が低下するという問題があった。
焼成基板上に厚膜フォトリソ技術を用いて積層体を形成する方法では、厚手の焼成基板上に積層体を形成するために、製品の高さの制約で所定の特性を得られなかった。また、焼成基板上に絶縁体層と導体パターンを一層ごとに焼成しながら積み重ねているので、製品に歪みが発生するという問題があった。
この様に、従来の積層型電子部品の製造方法では、0603サイズ(0.6×0.3×0.3mm)よりもさらに小型の0402サイズ(0.4×0.2×0.2mm)といった積層型電子部品を安定的に製造することができなかった。また、不安定ながらも0402サイズ(0.4×0.2×0.2mm)といった小型の積層型電子部品を製造できた場合でも、インダクタンス値やコイルのQ値等の特性の劣化が避けられなかった。
さらに、焼成基板上に厚膜フォトリソグラフィー技術を用いて積層体を形成する場合の問題点を解決するために、感光性絶縁体ペーストと感光性導電ペーストを用いて絶縁体層と導体パターンを積層することが検討されている。しかしながら、感光性絶縁体ペーストと感光性導電ペーストを構成する光重合硬化性を有するバインダー樹脂を同一系にした場合、感光性絶縁体膜上に銀を含有する感光性導電膜を形成し、露光、現像すると本来銀の膜が現像で除去されなければならない未露光部分に銀の残渣が発生してしまい、この残渣を除去しようとするとコイル用導体パターンの断線や流失が発生するという問題がある。
In the method of forming a laminate using a thin film technique on a fired substrate, the line width of the coil conductor pattern can be reduced to 10 μm or less, but the number of insulator layers and conductor patterns cannot be increased. In a multilayer electronic component smaller than 0603 size (0.6 × 0.3 × 0.3 mm), a predetermined inductance value could not be obtained. In addition, even when a predetermined inductance value is obtained in a multilayer electronic component smaller than 0603 size (0.6 × 0.3 × 0.3 mm), the line width of the coil conductor pattern is reduced. There is a problem that the conductor pattern for the coil cannot be increased in thickness, the conductor resistance increases, and the Q value of the coil decreases.
In the method of forming a laminated body on a fired substrate using a thick film photolithography technique, the laminated body is formed on a thick fired substrate, so that predetermined characteristics cannot be obtained due to the height restriction of the product. In addition, since the insulator layer and the conductor pattern are stacked on the fired substrate while firing one layer at a time, there is a problem that distortion occurs in the product.
Thus, in the conventional method for manufacturing a multilayer electronic component, the 0402 size (0.4 × 0.2 × 0.2 mm), which is smaller than the 0603 size (0.6 × 0.3 × 0.3 mm). Such a multilayer electronic component could not be stably manufactured. In addition, even if it is possible to manufacture a small multilayer electronic component such as 0402 size (0.4 × 0.2 × 0.2 mm) although it is unstable, deterioration of characteristics such as inductance value and coil Q value can be avoided. There wasn't.
Furthermore, in order to solve the problems in forming a laminate using a thick film photolithography technique on a fired substrate, an insulator layer and a conductor pattern are laminated using a photosensitive insulator paste and a photosensitive conductive paste. To be considered. However, when the photosensitive insulator paste and the photopolymerizable binder resin constituting the photosensitive conductive paste are made the same system, a photosensitive conductive film containing silver is formed on the photosensitive insulator film and exposed. When developed, a silver residue is generated in an unexposed portion where the silver film should originally be removed by development, and when this residue is removed, the conductor pattern for the coil is disconnected or lost. .

本発明は、高精細度なコイル用導体パターンと高精細度な微小径のスルーホールに加え、コイル用導体パターンとスルーホールを高い位置精度で形成することにより、小型の積層型電子部品を安定的に製造できる積層型電子部品の製造方法を提供するものである。   In addition to high-definition coil conductor patterns and high-definition minute-diameter through holes, the present invention stably forms small multilayer electronic components by forming coil conductor patterns and through-holes with high positional accuracy. Provided is a method for manufacturing a multilayer electronic component that can be manufactured in an automated manner.

本発明の積層型電子部品の製造方法は、感光性絶縁体ペーストと感光性導電ペーストを構成する光重合硬化性を有するバインダー樹脂を異なる系にすることにより前述の課題を解決するものである。すなわち、本発明は、絶縁体層と導体パターンを積層し、積層体内に導体パターンによって回路素子が形成された積層型電子部品の製造方法において、支持体上に光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体ペーストを用い、露光、現像を施して第1の感光性絶縁体膜を形成する工程、第1の感光性絶縁体膜上に、光重合硬化性を有するセルロース系バインダー樹脂を含有する感光性導電ペーストを用い、露光、現像を施して形成された導体パターンと、光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体ペーストを用い、露光、現像を施して形成された第2の感光性絶縁体膜とが積み重ねられる工程及び、これらの積層体上に、光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体ペーストを用いて第3の感光性絶縁体膜を形成する工程を備える。
また、本発明は、絶縁体層と導体パターンを積層し、積層体内に導体パターンによって回路素子が形成された積層型電子部品の製造方法において、支持体上に感光性絶縁体ペーストと感光性導電ペーストを用いて絶縁体層と導体パターンを積層して積層体内にコイル素子が形成され、積層体を製品個々へ分割した後外部端子を形成し、かつ、支持体上に絶縁体層と導体パターンを積層する工程が、光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体膜を形成し、露光、現像する工程、感光性絶縁体膜上に光重合硬化性を有するセルロース系バインダー樹脂を含有する感光性導電ペーストを塗布して感光性絶縁体膜の全面又は所定部分に感光性導電膜を形成し、露光、現像して感光性絶縁体膜上にコイル用導体パターンを形成する工程、コイル用導体パターンが形成された感光性絶縁体膜上に光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体ペーストを塗布してコイル用導体パターンが形成された感光性絶縁体膜の全面又は所定部分に感光性絶縁体膜を形成し、露光、現像して感光性絶縁体膜に上下層のコイル用導体パターンを接続するためのスルーホールを形成する工程及び、スルーホール内に光重合硬化性を有するセルロース系バインダー樹脂を含有する感光性導電ペーストを充填すると共に、スルーホールが形成された感光性絶縁体膜上に光重合硬化性を有するセルロース系バインダー樹脂を含有する感光性導電ペーストを塗布して感光性絶縁体膜の全面又は所定部分に感光性導電膜を形成し、露光、現像して下層のコイル用導体パターンと接続されたコイル用導体パターンを形成する工程を備える。
The method for producing a multilayer electronic component according to the present invention solves the above-mentioned problems by using different systems for the photopolymerization-curable binder resin constituting the photosensitive insulator paste and the photosensitive conductive paste. That is, the present invention relates to an acrylic binder having photopolymerization curability on a support in a method for manufacturing a laminated electronic component in which an insulating layer and a conductor pattern are laminated, and a circuit element is formed by the conductor pattern in the laminate. A step of forming a first photosensitive insulator film by exposure and development using a photosensitive insulator paste containing a resin, a cellulose-based photopolymerization-curing property on the first photosensitive insulator film Using a conductive conductive paste containing a binder resin, exposure and development using a conductive pattern formed by exposure and development, and a photosensitive insulator paste containing an acrylic binder resin having photopolymerization curability. A step of stacking the second photosensitive insulator film formed by applying, and an acrylic binder resin having photopolymerization curability on the laminate. Comprising the step of forming a third photosensitive insulating film using a light insulating paste.
The present invention also provides a method for manufacturing a laminated electronic component in which an insulator layer and a conductor pattern are laminated, and a circuit element is formed by the conductor pattern in the laminate, and the photosensitive insulator paste and the photosensitive conductive material are formed on the support. A coil element is formed in a laminate by laminating an insulator layer and a conductor pattern using a paste. After the laminate is divided into individual products, external terminals are formed, and the insulator layer and the conductor pattern are formed on the support. Is a step of forming a photosensitive insulator film containing an acrylic binder resin having photopolymerization curability, exposing and developing, and a cellulose binder having photopolymerization curability on the photosensitive insulator film. A photosensitive conductive paste containing resin is applied to form a photosensitive conductive film on the entire surface or a predetermined portion of the photosensitive insulator film, and then exposed and developed to form a coil conductor pattern on the photosensitive insulator film. Forming a coil conductor pattern by applying a photosensitive insulator paste containing a photopolymerizable curable acrylic binder resin on the photosensitive insulator film on which the coil conductor pattern is formed. Forming a photosensitive insulator film on the entire surface or a predetermined portion of the photosensitive insulator film, exposing and developing to form through holes for connecting the upper and lower coil conductor patterns to the photosensitive insulator film; and Fill the through-hole with a photosensitive conductive paste containing a photopolymerizable curable cellulose-based binder resin, and apply a photopolymerizable curable cellulose-based binder resin on the photosensitive insulator film in which the through-hole is formed. The photosensitive conductive paste contained is applied to form a photosensitive conductive film on the entire surface or a predetermined portion of the photosensitive insulator film, and then exposed and developed to form a lower coil conductor Comprising forming a connected conductive patterns for coil and turns.

本発明の積層型電子部品の製造方法は、支持体上に光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体ペーストを用い、露光、現像を施して第1の感光性絶縁体膜を形成する工程、第1の感光性絶縁体膜上に、光重合硬化性を有するセルロース系バインダー樹脂を含有する感光性導電ペーストを用い、露光、現像を施して形成された導体パターンと、光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体ペーストを用い、露光、現像を施して形成された第2の感光性絶縁体膜とが積み重ねられる工程及び、これらの積層体上に、光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体ペーストを用いて第3の感光性絶縁体膜を形成する工程を備えるので、高精細度なコイル用導体パターンと高精細度な微小径のスルーホールを安定的に形成することができると共に、コイル用導体パターンとスルーホールを高い位置精度で形成することができ、特性を劣化させることなく小型の積層型電子部品を安定的に製造することができる。
また、本発明の積層型電子部品の製造方法は、支持体上に感光性絶縁体ペーストと感光性導電ペーストを用いて絶縁体層と導体パターンを積層して積層体内にコイル素子が形成され、積層体を製品個々へ分割した後外部端子を形成し、かつ、支持体上に絶縁体層と導体パターンを積層する工程が、光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体膜を形成し、露光、現像する工程、感光性絶縁体膜上に光重合硬化性を有するセルロース系バインダー樹脂を含有する感光性導電ペーストを塗布して感光性絶縁体膜の全面又は所定部分に感光性導電膜を形成し、露光、現像して感光性絶縁体膜上にコイル用導体パターンを形成する工程、コイル用導体パターンが形成された感光性絶縁体膜上に光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体ペーストを塗布してコイル用導体パターンが形成された感光性絶縁体膜の全面又は所定部分に感光性絶縁体膜を形成し、露光、現像して感光性絶縁体膜に上下層のコイル用導体パターンを接続するためのスルーホールを形成する工程及び、スルーホール内に光重合硬化性を有するセルロース系バインダー樹脂を含有する感光性導電ペーストを充填すると共に、スルーホールが形成された感光性絶縁体膜上に光重合硬化性を有するセルロース系バインダー樹脂を含有する感光性導電ペーストを塗布して感光性絶縁体膜の全面又は所定部分に感光性導電膜を形成し、露光、現像して下層のコイル用導体パターンと接続されたコイル用導体パターンを形成する工程を備えるので、高精細度なコイル用導体パターンと高精細度な微小径のスルーホールを安定して形成することができると共に、コイル用導体パターンとスルーホールを高い位置精度で形成することができ、特性を劣化させることなく小型の積層型電子部品を安定的に製造することができる。
The method for producing a multilayer electronic component of the present invention uses a photosensitive insulator paste containing a photopolymerizable and curable acrylic binder resin on a support, and is exposed to light and developed to produce a first photosensitive insulator. A conductive pattern formed by performing exposure and development using a photosensitive conductive paste containing a cellulose-based binder resin having photopolymerization curability on the first photosensitive insulator film, and a step of forming a film; A step of stacking a second photosensitive insulator film formed by exposure and development using a photosensitive insulator paste containing an acrylic binder resin having photopolymerization curability; and on these laminates And a step of forming a third photosensitive insulator film using a photosensitive insulator paste containing an acrylic binder resin having photopolymerization curability, so that a high-definition coil conductor pattern is provided. High-definition, small-diameter through-holes can be stably formed, and coil conductor patterns and through-holes can be formed with high positional accuracy, making it a compact stack without degrading characteristics. The mold electronic component can be manufactured stably.
Further, in the method for manufacturing a multilayer electronic component of the present invention, a coil element is formed in the laminate by laminating an insulator layer and a conductor pattern using a photosensitive insulator paste and a photosensitive conductive paste on a support. A photosensitive insulator containing an acrylic binder resin having photopolymerization curability, wherein the step of forming external terminals after dividing the laminate into individual products and laminating the insulator layer and the conductor pattern on the support Steps of forming a film, exposing and developing, applying a photosensitive conductive paste containing a photo-curing curable cellulose-based binder resin on the photosensitive insulator film, and coating the entire surface or a predetermined portion of the photosensitive insulator film Forming a photosensitive conductive film, exposing and developing to form a coil conductor pattern on the photosensitive insulator film, and having photopolymerization curability on the photosensitive insulator film on which the coil conductor pattern is formed Acry A photosensitive insulator film containing a binder resin is applied to form a photosensitive insulator film on the entire surface or a predetermined part of the conductive insulator film on which a coil conductor pattern is formed. The step of forming a through hole for connecting the upper and lower coil conductor patterns to the insulator film, and filling the through hole with a photosensitive conductive paste containing a cellulose-based binder resin having photopolymerization curability, A photosensitive conductive film containing a photo-curing curable cellulose binder resin is applied onto the photosensitive insulator film in which the through holes are formed, and the photosensitive conductive film is applied to the entire surface or a predetermined portion of the photosensitive insulator film. It has a step of forming, exposing and developing to form a coil conductor pattern connected to a lower coil conductor pattern, so that a high-definition coil conductor It is possible to stably form turns and high-definition through-holes with a small diameter, and it is possible to form conductor patterns for coils and through-holes with high positional accuracy. Electronic components can be manufactured stably.

本発明の積層型電子部品の製造方法は、まず、支持体上に光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体ペーストを塗布し、露光、現像して第1の感光性絶縁体膜が形成される。次に、第1の感光性絶縁体膜上に、光重合硬化性を有するセルロース系バインダー樹脂を含有する感光性導電ペーストを塗布して第1の感光性絶縁体膜の表面全体又は表面の所定部分に感光性導電膜を形成し、露光、現像して第1の感光性絶縁体膜上にコイル用導体パターンが形成される。続いて、コイル用導体パターンが形成された第1の感光性絶縁体膜上に光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体ペーストを塗布して第1の感光性絶縁体膜の表面全体又は表面の所定部分に第2の感光性絶縁体膜を形成し、露光、現像してスルーホールが形成される。さらに、第2の感光性絶縁体膜のスルーホール内に光重合硬化性を有するセルロース系バインダー樹脂を含有する感光性導電ペーストを充填すると共に、第2の感光性絶縁体膜上に光重合硬化性を有するセルロース系バインダー樹脂を含有する感光性導電ペーストを塗布して第2の感光性絶縁体膜の表面全体又は表面の所定部分に感光性導電膜を形成し、露光、現像して下層のコイル用導体パターンと接続されたコイル用導体パターンが形成される。この様にして第1の感光性絶縁体膜上に、所定層数分の導体パターンと第2の感光性絶縁体膜を積み重ね、これらの積層体上に光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体ペーストを塗布して第3の感光性絶縁体膜が形成されることにより積層体内にコイル素子が形成される。そして、この積層体を製品個々に分割した後外部端子が形成される。   In the method for producing a multilayer electronic component of the present invention, first, a photosensitive insulating paste containing an acrylic binder resin having photopolymerization curability is applied on a support, exposed to light, and developed to obtain a first photosensitive property. An insulator film is formed. Next, a photosensitive conductive paste containing a cellulose-based binder resin having photopolymerization curability is applied on the first photosensitive insulator film, and the entire surface of the first photosensitive insulator film or a predetermined surface is applied. A photosensitive conductive film is formed on the portion, and exposed and developed to form a coil conductor pattern on the first photosensitive insulator film. Subsequently, a photosensitive insulator paste containing an acrylic binder resin having photopolymerization curability is applied onto the first photosensitive insulator film on which the coil conductor pattern is formed, so that the first photosensitive insulator is coated. A second photosensitive insulator film is formed on the entire surface of the film or a predetermined portion of the surface, and exposed and developed to form a through hole. Further, the through hole of the second photosensitive insulator film is filled with a photosensitive conductive paste containing a photo-curing curable cellulose binder resin, and the second photosensitive insulator film is photo-cured and cured. A photosensitive conductive paste containing a cellulose-based binder resin having a property is applied to form a photosensitive conductive film on the entire surface of the second photosensitive insulator film or a predetermined portion of the surface, and then exposed and developed to form a lower layer. A coil conductor pattern connected to the coil conductor pattern is formed. In this way, a predetermined number of conductor patterns and second photosensitive insulator films are stacked on the first photosensitive insulator film, and an acrylic binder resin having photopolymerization curability on these laminates. The coil element is formed in the laminated body by applying the photosensitive insulator paste containing, thereby forming the third photosensitive insulator film. And after dividing this laminated body into individual products, external terminals are formed.

従って、本発明の積層型電子部品の製造方法は、コイル用導体パターンが光重合硬化性を有するセルロース系バインダー樹脂を含有する感光性導電ペーストを用いたフォトリソグラフィー技術によって形成され、絶縁体層が光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体ペーストを用いたフォトリソグラフィー技術によって形成されるので、コイル用導体パターンの線幅を30μm以下に、スルーホールの直径を50μm以下にすることができると共に、コイル用導体パターンの線幅のバラツキを数μm以下に低減することができる。また、感光性導電ペーストと感光性絶縁体ペーストを構成する光重合硬化性を有するバインダー樹脂が異なる系なので、感光性絶縁体膜上のコイル用導体パターンを現像残渣無く安定的に形成することができる。さらに、積層体を構成する感光性絶縁体膜に含まれるバインダー樹脂がアクリル系なので、600℃以下で熱分解が可能であり、積層体内にバインダー樹脂が残存することがなく、印刷積層法やシート積層法と同様に焼成することができる。   Therefore, in the method for manufacturing a multilayer electronic component of the present invention, the coil conductor pattern is formed by a photolithography technique using a photosensitive conductive paste containing a cellulose-based binder resin having photopolymerization curability, and the insulator layer is formed. Since it is formed by photolithography using a photosensitive insulator paste containing an acrylic binder resin having photopolymerization curability, the coil conductor pattern has a line width of 30 μm or less and a through hole diameter of 50 μm or less. In addition, the variation in the line width of the coil conductor pattern can be reduced to several μm or less. Moreover, since the photosensitive conductive paste and the photopolymerization curable binder resin constituting the photosensitive insulator paste are different systems, the coil conductor pattern on the photosensitive insulator film can be stably formed without development residue. it can. Furthermore, since the binder resin contained in the photosensitive insulator film constituting the laminate is acrylic, it can be thermally decomposed at 600 ° C. or lower, and the binder resin does not remain in the laminate, so that a printing lamination method or sheet can be used. Firing can be performed in the same manner as in the lamination method.

以下、本発明の積層型電子部品の製造方法を図1乃至図5を参照して説明する。
図1は本発明の積層型電子部品の製造方法の実施例に係る積層型電子部品の分解斜視図、図2は本発明の積層型電子部品の製造方法の実施例に係る積層型電子部品の斜視図である。
本発明の積層型電子部品の製造方法の実施例に係る積層型電子部品としては、例えば、図1、2に示す様に、絶縁体層11A上に、コイル用導体パターン12A〜12Eと絶縁体層11B〜11Eとを積み重ね、これら積層体上に絶縁体層11Fを形成して、積層体内にコイルを形成したものがある。
絶縁体層11A〜11Fは、ガラスセラミックス、誘電体セラミックス、磁性体セラミックス等の絶縁体セラミックスで形成される。
絶縁体11A〜11Eの表面には、それぞれ導体パターン12A〜12Eが形成される。導体パターン12A〜12Eは、銀、銀系、金、金系、銅、銅系等の金属材料で構成される。図1では1ターン未満のコイル用導体パターンが示されており、絶縁体層間の導体パターン12A〜12Eが絶縁体層のスルーホール内の導体を介して螺旋状に接続されて積層体内にコイルが形成される。このコイル用導体パターンの材質は、絶縁体層を構成するセラミックスの焼成条件に適合する金属材料を選択する必要があるが、導体パターンの導体抵抗が高いとコイルのQ値が低下してしまうことから導体抵抗の低い金属材料が望ましい。
コイルの一端を構成する絶縁体層11A上の導体パターン12Aの一端は、絶縁体層11Aの端面に引き出され、積層体の端面に形成された外部端子23に接続される。また、コイルの他端を構成する絶縁体層11E上の導体パターン12Eの他端は、絶縁体層11Eの端面に引き出され、積層体の端面に形成された外部端子24に接続される。
A method for manufacturing a multilayer electronic component according to the present invention will be described below with reference to FIGS.
FIG. 1 is an exploded perspective view of a multilayer electronic component according to an embodiment of the multilayer electronic component manufacturing method of the present invention, and FIG. 2 is a diagram of the multilayer electronic component according to the embodiment of the multilayer electronic component manufacturing method of the present invention. It is a perspective view.
Examples of the multilayer electronic component according to the embodiment of the multilayer electronic component manufacturing method of the present invention include a coil conductor pattern 12A to 12E and an insulator on an insulator layer 11A as shown in FIGS. There are layers in which the layers 11B to 11E are stacked, an insulating layer 11F is formed on the stacked body, and a coil is formed in the stacked body.
The insulator layers 11A to 11F are formed of insulator ceramics such as glass ceramics, dielectric ceramics, and magnetic ceramics.
Conductor patterns 12A to 12E are formed on the surfaces of the insulators 11A to 11E, respectively. The conductor patterns 12A to 12E are made of a metal material such as silver, silver, gold, gold, copper, or copper. FIG. 1 shows a coil conductor pattern of less than one turn. Conductor patterns 12A to 12E between insulator layers are spirally connected via conductors in through holes in the insulator layer, and a coil is formed in the laminate. It is formed. As the material of the coil conductor pattern, it is necessary to select a metal material suitable for the firing conditions of the ceramics constituting the insulator layer. However, if the conductor resistance of the conductor pattern is high, the Q value of the coil is lowered. Therefore, a metal material having a low conductor resistance is desirable.
One end of the conductor pattern 12A on the insulator layer 11A constituting one end of the coil is drawn to the end face of the insulator layer 11A and connected to the external terminal 23 formed on the end face of the laminate. Further, the other end of the conductor pattern 12E on the insulator layer 11E constituting the other end of the coil is drawn out to the end face of the insulator layer 11E and connected to the external terminal 24 formed on the end face of the laminate.

この様な積層型電子部品は、次のようにして製造される。まず、図3(A)に示す様に、支持体30の表面に、光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体ペーストを所定の厚みに塗布し、乾燥させた後、光線(例えば、紫外線)を用いて露光し、現像することにより、支持体30上に感光性絶縁体膜31Aが形成される。支持体30は、金属板、セラミック板、可撓性を有するフィルム等を用いることができるが、積層体形成後に製品を支持体から剥離する必要があることから剥離性を考慮して決定するのが望ましく、必要に応じて離型処理を行うと良い。また、導体パターンやスルーホールの形成位置の精度を向上させるために、露光時の光学アライメント用マーカを具備していることが望ましい。図3では、露光時の光学アライメント用孔2ヶ所(図示せず)を具備したステンレス板上に、積層体を形成する面と反対の面に接着層を有するポリエチレンテレフタレート(PET)30Aを光学アライメント孔を避けて貼り付けて支持体30とした。感光性絶縁体ペーストは、ガラスセラミックス、誘電体セラミックス、磁性体セラミックス等の絶縁体セラミックスに光重合硬化性を有するアクリル系バインダー樹脂が混入されてペースト状に形成され、スクリーン印刷法により支持体のポリエチレンテレフタレート(PET)30A上に塗布される。図3では、絶縁体セラミックスとしてガラスセラミックスを用いた。また、感光性絶縁体ペーストの乾燥は、約80℃で10分間行われるが、箱型乾燥機によるバッチ処理に限定されず、インライン方式の赤外乾燥等作業性を考慮して決定すれば良い。なお、絶縁体膜を感光性絶縁体ペーストに限定せずに非感光性絶縁体ペーストで形成する方法もあるが、後の工程で使用する感光性絶縁体ペーストや感光性導電ペーストは光重合硬化及び熱硬化により収縮するため非感光性絶縁体膜との収縮差異を生じ、脱脂時に非感光性絶縁体膜とこの後に形成する感光性絶縁体膜や導体パターン間でクラックや剥離を生じる。また、支持体上への塗布方法としては、スクリーン印刷法、ロールコータ法、バーコータ法等の方法を用いることができるが、この後の工程の感光性絶縁体膜に形成されたスルーホール内への導体充填性からスクリーン印刷法に統一して塗布を行った。ここでスルーホールを形成する必要がないにも係らず感光性絶縁体膜31Aを露光、現像処理を施して形成するのは、支持体上に塗布し乾燥した感光性絶縁体膜は粘着性を有しており、その上部に形成する感光性導電膜や感光性絶縁体膜の塗布膜厚が安定しないためである。この粘着性を低減させる方法としては、光硬化に加え加熱硬化を行う方法もあるが、加熱硬化を併用した場合、加熱収縮のため積層体形成過程で積層体の収縮が進行し支持体から積層体が剥離してしまうという問題を生じる。また、この上部に感光性導電膜を形成した場合、感光性絶縁体膜の光硬化未反応部分が残存してしまい、感光性導電膜を形成するための感光性導電ペーストを印刷する時に、感光性導電ペーストに含まれる溶剤と光未硬化部分が反応することに加え、未反応部分が感光性導電ペーストに含まれる溶剤に溶解してしまい、感光性導電膜の露光、現像時に銀の残渣が発生するという問題がある。これを防止するために、前述の様に感光性絶縁体膜に露光、現像処理が施される。また、感光性絶縁体膜31Aは、後の外部端子形成時のメッキ工程における薬液が積層体に侵入するのを防ぐため、2層以上形成するのが望ましい。   Such a multilayer electronic component is manufactured as follows. First, as shown in FIG. 3 (A), a photosensitive insulator paste containing an acrylic binder resin having photopolymerization curability is applied to a predetermined thickness on the surface of the support 30 and dried. A photosensitive insulator film 31 </ b> A is formed on the support 30 by exposing and developing using light (for example, ultraviolet rays). The support 30 can be a metal plate, a ceramic plate, a flexible film, or the like. However, the product needs to be peeled off from the support after the laminate is formed, so that it is determined in consideration of peelability. It is desirable to perform mold release processing as necessary. In addition, in order to improve the accuracy of the formation position of the conductor pattern and the through hole, it is desirable to include an optical alignment marker at the time of exposure. In FIG. 3, a polyethylene terephthalate (PET) 30A having an adhesive layer on the surface opposite to the surface on which the laminate is formed is optically aligned on a stainless steel plate having two holes (not shown) for optical alignment at the time of exposure. The support 30 was affixed while avoiding the holes. A photosensitive insulator paste is formed into a paste by mixing photo-curing curable acrylic binder resin with insulator ceramics such as glass ceramics, dielectric ceramics, and magnetic ceramics. It is applied onto polyethylene terephthalate (PET) 30A. In FIG. 3, glass ceramics are used as insulator ceramics. The photosensitive insulator paste is dried at about 80 ° C. for 10 minutes, but is not limited to batch processing using a box dryer, and may be determined in consideration of workability such as in-line infrared drying. . Although there is a method of forming the insulator film with a non-photosensitive insulator paste without being limited to the photosensitive insulator paste, the photosensitive insulator paste and the photosensitive conductive paste used in the subsequent process are photopolymerized and cured. Further, since it shrinks due to thermosetting, a shrinkage difference occurs between the non-photosensitive insulator film, and cracks or peeling occurs between the non-photosensitive insulator film and the photosensitive insulator film or conductor pattern to be formed thereafter during degreasing. Moreover, as a coating method on the support, a screen printing method, a roll coater method, a bar coater method, or the like can be used. However, it is into a through-hole formed in the photosensitive insulator film in the subsequent step. The coating was performed in accordance with the screen printing method because of the conductor filling property. Here, the photosensitive insulator film 31A is formed by exposing and developing the photosensitive insulator film 31A, though it is not necessary to form a through hole. This is because the coating film thickness of the photosensitive conductive film and the photosensitive insulator film formed on the upper portion is not stable. As a method of reducing the adhesiveness, there is a method of performing heat curing in addition to photocuring. However, when heat curing is used in combination, the laminate shrinks during the laminate formation process due to heat shrinkage and is laminated from the support. This causes the problem that the body peels off. In addition, when a photosensitive conductive film is formed on the upper portion, a photocured unreacted portion of the photosensitive insulator film remains, and when the photosensitive conductive paste for forming the photosensitive conductive film is printed, In addition to the reaction between the solvent contained in the photosensitive conductive paste and the light uncured part, the unreacted part is dissolved in the solvent contained in the photosensitive conductive paste, and a silver residue is formed during exposure and development of the photosensitive conductive film. There is a problem that occurs. In order to prevent this, the photosensitive insulator film is exposed and developed as described above. The photosensitive insulator film 31A is desirably formed in two or more layers in order to prevent the chemical solution in the plating step when forming the external terminals later from entering the laminate.

次に、図3(B)に示す様に、感光性絶縁体膜31Aの表面全体又は、表面の製品となる部分に光重合硬化性を有するセルロース系バインダー樹脂を含有する感光性導電ペーストを所定の厚みに塗布して感光性導電膜32を形成し、約80℃で10分間乾燥した後、この感光性導電膜32を露光、現像して、図3(C)に示す様に、感光性絶縁体膜31Aの表面に外部端子引き出し部を有するコイル用導体パターン32Aが形成される。感光性導電ペーストは、銀、銀系、金、金系、銅、銅系等の金属粉末に光重合硬化性を有するセルロース系バインダー樹脂が混入されてペースト状に形成され、感光性絶縁体膜31A上に塗布される。図3では感光性導電ペーストを構成する金属粉末として、絶縁体セラミックスの焼成温度とコイル用導体パターンの導体抵抗を考慮して銀を含有するものを用いた。ここで感光性絶縁体膜上に感光性導電ペーストを塗布すると、感光性導電ペーストに含まれる溶剤にて、感光性絶縁体膜のバインダー樹脂が溶解する。この時、感光性導電ペーストに含有するバインダー樹脂と感光性絶縁体膜に含有するバインダー樹脂を同系列にした場合、塗布された感光性導電ペーストを乾燥させる時に感光性絶縁体膜の溶解したバインダー樹脂と感光性導電ペーストに含まれるバインダー樹脂が加熱硬化反応を起こして、露光された感光性導電膜を現像する際に未露光部分の導電膜の除去が困難となり、感光性絶縁体膜上に銀の残渣が発生する。そのため、この銀の残渣によって積層体の絶縁性が劣化したり、導体パターン間でショートを引き起こすという問題がある。この銀の残渣は塗布された感光性導電ペーストの乾燥条件をより低温、短時間で行うことで抑制することが可能であるが、低温、短時間の乾燥では感光性導電膜の粘着力が強く、ガラス乾板等の露光マスクを介した露光時に、露光マスクと感光性導電膜が貼りついてしまうという問題がある。この露光マスクと感光性導電膜の張り付きを防ぐために露光マスクと感光性導電膜を接触させない、いわゆるオフコンタクト露光を行うことも可能であるが、この場合、露光、現像にて形成される導体パターンの精度が悪化するという問題がある。また、銀の残渣が除去されるまで現像を行った場合、残存すべき導電膜中のバインダー樹脂が現像液にアタックされてしまい、導電膜の剥離や流失が生じてコイル用導体パターンが断線するという問題がある。これらの問題を解決するために、本発明では、光重合硬化性を有するアクリル系感光性バインダー樹脂を含有する感光性絶縁体ペーストにて形成された感光性絶縁体膜上に、光重合硬化性を有するセルロース系感光性バインダー樹脂を含有する感光性導電ペーストにて感光性導電膜を形成し、露光、現像してコイル用導体パターンを形成している。   Next, as shown in FIG. 3 (B), a predetermined photosensitive conductive paste containing a cellulose-based binder resin having photopolymerization curability is formed on the entire surface of the photosensitive insulator film 31A or a portion to be a product on the surface. 3 to form a photosensitive conductive film 32, dried at about 80 ° C. for 10 minutes, and then exposed and developed to expose the photosensitive conductive film 32 as shown in FIG. A coil conductor pattern 32A having an external terminal lead portion is formed on the surface of the insulator film 31A. A photosensitive conductive paste is formed into a paste form by mixing a photopolymerizable cellulose-based binder resin into silver, silver-based, gold-based, gold-based, copper- or copper-based metal powder. It is applied on 31A. In FIG. 3, as the metal powder constituting the photosensitive conductive paste, a powder containing silver is used in consideration of the firing temperature of the insulator ceramic and the conductor resistance of the coil conductor pattern. Here, when the photosensitive conductive paste is applied on the photosensitive insulator film, the binder resin of the photosensitive insulator film is dissolved in the solvent contained in the photosensitive conductive paste. At this time, when the binder resin contained in the photosensitive conductive paste and the binder resin contained in the photosensitive insulator film are in the same series, the binder in which the photosensitive insulator film is dissolved when the applied photosensitive conductive paste is dried. The binder resin contained in the resin and the photosensitive conductive paste undergoes a heat curing reaction, which makes it difficult to remove the unexposed conductive film when developing the exposed photosensitive conductive film. A silver residue is generated. Therefore, there is a problem that the insulating property of the laminated body is deteriorated due to the silver residue or a short circuit is caused between the conductor patterns. This silver residue can be suppressed by performing the drying conditions of the applied photosensitive conductive paste at a lower temperature and in a shorter time, but the adhesive strength of the photosensitive conductive film is stronger when drying at a lower temperature and in a shorter time. There is a problem in that the exposure mask and the photosensitive conductive film are stuck to each other during exposure through an exposure mask such as a glass dry plate. In order to prevent the exposure mask and the photosensitive conductive film from sticking, it is possible to perform so-called off-contact exposure in which the exposure mask and the photosensitive conductive film are not in contact, but in this case, a conductor pattern formed by exposure and development There is a problem that the accuracy of. Further, when development is performed until the silver residue is removed, the binder resin in the conductive film that should remain is attacked by the developer, and the conductive film for the coil is disconnected due to peeling or loss of the conductive film. There is a problem. In order to solve these problems, in the present invention, photopolymerization curability is formed on a photosensitive insulator film formed of a photosensitive insulator paste containing an acrylic photosensitive binder resin having photopolymerization curability. A photosensitive conductive film is formed with a photosensitive conductive paste containing a cellulose-based photosensitive binder resin having a, and exposed and developed to form a coil conductor pattern.

さらに、図3(D)に示す様にこのコイル用導体パターンが形成された感光性絶縁体膜の表面全体又は、表面の製品となる部分に光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体ペーストを所定の厚みに塗布して感光性絶縁体膜31Bを形成し、乾燥した後、この感光性絶縁体膜31Bを露光、現像して、図3(E)に示す様に、感光性絶縁体膜31BにスルーホールHが形成される。このスルーホールHの底面には、コイル用導体パターン32Aの端部が露出する。この時、コイル用導体パターン中に含まれるバインダー樹脂と感光性絶縁体ペースト中に含まれるバインダー樹脂を異なる系にすることで、感光性絶縁体膜31Bに形成されるスルーホールHの底面に露出するコイル用導体パターン32Aの端部上に絶縁体の残渣が生じることを防止できる。これにより、コイル用導体パターン間の接続の信頼性を向上させることができる。
続いて、この感光性絶縁体膜31BのスルーホールH内に光重合硬化性を有するセルロース系バインダー樹脂を含有する感光性導電ペーストを充填すると共に、図3(F)に示す様に、感光性絶縁体膜の表面全体又は、表面の製品となる部分に光重合硬化性を有するセルロース系バインダー樹脂を含有する感光性導電ペーストを所定の厚みに塗布して感光性導電膜32を形成し、乾燥した後、この感光性導電膜32を露光、現像して、図3(G)に示す様に、感光性絶縁体膜31Bの表面にコイル用導体パターン32Bが形成される。コイル用導体パターン32Bの一端は、感光性絶縁体膜31Bのスルーホール内の導体によってコイル用導体パターン32Aに接続される。この時、感光性導電膜32のスルーホールと対応する位置の膜厚は、スルーホールの深さ分だけ他の部分より厚くなって露光可能な膜厚を超えた膜厚となるので、スルーホールの底部付近の感光性導電体は半露光又は未露光の状態となる。しかしながら、スルーホール内に感光性導電ペーストを充填した後、このスルーホール部分を露光する工程を追加することにより、スルーホール内に充填された感光性導電体の上部が光重合硬化し、この光重合硬化した部分がスルーホール内に充填された感光性導電体のレジストとなり、充填された感光性導電体に含まれる半露光又は未露光のバインダー樹脂の現像液による溶解を防止でき、コイル用導体パターン間の接続の信頼性を向上させることができる。
Further, as shown in FIG. 3D, an acrylic binder resin having photopolymerization curability is contained in the entire surface of the photosensitive insulator film on which the coil conductor pattern is formed or a portion of the surface to be a product. A photosensitive insulator paste is applied to a predetermined thickness to form a photosensitive insulator film 31B, and after drying, the photosensitive insulator film 31B is exposed and developed, as shown in FIG. Through holes H are formed in the photosensitive insulator film 31B. At the bottom surface of the through hole H, the end portion of the coil conductor pattern 32A is exposed. At this time, by exposing the binder resin contained in the coil conductor pattern and the binder resin contained in the photosensitive insulator paste to different systems, it is exposed to the bottom surface of the through hole H formed in the photosensitive insulator film 31B. It is possible to prevent the residue of the insulator from being generated on the end portion of the coil conductor pattern 32A. Thereby, the reliability of the connection between the coil conductor patterns can be improved.
Subsequently, a photosensitive conductive paste containing a cellulosic binder resin having photopolymerization curability is filled into the through hole H of the photosensitive insulator film 31B, and as shown in FIG. A photosensitive conductive film 32 containing a photo-curing curable cellulose-based binder resin is applied to a predetermined thickness on the entire surface of the insulator film or a portion to be a product on the surface to form a photosensitive conductive film 32 and dried. Thereafter, the photosensitive conductive film 32 is exposed and developed to form a coil conductor pattern 32B on the surface of the photosensitive insulator film 31B, as shown in FIG. One end of the coil conductor pattern 32B is connected to the coil conductor pattern 32A by a conductor in the through hole of the photosensitive insulator film 31B. At this time, the film thickness at the position corresponding to the through hole of the photosensitive conductive film 32 is thicker than the other part by the depth of the through hole and exceeds the film thickness that can be exposed. The photosensitive conductor in the vicinity of the bottom of the substrate is half-exposed or unexposed. However, after filling the through hole with the photosensitive conductive paste, by adding a step of exposing the through hole portion, the upper part of the photosensitive conductor filled in the through hole is photopolymerized and cured. The polymerized and hardened portion becomes a resist of the photosensitive conductor filled in the through hole, and it is possible to prevent dissolution of the half-exposed or unexposed binder resin contained in the filled photosensitive conductor by the developer, and the coil conductor The reliability of connection between patterns can be improved.

この様にして、感光性絶縁体膜31A上に、所定のインダクタンス値を得るのに必要な層数分のコイル用導体パターンと感光性絶縁体膜を積み重ね、コイル用導体パターン12Eが形成された感光性絶縁体膜上に光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体ペーストを塗布して外装用絶縁体層11Fとなる感光性絶縁体膜が形成されることにより積層体内にコイル素子が形成される。ここで、外装用絶縁体層を非感光性絶縁体ペーストで形成する方法もあるが、コイル用導体パターン12Eを構成する感光性導電膜や絶縁体層11Eを構成する感光性絶縁体膜と非感光性絶縁体ペーストとの収縮差異によって、脱脂時に外装用絶縁体層とコイル用導体パターン12E、絶縁体層11E間でクラックや剥離が生じる。また、外装用の絶縁体層は、厚みが薄かったり、ピンホールがあると、外部端子にメッキを施す際の薬液が素体内に侵入して特性が劣化するので、2層以上形成するのが望ましい。外装用の絶縁体層を2層以上形成する場合には、1層目の感光性絶縁体膜を形成した後、露光、現像することにより感光性絶縁体膜の粘着性を低減できる。
この支持体上に形成された積層体は、図4に示す様に点線の部分で切断機等で切断することにより、製品個々に分割し、支持体30から剥離し、所定の条件で脱脂を行った後、これを焼成し、外部端子が形成される。外部端子は、支持体30から剥離し、焼成した焼成体に銀を含有する導体ペーストを塗布し、乾燥させて焼成し、はんだ実装性を確保するためにニッケルとスズのメッキが施される。
In this manner, the coil conductor pattern 12E was formed on the photosensitive insulator film 31A by stacking the coil conductor patterns and the photosensitive insulator film for the number of layers necessary to obtain a predetermined inductance value. The laminate is formed by applying a photosensitive insulator paste containing an acrylic binder resin having photopolymerization curability on the photosensitive insulator film to form a photosensitive insulator film that becomes the exterior insulator layer 11F. A coil element is formed. Here, although there is a method of forming the exterior insulator layer with a non-photosensitive insulator paste, the photosensitive conductive film constituting the coil conductor pattern 12E and the non-photosensitive insulator film constituting the insulator layer 11E are not. Due to the shrinkage difference from the photosensitive insulator paste, cracks and peeling occur between the exterior insulator layer, the coil conductor pattern 12E, and the insulator layer 11E during degreasing. In addition, if the insulation layer for the exterior is thin or has a pinhole, the chemical solution for plating the external terminal enters the element body and the characteristics deteriorate, so it is necessary to form two or more layers. desirable. In the case where two or more exterior insulator layers are formed, the adhesiveness of the photosensitive insulator film can be reduced by exposing and developing after forming the first photosensitive insulator film.
As shown in FIG. 4, the laminate formed on the support is cut by a cutting machine or the like at the dotted line, and is divided into individual products, peeled off from the support 30, and degreased under predetermined conditions. After performing, this is baked and an external terminal is formed. The external terminals are peeled off from the support 30, and a conductive paste containing silver is applied to the fired fired body, dried and fired, and then plated with nickel and tin to ensure solder mountability.

この様に本発明の積層型電子部品の製造方法で積層型電子部品を製造したところ、従来の不安定ながら製造したものの様に特性が劣化することなく、0402サイズ(0.4×0.2×0.2mm)、03015サイズ(0.3×0.15×0.15mm)、0201サイズ(0.2×0.1×0.1mm)を安定的に製造することができた。本発明の積層型電子部品の製造方法で製造した0402サイズ(0.4×0.2×0.2mm)の積層型電子部品の特性を測定したところ、図5に示す様な特性が得られた。なお、図5において、51はインダクタンス値が1nHのものの周波数に対するQ値、52はインダクタンス値が5.6nHのものの周波数に対するQ値、53はインダクタンス値が8.2nHのものの周波数に対するQ値をそれぞれ示している。   In this way, when the multilayer electronic component is manufactured by the method of manufacturing the multilayer electronic component of the present invention, the 0402 size (0.4 × 0.2 × 0.2 mm), 03015 size (0.3 × 0.15 × 0.15 mm), and 0201 size (0.2 × 0.1 × 0.1 mm) could be stably produced. When the characteristics of a 0402 size (0.4 × 0.2 × 0.2 mm) multilayer electronic component manufactured by the multilayer electronic component manufacturing method of the present invention were measured, the characteristics shown in FIG. 5 were obtained. It was. In FIG. 5, 51 is the Q value for the frequency with an inductance value of 1 nH, 52 is the Q value for the frequency with an inductance value of 5.6 nH, and 53 is the Q value for the frequency with an inductance value of 8.2 nH. Show.

以上、本発明の積層型電子部品の製造方法の実施例を述べたが、本発明はこの実施例に限定されるものではない。例えば、外部端子は、図4に示す様に点線の部分で切断することにより、製品個々に分割し、支持体から剥離し、これに銀を含有する導体ペーストを塗布し、脱脂し、焼成して形成されてもよい。   As mentioned above, although the Example of the manufacturing method of the multilayer electronic component of this invention was described, this invention is not limited to this Example. For example, as shown in FIG. 4, the external terminal is cut at the dotted line portion to divide each product, peel off from the support, apply a conductive paste containing silver to this, degrease, and fire. May be formed.

本発明の積層型電子部品の製造方法の実施例に係る積層型電子部品の分解斜視図である。It is a disassembled perspective view of the multilayer electronic component which concerns on the Example of the manufacturing method of the multilayer electronic component of this invention. 本発明の積層型電子部品の製造方法の実施例に係る積層型電子部品の斜視図である。It is a perspective view of the multilayer electronic component which concerns on the Example of the manufacturing method of the multilayer electronic component of this invention. 本発明の積層型電子部品の製造方法の実施例を模式的に示す製造工程説明図である。It is manufacturing process explanatory drawing which shows typically the Example of the manufacturing method of the multilayer electronic component of this invention. 本発明の積層型電子部品の製造方法の積層体を製品個々に分離する工程を模式的に説明する説明図である。It is explanatory drawing which illustrates typically the process of isolate | separating the laminated body of the manufacturing method of the multilayer electronic component of this invention into each product. 本発明の積層型電子部品の製造方法によって製造された積層型電子部品の特性図である。It is a characteristic view of the multilayer electronic component manufactured by the manufacturing method of the multilayer electronic component of this invention.

符号の説明Explanation of symbols

11A〜11F 絶縁体層
12A〜12E 導体パターン
11A-11F Insulator layer 12A-12E Conductor pattern

Claims (2)

絶縁体層と導体パターンを積層し、積層体内に該導体パターンによって回路素子が形成された積層型電子部品の製造方法において、
支持体上に光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体ペーストを用い、露光、現像を施して第1の感光性絶縁体膜を形成する工程、
第1の感光性絶縁体膜上に、光重合硬化性を有するセルロース系バインダー樹脂を含有する感光性導電ペーストを用い、露光、現像を施して形成された導体パターンと、光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体ペーストを用い、露光、現像を施して形成された第2の感光性絶縁体膜とが積み重ねられる工程及び、
これらの積層体上に、光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体ペーストを用いて第3の感光性絶縁体膜を形成する工程を備えたことを特徴とする積層型電子部品の製造方法。
In a method for manufacturing a laminated electronic component in which an insulator layer and a conductor pattern are laminated, and a circuit element is formed by the conductor pattern in the laminate,
Using a photosensitive insulator paste containing an acrylic binder resin having photopolymerization curability on a support, exposing and developing to form a first photosensitive insulator film;
A conductive pattern formed by exposing and developing a photosensitive conductive paste containing a cellulose-based binder resin having photopolymerization curability on the first photosensitive insulator film, and having photopolymerization curability. A step in which a photosensitive insulator paste containing an acrylic binder resin is used, and a second photosensitive insulator film formed by exposure and development is stacked; and
A laminate type comprising a step of forming a third photosensitive insulator film on the laminate using a photosensitive insulator paste containing an acrylic binder resin having photopolymerization curability. Manufacturing method of electronic components.
絶縁体層と導体パターンを積層し、積層体内に該導体パターンによって回路素子が形成された積層型電子部品の製造方法において、
支持体上に感光性絶縁体ペーストと感光性導電ペーストを用いて絶縁体層と導体パターンを積層して積層体内にコイル素子が形成され、該積層体を製品個々へ分割した後外部端子を形成し、かつ、
該支持体上に絶縁体層と導体パターンを積層する工程が、
光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体膜を形成し、露光、現像する工程、
該感光性絶縁体膜上に光重合硬化性を有するセルロース系バインダー樹脂を含有する感光性導電ペーストを塗布して該感光性絶縁体膜の全面又は所定部分に感光性導電膜を形成し、露光、現像して該感光性絶縁体膜上にコイル用導体パターンを形成する工程、
該コイル用導体パターンが形成された感光性絶縁体膜上に光重合硬化性を有するアクリル系バインダー樹脂を含有する感光性絶縁体ペーストを塗布して該コイル用導体パターンが形成された感光性絶縁体膜の全面又は所定部分に感光性絶縁体膜を形成し、露光、現像して該感光性絶縁体膜に上下層の該コイル用導体パターンを接続するためのスルーホールを形成する工程及び、
該スルーホール内に光重合硬化性を有するセルロース系バインダー樹脂を含有する感光性導電ペーストを充填すると共に、該スルーホールが形成された感光性絶縁体膜上に光重合硬化性を有するセルロース系バインダー樹脂を含有する感光性導電ペーストを塗布して該感光性絶縁体膜の全面又は所定部分に感光性導電膜を形成し、露光、現像して下層のコイル用導体パターンと接続されたコイル用導体パターンを形成する工程を備えたことを特徴とする積層型電子部品の製造方法。
In a method for manufacturing a laminated electronic component in which an insulator layer and a conductor pattern are laminated, and a circuit element is formed by the conductor pattern in the laminate,
A coil element is formed in a laminate by laminating an insulator layer and a conductor pattern using a photosensitive insulator paste and a photosensitive conductive paste on a support, and forming the external terminals after dividing the laminate into individual products. And
Laminating an insulator layer and a conductor pattern on the support,
Forming a photosensitive insulator film containing an acrylic binder resin having photopolymerization curability, exposing and developing;
On the photosensitive insulator film, a photosensitive conductive paste containing a cellulose-based binder resin having photopolymerization curability is applied to form a photosensitive conductive film on the entire surface or a predetermined portion of the photosensitive insulator film, and then exposed. And developing to form a coil conductor pattern on the photosensitive insulator film,
Photosensitive insulation having a coil conductor pattern formed by applying a photosensitive insulator paste containing a photopolymerization-curable acrylic binder resin on the photosensitive insulator film having the coil conductor pattern formed thereon Forming a photosensitive insulator film on the entire surface or a predetermined portion of the body film, exposing and developing to form through holes for connecting the upper and lower coil conductor patterns to the photosensitive insulator film; and
The through-hole is filled with a photosensitive conductive paste containing a photo-polymerizable curable cellulose-based binder resin, and the photo-curing curable cellulose-based binder is formed on the photosensitive insulator film in which the through-hole is formed. A coil conductive conductor coated with a conductive conductive paste containing a resin to form a photosensitive conductive film on the entire surface or a predetermined portion of the photosensitive insulator film, and then exposed and developed to be connected to the lower coil conductor pattern. A method of manufacturing a multilayer electronic component, comprising a step of forming a pattern.
JP2005170511A 2005-06-10 2005-06-10 Manufacturing method of multilayer electronic component Expired - Fee Related JP4579774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005170511A JP4579774B2 (en) 2005-06-10 2005-06-10 Manufacturing method of multilayer electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005170511A JP4579774B2 (en) 2005-06-10 2005-06-10 Manufacturing method of multilayer electronic component

Publications (2)

Publication Number Publication Date
JP2006344860A JP2006344860A (en) 2006-12-21
JP4579774B2 true JP4579774B2 (en) 2010-11-10

Family

ID=37641576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005170511A Expired - Fee Related JP4579774B2 (en) 2005-06-10 2005-06-10 Manufacturing method of multilayer electronic component

Country Status (1)

Country Link
JP (1) JP4579774B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095750A (en) * 2002-08-30 2004-03-25 Toko Inc Method for manufacturing laminated electronic component
JP2005109097A (en) * 2003-09-30 2005-04-21 Murata Mfg Co Ltd Inductor and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01120880A (en) * 1987-11-04 1989-05-12 Toyota Motor Corp Manufacture of laminated ceramic
JP3066455B2 (en) * 1991-10-22 2000-07-17 ティーディーケイ株式会社 Method of manufacturing ceramic green sheet and ceramic laminate component having foreign material portion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095750A (en) * 2002-08-30 2004-03-25 Toko Inc Method for manufacturing laminated electronic component
JP2005109097A (en) * 2003-09-30 2005-04-21 Murata Mfg Co Ltd Inductor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2006344860A (en) 2006-12-21

Similar Documents

Publication Publication Date Title
CN100562995C (en) The base substrate of laminate packaging and manufacture method thereof
WO2016147993A1 (en) Planar coil element and method for manufacturing planar coil element
CN101170875B (en) Circuit board and its manufacture method
US20160276094A1 (en) Inductor and method of manufacturing the same
US11600430B2 (en) Inductor including high-rigidity insulating layers
JP2007027351A (en) Manufacturing method of laminated electronic component
KR20150083424A (en) Method for manufacturing wiring board
JP4579774B2 (en) Manufacturing method of multilayer electronic component
US20200296840A1 (en) Folded Multilayered Flexible Circuit Board and Methods of Manufacturing Thereof
JP6447156B2 (en) Manufacturing method of multilayer wiring board
US10477678B1 (en) Substrate structure and manufacturing method thereof
JP2003068555A (en) Method for forming conductive pattern of electronic component, and common mode choke coil
KR20180025113A (en) Manufacturing method of inductor and inductor
KR101044117B1 (en) Method of Fabricating Printed Circuit Board
JP4577479B2 (en) Sheet forming method having different material parts and sheet having different material parts used for multilayer wiring board formation
KR101020848B1 (en) Method for manufacturing flexible printed circuits board
TWI815556B (en) Circuit board structure and manufacturing method thereof
JP4875444B2 (en) Manufacturing method of multilayer electronic component
JP2000323839A (en) Manufacture of multilayer substrate
KR100704917B1 (en) Printed circuit board and the manufacturing method thereof
US20140138132A1 (en) Printed circuit board and manufacturing method thereof
KR20070088175A (en) Multi-layer printed circuit board and method of manufacturing the same
JP2007067427A (en) Sheet used for constituting electronic component
JP2002232137A (en) Manufacturing method of multilayer wiring board
CN117440599A (en) Circuit board structure and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4579774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees