JPH06317695A - Mixed flow piping structure - Google Patents

Mixed flow piping structure

Info

Publication number
JPH06317695A
JPH06317695A JP5106440A JP10644093A JPH06317695A JP H06317695 A JPH06317695 A JP H06317695A JP 5106440 A JP5106440 A JP 5106440A JP 10644093 A JP10644093 A JP 10644093A JP H06317695 A JPH06317695 A JP H06317695A
Authority
JP
Japan
Prior art keywords
pipe
fluid
branch pipe
temperature difference
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5106440A
Other languages
Japanese (ja)
Inventor
Shiro Takahashi
志郎 高橋
Shozo Nakamura
昭三 中村
Takatsugu Shiina
考次 椎名
Hidekazu Fujimura
秀和 藤村
Kazuhito Koyama
一仁 小山
Yukihiro Asada
幸宏 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5106440A priority Critical patent/JPH06317695A/en
Publication of JPH06317695A publication Critical patent/JPH06317695A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Branch Pipes, Bends, And The Like (AREA)

Abstract

PURPOSE:To suppress the generation of unsteady wall temperature fluctuation caused by the heat transfer of two fluids with large temperature difference and unsteady thermal stress generated in association so as to provide mixed flow piping higher in safety and reliability by using a double/triple temperature difference reducing system. CONSTITUTION:By-pass structure is provided from a main pipe 1 after confluence to a branch pipe 2, and a throttle part 4 is installed in the branch pipe shape around the lower reaches outlet of a by-pass pipe 3. A fluid is made flow into the by-pass pipe 3 by the drop of pressure due to the throttle part 4, and the fluid in the branch pipe 2 and the fluid in the by-pass pipe 3 are mixed before the fluid in the branch pipe 2 and the fluid in the main pipe 1 are mixed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は火力及び原子力プラント
の配管に係り、特に、高温水と低温水が接触する際の混
合部配管の壁温変動に起因する熱応力の発生を抑制する
のに好適な温度差緩和機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to piping of a thermal power plant and a nuclear power plant, and more particularly to suppressing the generation of thermal stress due to wall temperature fluctuation of the mixing portion piping when high temperature water and low temperature water come into contact with each other. The present invention relates to a suitable temperature difference relaxing mechanism.

【0002】[0002]

【従来の技術】図5は従来使われている温度差低減を考
慮した基本的な合流配管構造である。図5の構造は流れ
を層状にしやすく、二流体が熱的平衡に達する混合到達
距離は長くなると考えられ、混合性能の観点も考慮にい
れると望ましいとはいえない。次に、図6は特開昭61−
260194号公報の原子炉給水装置である。図6の発明は使
われる対象物は異なるが本発明と類似している。これは
原子炉給水装置において、温度差を有する二流体の混合
による繰り返し熱応力を低減させるための発明である。
これは絞り部を有し、その圧力降下で流れを循環させ、
温度差を低減させている点では本発明と似ている。しか
し、本発明の唱える点はバイパス管を取付けて充分に混
合された中間温度の流体の利用であり、この点は図6に
は見られない。
2. Description of the Related Art FIG. 5 shows a basic confluent piping structure which has been used conventionally in consideration of reduction in temperature difference. The structure shown in FIG. 5 is likely to form a laminar flow, and it is considered that the mixing reaching distance for the two fluids to reach thermal equilibrium is long, which is not desirable if the viewpoint of mixing performance is taken into consideration. Next, FIG.
This is a reactor water supply device disclosed in Japanese Patent No. 260194. The invention of FIG. 6 is similar to the invention, although it uses different objects. This is an invention for reducing repeated thermal stress due to mixing of two fluids having a temperature difference in a reactor water supply system.
It has a throttle and its pressure drop circulates the flow,
It is similar to the present invention in that the temperature difference is reduced. However, the point of the invention is to utilize a well-mixed medium temperature fluid with a bypass pipe attached, which is not seen in FIG.

【0003】従来のバイパス構造を有する混合流配管を
図7及び図8に示す。図7は特開昭60−175898号公報の
配管の熱衝撃防止構造で、図8は特開平2−52298号公報
の原子炉配管装置である。図7の構造はサーマルスリー
ブを2ヵ所取付けることによって熱伝達性能を向上させ
ているが、流体Aと流体Dの合流部において、サーマル
スリーブ6での管壁を通しての熱伝達だけでは両流体の
十分な温度差減少はなく、この部分で両流体は温度差を
有したまま接触すると考えられる。また、図8の構造で
も合流部の温度差は減少するが、バイパスライン5の流
体Dと流体Bの混合部では両流体は温度差を有したまま
直接接触する。よって、これらの構造ではある部分で低
温水と高温水が急激に接触することにより、配管表面に
おいて壁温変動が生じる。その結果、材料表面における
非定常熱応力が発生し、表面き裂発生の原因となり配管
の信頼性,安全性などの心配が考えられる。
A mixed flow pipe having a conventional bypass structure is shown in FIGS. 7 and 8. FIG. 7 shows a thermal shock prevention structure for piping of JP-A-60-175898, and FIG. 8 shows a reactor piping apparatus of JP-A-2-52298. The structure of FIG. 7 improves the heat transfer performance by mounting the thermal sleeves at two places, but at the confluence of the fluid A and the fluid D, the heat transfer through the tube wall of the thermal sleeve 6 is sufficient for both fluids. There is no significant decrease in temperature difference, and it is considered that the two fluids come into contact with each other in this portion with a temperature difference. Further, even in the structure of FIG. 8, the temperature difference at the merging portion is reduced, but in the mixing portion of the fluid D and the fluid B in the bypass line 5, the two fluids are in direct contact with each other with the temperature difference. Therefore, due to abrupt contact between the low temperature water and the high temperature water in a certain part of these structures, wall temperature fluctuations occur on the pipe surface. As a result, unsteady thermal stress is generated on the surface of the material, which may cause surface cracks, and concern about the reliability and safety of the piping.

【0004】[0004]

【発明が解決しようとする課題】上記バイパス構造に関
する従来技術は、高温水配管と低温水配管とが大きな温
度差をもつ際に接触混合部において、ある一部分で熱水
と冷水が温度差の低減なしでほぼ直接接触混合するよう
な構造を持っており、二流体接触部近傍での壁温変動に
伴う非定常熱応力の発生に関する問題が考えられる。
The prior art relating to the above-mentioned bypass structure is to reduce the temperature difference between hot water and cold water at a part of the contact mixing section when there is a large temperature difference between the high temperature water pipe and the low temperature water pipe. It has a structure in which almost direct contact mixing occurs without any contact, and there is a problem with the occurrence of unsteady thermal stress due to wall temperature fluctuations near the two-fluid contact area.

【0005】本発明の目的は高温水配管と低温水配管の
混合接触部において、合流部は単純な形状を保ちながら
低温水と高温水とが大きな温度差のまま、直接、接触す
るのを防ぐことにある。
An object of the present invention is to prevent direct contact between the low-temperature water and the high-temperature water with a large temperature difference between the high-temperature water pipe and the low-temperature water pipe in a mixed contact portion while maintaining a simple shape at the merging portion. Especially.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は合流後の流体が充分に混合した位置におけ
る主管から合流前の支管に通じるバイパス構造を設け、
混合後の中間温度の流体を合流前の支管に流入させ、主
管流体温度に対する支管流体温度の温度差を減少させる
ことによって、大きな温度差で両流体が混合することを
防ぎ、層分離を抑制することができる。
In order to achieve the above object, the present invention provides a bypass structure which leads from a main pipe at a position where fluids after merging are sufficiently mixed to a branch pipe before merging,
By allowing the fluid of the intermediate temperature after mixing to flow into the branch pipe before merging to reduce the temperature difference between the branch pipe fluid temperature and the main pipe fluid temperature, it is possible to prevent both fluids from mixing due to a large temperature difference and suppress layer separation. be able to.

【0007】[0007]

【作用】混合流配管構造にバイパス構造を設けると、ま
ずバイパス内の中間温度の流体と支管内の高温水(低温
水)は大きな温度差を有さずに混合する。その結果、支
管内の高温水(低温水)は混合によって温度を低く(高
く)する。その後、温度が低く(高く)なった支管内の
高温水(低温水)は合流部で主管内の低温水(高温水)
と混合するが、この時点で両流体は大きな温度差を有さ
ずに混合する。このように段階的に混合する方法によっ
て、大きな温度差を有さずに混合することを可能とし、
温度差から生じる密度差による流れの層分離を防ぐこと
ができる。
When the bypass structure is provided in the mixed flow piping structure, the fluid at the intermediate temperature in the bypass and the high temperature water (low temperature water) in the branch pipe are mixed without a large temperature difference. As a result, the temperature of the high temperature water (low temperature water) in the branch pipe is lowered (raised) by mixing. After that, the high temperature water (low temperature water) in the branch pipe where the temperature becomes low (high) becomes low temperature water (high temperature water) in the main pipe at the confluence.
, But at this point both fluids mix without a large temperature difference. By this method of stepwise mixing, it is possible to mix without having a large temperature difference,
It is possible to prevent the layer separation of the flow due to the density difference caused by the temperature difference.

【0008】[0008]

【実施例】以下、本発明の一実施例を図1及び図2によ
り説明する。図1は混合流配管部の断面図を示す。ま
た、本発明は他の方式と併用しやすいこともその特徴の
一つであるが、その簡単な例として図2を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a cross-sectional view of a mixed flow pipe section. Further, one of the features of the present invention is that it can be easily used in combination with other systems, and FIG. 2 is shown as a simple example.

【0009】混合流配管部の構成について説明する。こ
こで、混合流配管は高温水流体A(熱水)と低温水流体
B(冷水)が合流、中間温度流体Cが生じる。この基本
構造は、主流である主管1に絞り部4をもった支管2が
溶接により接続されている。絞り部4では絞りによる流
速の上昇分だけ静圧が減少する。図2の場合、支管出口
にはサーマルスリーブ5を支流流れと同軸方向に突出さ
せている。合流後に主管から支管に通じるバイパス構造
3を設けると、中間温度流体Cの一部は絞り部4の圧力
降下によってバイパス管3内を流れる。バイパス管3内
の流体Cは絞り部4で大きな温度差なく流体Aと混合
し、主管内流体に対する支管内流体の温度差を低減す
る。さらに、支管内流体はサーマルスリーブ5を介して
の熱伝達により、温度差を減少させてから、流体Bと混
合する。この時点で高温水Aと低温水Bの大きな温度差
はない。このように混合後の中間温度流体を両流体の緩
衝として使用し、両流体を段階的に混合する方法によっ
て、大きな温度差を有さずに混合することを可能とし、
温度差から生じる密度差による流れの層分離を防ぐこと
ができる。図3,図4は合流部前後に曲がり部を有した
場合における本発明の実施例である。この場合、図3,
図4のように、より簡便に本発明を使用できる。
The structure of the mixed flow pipe section will be described. Here, in the mixed flow pipe, the high temperature water fluid A (hot water) and the low temperature water fluid B (cold water) join, and the intermediate temperature fluid C is generated. In this basic structure, a main pipe 1, which is a mainstream, is connected to a branch pipe 2 having a narrowed portion 4 by welding. In the throttle portion 4, the static pressure is reduced by the increase in the flow velocity due to the throttle. In the case of FIG. 2, the thermal sleeve 5 is projected at the branch pipe outlet in the direction coaxial with the tributary flow. When the bypass structure 3 that leads from the main pipe to the branch pipe is provided after the merging, part of the intermediate temperature fluid C flows in the bypass pipe 3 due to the pressure drop of the throttle portion 4. The fluid C in the bypass pipe 3 mixes with the fluid A in the throttle portion 4 without a large temperature difference, and reduces the temperature difference of the fluid in the branch pipe with respect to the fluid in the main pipe. Further, the fluid in the branch pipe is mixed with the fluid B after reducing the temperature difference by heat transfer through the thermal sleeve 5. At this time, there is no large temperature difference between the high temperature water A and the low temperature water B. In this way, the intermediate temperature fluid after mixing is used as a buffer for both fluids, and by the method of mixing both fluids stepwise, it is possible to mix without a large temperature difference,
It is possible to prevent the layer separation of the flow due to the density difference caused by the temperature difference. FIG. 3 and FIG. 4 show an embodiment of the present invention in the case where there are curved portions before and after the confluence portion. In this case,
The present invention can be used more simply as shown in FIG.

【0010】このような機構により、混合流配管部にお
ける合流部で大きな温度差を有する二流体が合流,混合
して温度変動するのを防止できる。よって、配管表面の
温度変動が抑制され、その結果、非定常壁温変動に伴う
熱応力が緩和され、プラント用配管の安全性が確保され
る。
With such a mechanism, it is possible to prevent the two fluids having a large temperature difference from merging and mixing at the merging portion in the mixed flow piping portion to change in temperature. Therefore, temperature fluctuations on the piping surface are suppressed, and as a result, thermal stress associated with unsteady wall temperature fluctuations is mitigated, and the safety of the plant piping is secured.

【0011】[0011]

【発明の効果】本発明により、高温水,低温水混合配管
部において、両流体が大きな温度差なく混合することを
可能とする。よって、温度差の大きな二流体の熱伝達に
起因する非定常壁温変動及びそれに伴う非定常熱応力の
発生を抑制できる。また、本発明は次の効果も考えられ
る。
According to the present invention, both fluids can be mixed in a high temperature water / low temperature water mixing pipe portion without a large temperature difference. Therefore, it is possible to suppress the unsteady wall temperature fluctuation caused by the heat transfer of the two fluids having a large temperature difference and the occurrence of unsteady thermal stress accompanying it. Further, the present invention can also have the following effects.

【0012】(1)他の方式と併用しやすく、併用によ
って、より一層の温度差低減が考えられる。
(1) It is easy to use in combination with other methods, and it is possible to further reduce the temperature difference by using them in combination.

【0013】(2)他の方式と比べて、比較的完全混合
到達距離を短くできる。
(2) Compared with other methods, it is possible to relatively shorten the reach of perfect mixing.

【0014】(3)他の方式と比べて、単相流の温度差
から生じる密度差による層流化現象が抑制される。
(3) The laminarization phenomenon due to the density difference caused by the temperature difference of the single-phase flow is suppressed as compared with the other methods.

【0015】(4)合流管の合流部は単純な形状であ
る。
(4) The merging portion of the merging pipe has a simple shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の混合流配管部の断面図。FIG. 1 is a cross-sectional view of a mixed flow pipe section according to an embodiment of the present invention.

【図2】本発明の第二の実施例の混合流配管部の断面
図。
FIG. 2 is a sectional view of a mixed flow pipe section according to a second embodiment of the present invention.

【図3】本発明の第三の実施例の混合流配管部の断面
図。
FIG. 3 is a sectional view of a mixed flow pipe section according to a third embodiment of the present invention.

【図4】本発明の第四の実施例の混合流配管部の断面
図。
FIG. 4 is a sectional view of a mixed flow pipe section according to a fourth embodiment of the present invention.

【図5】従来の混合流配管部の断面図。FIG. 5 is a cross-sectional view of a conventional mixed flow pipe section.

【図6】本発明に類似した従来の原子炉給水装置の断面
図。
FIG. 6 is a cross-sectional view of a conventional reactor water supply apparatus similar to the present invention.

【図7】従来のバイパス構造を有した混合流配管部の断
面図。
FIG. 7 is a cross-sectional view of a mixed flow pipe section having a conventional bypass structure.

【図8】従来のバイパス構造を有した混合流配管部の断
面図。
FIG. 8 is a cross-sectional view of a mixed flow pipe section having a conventional bypass structure.

【符号の説明】[Explanation of symbols]

1…主管、2…支管、3…バイパス管、4…絞り部、5
…サーマルスリーブ、6…サーマルスリーブ。
1 ... Main pipe, 2 ... Branch pipe, 3 ... Bypass pipe, 4 ... Throttling part, 5
… Thermal sleeve, 6… Thermal sleeve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤村 秀和 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 小山 一仁 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 浅田 幸宏 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Hidekazu Fujimura, 502 Jinritsucho, Tsuchiura-shi, Ibaraki Hiritsu Manufacturing Co., Ltd.Mechanical Research Institute (72) Kazuhito Koyama 502, Jinritsucho, Tsuchiura-shi, Ibaraki Hiritsu Co., Ltd. Machinery Research Laboratory (72) Inventor Yukihiro Asada 3-1-1 Sachimachi, Hitachi City, Ibaraki Prefecture Hitachi Ltd., Hitachi Plant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】火力及び原子力プラント用配管の高温水と
低温水が接触・混合する配管において、合流後の主管か
ら支管に通じるバイパス管を設け、混合後の中間温度の
流体を前記支管内に流入させることによって、両流体の
合流混合部での温度差を低減し、配管合流部の壁面温度
変動を抑え、材料の熱疲労を抑制することを特徴とする
混合流配管構造。
1. In a pipe for contacting and mixing high-temperature water and low-temperature water in pipes for thermal power and nuclear power plants, a bypass pipe communicating from a main pipe after joining to a branch pipe is provided, and a fluid at an intermediate temperature after mixing is introduced into the branch pipe. A mixed flow piping structure characterized by reducing the temperature difference at the merging / mixing part of both fluids by suppressing the wall temperature fluctuations of the pipe merging part and suppressing the thermal fatigue of the material.
【請求項2】請求項1において、前記バイパス管の下流
出口近くの支管に絞り部を有する混合流配管構造。
2. The mixed flow piping structure according to claim 1, wherein the branch pipe near the downstream outlet of the bypass pipe has a throttle portion.
JP5106440A 1993-05-07 1993-05-07 Mixed flow piping structure Pending JPH06317695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5106440A JPH06317695A (en) 1993-05-07 1993-05-07 Mixed flow piping structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5106440A JPH06317695A (en) 1993-05-07 1993-05-07 Mixed flow piping structure

Publications (1)

Publication Number Publication Date
JPH06317695A true JPH06317695A (en) 1994-11-15

Family

ID=14433703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5106440A Pending JPH06317695A (en) 1993-05-07 1993-05-07 Mixed flow piping structure

Country Status (1)

Country Link
JP (1) JPH06317695A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132714A (en) * 2005-11-08 2007-05-31 Hitachi Ltd Drain pumping-up system for feed water heater
JP2009516185A (en) * 2005-11-18 2009-04-16 アレヴァ エヌペ Primary circuit of nuclear reactor
WO2011027445A1 (en) 2009-09-03 2011-03-10 本田技研工業株式会社 Cooling air intake structure for v-belt type stepless transmission
JP2014152585A (en) * 2013-02-13 2014-08-25 Central Research Institute Of Electric Power Industry Connection part of fluid channel
CN106128525A (en) * 2016-08-15 2016-11-16 上海核工程研究设计院 A kind of ooling channel system eliminating thermally stratified layer
CN113790322A (en) * 2021-09-01 2021-12-14 哈尔滨工程大学 Fluid control unit for sealing side branch pipeline

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132714A (en) * 2005-11-08 2007-05-31 Hitachi Ltd Drain pumping-up system for feed water heater
JP4575278B2 (en) * 2005-11-08 2010-11-04 株式会社日立製作所 Feed water heater drain pump up system
JP2009516185A (en) * 2005-11-18 2009-04-16 アレヴァ エヌペ Primary circuit of nuclear reactor
WO2011027445A1 (en) 2009-09-03 2011-03-10 本田技研工業株式会社 Cooling air intake structure for v-belt type stepless transmission
JP2014152585A (en) * 2013-02-13 2014-08-25 Central Research Institute Of Electric Power Industry Connection part of fluid channel
CN106128525A (en) * 2016-08-15 2016-11-16 上海核工程研究设计院 A kind of ooling channel system eliminating thermally stratified layer
CN113790322A (en) * 2021-09-01 2021-12-14 哈尔滨工程大学 Fluid control unit for sealing side branch pipeline
CN113790322B (en) * 2021-09-01 2024-03-15 哈尔滨工程大学 Fluid control unit for sealing bypass pipeline

Similar Documents

Publication Publication Date Title
US6708727B2 (en) Pipe structure of branch pipe line
EP0151918A3 (en) Method and apparatus for cooling high temperature structures with a fluid coolant
US3132691A (en) Heat exchanger construction and thermal shield therefor
JPH06317695A (en) Mixed flow piping structure
JPH07243595A (en) Mixture flow piping structure
JPH0436071A (en) S-type tubular water turbine
JPH07243596A (en) Mixture flow piping structure
JPH0727300A (en) Piping structure for mixed flow
JP4690836B2 (en) Piping structure that mixes high and low temperature fluids
JPH01215098A (en) Cooling system
JPH08200597A (en) Piping system
JPH08135883A (en) Piping joint
JPS60116998A (en) Piping joint
GB2084312A (en) Apparatus and Method for Avoiding the Bursting of Conduits
JPH05172280A (en) Piping structure for combination flow
JPS59166792A (en) Joint piping mechanism
JPH01275993A (en) Piping system having branch pipe with closed tip
JP2002320836A (en) Mixing promotion structure
JPS5689823A (en) Method of mixing low-temperature fliud and high-temperature fluid
GB2055595A (en) Mixing device for flowing fluids
RU1786332C (en) Heated pipeline
RU2079843C1 (en) Gear to straighten profile of velocity of flow of liquid
JPS5913507Y2 (en) High speed particle heat exchanger
BE1008326A7 (en) Pontes connections for use of irrigation and mono- polydimensionnelles structures.
SU1767275A1 (en) Pipe line