JP4578832B2 - Structure factor tensor element determination method and X-ray diffractometer utilization method therefor - Google Patents

Structure factor tensor element determination method and X-ray diffractometer utilization method therefor Download PDF

Info

Publication number
JP4578832B2
JP4578832B2 JP2004071667A JP2004071667A JP4578832B2 JP 4578832 B2 JP4578832 B2 JP 4578832B2 JP 2004071667 A JP2004071667 A JP 2004071667A JP 2004071667 A JP2004071667 A JP 2004071667A JP 4578832 B2 JP4578832 B2 JP 4578832B2
Authority
JP
Japan
Prior art keywords
scattering
polarized light
polarization
incident
structure factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004071667A
Other languages
Japanese (ja)
Other versions
JP2005227251A (en
Inventor
寛幸 大隅
昌樹 高田
宏仁 壽榮松
剛 藤縄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Japan Synchrotron Radiation Research Institute
Original Assignee
Rigaku Corp
Japan Synchrotron Radiation Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Corp, Japan Synchrotron Radiation Research Institute filed Critical Rigaku Corp
Priority to JP2004071667A priority Critical patent/JP4578832B2/en
Publication of JP2005227251A publication Critical patent/JP2005227251A/en
Application granted granted Critical
Publication of JP4578832B2 publication Critical patent/JP4578832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、X線磁気散乱を基にした磁性材料〔例えば、永久磁石、磁気ヘッド、垂直磁化膜、磁性半導体、分子磁性体、有機磁性体〕の磁気構造評価に利用される方法に関するものである。さらに、本発明は、結晶性材料に於いて共鳴散乱を基にした元素選択的構造評価に利用される方法に関するものである。  The present invention relates to a method used for evaluating the magnetic structure of a magnetic material (for example, a permanent magnet, a magnetic head, a perpendicular magnetization film, a magnetic semiconductor, a molecular magnetic material, or an organic magnetic material) based on X-ray magnetic scattering. is there. Furthermore, the present invention relates to a method used for elemental selective structure evaluation based on resonance scattering in a crystalline material.

特に、本発明の方法は、偏光方向を制御した直線偏光のX線を試料に入射し、その入射偏光を変化させつつ試料から発生する散乱X線強度を回折計を使用して測定し、その散乱X線強度の入射偏光に対する依存性を解析することにより、試料の構造因子テンソルを解析することを特徴とする方法である。  In particular, in the method of the present invention, linearly polarized X-rays whose polarization direction is controlled are incident on a sample, and the scattered X-ray intensity generated from the sample is measured using a diffractometer while changing the incident polarized light. By analyzing the dependence of scattered X-ray intensity on incident polarization, the structure factor tensor of the sample is analyzed.

X線散乱実験の目的は、被測定物の構造因子を決定することにある。構造因子とは、物質の単位構造による散乱振幅を与える因子のことで、散乱ベクトルとX線の偏光に依存する。通常の散乱過程では、波数ベクトルkなる散乱波の散乱振幅は、波数ベクトルkなる入射波の振幅をkに垂直な平面に射影し、古典電子半径(2.818×10−15mなる値をもつ物理定数の名称)rと散乱体観測点間距離rの比と単位構造の電荷密度のフーリエ変換ρ(k−k)とを乗じたものになっている。射影の効果は、kとkとが張る散乱面内の偏光(π偏光)成分のみに現れ、散乱面に垂直な偏光(σ偏光)成分には現れない。
以上を式で表現すれば、
The purpose of the X-ray scattering experiment is to determine the structure factor of the object to be measured. The structure factor is a factor that gives the scattering amplitude by the unit structure of the substance, and depends on the scattering vector and the polarization of the X-ray. In the normal scattering process, the scattering amplitude of the scattered wave having the wave number vector k f is obtained by projecting the amplitude of the incident wave having the wave number vector k i onto a plane perpendicular to k f , and the classical electron radius (2.818 × 10 −15 m name physical constant with the value that will) have become multiplied by the r e a Fourier transform of the charge density ratio and the unit structure of the distance r between the scattering body observation point ρ (k f -k i). The effect of the projection appears only in the polarized light (π-polarized light) component in the scattering plane stretched by k i and k f, and does not appear in the polarized light (σ-polarized light) component perpendicular to the scattering plane.
If the above is expressed by an expression,

Figure 0004578832
となる。ここで、2θは散乱角(kとkのなす角)であり、被側定物の構造因子は対角成分のみのテンソル(複数の成分をもち、空間の座標変換に対していくつかのベクトルの成分の積に対応した変換を受けるもの)で与えられる。ところが、(式1)では扱えない特殊な散乱過程が存在する。
Figure 0004578832
It becomes. Here, 2θ is a scattering angle (an angle formed by k i and k f ), and the structure factor of the fixed object is a tensor with only a diagonal component (having a plurality of components, and some coordinate conversion of space Which receives the transformation corresponding to the product of the vector components of However, there is a special scattering process that cannot be handled by (Equation 1).

共鳴X線散乱は、吸収端近傍のエネルギーを持つX線に対して原子散乱因子が異常分散を示すことに起因する散乱である。共鳴準位が結晶方位に対して異方的である場合、構造因子テンソルに非対角項が生じる。このような散乱として、テンプルトン−テンプルトン散乱、共鳴磁気散乱が知られており、結晶性材料の元素選択的構造評価に利用されている。非共鳴磁気散乱は、磁気モーメントによるX線の散乱で、散乱強度が非常に弱いのが特徴である。一般に、非共鳴磁気散乱に対する構造因子テンソルの非対角項は有限の大きさを持っている。構造因子テンソルに非対角項が生じている特殊な散乱を、異方的なX線感受率テンソルによる散乱(ATS散乱)という。  Resonant X-ray scattering is scattering caused by the atomic scattering factor exhibiting anomalous dispersion with respect to X-rays having energy near the absorption edge. When the resonance level is anisotropic with respect to the crystal orientation, an off-diagonal term is generated in the structure factor tensor. As such scattering, Templeton-Templeton scattering and resonance magnetic scattering are known, and are used for element-selective structure evaluation of crystalline materials. Non-resonant magnetic scattering is X-ray scattering caused by a magnetic moment and is characterized by a very low scattering intensity. In general, the off-diagonal term of the structure factor tensor for non-resonant magnetic scattering has a finite size. Special scattering in which off-diagonal terms are generated in the structure factor tensor is called scattering by an anisotropic X-ray susceptibility tensor (ATS scattering).

構造因子テンソルの各要素を決定するためには、散乱の各チャネル(σ偏光→σ偏光、σ偏光→π偏光、π偏光→σ偏光、π偏光→π偏光)の散乱振幅を調べる必要がある。従来法では、σ(π)偏光成分のみの直線偏光X線を試料に入射し、散乱X線を偏光解析することでσ(π)偏光→σ(π)偏光、σ(π)偏光→π(σ)偏光の各チャネルに対する構造因子テンソルの要素を決定していた。散乱X線の偏光解析は、散乱角が90度なる条件では散乱面内の偏光成分が散乱振幅を持たない現象を利用し、非磁性かつ単結晶なる偏光解析結晶を散乱角90度で使用することで、偏光解析結晶の散乱面に垂直な偏光成分のみを選択的に測定することにより行われる。このことは、(式1)に2θ=90°なる条件を課すことですぐに理解される。現在知られているX線領域の偏光解析の方法は、非磁性単結晶を偏光解析結晶として用いるこの方法が唯一の方法である。  In order to determine each element of the structure factor tensor, it is necessary to examine the scattering amplitude of each channel of scattering (σ polarization → σ polarization, σ polarization → π polarization, π polarization → σ polarization, π polarization → π polarization). . In the conventional method, linearly polarized X-rays having only a σ (π) polarization component are incident on a sample, and the scattered X-rays are subjected to polarization analysis so that σ (π) polarized light → σ (π) polarized light, σ (π) polarized light → π The element of the structure factor tensor for each channel of (σ) polarization was determined. Polarization analysis of scattered X-rays uses a phenomenon that the polarization component in the scattering plane does not have a scattering amplitude under the condition that the scattering angle is 90 degrees, and uses a non-magnetic and single crystal ellipsometric crystal at a scattering angle of 90 degrees. Thus, it is performed by selectively measuring only the polarization component perpendicular to the scattering plane of the ellipsometric crystal. This is readily understood by imposing the condition 2θ = 90 ° on (Equation 1). The currently known X-ray region ellipsometry method is the only method using a non-magnetic single crystal as the ellipsometry crystal.

発明が解決しようとする課題Problems to be solved by the invention

以上のように構造因子テンソルの決定に必要なX線領域の偏光解析の方法は既に提案されている。しかし、構造因子テンソルの迅速決定および測定感度向上のために、偏光解析結晶を用いることにより生じる以下の問題を解決しなければならない。
1)偏光解析結晶での回折過程における入射X線と散乱X線の強度比は、ほとんどの場合1/100を下回り、測定感度の著しい低下を引き起こしている。その原因は、偏光解析に使用する2θ=90°の回折線では原子散乱因子が小さく、さらに原子の熱振動により回折線がぼやけることにある。
As described above, a method for analyzing the polarization of the X-ray region necessary for determining the structure factor tensor has already been proposed. However, in order to quickly determine the structure factor tensor and improve the measurement sensitivity, the following problems caused by using ellipsometric crystals must be solved.
1) The intensity ratio of incident X-rays and scattered X-rays in the diffraction process in the ellipsometric crystal is almost less than 1/100, causing a significant decrease in measurement sensitivity. The reason is that the diffraction line of 2θ = 90 ° used for the ellipsometry has a small atomic scattering factor, and the diffraction line is blurred due to thermal vibration of atoms.

2)構造因子テンソルを決定するために積分強度を非常に正確に測定する場合、試料結晶のみならず偏光解析結晶をも微小角回転させ積分強度を得る必要がある。これには、二軸の回転角により張られる仮想平面上の二次元走査測定を必要とし、測定に長時間を要する。  2) When the integrated intensity is measured very accurately in order to determine the structure factor tensor, it is necessary to obtain not only the sample crystal but also the ellipsometric crystal by a small angle rotation to obtain the integrated intensity. This requires a two-dimensional scanning measurement on a virtual plane stretched by the biaxial rotation angle, and takes a long time for the measurement.

3)構造因子テンソルを決定するために偏光解析結晶での回折の効果を除外しようとする場合、試料からの散乱X線の角度発散まで考慮した偏光解析結晶の分解能関数をデコンボリューションする必要がある。その解析は大変煩雑であり、試料と偏光解析結晶に依存し一般化は難しい。  3) When excluding the effect of diffraction in the ellipsometric crystal to determine the structure factor tensor, it is necessary to deconvolute the ellipsometric crystal resolution function taking into account the angular divergence of the scattered X-rays from the sample. . The analysis is very complicated and depends on the sample and the ellipsometric crystal and is difficult to generalize.

4)偏光解析結晶の面間隔は離散的でかつ上限があるために、2θ=90°なる散乱角という条件を満足するX線のエネルギーも離散的でかつ下限がある。このことは、吸収端により使用するX線のエネルギーが制限される共鳴X線散乱において、2θ=90°なる散乱角という条件を満足できない問題を生じている。特に、結晶の最大面間隔に制限されるX線のエネルギーの下限を下回る軟X線領域では、偏光解析は不可能な状態にある。  4) Since the plane spacing of the ellipsometric crystal is discrete and has an upper limit, the energy of X-rays satisfying the condition of a scattering angle of 2θ = 90 ° is also discrete and has a lower limit. This causes a problem that the condition of a scattering angle of 2θ = 90 ° cannot be satisfied in resonance X-ray scattering in which the energy of X-rays used by the absorption edge is limited. In particular, ellipsometry is impossible in the soft X-ray region below the lower limit of the X-ray energy limited by the maximum interplanar spacing of the crystal.

5)偏光解析結晶を利用する偏光解析に使用できる検出器は0次元検出器に限られる。このため、1次元検出器や2次元検出器が利用できず測定の効率が極めて低くなっている。  5) Detectors that can be used for ellipsometry using ellipsometry crystals are limited to zero-dimensional detectors. For this reason, a one-dimensional detector or a two-dimensional detector cannot be used, and the measurement efficiency is extremely low.

課題を解決するための手段Means for solving the problem

本発明は、試料からの散乱X線の偏光解析をするために偏光解析結晶を利用することにより生じた問題を解決し、構造因子テンソルの迅速決定および測定感度向上を図るものである。従来法では定常な偏光X線を試料に入射し、散乱X線を偏光解析することで構造因子テンソルを決定していたが、本発明の方法では、散乱X線の偏光解析過程を廃止することで従来法のデメリットを全て回避し、入射偏光を変化させつつ試料からの散乱X線強度を偏光解析せずに測定することで構造因子テンソルを決定する。これにより、偏光解析過程での試料からの散乱X線強度の損失が回避され測定感度が向上し、測定における積分時間の短縮と高次元検出器使用による測定の迅速化を図ることができる。偏光解析結晶を使用せずに構造因子テンソルを決定する従来技術はなく、本発明は全く新しい発想によるものである。  The present invention solves the problems caused by using an ellipsometric crystal for ellipsometric analysis of scattered X-rays from a sample, and promptly determines a structure factor tensor and improves measurement sensitivity. In the conventional method, stationary polarized X-rays are incident on the sample, and the structure factor tensor is determined by analyzing the scattered X-rays. However, in the method of the present invention, the ellipsometric process of the scattered X-rays is abolished. Thus, all the disadvantages of the conventional method are avoided, and the structure factor tensor is determined by measuring the scattered X-ray intensity from the sample without changing the polarization while changing the incident polarization. This avoids loss of scattered X-ray intensity from the sample during the ellipsometric analysis, improves measurement sensitivity, shortens integration time in measurement, and speeds up measurement by using a high-dimensional detector. There is no prior art to determine the structure factor tensor without using ellipsometric crystals, and the present invention is based on a completely new idea.

発明の効果The invention's effect

本発明の方法では、試料からの散乱X線強度の入射偏光依存性を測定、解析することで、偏光解析結晶を使用することなく構造因子テンソルが決定可能である、という本発明に特有の顕著な効果を生ずる。  In the method of the present invention, by measuring and analyzing the dependence of the scattered X-ray intensity from the sample on the incident polarization, the structure factor tensor can be determined without using an ellipsometric crystal. Produces a good effect.

更に、従来法の上記問題点1)〜5)全てが回避されるため測定感度の向上した測定も迅速化される、という本発明に特有の顕著な効果を生ずる。又、入射偏光を制御する方法として開発した可変散乱面法とその実施に必要な六軸回折計の角度決定のアルゴリズムは、既存の放射光源に手を加えることなく本発明の方法を適用可能とする、本発明に特有の顕著な効果を生じる。  Furthermore, since all the above problems 1) to 5) of the conventional method are avoided, the remarkable effect peculiar to the present invention that the measurement with improved measurement sensitivity is speeded up is produced. In addition, the variable scattering surface method developed as a method for controlling incident polarized light and the algorithm for determining the angle of the six-axis diffractometer necessary for its implementation can be applied to the method of the present invention without modifying the existing radiation source. This produces a remarkable effect peculiar to the present invention.

[偏光の説明]
入射X線の波数ベクトルkと散乱X線の波数ベクトルkとが張る平面を散乱面と呼ぶ。この散乱面に垂直な偏光をσ偏光、平行な偏光をπ偏光と呼ぶ。
[基本となるアイデア]
入射X線には直線偏光を使用する。入射X線の電場をE(eσcosθ+eπsinθ)と表すことにする。ここで、Eは電場の振幅、eσ,eは各偏光方向の単位ベクトル、θは媒介変数であ

Figure 0004578832
[Description of polarized light]
A plane formed by the wave vector k i of incident X-rays and the wave vector k f of scattered X-rays is called a scattering plane. The polarized light perpendicular to the scattering plane is called σ polarized light, and the parallel polarized light is called π polarized light.
[Basic idea]
Linearly polarized light is used for incident X-rays. The electric field of the incident X-ray is expressed as E 0 (e σ cos θ + e π sin θ). Here, E 0 is the electric field amplitude, e σ , e x are unit vectors in each polarization direction, and θ is a parameter.
Figure 0004578832

Figure 0004578832
と表される。ここで、rは古典電子半径である。散乱強度は散乱振幅の自乗で表されるので、以下の式変形
Figure 0004578832
It is expressed. Here, r e is the classical electron radius. Since the scattering intensity is expressed by the square of the scattering amplitude,

Figure 0004578832
を経て、最終的に
Figure 0004578832
And finally

Figure 0004578832
ある。これよりα≠0の場合は直ちに電荷散乱でないことが結論される。これまでの議論を要約すると次のようになる。散乱強度の入射偏光依存性は一般にI(θ)=A+Bcos(2θ+α)と記述され、位相αの値から電荷散乱か磁気散乱か判別することが可能である。
[テンソル要素の決定]
入射X線には直線偏光を使用する。後述する方法により偏光を制御し、散乱強度の入射偏光依存性I(θ)を測定する。散乱強度の入射偏光依存性I(θ)を示す図1に示されるように、測定結果をフィッティングし、散乱強度の入射偏光依存性I(θ)の3つのパラメータA,B,αを決定する。構造因子テンソルの4未知変数に対し、フィッティングして得られたパラメータA,B,αに関する3束縛条件が課せられているので、この段階で構造因子テンソルは1パラメータ表示になっている。アジマス角(散乱ベクトルを軸とした試料回転の擬角度(擬角度とは、回折計の有する回転軸と一対一対応の関係がない角度))を別の値に固定し、同様の測定を重ねることで多数の束縛条件を課し、構造因子テンソルの各要素を制度よく決定することが可能である。
[偏光の制御方法]
新規提案の方法では、直線偏光した入射X線の偏光方法の自在な制御が必要となる。ここでは、3つの実施案を提案する。
Figure 0004578832
is there. From this, it is concluded that when α ≠ 0, it is not charge scattering immediately. The summary of the discussion so far is as follows. The incident polarization dependence of the scattering intensity is generally described as I (θ) = A + Bcos (2θ + α), and it is possible to determine whether it is charge scattering or magnetic scattering from the value of phase α.
[Determination of tensor elements]
Linearly polarized light is used for incident X-rays. Polarization is controlled by a method to be described later, and the incident polarization dependence I (θ) of the scattering intensity is measured. As shown in FIG. 1 showing the incident polarization dependence I (θ) of the scattering intensity, the measurement result is fitted to determine three parameters A, B, and α of the incident polarization dependence I (θ) of the scattering intensity. . Since three constraint conditions regarding parameters A, B, and α obtained by fitting are imposed on the four unknown variables of the structure factor tensor, the structure factor tensor is displayed as one parameter at this stage. Fix the azimuth angle (pseudo-angle of sample rotation with the scattering vector as an axis (the pseudo-angle is an angle that does not have a one-to-one relationship with the rotation axis of the diffractometer)) to another value, and repeat the same measurement. In this way, it is possible to impose many constraints and determine each element of the structural factor tensor systematically.
[Polarization control method]
The newly proposed method requires free control of the polarization method of linearly polarized incident X-rays. Here, three implementation plans are proposed.

(1)偏光面可変のアンジュレータの使用
シンクロトロン放射の発生装置で単色性のよい高輝度光を得るために用いる挿入光源をアンジュレータと言う。電子軌道は規則配列した磁石の作る磁場に垂直な面内で蛇行し、直線偏光した放射光(電場ベクトルの振動が電子の軌道面内に閉じ込められているため)が発生する。このアンジュレータの磁場方向を可変とすることで、入射X線の偏光方向を自在に制御することが可能となる。この方法は、蓄積リングという大きなシステムに組み込まれた挿入光源を改造する必要があり、技術的難易度が非常に高い。
(1) Use of undulator with variable polarization plane An insertion light source used to obtain high-intensity light with good monochromaticity in a synchrotron radiation generator is called an undulator. The electron trajectory meanders in a plane perpendicular to the magnetic field created by the regularly arranged magnets, and linearly polarized radiation (because the electric field vector oscillation is confined in the electron trajectory plane) is generated. By making the magnetic field direction of this undulator variable, the polarization direction of incident X-rays can be freely controlled. This method requires modification of an insertion light source incorporated in a large system called a storage ring, and is very technically difficult.

(2)移相子(光の偏光を変える働きをする光学素子)の使用
完全に近い結晶中ではX線が多重散乱を受け複屈折を生じる。複屈折結晶中では、σ偏光成分とπ偏光成分に対する屈折率が異なるため、結晶中の透過距離に比例した位相差が両偏光間に生じる。この現象を利用してσ偏光成分とπ偏光成分の位相差を制御すれば、入射X線の偏光方向を自在に制御することが可能となる。この方法は、複屈折結晶の最適エネルギー帯に実験条件が限定されてしまう、目的とする複屈折結晶の動作には別途回折計を必要とする、移相子への入射X線の発散角に敏感なため生成された偏光をモニターする必要がある等の難点がある。
(2) Use of a phase shifter (an optical element that functions to change the polarization of light) In a nearly perfect crystal, X-rays undergo multiple scattering and cause birefringence. In a birefringent crystal, since the refractive indices for the σ-polarized component and the π-polarized component are different, a phase difference proportional to the transmission distance in the crystal is generated between both polarized lights. If the phase difference between the σ polarization component and the π polarization component is controlled using this phenomenon, the polarization direction of incident X-rays can be freely controlled. In this method, the experimental conditions are limited to the optimum energy band of the birefringent crystal, and a separate diffractometer is required for the operation of the target birefringent crystal. There is a drawback that it is necessary to monitor the generated polarized light because of its sensitivity.

(3)多軸回折計の使用
自在に制御したい入射X線の偏光方向とは、回折実験での散乱面が規定する偏光方向である。これは「入射X線の偏光方向」と「回折実験の散乱面」の相対的な関係に意味があり、入射X線の偏光の絶対的方向(水平または鉛直など)には意味がない。故に、入射X線に定常な直線偏光を使用しても、散乱面を可変とすることでπ偏光からσ偏光まで自在に偏光を制御することが可能となる。一般に使用されている四軸回折計に較べ自由度の大きい多軸回折計を使用することで、散乱面を可変とすることが可能である。この方法の利点は、比較的容易に入射X線の偏光方向を制御することが可能な点である。
[可変散乱面法]
可変散乱面法とは、入射X線に水平直線偏光を使用しながら、自由度の大きい多軸回折計により散乱面を可変とすることで、入射X線の散乱面に対する偏光方向を制御する方法であり、この可変散乱面法の概念図が図2に示されている。図2(a)に偏光解析結晶を使用した固定散乱面の従来方式の概念図を、図2(b)に偏光解析結晶を使用しない可変散乱面法の概念図を示した。入射X線の波数ベクトル方向を軸にした散乱面の鉛直面からの傾斜角θは、入射X線の偏光状態を記述する重要なパラメータである。入射X線にはアンジュレータからの水平直線偏光がそのまま利用可能であり、回折計の改良のみで本発明の実施が可能である。
(発明に係る装置、プロセス等の図面)
[使用した回折計]
HUBER社5020型六軸回折計。通常の四軸回折計(試料:η,χ,φ|検出器:δ)に試料軸μ、検出器軸νを加えた六軸で構成される。
図3は、実験室系の座標軸(x,y,z)の定義と回折計各軸(δ、η、χ、φ、μ、ν)の原点・回転方向の定義を示す図である。図中の各軸は原点にあり、正回転方向を矢印により示している。
[六軸角決定のアルゴリズム]
上記の「試料四軸−検出器二軸」型回折計の一意な六軸角決定には、3つの束縛条件が必要である。束縛条件の課し方は無数にあるが、可変散乱面法で偏光状態を記述するθとATS散乱で重要なアジマス角Ψを任意角に指定可能とするのが、構造因子テンソル要素決定に最も都合がよい。残る1自由度には、死角領域を少なくするためにν=2μなる束縛条件を課した。実際の機械軸に対応しない擬角度のθとΨを任意角に指定可能な六軸回折計の制御モードは前例がなく、これを「θ−Ψ固定モード」と名付けることにする。
これより、各軸角の計算に使用する表式を与える。前提条件は、格子定数a,b,c,α,β,γが既知で、UB行列(結晶方位行列:結晶の逆格子と実験室系の座標との変換行列のこと。結晶に固有の因子Bと結晶の置き方に依存する因子Uからなる。)も解けていることである。UB行列を解くアルゴリズムは広く知られているので、ここでは触れないことにする。与える情報は、回折条件を満足したい逆格子ベクトルhとアジマス角の参照ベクトルn、そして擬角度のθとΨである。はじめに、格子定数とhから散乱角2θを計算する。これは、
(3) Use of a multi-axis diffractometer The polarization direction of incident X-rays to be freely controlled is the polarization direction defined by the scattering surface in the diffraction experiment. This is significant in the relative relationship between the “polarization direction of the incident X-ray” and the “scattering plane of the diffraction experiment”, and has no meaning in the absolute direction (horizontal or vertical) of the polarization of the incident X-ray. Therefore, even if stationary linearly polarized light is used for incident X-rays, polarization can be freely controlled from π-polarized light to σ-polarized light by making the scattering surface variable. The scattering surface can be made variable by using a multi-axis diffractometer having a higher degree of freedom than a commonly used four-axis diffractometer. An advantage of this method is that the polarization direction of incident X-rays can be controlled relatively easily.
[Variable scattering surface method]
The variable scattering surface method is a method of controlling the polarization direction of an incident X-ray with respect to the scattering surface by making the scattering surface variable with a multi-axis diffractometer having a high degree of freedom while using horizontal linearly polarized light for incident X-rays. FIG. 2 shows a conceptual diagram of this variable scattering surface method. FIG. 2A shows a conceptual diagram of a conventional fixed scattering surface using an ellipsometric crystal, and FIG. 2B shows a conceptual diagram of a variable scattering surface method not using an ellipsometric crystal. The inclination angle θ from the vertical plane of the scattering surface with the wave vector direction of the incident X-ray as an axis is an important parameter that describes the polarization state of the incident X-ray. For incident X-rays, horizontal linearly polarized light from an undulator can be used as it is, and the present invention can be implemented only by improving the diffractometer.
(Drawings of apparatus, process, etc. according to invention)
[Diffraction meter used]
HUBER 5020 6-axis diffractometer. It is composed of six axes including a sample axis μ and a detector axis ν added to a normal four-axis diffractometer (sample: η, χ, φ | detector: δ).
FIG. 3 is a diagram showing the definition of the coordinate axis (x, y, z) of the laboratory system and the definition of the origin / rotation direction of each axis (δ, η, χ, φ, μ, ν) of the diffractometer. Each axis in the figure is at the origin, and the positive rotation direction is indicated by an arrow.
[Six Axis Angle Determination Algorithm]
In order to determine the unique six-axis angle of the “sample four-axis-detector two-axis” diffractometer described above, three constraints are required. Although there are an infinite number of ways to impose the constraint conditions, it is most important for the determination of the structure factor tensor element that θ that describes the polarization state by the variable scattering surface method and the azimuth angle Ψ that is important for ATS scattering can be specified as arbitrary angles. convenient. For the remaining one degree of freedom, a constraint condition of ν = 2μ was imposed to reduce the blind spot area. There is no unprecedented control mode of a six-axis diffractometer that can specify pseudo angles θ and Ψ that do not correspond to actual mechanical axes as arbitrary angles, and this will be named “θ-Ψ fixed mode”.
This gives the expression used to calculate each axis angle. The precondition is that the lattice constants a, b, c, α, β, and γ are known, and the UB matrix (crystal orientation matrix: a conversion matrix between the reciprocal lattice of the crystal and the coordinates of the laboratory system. Factors inherent to the crystal B and the factor U that depends on how the crystals are placed.) The algorithm for solving the UB matrix is widely known and will not be described here. The information to be given is the reciprocal lattice vector h, the azimuth angle reference vector n, and the pseudo-angles θ and Ψ that satisfy the diffraction conditions. First, the scattering angle 2θ is calculated from the lattice constant and h. this is,

Figure 0004578832
で与えられる。これより、検出器の2軸の角度が
Figure 0004578832
Given in. From this, the angle of the two axes of the detector

Figure 0004578832
と与えられる。また、試料の4軸の角度は
Figure 0004578832
And given. The angle of the four axes of the sample is

Figure 0004578832
で与えられる。ここで、Vij
Figure 0004578832
Given in. Where V ij is

Figure 0004578832
より与えられる。また、ベクトルuのx成分を[u]χと表している。軸方向の定義は、図3に与えてある。以上の表式を用いると、任意の擬角度θとΨに対する、六軸角を一意に決定することが可能である。これについては、実際にθ−Ψ固定モードで回折実験を行い、計算された位置に反射が観測されることを確認している。
Figure 0004578832
Given more. Further, the x component of the vector u is represented as [u] χ . The definition of the axial direction is given in FIG. Using the above expression, it is possible to uniquely determine the six-axis angles for arbitrary pseudo angles θ and Ψ. For this, a diffraction experiment is actually performed in the θ-Ψ fixed mode, and it is confirmed that reflection is observed at the calculated position.

本発明の実施例を図と共に模式的に示す。希土類金属ディスプロシウムの磁気構造評価を行った。この場合では、散乱ベクトルを試料(ディスプロシウム)の逆格子ベクトルcに沿って変化させ、散乱X線強度を走査している。また、試料の温度は120Kに保持して測定を行った。The Example of this invention is typically shown with a figure. The magnetic structure of rare earth metal dysprosium was evaluated. In this case, the scattered X-ray intensity is scanned by changing the scattering vector along the reciprocal lattice vector c * of the sample (dysprosium). Moreover, the temperature of the sample was kept at 120K for measurement.

図4は、(008)基本反射のcに沿った回折プロファイルである。測定を行った散乱面の傾きは、θ=−60°、アジマス角はΨ=180°である。図中の影をつけた部分の面積がこの反射の積分強度である。FIG. 4 is a diffraction profile along c * of (008) fundamental reflection. The slope of the scattering surface measured is θ = −60 ° and the azimuth angle is ψ = 180 °. The area of the shaded portion in the figure is the integrated intensity of this reflection.

図5は、(008)磁気衛星反射のcに沿った回折プロフィルである。測定を行った散乱面の傾きはθ=−60°、アジマス角はΨ=180°である。図中影をつけた部分の面積がこの反射の積分強度である。5, (008) - is a diffraction profile along the magnetic satellite reflections c *. The slope of the scattering surface where the measurement was performed was θ = −60 °, and the azimuth angle was ψ = 180 °. The area of the shaded portion in the figure is the integrated intensity of this reflection.

(008)磁気衛星反射の積分強度を(008)基本反射の積分強度で除して規格化を行う。これにより、散乱にかかわる試料体積の効果、デバイ・ワーラー因子、ローレンツ因子が相殺される。(008)基本反射と(008)磁気衛星反射の積分強度比のアジマス角依存性を図6に示した。試料の温度は120Kに保持し、散乱面傾斜角を−70°に固定して測定を行った。アジマス角依存性が一定値になるのは、螺旋磁気構造で螺旋軸の方向と散乱ベクトルの方向が一致した場合に限られるので、ディスプロシウムは螺旋磁気構造をもちその螺旋軸がc軸に平行なことが直ちに結論される。また、その場合sinα=0となる。(008) - performing normalized integrated intensity of the magnetic satellite reflections (008) and dividing the integrated intensity of the fundamental reflection. Thereby, the effect of the sample volume related to scattering, the Debye-Waller factor, and the Lorentz factor are offset. (008) the basic reflection (008) - showed azimuth angle dependence of the integrated intensity ratio of the magnetic satellites reflected in Figure 6. The temperature of the sample was kept at 120K, and the measurement was performed with the scattering plane tilt angle fixed at -70 °. The azimuth angle dependence becomes a constant value only when the direction of the helical axis and the direction of the scattering vector coincide with each other in the helical magnetic structure. Therefore, dysprosium has a helical magnetic structure and the helical axis is c-axis. It is immediately concluded that they are parallel. In that case, sin α = 0.

(008)基本反射と(008)磁気衛星反射の積分強度比の散乱面傾斜角依存性を(008) the basic reflection (008) - the scattering plane inclination angle dependence of the integrated intensity ratio of the magnetic satellite reflection

図7に示した。This is shown in FIG.

数4Number 4

の式より(008)基本反射と(008)磁気衛星反射の積分強度比の表式は、Of the equation (008) as a basic reflection (008) - expression for the integrated intensity ratio of the magnetic satellite reflections,

Figure 0004578832
となる。ここで、格子定数c=5.65585Åと波長λ=0.621163Åを使用した。Bの必要条件「非負数」を満たすためにはα=πでなくてはならない。図7中の実線は上式による回帰分析の結果を示したもので、A=0.00214(10)とB=0.00047(14)とが得られた。α≠0であることから、測定した衛星反射の起源が磁気散乱であることが直ちに結論される。
Figure 0004578832
It becomes. Here, the lattice constant c = 5.66555Å and the wavelength λ = 0.621163Å were used. In order to satisfy the necessary condition “non-negative number” of B, α = π must be satisfied. The solid line in FIG. 7 shows the result of regression analysis by the above equation, and A = 0.00214 (10) and B = 0.00047 (14) were obtained. Since α ≠ 0, it is immediately concluded that the origin of the measured satellite reflection is magnetic scattering.

図7に示したアジマス角を180°に固定した測定からは、構造因子テンソルの要素に

Figure 0004578832
角を別の値に固定した測定を行えば束縛条件が増えるので、構造因子テンソルの要素を精度良く決定することが可能である。From the measurement with the azimuth angle fixed at 180 ° shown in FIG.
Figure 0004578832
If the measurement is performed with the angle fixed at a different value, the constraint condition increases, so the elements of the structure factor tensor can be determined with high accuracy.

本発明を実施する放射光施設には、加速された電子が周回する蓄積リング、放射光を発生する光源(偏向電磁石、アンジュレータ、ウィグラー)、光源から得られた放射光を単色化する二結晶分光器、分光器から得られた単色光を利用する実験装置が設置されており、その全体の概略図が図8に示されている。  The synchrotron radiation facility for carrying out the present invention includes a storage ring in which accelerated electrons circulate, a light source for generating synchrotron radiation (a deflection electromagnet, an undulator, and a wiggler), and double crystal spectroscopy for monochromating the synchrotron radiation obtained from the light source An experimental apparatus using monochromatic light obtained from a spectroscope and a spectroscope is installed, and a schematic diagram of the whole is shown in FIG.

図3は装置(多軸回折計)の全体構造を示したものであり、図2は装置(多軸回折計)の使用方法の概略図であり、図1の横軸は散乱面の傾斜角、縦軸は回折計に搭載した検出器により測定した積分反射強度を表している。A,B,αは、積分反射強度の散乱面傾斜  FIG. 3 shows the overall structure of the apparatus (multi-axis diffractometer), FIG. 2 is a schematic view of how to use the apparatus (multi-axis diffractometer), and the horizontal axis in FIG. The vertical axis represents the integrated reflection intensity measured by a detector mounted on the diffractometer. A, B, α are the slopes of the scattering surface of the integrated reflection intensity

角依存性をAngular dependence

数4Number 4

で解析することにより得られる。It is obtained by analyzing with.

散乱強度の入射偏光依存性をI(θ−)を示す図である。  It is a figure which shows I ((theta)-) about the incident polarization dependence of a scattered intensity.

可変散乱面法の概念を示す図である。  It is a figure which shows the concept of a variable scattering surface method.

回折計各軸の原点・回転方向の定義を示す図である。  It is a figure which shows the definition of the origin and rotation direction of each axis | shaft of a diffractometer.

(008)基本反射の回折強度曲線を示す図である。  It is a figure which shows the diffraction intensity curve of (008) basic reflection.

(008)磁気衛星反射の回折強度曲線を示す図である。(008) - it is a diagram showing a diffraction intensity curve of the magnetic satellite reflections.

積分強度比のアジマス角依存性を示す図である。  It is a figure which shows the azimuth angle dependence of integral intensity ratio.

積分強度比の散乱面傾斜角依存性を示す図である。  It is a figure which shows the scattering surface inclination-angle dependence of an integral intensity ratio.

放射光施設の概略を示す図である。  It is a figure which shows the outline of a synchrotron radiation facility.

Claims (3)

偏光解析結晶を使用して散乱の各チャネル(σ偏光→σ偏光、σ偏光→π偏光、π偏光→σ偏光、π偏光→π偏光)の散乱振幅を個別に調べる代わりに、偏光方向を制御した直線偏光のX線を試料に入射し、その入射偏光を変化させつつ試料から発生する各チャネルからの寄与が合成された散乱振幅の自乗量である散乱X線強度を回折計を使用して測定し、その散乱X線強度の入射偏光に対する依存性を解析することにより、試料の構造因子テンソルを決定する方法。 Instead of examining the scattering amplitude of each scattering channel (σ-polarized light, σ-polarized light, σ-polarized light, π-polarized light, π-polarized light, σ-polarized light, and π-polarized light, then π-polarized light) using an ellipsometric crystal, the polarization direction is controlled. the X-rays of linearly polarized light incident on the sample, using a diffractometer scattered X-ray strength of contribution is the square of the scattering amplitude synthesized from each channel generated from the sample while changing the incident polarized light And determining the structure factor tensor of the sample by analyzing the dependence of the scattered X-ray intensity on the incident polarization. 構造因子テンソルの決定に一次元または二次元検出器の使用を可能とすることを特徴とする請求項1記載の方法。   Method according to claim 1, characterized in that it allows the use of a one-dimensional or two-dimensional detector for the determination of the structure factor tensor. 多軸回折計を使用することで、任意角に傾斜した散乱面上での散乱実験を可能とし、偏光方向を制御することを特徴とした請求項1記載の方法。   The method according to claim 1, wherein a scattering experiment on a scattering surface inclined at an arbitrary angle is enabled by using a multi-axis diffractometer, and a polarization direction is controlled.
JP2004071667A 2004-02-13 2004-02-13 Structure factor tensor element determination method and X-ray diffractometer utilization method therefor Expired - Fee Related JP4578832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004071667A JP4578832B2 (en) 2004-02-13 2004-02-13 Structure factor tensor element determination method and X-ray diffractometer utilization method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004071667A JP4578832B2 (en) 2004-02-13 2004-02-13 Structure factor tensor element determination method and X-ray diffractometer utilization method therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010027415A Division JP2010117365A (en) 2010-02-10 2010-02-10 Structure factor tensor element determination method, and x-ray diffraction device utilization method therefor

Publications (2)

Publication Number Publication Date
JP2005227251A JP2005227251A (en) 2005-08-25
JP4578832B2 true JP4578832B2 (en) 2010-11-10

Family

ID=35002064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004071667A Expired - Fee Related JP4578832B2 (en) 2004-02-13 2004-02-13 Structure factor tensor element determination method and X-ray diffractometer utilization method therefor

Country Status (1)

Country Link
JP (1) JP4578832B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274048A (en) * 1988-04-27 1989-11-01 Nec Corp Centering device for 6-axis x-ray diffraction apparatus
JPH07140094A (en) * 1993-11-16 1995-06-02 Sumitomo Metal Ind Ltd Quantitative determination of residual austenitic volume ratio
JPH08313458A (en) * 1995-05-17 1996-11-29 Rigaku Corp X-ray equipment
JPH11174002A (en) * 1997-12-12 1999-07-02 Nec Corp X-ray polarization analyzer and its x-ray polarization analyzing method
JPH11304728A (en) * 1998-04-23 1999-11-05 Hitachi Ltd X-ray measuring device
JP2003315290A (en) * 2002-04-22 2003-11-06 Nippon Steel Corp Method of evaluating crystal structure of material and steel excellent in weatherability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01274048A (en) * 1988-04-27 1989-11-01 Nec Corp Centering device for 6-axis x-ray diffraction apparatus
JPH07140094A (en) * 1993-11-16 1995-06-02 Sumitomo Metal Ind Ltd Quantitative determination of residual austenitic volume ratio
JPH08313458A (en) * 1995-05-17 1996-11-29 Rigaku Corp X-ray equipment
JPH11174002A (en) * 1997-12-12 1999-07-02 Nec Corp X-ray polarization analyzer and its x-ray polarization analyzing method
JPH11304728A (en) * 1998-04-23 1999-11-05 Hitachi Ltd X-ray measuring device
JP2003315290A (en) * 2002-04-22 2003-11-06 Nippon Steel Corp Method of evaluating crystal structure of material and steel excellent in weatherability

Also Published As

Publication number Publication date
JP2005227251A (en) 2005-08-25

Similar Documents

Publication Publication Date Title
Fujita et al. Hunting axion dark matter with protoplanetary disk polarimetry
Lavina et al. Modern X-ray diffraction methods in mineralogy and geosciences
Baba‐Kishi et al. Backscatter Kikuchi diffraction in the SEM for identification of crystallographic point groups
JP4685877B2 (en) Method and apparatus for measuring orientation distribution of microcrystalline grains
JP5223208B2 (en) Transmission electron microscope
Asadchikov et al. X-ray topo-tomography studies of linear dislocations in silicon single crystals
Carusotto et al. Imaging of spinor gases
JPWO2006051766A1 (en) Optical measurement evaluation method and optical measurement evaluation apparatus
JP2010117365A (en) Structure factor tensor element determination method, and x-ray diffraction device utilization method therefor
Sakata et al. Grazing incidence X-ray diffraction
McCarter et al. Structural chirality of polar skyrmions probed by resonant elastic x-ray scattering
JP4578832B2 (en) Structure factor tensor element determination method and X-ray diffractometer utilization method therefor
JP2003194741A (en) X-ray diffractometer, method of measuring reflected x-ray, and method of drawing up reciprocal lattice space map
Akkuratov et al. Laboratory time-resolved X-ray diffractometry for in situ studies of crystalline materials under uniaxial compression and vibration
US5353324A (en) Total reflection X-ray diffraction micrographic method and apparatus
Misawa et al. Chirality and magnetic quadrupole order in Pb (TiO) Cu 4 (PO 4) 4 probed by interference scattering in resonant x-ray diffraction
Fernández-Rodríguez et al. Polarization analysis in resonant x-ray Bragg diffraction by K 2 CrO 4 at the Cr K-edge
EP2077449A1 (en) Reverse x-ray photoelectron holography device and its measuring method
Logan et al. Hard X-ray polarizer to enable simultaneous three-dimensional nanoscale imaging of magnetic structure and lattice strain
JP2006258594A (en) Automatic double refraction measuring instrument and double refraction measuring method using it
Kohn et al. A study of X-ray multiple diffraction by means of section topography
JPH11304729A (en) X-ray measurement method and x-ray measurement device
Smilgies et al. indexGIXS–software for visualizing and interactive indexing of grazing-incidence scattering data
Blaikie Indium Antimonide Plasmonic Nanostructures for Tunable Terahertz Sources
Beutier et al. Phase transition of KDP observed by Resonant X-ray Diffraction at forbidden reflections

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees