JP4575278B2 - Feed water heater drain pump up system - Google Patents

Feed water heater drain pump up system Download PDF

Info

Publication number
JP4575278B2
JP4575278B2 JP2005323869A JP2005323869A JP4575278B2 JP 4575278 B2 JP4575278 B2 JP 4575278B2 JP 2005323869 A JP2005323869 A JP 2005323869A JP 2005323869 A JP2005323869 A JP 2005323869A JP 4575278 B2 JP4575278 B2 JP 4575278B2
Authority
JP
Japan
Prior art keywords
drain
feed water
condensate
water heater
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005323869A
Other languages
Japanese (ja)
Other versions
JP2007132714A (en
Inventor
晴彦 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005323869A priority Critical patent/JP4575278B2/en
Publication of JP2007132714A publication Critical patent/JP2007132714A/en
Application granted granted Critical
Publication of JP4575278B2 publication Critical patent/JP4575278B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は原子力プラントの給水加熱器ドレンポンプアップシステムに関する。   The present invention relates to a feed water heater drain pump-up system of a nuclear power plant.

原子力プラントのプラント効率を向上させる一手段として、給水加熱器ドレンポンプアップシステムがある。このシステムは、通常運転中、給水加熱器で復水配管中の復水を加熱する際に発生する高温のドレンをドレンタンクに貯蔵し、このドレンタンク内のドレンを復水配管に接続したドレン配管を介してドレンポンプによって復水配管内へ送給する。給水加熱器ドレンポンプアップシステムは、このように高温のドレンを復水配管内に供給して復水温度の上昇に利用することによって、原子力プラントのプラント効率を向上させている(例えば、特許文献1参照)。   One means for improving the plant efficiency of a nuclear power plant is a feed water heater drain pump up system. During normal operation, this system stores in the drain tank the hot drain that is generated when the condensate in the condensate pipe is heated by the feed water heater, and the drain in the drain tank is connected to the condensate pipe. It is fed into the condensate pipe by a drain pump through the pipe. The feed water heater drain pump-up system improves the plant efficiency of a nuclear power plant by supplying high-temperature drain into the condensate pipe and using it for increasing the condensate temperature (for example, Patent Documents). 1).

特開平11−344595号公報JP 11-344595 A

ところで、上記の給水加熱器ドレンポンプアップシステムは、負荷遮断等の場合には、ドレンポンプを停止して機能を停止するので、ドレンポンプの下流側のドレン配管内に高温のドレンが滞留した状態になる。また、給水加熱器は、通常運転中にはタービンから供給される蒸気を利用して復水を加熱しているが、負荷遮断等でタービンからの蒸気の供給が停止すると加熱能力が弱まり、復水配管内に滞留した復水の温度は時間経過に伴って徐々に低下する。このようにして復水配管内の復水はドレン配管内のドレンと比較して相対的に低温になっていく。   By the way, the above-mentioned feed water heater drain pump up system stops the function by stopping the drain pump in the case of load interruption, etc., so that the high temperature drain remains in the drain pipe downstream of the drain pump. become. In addition, the feed water heater uses the steam supplied from the turbine during normal operation to heat the condensate. However, if the supply of steam from the turbine is stopped due to load interruption or the like, the heating capacity is weakened and the The temperature of the condensate staying in the water pipe gradually decreases with time. In this way, the condensate in the condensate pipe becomes relatively cooler than the drain in the drain pipe.

このような場合、例えば復水配管とドレン配管との接続箇所においてドレン配管が復水配管の下方から接続されていると、比重差等を原因にドレンが滞留しているドレン配管内に復水配管内に滞留していた低温化した復水が流れ込む場合がある。このようにドレン配管に流れ込んだ復水はドレン配管内において著しい水温差(50〜100℃程度)を生じさせる原因となる。この温度差はドレン配管を熱変形により伸縮させ、その影響は周囲の機器等に及ぶ場合もある。   In such a case, for example, if the drain pipe is connected from below the condensate pipe at the connection point between the condensate pipe and the drain pipe, the condensate is contained in the drain pipe where the drain is retained due to a difference in specific gravity or the like. The condensate at low temperature that has stayed in the pipe may flow in. Condensate flowing into the drain pipe in this manner causes a significant water temperature difference (about 50 to 100 ° C.) in the drain pipe. This temperature difference causes the drain piping to expand and contract due to thermal deformation, and the influence may extend to surrounding equipment.

本発明の目的は負荷遮断等で給水加熱器に蒸気が供給されなくなった場合に発生するドレン配管の損傷を抑制することができる原子力プラントのドレンポンプアップシステムを供給することにある。   An object of the present invention is to provide a drain pump-up system for a nuclear power plant that can suppress damage to drain piping that occurs when steam is no longer supplied to a feed water heater due to load interruption or the like.

(1)本発明は、上記目的を達成するために、復水器から原子炉へ供給される復水を流通させるための復水管路と、この復水管路中の復水を蒸気によって加熱する給水加熱器と、この給水加熱器内で生じるドレンを流通させるためのドレン管路と、このドレン管路が前記復水管路に接続する接続部と、前記ドレン管路中のドレンを前記復水管路に向かって圧送するドレンポンプとを備え、前記ドレンポンプの出口から前記接続部に至る前記ドレン管路の経路内の少なくとも一カ所に、ドレン流通方向下流側に向かって下る流路であって、前記給水加熱器への蒸気供給停止により前記復水間路内の復水の温度が低下した際に、前記復水管路内に滞留した復水が前記ドレン管路内へ流入することを防止するための下り勾配部を有するものとする。 (1) In order to achieve the above object, the present invention heats the condensate conduit for circulating the condensate supplied from the condenser to the reactor, and the condensate in the condensate conduit with steam. A feed water heater, a drain line for circulating the drain generated in the feed water heater, a connection part where the drain line connects to the condensate pipe, and a drain in the drain pipe to the condensate pipe A drain pump that pumps toward the passage, and is a flow path that goes down toward the downstream side in the drain circulation direction at at least one point in the route of the drain pipe line from the outlet of the drain pump to the connection portion. The condensate staying in the condensate pipe is prevented from flowing into the drain pipe when the temperature of the condensate in the condensate pipe decreases due to the stop of the steam supply to the feed water heater. Suppose that it has a downward slope part for doing.

(2)上記(1)は、好ましくは、さらに低圧タービンから蒸気が供給される低圧給水加熱器を備え、前記給水加熱器は高圧タービンから蒸気が供給される高圧給水加熱器であり、前記接続部は前記高圧給水加熱器の上流かつ前記低圧給水加熱器の下流に位置するものとする。   (2) The above (1) preferably further includes a low-pressure feed water heater to which steam is supplied from a low-pressure turbine, and the feed water heater is a high-pressure feed water heater to which steam is supplied from a high-pressure turbine, and the connection The section is located upstream of the high-pressure feed water heater and downstream of the low-pressure feed water heater.

(3)上記(1)は、好ましくは、さらに高圧タービンから蒸気が供給される高圧給水加熱器を備え、前記給水加熱器は低圧タービンから蒸気が供給される低圧給水加熱器であり、前記接続部は前記低圧給水加熱器の上流かつ前記復水器の下流に位置するものとする。   (3) The above (1) preferably further includes a high-pressure feed water heater to which steam is supplied from a high-pressure turbine, and the feed water heater is a low-pressure feed water heater to which steam is supplied from a low-pressure turbine, and the connection The section is located upstream of the low-pressure feed water heater and downstream of the condenser.

本発明によれば、負荷遮断等の際にも、復水の流入を防止することでドレン配管の損傷を抑制することができるので、原子力プラントの安定運転を確保することができる。   According to the present invention, it is possible to prevent the drain pipe from being damaged by preventing the inflow of condensate even at the time of load interruption or the like, so that stable operation of the nuclear power plant can be ensured.

以下、本発明の実施の形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の給水加熱器ドレンポンプアップシステムを備えた原子力プラントの概略図である。   FIG. 1 is a schematic view of a nuclear power plant equipped with a feed water heater drain pump-up system of the present invention.

図1に示す原子力プラントは、蒸気を発生させる沸騰水型の原子炉1と、この原子炉1で発生した蒸気が供給される高圧タービン2と、この高圧タービン2から抽出された蒸気を流通させるための蒸気管4a,4bと、高圧タービン2に供給された後の蒸気が供給される低圧タービン5と、この低圧タービン5から抽出された蒸気を流通させるための蒸気管7a〜7dと、低圧タービン5等から抽出された蒸気を復水する復水器8と、この復水器8中の復水を原子炉1へ流通させるための復水配管9と、この復水配管9中の復水を原子炉1へ圧送するための低圧復水ポンプ10、高圧復水ポンプ11、及び給水ポンプ12と、蒸気管7a〜7dからの蒸気によって復水配管9内の復水を加熱する低圧給水加熱器6a〜6dと、蒸気管4a,4bからの蒸気によって復水配管9内の復水を加熱する高圧給水加熱器3a,3bと、この高圧給水加熱器3a,3b内で発生したドレンを復水配管9へ送給する高圧給水加熱器ドレンポンプアップシステム(以下、HPDPUシステムと称する。)13と、このHPDPUシステム13からのドレンが復水配管9中の復水と合流する接続部17とを備えている。   A nuclear power plant shown in FIG. 1 circulates a boiling water reactor 1 that generates steam, a high-pressure turbine 2 that is supplied with steam generated in the reactor 1, and steam extracted from the high-pressure turbine 2. Steam pipes 4a and 4b, a low pressure turbine 5 to which steam after being supplied to the high pressure turbine 2 is supplied, steam pipes 7a to 7d for circulating the steam extracted from the low pressure turbine 5, and a low pressure A condenser 8 for condensing steam extracted from the turbine 5 and the like; a condensate pipe 9 for circulating the condensate in the condenser 8 to the reactor 1; and a condensate in the condensate pipe 9 Low pressure condensate pump 10, high pressure condensate pump 11, and feed water pump 12 for pumping water to the reactor 1 and low pressure feed water for heating the condensate in the condensate pipe 9 by steam from the steam pipes 7a to 7d Heaters 6a-6d and steam pipes 4a, 4 High pressure feed water heaters 3a, 3b for heating the condensate in the condensate pipe 9 with steam from the high pressure feed water heaters for supplying the drain generated in the high pressure feed water heaters 3a, 3b to the condensate pipe 9 A drain pump up system (hereinafter referred to as an HPDPU system) 13 and a connection portion 17 where the drain from the HPDPU system 13 joins the condensate in the condensate pipe 9 are provided.

なお、以下の説明においては説明の便宜上ドレンの流通経路を上記のように「ドレン配管」と称することにする。つまり、ここで用いる「ドレン配管」という語は、パイプや継ぎ手部分などの部品単位で形成される配管そのものを示すのではなく、これら各種配管部品を構成することによって形成されるドレンの流通経路(ドレン管路とする)を示すことにする。また、これは復水配管9についても同様とし、復水の流通経路を復水管路とする。   In the following description, for convenience of explanation, the drain flow path is referred to as “drain piping” as described above. In other words, the term “drain pipe” used here does not indicate the pipe itself formed by parts such as pipes and joints, but the drain distribution path formed by configuring these various pipe parts ( Let's show the drain line). The same applies to the condensate pipe 9 and the condensate distribution path is the condensate pipe line.

高圧給水加熱器3a,3bは復水が流通する加熱管を内部に備えており、この加熱管の外側に高圧タービン2から抽出した蒸気(加熱蒸気)を蒸気管4a,4bを介して導いている。高圧給水加熱器3a,3b内において、加熱蒸気は加熱管と接触して熱交換を行い間接的に加熱管内を流通する復水を加熱している。このように高圧給水加熱器3a,3bは復水を原子炉1に供給する前の段階で予め加熱することをによってプラントの熱効率を向上させている。また、高圧給水加熱器3a,3b内において復水を加熱した加熱蒸気は熱交換の後に凝縮してドレンとなり高圧給水加熱器3a,3b内部に溜まる。   The high-pressure feed water heaters 3a and 3b include a heating pipe through which condensate flows, and the steam (heating steam) extracted from the high-pressure turbine 2 is guided to the outside of the heating pipe via the steam pipes 4a and 4b. Yes. In the high-pressure feed water heaters 3a and 3b, the heating steam contacts the heating pipe and exchanges heat to indirectly heat the condensed water flowing through the heating pipe. As described above, the high-pressure feed water heaters 3 a and 3 b improve the thermal efficiency of the plant by heating in advance before supplying the condensate to the nuclear reactor 1. Further, the heated steam that has heated the condensate in the high-pressure feed water heaters 3a and 3b is condensed and drained after heat exchange, and accumulates in the high-pressure feed water heaters 3a and 3b.

また、重複するので詳しい説明は省略するが、低圧給水加熱器6a〜6dも、上記高圧給水加熱器3a,3bと同様に、蒸気管7a〜7dを介して低圧タービン5から抽出した加熱蒸気によって復水を加熱し、その際に発生したドレンを溜めている。   Moreover, since it overlaps, detailed description is abbreviate | omitted, but the low-pressure feed water heaters 6a-6d are also heated by the steam extracted from the low-pressure turbine 5 through the steam pipes 7a-7d, similarly to the high-pressure feed water heaters 3a, 3b. Condensate is heated and drainage generated at that time is stored.

HPDPUシステム13は、高圧給水加熱器3a,3b内で発生したドレンを回収する高圧ドレンタンク14と、ドレンを流通させるためのドレン配管15と、このドレン配管15を介して高圧ドレンタンク14内のドレンを圧送する高圧ドレンポンプ16とを備えている。高圧給水加熱器3a,3bにはドレン配管15が接続されており、そのドレン流通方向下流側には高圧ドレンタンク14が接続されている。この高圧ドレンタンク14の出口はドレン配管15を介して高圧ドレンポンプ16の入口に接続されている。また、この高圧ドレンポンプ16の出口はドレン配管15を介して接続部17において復水配管9に接続されており、高圧給水加熱器3a,3b内で発生したドレンは復水配管9中の復水とともに原子炉1へ供給されるようになっている。   The HPDPU system 13 includes a high-pressure drain tank 14 that collects the drain generated in the high-pressure feed water heaters 3 a and 3 b, a drain pipe 15 for circulating the drain, and the high-pressure drain tank 14 through the drain pipe 15. And a high-pressure drain pump 16 for pumping the drain. A drain pipe 15 is connected to the high-pressure feed water heaters 3a and 3b, and a high-pressure drain tank 14 is connected to the downstream side in the drain circulation direction. The outlet of the high-pressure drain tank 14 is connected to the inlet of the high-pressure drain pump 16 via the drain pipe 15. The outlet of the high pressure drain pump 16 is connected to the condensate pipe 9 at the connection portion 17 via the drain pipe 15, and the drain generated in the high pressure feed water heaters 3 a and 3 b is recovered in the condensate pipe 9. The water is supplied to the nuclear reactor 1 together with water.

復水器8には復水配管9が接続されている。この復水配管9には復水流通方向の上流側から順に低圧復水ポンプ10、そして高圧復水ポンプ11が接続されている。この高圧復水ポンプ6の下流側には低圧給水加熱器6aが接続されており、上流から順番に低圧給水加熱器6b,6c,6dが接続されている。低圧給水加熱器6d内を出た復水配管9はさらに延伸し、HPDPUシステム13との接続部17を介して給水ポンプ12と接続されている。更に、この給水ポンプ12の下流側には高圧給水加熱器3a,3bが順に接続され、その下流側には原子炉1が接続されている。   A condenser pipe 9 is connected to the condenser 8. A low pressure condensate pump 10 and a high pressure condensate pump 11 are connected to the condensate pipe 9 in order from the upstream side in the condensate flow direction. A low-pressure feed water heater 6a is connected to the downstream side of the high-pressure condensate pump 6, and low-pressure feed water heaters 6b, 6c, and 6d are connected in order from the upstream. The condensate pipe 9 exiting from the low-pressure feed water heater 6 d is further extended and connected to the feed water pump 12 through a connection portion 17 with the HPDPU system 13. Further, high-pressure feed water heaters 3a and 3b are connected in order to the downstream side of the feed water pump 12, and the reactor 1 is connected to the downstream side.

なお、図1中の接続部17において、ドレン配管15の出口側のシンボルが図の上方向から下方向に向かって復水配管9に接続するように示されているが、これはドレン配管15が復水配管9の上方から接続しているという構成を表現している(詳細は図2を用いて後述する。)。   In addition, in the connection part 17 in FIG. 1, although the symbol of the exit side of the drain piping 15 is shown connecting to the condensate piping 9 toward the downward direction from the upper direction of the figure, this is shown. Is expressed from the upper side of the condensate pipe 9 (details will be described later with reference to FIG. 2).

また、図1において、高圧給水加熱器は3a,3bの2機が示されているが、高圧給水加熱器の数は特にこれに限定されるものではない。また、低圧給水加熱器の数についても同様に、図に示した6a〜6dの4機に限られるものではない。   In FIG. 1, two high-pressure feed water heaters 3a and 3b are shown, but the number of high-pressure feed water heaters is not particularly limited to this. Similarly, the number of low-pressure feed water heaters is not limited to the four units 6a to 6d shown in the figure.

次に図2を用いて接続部17付近について詳述する。
図2は本実施の形態における接続部17付近を模式的に示した断面図である。図1と同じ部分には同じ符号を付し、説明は省略する。なお、図2は接続部17付近において復水配管9の軸方向(復水流通方向)と直交する面における断面を示す図であり、図中の上下方向は鉛直上下方向に対応する。また、以降の説明に用いる図3及び図4もこれと同様に示すものとする。
Next, the vicinity of the connecting portion 17 will be described in detail with reference to FIG.
FIG. 2 is a cross-sectional view schematically showing the vicinity of the connecting portion 17 in the present embodiment. The same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted. FIG. 2 is a view showing a cross section in a plane orthogonal to the axial direction (condensate flow direction) of the condensate pipe 9 in the vicinity of the connecting portion 17, and the vertical direction in the figure corresponds to the vertical vertical direction. Further, FIG. 3 and FIG. 4 used in the following description are shown in the same manner.

図2に示すように、ドレン配管15は、高圧ドレンポンプ16の出口から接続部17に至る経路において、ドレン流通方向下流側に向かって鉛直方向に下る流路である下り勾配部18を備えている。この下り勾配部18の下流側は接続部17において復水配管9と連通可能に接合されており、通常運転時には高圧ドレンポンプ16によってドレンがドレン配管15内から復水配管9内へ供給されている。また、この下り勾配部18は復水配管9内に滞留した復水がドレン配管15内へ流入することを防止するためのものである。   As shown in FIG. 2, the drain pipe 15 includes a downward gradient portion 18 that is a flow path that descends in the vertical direction toward the downstream side in the drain circulation direction in the path from the outlet of the high-pressure drain pump 16 to the connection portion 17. Yes. The downstream side of the descending slope portion 18 is joined to the condensate pipe 9 at the connection portion 17 so that during normal operation, drain is supplied from the drain pipe 15 into the condensate pipe 9 by the high-pressure drain pump 16. Yes. The descending slope portion 18 is for preventing the condensate accumulated in the condensate pipe 9 from flowing into the drain pipe 15.

次に、上記構成による原子力プラントの動作及び作用を説明する。   Next, the operation and action of the nuclear power plant configured as described above will be described.

はじめに、通常運転時の基本動作について説明する。
原子炉1によって発生された蒸気は高圧タービン2へ供給される。供給された蒸気は高圧タービン2に軸回転力を与え、この軸回転力により図示しない発電機を駆動させる。高圧タービン2に供給された蒸気は、続いて、低圧タービン5にも供給される。この蒸気は同様にして低圧タービン5に軸回転力を与え、発電機を駆動させる。このようにタービン2,5に供給された蒸気は復水器8に排出され、復水器8内において海水等の冷却手段によって凝縮され復水される。
First, the basic operation during normal operation will be described.
Steam generated by the nuclear reactor 1 is supplied to the high-pressure turbine 2. The supplied steam gives a shaft rotational force to the high-pressure turbine 2, and a generator (not shown) is driven by this shaft rotational force. The steam supplied to the high pressure turbine 2 is also supplied to the low pressure turbine 5. Similarly, this steam gives a shaft rotational force to the low-pressure turbine 5 to drive the generator. Thus, the steam supplied to the turbines 2 and 5 is discharged to the condenser 8, where it is condensed and condensed in the condenser 8 by cooling means such as seawater.

復水器8内の復水は、再び原子炉1内に供給されるために復水配管9を介して原子炉1の方向へ低圧復水ポンプ10によって圧送される。この低圧復水ポンプ10によって昇圧された復水は、高圧復水ポンプ11によって更に昇圧され、低圧給水加熱器6a〜6dへ送給される。復水は、これら低圧給水加熱器6a〜6d内において加熱蒸気によって加熱された後、接続部17において合流するドレンによって更に加熱され、給水ポンプ12によって高圧給水加熱器3a,3bに送られる。高圧給水加熱器3a,3b内で加熱蒸気によってまた更に加熱された復水は、原子炉1内に再び導かれ沸騰して蒸気となる。   The condensate in the condenser 8 is pumped by the low-pressure condensate pump 10 toward the reactor 1 through the condensate pipe 9 in order to be supplied again into the reactor 1. The condensate boosted by the low-pressure condensate pump 10 is further boosted by the high-pressure condensate pump 11 and fed to the low-pressure feed water heaters 6a to 6d. The condensate is heated by the heating steam in these low-pressure feed water heaters 6 a to 6 d, further heated by the drain that merges at the connection portion 17, and sent to the high-pressure feed water heaters 3 a and 3 b by the feed water pump 12. Condensate heated by the heating steam in the high-pressure feed water heaters 3a and 3b and further heated is again introduced into the nuclear reactor 1 and boiled to become steam.

一方、HPDPUシステム13は、高圧給水加熱器3a,3b内で発生したドレンを高圧ドレンタンク14で回収している。さらに、この高圧ドレンタンク14で回収したドレンを高圧ドレンポンプ16によって昇圧して、接続部17において復水と比較して相対的に高温(20℃程度高温)なドレンを復水配管9の上方から流入するように配管9内に供給している。   On the other hand, the HPDPU system 13 collects the drain generated in the high-pressure feed water heaters 3 a and 3 b in the high-pressure drain tank 14. Further, the drain collected in the high-pressure drain tank 14 is pressurized by the high-pressure drain pump 16, and the drain having a relatively high temperature (about 20 ° C. higher) than the condensate at the connection portion 17 is disposed above the condensate pipe 9. It is supplied into the pipe 9 so as to flow in.

次に本実施の形態の負荷遮断等の場合における動作及び作用について説明する。   Next, the operation and action in the case of load shedding according to the present embodiment will be described.

負荷遮断等によって高圧タービン2への蒸気供給が停止すると、蒸気管4a,4bによる高圧給水加熱器3a,3bへの加熱蒸気の供給も停止する。このように蒸気管4a,4bからの蒸気供給が停止すると、時間経過に伴って高圧給水加熱器3a,3bの復水加熱能力が低下し、例えば、通常運転時には160℃程度だった復水配管9内の復水の温度が40℃程度まで時間経過と伴に徐々に低下していく。また、このとき、HPDPUシステム13における高圧ドレンポンプ16の運転も停止するので、高圧ドレンポンプ16の下流側のドレン配管15内に存在するドレンが180℃程度の温度を保持したままドレン管15内に滞留した状態となる。   When the supply of steam to the high-pressure turbine 2 is stopped due to load interruption or the like, the supply of heating steam to the high-pressure feed water heaters 3a and 3b through the steam pipes 4a and 4b is also stopped. When the supply of steam from the steam pipes 4a and 4b is stopped in this way, the condensate heating capacity of the high-pressure feed water heaters 3a and 3b decreases with the passage of time, for example, a condensate pipe that was about 160 ° C. during normal operation. The temperature of the condensate in 9 gradually decreases to about 40 ° C. over time. At this time, since the operation of the high-pressure drain pump 16 in the HPDPU system 13 is also stopped, the drain existing in the drain pipe 15 on the downstream side of the high-pressure drain pump 16 is maintained in the drain pipe 15 while maintaining a temperature of about 180 ° C. It stays in the state.

このような場合、例えば、接続部17において復水配管9に対してドレン配管15が下方から接続されていると、ドレン配管15内のドレンと復水配管9内の復水との温度差によって生じる比重差に起因して、低温化した比重の大きい復水がドレン配管15内に逆流するように流れ込む。低温化した復水が流れ込んだドレン配管15内には180℃程度のドレンが滞留しているので、ドレン配管15内では箇所よって50℃から100℃程度の著しい温度差が生じる。この温度差はドレン配管15を熱変形により通常運転時には起こり得ない程に伸縮させ、その影響は周囲に配設された機器などに及ぶ場合もある。これには、例えば、ドレン配管が熱変形することによって、配管同士の繋ぎ目を接続しているフランジ部に隙間が生じて水漏れが発生することや、配管を支持する留め具(サポート)等が変形すること等が挙げられる。   In such a case, for example, if the drain pipe 15 is connected to the condensate pipe 9 from below at the connection portion 17, the temperature difference between the drain in the drain pipe 15 and the condensate in the condensate pipe 9 Due to the specific gravity difference that occurs, condensate having a low specific gravity that has been lowered flows into the drain pipe 15 so as to flow backward. Since drain at about 180 ° C. remains in the drain pipe 15 into which the condensate at low temperature has flowed, a significant temperature difference of about 50 ° C. to 100 ° C. occurs depending on the location in the drain pipe 15. This temperature difference causes the drain pipe 15 to expand and contract to such an extent that it cannot occur during normal operation due to thermal deformation, and the influence may extend to equipment disposed around. For example, drain pipes are thermally deformed, resulting in gaps in the flanges connecting the joints between the pipes, causing water leakage, and fasteners (supports) that support the pipes. May be deformed.

これに対して、本実施の形態はドレン配管15に下り勾配部18を設けることにより上記のような問題の発生を抑制している。即ち、本実施の形態におけるドレン配管15は、高圧ドレンポンプ16の出口側から接続部17に至る経路において、ドレン流通方向下流側に向かって鉛直方向に下る流路である勾配部18備えている。これにより、負荷遮断等によって復水配管9内の復水の温度が低下してその比重が大きくなった場合でも、復水と比較して相対的に比重の小さいドレンが滞留しているドレン配管15内に比重の大きい復水が顕著に流入することは難しい。これによって、高圧ドレンポンプ16出口側のドレン配管15内において著しい温度差を生じる箇所が発生することを防止できるので、温度差によってドレン配管が熱変形して損傷することを抑制することができる。   On the other hand, this embodiment suppresses the occurrence of the above-described problem by providing the descending slope portion 18 in the drain pipe 15. That is, the drain pipe 15 in the present embodiment is provided with a gradient portion 18 that is a flow path that descends in the vertical direction toward the downstream side in the drain circulation direction in the path from the outlet side of the high-pressure drain pump 16 to the connection portion 17. . Thereby, even when the temperature of the condensate in the condensate pipe 9 is lowered due to load interruption or the like and the specific gravity thereof is increased, the drain pipe in which the drain having a relatively low specific gravity as compared with the condensate remains. It is difficult for condensate having a large specific gravity to flow into 15. As a result, it is possible to prevent occurrence of a location that causes a significant temperature difference in the drain pipe 15 on the outlet side of the high-pressure drain pump 16, and therefore, it is possible to suppress the drain pipe from being thermally deformed and damaged by the temperature difference.

次に本発明の効果について説明する。
上記のように、本発明は、ドレン配管15に下り勾配部18を設けることによって、負荷遮断等によって高圧給水加熱器3a,3bへの加熱蒸気の供給が停止した場合でも、低温化した復水がドレン配管15への流入することを防止することができる。これによって、ドレン配管15が熱変形する要因となる配管15内における著しい温度差の発生を抑制でき、ドレン配管が損傷することを抑制することができる。また、このようにドレン配管15の損傷が抑制されると伴に、ドレン配管周囲の機器等にも影響を与えることも抑制されるので、負荷遮断等の場合にも原子力プラントを安定して運転することができる。
Next, the effect of the present invention will be described.
As described above, according to the present invention, the condensate having a low temperature is provided even when the supply of the heating steam to the high-pressure feed water heaters 3a and 3b is stopped due to load interruption or the like by providing the down-gradient portion 18 in the drain pipe 15. Can be prevented from flowing into the drain pipe 15. Accordingly, it is possible to suppress the occurrence of a significant temperature difference in the pipe 15 that causes the drain pipe 15 to be thermally deformed, and it is possible to suppress the drain pipe from being damaged. In addition, since the damage to the drain pipe 15 is suppressed in this way, it is also possible to prevent the equipment around the drain pipe from being affected, so that the nuclear plant can be operated stably even in the case of load interruption or the like. can do.

なお、以上の説明では、高圧給水加熱器3a,3b内のドレンを回収して復水と合流させるHPDPUシステム13について説明してきたが、本実施の形態は低圧給水加熱器6a〜6d内で同様にして発生するドレンを回収して復水と合流させるいわゆる低圧給水加熱器ドレンポンプアップシステムにも勿論適用可能である。つまり、低圧給水加熱器6a〜6dで発生したドレンをタンクで回収したのち、ポンプで昇圧して低圧給水加熱器6aの上流側かつ復水器8の下流側にドレン配管が復水配管9と接続する接続部を設けて、ここを介してドレンを復水と合流させるシステムにも本発明は適用可能であり、本実施の形態同様の効果を得ることができる。   In the above description, the HPDPU system 13 that collects the drain in the high-pressure feed water heaters 3a and 3b and joins the condensate has been described, but the present embodiment is the same in the low-pressure feed water heaters 6a to 6d. Of course, the present invention can also be applied to a so-called low-pressure feed water heater drain pump-up system that collects the generated drain and joins it with condensate. That is, after the drain generated in the low-pressure feed water heaters 6a to 6d is collected in the tank, the pressure is increased by the pump, and the drain pipe is connected to the condensate pipe 9 upstream of the low-pressure feed water heater 6a and downstream of the condenser 8. The present invention can also be applied to a system in which a connecting portion to be connected is provided and the drain is joined with condensate through the connecting portion, and the same effect as in the present embodiment can be obtained.

次に本実施の形態の変形例について説明する。
図3及び図4は本実施の形態の変形例における接続部17付近を模式的に示した断面図である。既出の図と同じ部分には同じ符号を付し、説明は省略する。
Next, a modification of the present embodiment will be described.
3 and 4 are cross-sectional views schematically showing the vicinity of the connecting portion 17 in a modification of the present embodiment. The same parts as those in the previous figures are denoted by the same reference numerals, and description thereof is omitted.

図3において、ドレン配管15はドレン流通方向下流側に向かって下る流路である下り勾配部18Aを備えている。また、図4において、ドレン配管15は水平配管されているとともにドレン流通方向下流側に向かって下る流路である下り勾配部18Bを備えている。   In FIG. 3, the drain pipe 15 includes a downward gradient portion 18 </ b> A that is a flow path that goes down toward the downstream side in the drain circulation direction. In FIG. 4, the drain pipe 15 is provided with a downward gradient portion 18 </ b> B that is a horizontal pipe and is a flow path that goes down toward the downstream side in the drain circulation direction.

上記実施の形態においては低温化復水の流入を防止する部分としてドレン流通方向下流側に向かって鉛直方向に下る流路である下り勾配部18を例に挙げて説明したが、復水の流入防止部分となり得るのはこの下り勾配部18のみに限られない。例えば、図3に示したようにドレン流通方向下流側に向かって斜めに下る下り勾配部18Aや、図4に示したように復水配管9に対してドレン配管15が水平配管されている場合でもドレン流通方向下流側に向かって下る流路である下り勾配部18B等を設ければ、本実施の形態と同様の効果を得ることができる。   In the above-described embodiment, the down slope portion 18 which is a flow path that descends in the vertical direction toward the downstream side in the drain circulation direction is described as an example as a part for preventing the inflow of the low-temperature condensate. It is not limited only to this downward slope part 18 that can become a prevention part. For example, as shown in FIG. 3, when the drain pipe 15 is disposed horizontally with respect to the descending slope portion 18A that descends obliquely toward the downstream side in the drain circulation direction or the condensate pipe 9 as shown in FIG. However, the same effect as that of the present embodiment can be obtained by providing the downward gradient portion 18B, which is a flow path that goes down toward the downstream side in the drain circulation direction.

また、図2〜図4においては上記下り勾配部18,18A,18Bを接続部17と隣接したドレン配管15の出口部分に設ける場合を示したが、その設置箇所はこれに限られない。つまり、高圧ドレンポンプ16の出口側から接続部17に至るまでのドレン配管15の経路において、その経路中の少なくとも一カ所に上記のような下り勾配部を設ければ低温化復水の流入を防止することができ、そのような場合にも上記本実施の形態と同様の効果を得ることができる。   2 to 4 show the case where the descending slope portions 18, 18 </ b> A, 18 </ b> B are provided at the outlet portion of the drain pipe 15 adjacent to the connection portion 17, the installation location is not limited to this. That is, in the path of the drain pipe 15 from the outlet side of the high-pressure drain pump 16 to the connection part 17, the flow of the low-temperature condensate is allowed to flow if at least one of the down-gradient parts is provided in the path. In such a case, the same effect as in the present embodiment can be obtained.

なお、上記低圧給水加熱器ドレンポンプアップシステムにおいても、上記のような下り勾配部の変形例やその設置箇所に関する仕様変更が適用可能であることは言うまでもない。   In addition, it cannot be overemphasized that the specification change regarding the modified example of the above-mentioned downward slope part and its installation location is applicable also in the said low-pressure feed water heater drain pump up system.

本発明の実施の形態を備える原子力プラントの概略図である。It is a schematic diagram of a nuclear power plant provided with an embodiment of the invention. 本発明の実施の形態における復水配管とドレン配管の接続部付近を模式的に示した断面図である。It is sectional drawing which showed typically the connection part vicinity of the condensate piping and drain piping in embodiment of this invention. 本発明の実施の形態の第1の変形例における復水配管とドレン配管の接続部付近を模式的に示した断面図である。It is sectional drawing which showed typically the connection part vicinity of the condensate piping and drain piping in the 1st modification of embodiment of this invention. 本発明の実施の形態の第2の変形例における復水配管とドレン配管の接続部付近を模式的に示した断面図である。It is sectional drawing which showed typically the connection part vicinity of the condensate piping and drain piping in the 2nd modification of embodiment of this invention.

符号の説明Explanation of symbols

1 :原子炉
2 :高圧タービン
3a〜b:高圧給水加熱器
4a〜b:蒸気管
5 :低圧タービン
6a〜d:低圧給水加熱器
7a〜d:蒸気管
8 :復水器
9 :復水配管
10 :低圧復水ポンプ
11 :高圧復水ポンプ
12 :給水ポンプ
13 :高圧給水加熱器ドレンポンプアップシステム
14 :高圧ドレンタンク
15 :ドレン配管
16 :高圧ドレンポンプ
17 :接続部
18 :下り勾配部
18A〜B:下り勾配部
DESCRIPTION OF SYMBOLS 1: Reactor 2: High pressure turbine 3a-b: High pressure feed water heater 4a-b: Steam pipe 5: Low pressure turbine 6a-d: Low pressure feed water heater 7a-d: Steam pipe 8: Condenser 9: Condensate piping DESCRIPTION OF SYMBOLS 10: Low pressure condensate pump 11: High pressure condensate pump 12: Feed water pump 13: High pressure feed water heater drain pump up system 14: High pressure drain tank 15: Drain piping 16: High pressure drain pump 17: Connection part 18: Down slope part 18A ~ B: Down slope part

Claims (3)

復水器から原子炉へ供給される復水を流通させるための復水管路と、
この復水管路中の復水を蒸気によって加熱する給水加熱器と、
この給水加熱器内で生じるドレンを流通させるためのドレン管路と、
このドレン管路が前記復水管路に接続する接続部と、
前記ドレン管路中のドレンを前記復水管路に向かって圧送するドレンポンプとを備え、
前記ドレンポンプの出口から前記接続部に至る前記ドレン管路の経路内の少なくとも一カ所に、ドレン流通方向下流側に向かって下る流路であって、前記給水加熱器への蒸気供給停止により前記復水管路内の復水の温度が低下した際に、前記復水管路内に滞留した復水が前記ドレン管路内へ流入することを防止するための下り勾配部を有することを特徴とする原子力プラントの給水加熱器ドレンポンプアップシステム。
A condensate pipe for distributing the condensate supplied from the condenser to the reactor;
A feed water heater for heating the condensate in the condensate line with steam;
A drain line for circulating the drain generated in the feed water heater;
A connecting portion for connecting the drain line to the condensate line;
A drain pump for pumping the drain in the drain line toward the condensate line;
At least one point in the path of the drain pipe line from the drain pump outlet to the connecting portion, the flow path goes down toward the downstream side in the drain circulation direction , and the steam supply to the feed water heater is stopped by stopping the supply of steam. It has a downward slope portion for preventing condensate staying in the condensate pipe from flowing into the drain pipe when the temperature of the condensate in the condensate pipe decreases. Drain pump up system for feed water heater of nuclear power plant.
請求項1記載の原子力プラントの給水加熱器ドレンポンプアップシステムにおいて、
さらに低圧タービンから蒸気が供給される低圧給水加熱器を備え、
前記給水加熱器は高圧タービンから蒸気が供給される高圧給水加熱器であり、
前記接続部は前記高圧給水加熱器の上流かつ前記低圧給水加熱器の下流に位置することを特徴とする原子力プラントの給水加熱器ドレンポンプアップシステム。
In the feed water heater drain pump-up system of the nuclear power plant according to claim 1,
Furthermore, it is equipped with a low-pressure feed water heater that is supplied with steam from a low-pressure turbine,
The feed water heater is a high pressure feed water heater to which steam is supplied from a high pressure turbine,
The feed water heater drain pump-up system of a nuclear power plant, wherein the connecting portion is located upstream of the high pressure feed water heater and downstream of the low pressure feed water heater.
請求項1記載の原子力プラントの給水加熱器ドレンポンプアップシステムにおいて、
さらに高圧タービンから蒸気が供給される高圧給水加熱器を備え、
前記給水加熱器は低圧タービンから蒸気が供給される低圧給水加熱器であり、
前記接続部は前記低圧給水加熱器の上流かつ前記復水器の下流に位置することを特徴とする原子力プラントの給水加熱器ドレンポンプアップシステム。
In the feed water heater drain pump-up system of the nuclear power plant according to claim 1,
Furthermore, it is equipped with a high-pressure feed water heater that is supplied with steam from a high-pressure turbine,
The feed water heater is a low pressure feed water heater that is supplied with steam from a low pressure turbine,
The feed water heater drain pump-up system of a nuclear power plant, wherein the connecting portion is located upstream of the low-pressure feed water heater and downstream of the condenser.
JP2005323869A 2005-11-08 2005-11-08 Feed water heater drain pump up system Expired - Fee Related JP4575278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005323869A JP4575278B2 (en) 2005-11-08 2005-11-08 Feed water heater drain pump up system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005323869A JP4575278B2 (en) 2005-11-08 2005-11-08 Feed water heater drain pump up system

Publications (2)

Publication Number Publication Date
JP2007132714A JP2007132714A (en) 2007-05-31
JP4575278B2 true JP4575278B2 (en) 2010-11-04

Family

ID=38154512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005323869A Expired - Fee Related JP4575278B2 (en) 2005-11-08 2005-11-08 Feed water heater drain pump up system

Country Status (1)

Country Link
JP (1) JP4575278B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939331A (en) * 1982-08-28 1984-03-03 Mitsubishi Heavy Ind Ltd Promoting structure for mixing in connected pipe
JPS5958294A (en) * 1982-09-29 1984-04-03 東京電力株式会社 Piping joint
JPS60116998A (en) * 1983-11-30 1985-06-24 株式会社日立製作所 Piping joint
JPS61277094A (en) * 1985-06-03 1986-12-08 株式会社日立製作所 Nuclear reactor plant
JPS62167194U (en) * 1986-04-15 1987-10-23
JPH06317695A (en) * 1993-05-07 1994-11-15 Hitachi Ltd Mixed flow piping structure
JPH10111392A (en) * 1996-10-09 1998-04-28 Toshiba Corp Controller for drain pump-up system
JP2002055193A (en) * 2000-08-10 2002-02-20 Toshiba Corp Feed water system for neuclear power plant and its clad reducing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939331A (en) * 1982-08-28 1984-03-03 Mitsubishi Heavy Ind Ltd Promoting structure for mixing in connected pipe
JPS5958294A (en) * 1982-09-29 1984-04-03 東京電力株式会社 Piping joint
JPS60116998A (en) * 1983-11-30 1985-06-24 株式会社日立製作所 Piping joint
JPS61277094A (en) * 1985-06-03 1986-12-08 株式会社日立製作所 Nuclear reactor plant
JPS62167194U (en) * 1986-04-15 1987-10-23
JPH06317695A (en) * 1993-05-07 1994-11-15 Hitachi Ltd Mixed flow piping structure
JPH10111392A (en) * 1996-10-09 1998-04-28 Toshiba Corp Controller for drain pump-up system
JP2002055193A (en) * 2000-08-10 2002-02-20 Toshiba Corp Feed water system for neuclear power plant and its clad reducing method

Also Published As

Publication number Publication date
JP2007132714A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
CN101886804B (en) All-backheating drainage system of heat supply network heater for supercritical concurrent boiler thermal power plant
JP5510111B2 (en) Drain collection facility
KR101022164B1 (en) Passive secondary loop condensation system for light water reactor
JP2020125857A (en) Heat storage device, power generation plant, and operation control method during fast cut back
JP2006242083A (en) Reheat system for power generation plant
KR100837688B1 (en) A startup cooling system for an integral reactor and the heatup operation method of the secondary coolant system using the same
JP4961380B2 (en) Fast breeder reactor nuclear power generation system
JP7111525B2 (en) Once-through heat recovery boiler and control system for once-through heat recovery boiler
US20100115949A1 (en) Condensing equipment
JP4575278B2 (en) Feed water heater drain pump up system
KR101830094B1 (en) Nuclear reactor and nuclear power plant having the same
CN103115349B (en) Externally arranged steam cooler system in heat regenerative system of power plant and heat regenerative system
CN201748408U (en) Supercritical heat supply network heater full-backheating drain water system in concurrent boiler thermal power plant
JP2011157855A (en) Power generation facility and operating method for power generation facility
CN203273855U (en) Externally-arranged steam cooler system in regenerative system of power plant and regenerative system
JP5448883B2 (en) Once-through exhaust heat recovery boiler
US20110056221A1 (en) Active stress control during rapid shut down
KR101662474B1 (en) Condensate preheater for a waste-heat steam generator
JP2009008290A (en) Drainage recovering system in power generation facility
CN220669429U (en) Working medium recovery system after shutdown of thermal power plant
JP2018194185A (en) Drain recovery system
JP2009058153A (en) Condenser cooling system for power-generating plant
JP5330730B2 (en) Plant piping equipment
JP2923122B2 (en) Drain recovery equipment for nuclear power plants
KR20170114391A (en) System for recycling wasted heat of vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees