JP4572465B2 - Manufacturing method of electronic component device - Google Patents

Manufacturing method of electronic component device Download PDF

Info

Publication number
JP4572465B2
JP4572465B2 JP2000381624A JP2000381624A JP4572465B2 JP 4572465 B2 JP4572465 B2 JP 4572465B2 JP 2000381624 A JP2000381624 A JP 2000381624A JP 2000381624 A JP2000381624 A JP 2000381624A JP 4572465 B2 JP4572465 B2 JP 4572465B2
Authority
JP
Japan
Prior art keywords
wiring
electronic component
wirings
substrate
ultrasonic vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000381624A
Other languages
Japanese (ja)
Other versions
JP2002184812A (en
Inventor
剛伸 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2000381624A priority Critical patent/JP4572465B2/en
Publication of JP2002184812A publication Critical patent/JP2002184812A/en
Application granted granted Critical
Publication of JP4572465B2 publication Critical patent/JP4572465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子部品を基板上にバンプを介して実装してなる電子部品装置の製造方法、特にフリップチップボンディング方法を用いて実装する電子部品装置の製造方法に関するものである。
【0002】
【従来の技術】
従来、半導体チップの電極部に形成されたバンプと、加熱ステージ上に配置された基板の配線パターンとを位置合わせし、チップの裏面にツールを介して圧力と超音波とを付加し、バンプと基板の配線パターンとを接合するフリップチップボンディング方法が提案されている(特開昭63−288031号公報)。
【0003】
図1は電子部品装置の一例を示し、図2はその接合方法、図3は基板を示している。
1は基板、2a,2bは配線、3はバンプ、4は電子部品である。
基板1には、配線2a,配線2bが縦横に形成され、バンプ3はこれら配線2a,2bの内側端部に予め形成されている。ボンディングツール5で電子部品4の上面を押圧し、かつ水平方向Xの超音波振動を与えることで、バンプ3を電子部品4の電極部に接合する。
【0004】
【発明が解決しようとする課題】
上記のように、電子部品4の電極部と基板1の配線パターンとを一括して接合する関係で、どうしても超音波振動の方向Xに対して直交方向に延びる配線2aと平行に延びる配線2bとが生じてしまう。特に、超音波振動の方向Xと直交方向に設けられた配線2aでは、超音波振動による配線2aの歪みが大きく、平行な配線2bと比較して接合が不完全になるという欠点があった。
【0005】
図4の(a)は超音波振動の方向Xと直交方向に設けられた配線2aに対して電子部品4を接合する状態を示し、(b)は超音波振動の方向Xと平行に設けられた配線2bに対して電子部品4を接合する状態を示す。図4において、6は電子部品4の電極部である。
【0006】
直交方向に設けられた配線2aでは、超音波振動の方向Xに対する剛性が低いため、平行に設けられた配線2bに比較して、配線2aの歪み量δが大きく、接合が不完全になる。
上記のように配線の方向によって接合性にばらつきがあると、早く接合する配線(または電極)とそうでない配線(または電極)とが混在してしまい、歪み量の大きな配線2aが完全に接合するように超音波印加時間を長くした場合、早く接合した配線(または電極)2bからクラックが発生し始めるという問題があった。
【0007】
そこで、本発明の目的は、超音波振動による配線の歪み量のばらつきを抑え、すべての配線でほぼ均等な接合状態を得ることができる電子部品装置の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明は、基板上に互いに異なる方向に複数の配線を形成し、当該複数の配線に対し、電子部品の複数の電極をバンプを介して超音波振動を用いて一括して接合する電子部品装置の製造方法において、上記超音波振動による上記配線の歪み量がほぼ同一になるように、上記基板に上記超音波振動の方向とのなす角度θが異なる複数の配線を形成し、かつ上記角度θが大きい方の配線を角度θが小さい方の配線より幅広に形成したことを特徴とする電子部品装置の製造方法を提供する。
【0009】
例えば直交方向に延びる複数の配線上(または電子部品の電極上)にバンプを形成しておき、このバンプを対面する電極(または配線)に対して超音波振動を利用して接合する。
この場合、超音波振動の方向とのなす角度θが大きい配線と、角度θが小さい配線とが生じるが、本発明では超音波振動による配線の歪み量がほぼ同一になるように配線の形状を設定したので、超音波の伝達効率もほぼ均等になり、全ての配線においてほぼ均等な接合状態を得ることができる。そのため、不完全接合やクラックの発生を防止できる。
【0010】
超音波振動による配線の歪み量をほぼ同一にするため、請求項1のように、基板に超音波振動の方向とのなす角度θが異なる複数の配線を形成し、上記角度θが大きい方の配線を角度θが小さい方の配線より幅広に形成するのがよい。
つまり、超音波振動の方向との角度θが大きい配線ほど、超音波振動による歪みが大きくなるので、角度θが大きい配線を幅広とすることで、歪み量を少なくし、全ての配線における接合性を均一化することができる。
【0011】
請求項2のように、基板の少なくとも1本の配線を、電子部品の電極と接続される部位の近傍でL字形に屈曲させ、このL字形配線の電子部品の電極と接続される部位の幅D3を、超音波振動の方向とのなす角度θが45°以上の配線の幅D2より狭くしてもよい。
すなわち、電子部品との接続部近傍でL字形に屈曲する配線とした場合には、配線の接続部の長さが短いので、超音波振動の方向とのなす角度θが45°以上の配線に比べて超音波振動による歪みが相対的に小さい。そこで、L字形配線の接続部の幅D3を、超音波振動に対する剛性の低い45°以上の配線の幅D2より狭くすることで、歪み量をほぼ同一に近づけることができる。
【0012】
請求項3のように、基板の少なくとも1本の配線をL字形に屈曲させ、このL字形配線の電子部品の電極と接続される部位の長さLを超音波振動が波及する範囲より長く設定してもよい。
すなわち、請求項4では、歪み量を同一にするための手段として、接続部の幅寸法を調整する方法に代えて、長さ寸法を調整する方法を用いている。つまり、電子部品との接合部近傍でL字形に屈曲するのではなく、接続部を超音波振動が波及する範囲より長く設定することで、他の接合部と同様な剛性を持つようにしたものである。
【0013】
請求項4のように、基板に、超音波振動の方向とのなす角度θが45°以上の配線と45°未満の配線とを形成し、角度θが45°未満の配線の電子部品の電極と接続される部位の近傍部に、角度θが変化する屈曲部あるいは湾曲部を形成するのが望ましい。
すなわち、角度θが45°未満の配線は45°以上の配線に比べて超音波振動に対する剛性が高いので、剛性の高い45°未満の配線の接続部近傍に屈曲部あるいは湾曲部を形成することで、接続部近傍の剛性を低くしてある。そのため、歪み量の均一化を図り、接合状態をほぼ均一にできる。
【0014】
請求項5のように、基板に互いに直交方向に延びる複数の配線を形成し、これら配線の電子部品の電極と接続される部位の近傍部のそれぞれに、1本の配線に対して45°屈曲した部分を複数箇所形成してもよい。
すなわち、配線の幅を変更せず、配線の接続部の近傍部位を45°ずつ複数箇所で屈曲させれば、超音波振動の方向に関係なく、全ての配線の歪み量を均一化させることが可能である。この場合には、配線の幅およびピッチをほぼ均一にで
きるので、電気的特性が変化せず、基板が大型化しないで済むという利点がある。
【0015】
【発明の実施の形態】
本発明にかかる電子部品装置の第1実施例を図5〜図8を用いて説明する。図5は電子部品装置の平面図、図6は電子部品装置の側面図、図7は基板の平面図、図8は基板の部分拡大図である。
【0016】
基板10Aは、ガラスエポキシ樹脂、BTレジンなどの樹脂基板、アルミナなどのセラミック基板、さらにはシリコンなどの結晶基板であり、この基板10A上に互いに直交方向に延びる複数の配線11〜14が形成されている。ここで、基板10Aの形状は特に限定されない。配線11〜14は、薄膜形成法あるいは厚膜形成法により形成され、その厚みは数μm〜数十μmとするのが望ましいが、この限りではない。また、配線11〜14の接続部11a〜14a以外の部分は、レジスト等の絶縁物で覆われていてもよい。
【0017】
配線11〜14の内側端部に設けられた接続部11a〜14aには、めっき法、ワイヤボンディング法などを用いてバンプ15が形成されている。これらバンプ15は、Au,Ag,Pd,Cuを主成分とする金属バンプや、はんだなどを用いることができる。
【0018】
20は半導体チップなどの電子部品であり、その下面にはバンプ15に対応した位置に電極部(図示せず)が形成されている。電子部品20の電極部は、バンプ15に対して超音波振動を用いて一括して接合されている。
【0019】
図8に示すように、接続部11a,12aは、超音波振動の方向Xに対して平行に近い方向(θ1 <45°)に形成された配線11,12に設けられており、接続部13a,14aは超音波振動の方向Xに対して垂直に近い方向(θ2 >45°)に形成された配線13,14に設けられている。
接続部を除く配線11〜14の幅D0はすべて同一に形成され、接続部11a,12aの幅をD1、接続部13a,14aの幅をD2とすると、超音波振動による接続部11a〜14aの歪み量がほぼ同一になるように、次の関係に設定されている。
D0=D1<D2
上記のように設定する理由は、超音波振動とほぼ直交する配線13,14の接続部13a,14aは、ほぼ平行な配線11,12の接続部11a,12aに比べて振動方向Xに対する剛性が低いので、接続部13a,14aの幅D2を接続部11a,12aの幅D1より広くし、振動方向Xに対する剛性をほぼ等しくして超音波振動による配線の歪み量をほぼ同一にしたものである。
なお、幅広に形成された接続部13a,14aの長さLは、ボンディングツール30による超音波振動が波及する範囲より長く設定されている。したがって、配線13,14全体が接続部13a,14aと同様な幅D2で形成されていてもよい。
【0020】
次に、電子部品20を配線11〜14上にフリップチップボンディングする方法について、説明する。
まず、基板10Aの配線11〜14の接続部11a〜14aにバンプ15を形成する。
次に、電子部品20の上面をボンディングツール30によって吸着し、電子部品20をピックアップして電極部とバンプ15とを高精度に位置合わせする。
次に、電子部品20の電極部とバンプ15とを接触させ、ツール30を介して基板10Aの表面に平行な方向Xとなるように超音波振動を与え、電極部とバンプ15とを金属接合する。なお、接合に際して、基板10Aと電子部品20との間に圧力を付加したり、加熱してもよい。
このとき、超音波振動Xに対して各接続部11a〜14aの歪み量がほぼ等しくなるように、幅D1,D2が設定されているので、接続部11a〜14aに設けられたバンプ15の接合性のばらつきが少なく、ほぼ均等な接合強度を得ることができる。したがって、不完全接合や電極部にクラック等が発生するのを防止できる。
上記のように接合した後、接合信頼性を確保するため、電子部品20と基板10Aの線膨張差を緩和し、かつ接合部を保護するための樹脂封止を、電子部品20と基板10Aとの隙間に行ってもよい。
なお、バンプ15は、基板10Aの配線11〜14に形成する場合に限らず、電子部品20の電極上に形成しておき、このバンプを基板の配線に対して接合してもよい。
【0021】
上記実施例では、配線11,12と振動方向Xとのなす角度θ1 を0<θ1 <45°とし、配線13,14と振動方向Xとのなす角度θ2 を45°<θ2 <90°としたが、θ1 =0°、θ2 =90°としてもよい。この場合には、接続部の幅D1とD2との差をより大きくすればよい。
また、θ1 =θ2 =45°である場合には、接続部の幅D1とD2をほぼ等しくすればよい。
【0022】
図9は本発明にかかる基板の第2実施例を示す。
この実施例の基板10Bは、その表面に互いに直交方向に延びる複数の配線11〜14が形成されており、その内、一本の配線16が接続部近傍でL字形に折れ曲がった形状に形成されている点を除いて、図7に示す基板10Aと同様である。したがって、図7の基板10Aと同一部分には同一符号を付して重複説明を省略する。
L字形の配線16の接続部16aの幅D3は、振動方向Xとほぼ直角な配線13,14の接続部13a,14aの幅D2に比べて狭く設定されている。
D3<D2
L字形の配線16の場合、接続部16aの長さが短く、しかも配線部16bの方向が振動方向Xに対してほぼ平行であるため、配線部16bが接続部16aの歪みを抑制する働きをし、接続部16aの幅D3が接続部13aの幅D2より狭くても、接続部13aと同様な剛性を持つことができるからである。
【0023】
なお、接続部16aの幅D3を接続部11aの幅D1より小さくすると、接続部16aの歪み量が大きくなり過ぎるので、振動方向Xとほぼ平行な配線11,12の接続部11a,12aの幅D1に比べて広くするのが望ましい。すなわち、次のような設定にすることで、全ての接続部11a〜16aの歪み量をほぼ均等にできる。
D1<D3<D2
なお、配線部16bの幅D4は、他の配線の幅D0と同等であってもよいし、これより幅狭あるいは幅広であってもよい。
【0024】
図10は本発明にかかる基板の第3実施例を示す。
この実施例の基板10Cも、その表面に互いに直交方向に延びる複数の配線11〜14が形成されており、その内、一本の配線16が接続部近傍でL字形に折れ曲がった形状に形成されている点を除いて、図7に示す基板10Aと同様である。したがって、図7の基板10Aと同一部分には同一符号を付して重複説明を省略する。
この実施例では、超音波振動の方向Xが配線11〜14に対してほぼ45°の方向にある。したがって、接続部11a〜14aは全て同一幅D5に設定されている。また、L字形の配線16の接続部16aの幅D6は他の配線の接続部11a〜14aに比べて幅狭に形成されている。
D6<D5
その理由は、L字形配線16の接続部16aと配線部16bが直角方向に形成されているため、超音波振動に対して最も変形しにくく(剛性が高く)、そのため、配線16の接続部16aが他の配線の接続部より歪み量が少なくなる。したがって、歪み量をほぼ均等にするため、接続部16aの幅D6を他の接続部より幅狭としたものである。
なお、この実施例では、配線11〜14の接続部11a〜14aを他の部分に比べて幅広としたが、同一幅としてもよいことは勿論である。
【0025】
図11は本発明にかかる基板の第4実施例を示す。
この実施例の基板10Dも、その表面に互いに直交方向に延びる複数の配線11〜14が形成されており、その内、一本の配線16が接続部近傍でL字形に折れ曲がった形状に形成されている点を除いて、図7に示す基板10Aと同様である。
この実施例では、超音波振動の方向Xが配線11〜14に対してほぼ45°の方向にある。したがって、接続部11a〜14a,16aは全て同一幅D7に設定されている。この場合、接続部11a〜14a,16aの歪み量がほぼ同一になるように、接続部16aの長さLは、ボンディングツール30による超音波振動が波及する範囲より長く設定されている。
その理由は、L字形配線16の接続部16aと配線部16bが直角方向に形成されているため、電子部品との接合部近傍でL字形に屈曲すると超音波振動に対して最も変形しにくく(剛性が高く)、そのため配線16の接続部16aが他の配線の接続部より歪み量が小さくなる。したがって、接続部16aの長さLを超音波振動の波及する範囲より長く設定することにより、他の接合部と同様な剛性を持つことができるからである。
【0026】
図12は本発明にかかる配線形状の第5実施例を示す。
この実施例では、超音波振動による配線11,13の接続部11a,13aの歪み量をほぼ同一にするため、歪み量が小さい接続部11aの側部に矩形の凹部11bを形成し、歪み量が大きい接続部13aの側部に矩形の凸部13bを形成したものである。また、L字形に折れ曲がった配線16の接続部16aは、歪み量が接続部11aに比べて大きいが、接続部13aに比べて小さいので、少ない数または小さな凸部16cを形成したものである。
【0027】
図13は本発明にかかる配線形状の第6実施例を示す。
この実施例では、図12と同様に、超音波振動による配線11,13の接続部11a,13aの歪み量をほぼ同一にするため、歪み量が小さい接続部11aの側部にはV字形の凹部11bを形成し、歪み量が大きい接続部13aの側部には山形あるいは半円状の凸部13bを形成したものである。
歪み量に応じて、凹部11bや凸部13bの形状、大きさ、数を任意に変更できる。
【0028】
図14は本発明にかかる配線形状の第7実施例を示す。
この実施例では、超音波振動による配線11,13の接続部11a,13aの歪み量をほぼ同一にするため、歪み量が小さい接続部11aをV字形に屈曲させたものである。すなわち、接続部11aを屈曲させることで、振動方向Xに対して角度を持つ部分11a1 を形成し、この部分11a1 で歪み量を大きくすることで、接続部13aの歪み量とほぼ均等化させたものである。
【0029】
図15は本発明にかかる配線形状の第8実施例を示す。
この実施例も第6実施例と同様に、超音波振動による配線11,13の接続部11a,13aの歪み量をほぼ同一にするため、歪み量が小さい接続部11aをアーチ状に湾曲させたものである。すなわち、接続部11aを湾曲させることで、振動方向Xに対して角度を持つ部分11a2 を形成し、この部分11a2 で歪み量を大きくすることで、接続部13aの歪み量とほぼ均等化させたものである。
【0030】
図16は本発明にかかる基板の第9実施例を示す。
この実施例の基板10Eは、配線11〜14および接続部11a〜14aの幅を同一とし、接続部11a〜14aに45°ずつ屈曲した複数の部分11a3 〜14a3 を形成したものである。これら屈曲部11a3 〜14a3 は同一形状に形成されている。
この場合には、超音波振動の方向がいかなる方向であっても、全ての接続部11a〜14aで歪み量がほぼ同一になるので、超音波振動の方向の選択性が向上する。また、歪み量がほぼ同一になるように、格別な配線設計を必要としない。
なお、屈曲部11a3 〜14a3 に代えてアーチ部としてもよい。
【0031】
第5実施例〜第9実施例の場合には、配線11,13の幅寸法を一定にし、接続部に凸部や凹部を設けたり、屈曲あるいは湾曲させることで、歪み量をほぼ均等にしているので、配線間や接続部間のピッチを変更する必要がない。したがって、電子部品装置が大型化することがないという利点がある。
【0032】
本発明は上記実施例に限定されるものではない。
本発明において、超音波振動の方向Xは一方向のみに限ることなく、ある程度の角度範囲でひねるような回転振動であってもよい。また、振動方向や周波数の異なる振動が合成されたものでもよい。
基板の材質は特に問わないが、樹脂基板を用い、かつ超音波振動を併用した熱圧着により接合する場合に、本発明は効果的である。なぜなら、樹脂基板の場合、超音波振動を併用した熱圧着を行うと、基板が変形するので、配線の歪み量が大きくなるからである。
本発明の電子部品装置は、電子部品素子として半導体チップを用いたものに限らず、抵抗素子、コンデンサ、圧電部品など如何なるチップ部品のフェースダウン実装にも適用可能である。
【0033】
【発明の効果】
以上の説明で明らかなように、請求項1〜5に記載の発明によれば、基板上に互いに異なる方向に形成された複数の配線に対し、電子部品の複数の電極をバンプを介して超音波振動を用いて一括して接合する場合に、超音波振動による配線の歪み量がほぼ同一になるように配線の形状を設定したので、超音波の伝達効率
がほぼ均等になり、全ての配線においてほぼ均等な接合状態を得ることができる。
そのため、不完全接合やクラックの発生を防止でき、信頼性の高い電子部品装置を得ることができる。
【図面の簡単な説明】
【図1】一般的な電子部品装置の構成を示す斜視図である。
【図2】図1の電子部品装置を接合する方法を示す斜視図である。
【図3】図1の電子部品装置に用いられる基板の斜視図である。
【図4】図1の電子部品装置において、超音波振動を与えた時の拡大図である。
【図5】本発明にかかる電子部品装置の一例の平面図である。
【図6】図5に示す電子部品装置の接合時の側面図である。
【図7】図5に示す電子部品装置に用いられる基板の平面図である。
【図8】図7に示す基板の部分拡大図である。
【図9】本発明にかかる基板の第2実施例の平面図である。
【図10】本発明にかかる基板の第3実施例の平面図である。
【図11】本発明にかかる基板の第4実施例の平面図である。
【図12】本発明にかかる配線形状の第5実施例の平面図である。
【図13】本発明にかかる配線形状の第6実施例の平面図である。
【図14】本発明にかかる配線形状の第7実施例の平面図である。
【図15】本発明にかかる配線形状の第8実施例の平面図である。
【図16】本発明にかかる基板の第9実施例の平面図である。
【符号の説明】
10A,10B,10C,10D 基板
11〜14,16 配線
15 バンプ
20 電子部品
30 ボンディングツール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an electronic component device in which an electronic component is mounted on a substrate via a bump, and more particularly to a method for manufacturing an electronic component device to be mounted using a flip chip bonding method.
[0002]
[Prior art]
Conventionally, a bump formed on an electrode portion of a semiconductor chip and a wiring pattern of a substrate arranged on a heating stage are aligned, pressure and ultrasonic waves are applied to the back surface of the chip via a tool, A flip chip bonding method for bonding a wiring pattern on a substrate has been proposed (Japanese Patent Laid-Open No. 63-288031).
[0003]
FIG. 1 shows an example of an electronic component device, FIG. 2 shows a bonding method thereof, and FIG. 3 shows a substrate.
1 is a substrate, 2a and 2b are wirings, 3 is a bump, and 4 is an electronic component.
On the substrate 1, wirings 2a and 2b are formed vertically and horizontally, and bumps 3 are formed in advance at the inner ends of these wirings 2a and 2b. The bump 3 is joined to the electrode part of the electronic component 4 by pressing the upper surface of the electronic component 4 with the bonding tool 5 and applying ultrasonic vibration in the horizontal direction X.
[0004]
[Problems to be solved by the invention]
As described above, the electrode 2 of the electronic component 4 and the wiring pattern of the substrate 1 are joined together, and the wiring 2b extending in parallel to the wiring 2a extending in the direction orthogonal to the direction X of the ultrasonic vibration is unavoidable. Will occur. In particular, the wiring 2a provided in the direction orthogonal to the direction X of ultrasonic vibration has a drawback that the distortion of the wiring 2a due to ultrasonic vibration is large and the bonding is incomplete compared to the parallel wiring 2b.
[0005]
4A shows a state in which the electronic component 4 is joined to the wiring 2a provided in a direction orthogonal to the ultrasonic vibration direction X, and FIG. 4B is provided in parallel with the ultrasonic vibration direction X. FIG. A state in which the electronic component 4 is joined to the wiring 2b is shown. In FIG. 4, reference numeral 6 denotes an electrode portion of the electronic component 4.
[0006]
Since the wiring 2a provided in the orthogonal direction has low rigidity with respect to the direction X of the ultrasonic vibration, the distortion amount δ of the wiring 2a is larger than that of the wiring 2b provided in parallel, and the bonding is incomplete.
As described above, if there is a variation in the bonding property depending on the direction of the wiring, the wiring (or electrode) to be bonded early and the wiring (or electrode) to be bonded are mixed, and the wiring 2a having a large amount of distortion is completely bonded. As described above, when the ultrasonic wave application time is lengthened, there is a problem that cracks start to occur from the wiring (or electrode) 2b that is joined early.
[0007]
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing an electronic component device that can suppress variations in the amount of distortion of wiring due to ultrasonic vibration and can obtain a substantially uniform bonding state with all wirings.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a plurality of wirings are formed on a substrate in different directions, and a plurality of electrodes of an electronic component are ultrasonically applied to the plurality of wirings via bumps. In the method of manufacturing an electronic component device that is collectively bonded using vibration, an angle θ formed between the substrate and the direction of the ultrasonic vibration is set so that the amount of distortion of the wiring due to the ultrasonic vibration is substantially the same. A method of manufacturing an electronic component device is provided, wherein a plurality of different wirings are formed, and the wiring having the larger angle θ is formed wider than the wiring having the smaller angle θ .
[0009]
For example, bumps are formed on a plurality of wirings (or on the electrodes of the electronic component) extending in the orthogonal direction, and bonded to the electrodes (or wirings) facing the bumps using ultrasonic vibration.
In this case, a wire having a large angle θ formed with the direction of ultrasonic vibration and a wire having a small angle θ are generated. In the present invention, the shape of the wire is set so that the amount of distortion of the wire due to the ultrasonic vibration is substantially the same. Since it is set, the transmission efficiency of the ultrasonic waves becomes substantially uniform, and a substantially uniform joining state can be obtained in all the wirings. Therefore, it is possible to prevent incomplete joining and occurrence of cracks.
[0010]
In order to make the distortion amount of the wiring due to the ultrasonic vibration substantially the same, a plurality of wirings having different angles θ formed with the direction of the ultrasonic vibration are formed on the substrate as in claim 1 , and the larger angle θ is formed. The wiring is preferably formed wider than the wiring having the smaller angle θ.
In other words, the larger the angle θ with respect to the direction of ultrasonic vibration, the greater the distortion caused by ultrasonic vibration. By widening the wiring with a large angle θ, the amount of distortion is reduced and the bonding property of all wirings is increased. Can be made uniform.
[0011]
According to a second aspect of the present invention, at least one wiring of the substrate is bent in an L shape in the vicinity of a portion connected to the electrode of the electronic component, and a width of the portion connected to the electrode of the electronic component of this L-shaped wiring. You may make D3 narrower than the width | variety D2 of the wiring whose angle (theta) with the direction of an ultrasonic vibration is 45 degrees or more.
That is, when the wiring is bent in an L shape in the vicinity of the connection portion with the electronic component, the length of the connection portion of the wiring is short, so that the angle θ formed with the direction of ultrasonic vibration is 45 ° or more. In comparison, distortion caused by ultrasonic vibration is relatively small. Therefore, by making the width D3 of the connection portion of the L-shaped wiring narrower than the wiring width D2 of 45 ° or more, which has low rigidity against ultrasonic vibration, the amount of distortion can be made almost the same.
[0012]
As in claim 3 , at least one wiring of the substrate is bent into an L shape, and the length L of the portion connected to the electrode of the electronic component of the L shape wiring is set to be longer than the range in which the ultrasonic vibration spreads. May be.
That is, in the fourth aspect, as a means for making the amount of distortion the same, a method of adjusting the length dimension is used instead of the method of adjusting the width dimension of the connecting portion. In other words, instead of bending in an L shape near the joint with the electronic component, the connection is set to be longer than the range in which the ultrasonic vibration is applied, so that it has the same rigidity as other joints. It is.
[0013]
As in claim 4, the substrate, the angle θ between the direction of ultrasonic vibration to form a less 45 ° or more wires and 45 ° lines, the electrodes of the electronic component of the angle θ is less than 45 ° wire It is desirable to form a bent portion or a curved portion in which the angle θ changes in the vicinity of the portion connected to the.
That is, since the wiring with an angle θ of less than 45 ° has higher rigidity against ultrasonic vibration than the wiring with 45 ° or more, a bent portion or a curved portion should be formed in the vicinity of the connecting portion of the wiring having a high rigidity of less than 45 °. Thus, the rigidity in the vicinity of the connecting portion is lowered. Therefore, the amount of strain can be made uniform and the joining state can be made almost uniform.
[0014]
A plurality of wirings extending in a direction orthogonal to each other are formed on the substrate as in claim 5 , and each wiring is bent at 45 ° with respect to one wiring in the vicinity of the portion connected to the electrode of the electronic component . Multiple portions may be formed.
In other words, if the portion near the connection portion of the wiring is bent at multiple positions of 45 ° without changing the width of the wiring, the distortion amount of all wiring can be made uniform regardless of the direction of ultrasonic vibration. Is possible. In this case, since the width and pitch of the wiring can be made substantially uniform, there is an advantage that the electrical characteristics do not change and the substrate does not need to be enlarged.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of an electronic component device according to the present invention will be described with reference to FIGS. 5 is a plan view of the electronic component device, FIG. 6 is a side view of the electronic component device, FIG. 7 is a plan view of the substrate, and FIG. 8 is a partially enlarged view of the substrate.
[0016]
The substrate 10A is a resin substrate such as glass epoxy resin or BT resin, a ceramic substrate such as alumina, and a crystal substrate such as silicon. A plurality of wirings 11 to 14 extending in a direction orthogonal to each other are formed on the substrate 10A. ing. Here, the shape of the substrate 10A is not particularly limited. The wirings 11 to 14 are formed by a thin film forming method or a thick film forming method, and the thickness is preferably several μm to several tens μm, but is not limited thereto. Further, portions other than the connection portions 11a to 14a of the wirings 11 to 14 may be covered with an insulator such as a resist.
[0017]
Bumps 15 are formed on the connection portions 11a to 14a provided at the inner ends of the wirings 11 to 14 by using a plating method, a wire bonding method, or the like. For these bumps 15, metal bumps mainly composed of Au, Ag, Pd, and Cu, solder, or the like can be used.
[0018]
Reference numeral 20 denotes an electronic component such as a semiconductor chip, and an electrode portion (not shown) is formed on the lower surface thereof at a position corresponding to the bump 15. The electrode portion of the electronic component 20 is bonded to the bump 15 at a time using ultrasonic vibration.
[0019]
As shown in FIG. 8, the connecting portions 11a and 12a are provided on the wirings 11 and 12 formed in a direction (θ 1 <45 °) that is nearly parallel to the direction X of the ultrasonic vibration. Reference numerals 13a and 14a are provided on the wirings 13 and 14 formed in a direction (θ 2 > 45 °) nearly perpendicular to the direction X of the ultrasonic vibration.
The widths D0 of the wirings 11 to 14 excluding the connection parts are all formed the same. If the widths of the connection parts 11a and 12a are D1 and the widths of the connection parts 13a and 14a are D2, the connection parts 11a to 14a caused by ultrasonic vibrations. The following relationship is set so that the distortion amounts are substantially the same.
D0 = D1 <D2
The reason for setting as described above is that the connecting portions 13a and 14a of the wirings 13 and 14 that are substantially orthogonal to the ultrasonic vibration have rigidity in the vibration direction X as compared with the connecting portions 11a and 12a of the substantially parallel wirings 11 and 12. Since it is low, the width D2 of the connection portions 13a and 14a is made wider than the width D1 of the connection portions 11a and 12a, the rigidity with respect to the vibration direction X is substantially equal, and the distortion amount of the wiring due to ultrasonic vibration is substantially the same. .
In addition, the length L of the connection portions 13a and 14a formed to be wide is set to be longer than the range in which the ultrasonic vibration by the bonding tool 30 is spread. Accordingly, the entire wirings 13 and 14 may be formed with the same width D2 as the connection portions 13a and 14a.
[0020]
Next, a method for flip-chip bonding the electronic component 20 onto the wirings 11 to 14 will be described.
First, bumps 15 are formed on the connection portions 11a to 14a of the wirings 11 to 14 of the substrate 10A.
Next, the upper surface of the electronic component 20 is attracted by the bonding tool 30, the electronic component 20 is picked up, and the electrode part and the bump 15 are aligned with high accuracy.
Next, the electrode part of the electronic component 20 and the bump 15 are brought into contact with each other, and ultrasonic vibration is applied through the tool 30 so as to be in the direction X parallel to the surface of the substrate 10A. To do. In joining, pressure may be applied between the substrate 10A and the electronic component 20 or heating may be performed.
At this time, since the widths D1 and D2 are set so that the distortion amounts of the connection portions 11a to 14a are substantially equal to the ultrasonic vibration X, the bonding of the bumps 15 provided on the connection portions 11a to 14a is performed. There is little variation in properties, and almost uniform bonding strength can be obtained. Therefore, it is possible to prevent incomplete bonding and occurrence of cracks in the electrode portion.
After bonding as described above, in order to ensure bonding reliability, resin sealing for reducing the linear expansion difference between the electronic component 20 and the substrate 10A and protecting the bonding portion is performed between the electronic component 20 and the substrate 10A. You may go to the gap.
The bumps 15 are not limited to being formed on the wirings 11 to 14 of the substrate 10A, but may be formed on the electrodes of the electronic component 20 and bonded to the wirings of the substrate.
[0021]
In the above embodiment, the angle θ 1 formed between the wirings 11 and 12 and the vibration direction X is 0 <θ 1 <45 °, and the angle θ 2 formed between the wirings 13 and 14 and the vibration direction X is 45 ° <θ 2 < Although 90 ° is set, θ 1 = 0 ° and θ 2 = 90 ° may be used. In this case, what is necessary is just to enlarge the difference of the width | variety D1 and D2 of a connection part.
Further, when θ 1 = θ 2 = 45 °, the widths D1 and D2 of the connecting portions may be made substantially equal.
[0022]
FIG. 9 shows a second embodiment of the substrate according to the present invention.
The substrate 10B of this embodiment has a plurality of wirings 11 to 14 extending in a direction orthogonal to each other on the surface, and one of the wirings 16 is formed in a shape bent in an L shape near the connection portion. Except for this point, it is the same as the substrate 10A shown in FIG. Therefore, the same parts as those of the substrate 10A of FIG.
The width D3 of the connection portion 16a of the L-shaped wiring 16 is set narrower than the width D2 of the connection portions 13a and 14a of the wirings 13 and 14 that are substantially perpendicular to the vibration direction X.
D3 <D2
In the case of the L-shaped wiring 16, since the length of the connecting portion 16a is short and the direction of the wiring portion 16b is substantially parallel to the vibration direction X, the wiring portion 16b functions to suppress distortion of the connecting portion 16a. This is because even if the width D3 of the connecting portion 16a is smaller than the width D2 of the connecting portion 13a, it can have the same rigidity as the connecting portion 13a.
[0023]
If the width D3 of the connecting portion 16a is smaller than the width D1 of the connecting portion 11a, the amount of distortion of the connecting portion 16a becomes too large, and therefore the width of the connecting portions 11a and 12a of the wirings 11 and 12 substantially parallel to the vibration direction X. It is desirable to make it wider than D1. That is, by setting as follows, the distortion amounts of all the connecting portions 11a to 16a can be made almost equal.
D1 <D3 <D2
Note that the width D4 of the wiring portion 16b may be equal to the width D0 of the other wiring, or may be narrower or wider than this.
[0024]
FIG. 10 shows a third embodiment of the substrate according to the present invention.
The substrate 10C of this embodiment also has a plurality of wirings 11 to 14 extending in a direction orthogonal to each other on the surface, and one of the wirings 16 is formed in a shape bent in an L shape near the connection portion. Except for this point, it is the same as the substrate 10A shown in FIG. Therefore, the same parts as those of the substrate 10A of FIG.
In this embodiment, the direction X of the ultrasonic vibration is approximately 45 ° with respect to the wirings 11 to 14. Therefore, all the connection parts 11a-14a are set to the same width D5. Further, the width D6 of the connection portion 16a of the L-shaped wiring 16 is narrower than the connection portions 11a to 14a of the other wirings.
D6 <D5
The reason for this is that since the connecting portion 16a and the wiring portion 16b of the L-shaped wiring 16 are formed in a right angle direction, they are hardly deformed (highly rigid) with respect to ultrasonic vibrations. However, the amount of distortion is smaller than that of other wiring connections. Therefore, in order to make the amount of distortion substantially equal, the width D6 of the connection portion 16a is made narrower than other connection portions.
In this embodiment, the connecting portions 11a to 14a of the wirings 11 to 14 are wider than the other portions, but it is needless to say that they may have the same width.
[0025]
FIG. 11 shows a fourth embodiment of the substrate according to the present invention.
The substrate 10D of this embodiment also has a plurality of wirings 11 to 14 extending in a direction orthogonal to each other on the surface thereof, and one of the wirings 16 is formed in a shape bent in an L shape near the connection portion. Except for this point, it is the same as the substrate 10A shown in FIG.
In this embodiment, the direction X of the ultrasonic vibration is approximately 45 ° with respect to the wirings 11 to 14. Accordingly, the connecting portions 11a to 14a and 16a are all set to the same width D7. In this case, the length L of the connection portion 16a is set to be longer than the range in which the ultrasonic vibration by the bonding tool 30 is spread so that the distortion amounts of the connection portions 11a to 14a and 16a are substantially the same.
The reason is that since the connecting portion 16a and the wiring portion 16b of the L-shaped wiring 16 are formed in a right angle direction, bending to an L-shape in the vicinity of the joint portion with the electronic component is most difficult to deform with respect to ultrasonic vibration ( Therefore, the amount of distortion of the connecting portion 16a of the wiring 16 is smaller than that of the connecting portion of the other wiring. Therefore, by setting the length L of the connecting portion 16a to be longer than the range in which the ultrasonic vibration is spread, it is possible to have the same rigidity as other joint portions.
[0026]
FIG. 12 shows a fifth embodiment of the wiring shape according to the present invention.
In this embodiment, in order to make the distortion amounts of the connection portions 11a and 13a of the wirings 11 and 13 due to ultrasonic vibrations substantially the same, a rectangular recess 11b is formed on the side portion of the connection portion 11a with a small distortion amount, and the distortion amount A rectangular convex portion 13b is formed on the side portion of the connecting portion 13a having a large length. Further, the connection portion 16a of the wiring 16 bent in an L shape has a larger distortion amount than the connection portion 11a, but is smaller than the connection portion 13a, and therefore, a small number or small convex portions 16c are formed.
[0027]
FIG. 13 shows a sixth embodiment of the wiring shape according to the present invention.
In this embodiment, similarly to FIG. 12, in order to make the distortion amounts of the connection portions 11a and 13a of the wirings 11 and 13 caused by ultrasonic vibration substantially the same, the side portion of the connection portion 11a having a small distortion amount is V-shaped. A concave portion 11b is formed, and a mountain-shaped or semicircular convex portion 13b is formed on the side portion of the connecting portion 13a having a large amount of distortion.
Depending on the amount of distortion, the shape, size, and number of the concave portions 11b and the convex portions 13b can be arbitrarily changed.
[0028]
FIG. 14 shows a seventh embodiment of the wiring shape according to the present invention.
In this embodiment, the connection portion 11a having a small distortion amount is bent into a V shape so that the distortion amounts of the connection portions 11a and 13a of the wirings 11 and 13 due to the ultrasonic vibration are substantially the same. That is, by bending the connecting portion 11a, forms part 11a 1 having an angle with respect to the vibration direction X, by increasing the amount of distortion in this portion 11a 1, substantially equalizing the distortion amount of the connecting portion 13a It has been made.
[0029]
FIG. 15 shows an eighth embodiment of the wiring shape according to the present invention.
Similarly to the sixth embodiment, in this embodiment, in order to make the distortion amounts of the connection portions 11a and 13a of the wirings 11 and 13 caused by ultrasonic vibration almost the same, the connection portion 11a having a small distortion amount is curved in an arch shape. Is. That is, by curving the connecting portion 11a, forms part 11a 2 having an angle with respect to the vibration direction X, by increasing the amount of distortion in this portion 11a 2, substantially equalizing the distortion amount of the connecting portion 13a It has been made.
[0030]
FIG. 16 shows a ninth embodiment of the substrate according to the present invention.
In this embodiment, the substrate 10E has the same widths of the wirings 11 to 14 and the connection portions 11a to 14a, and a plurality of portions 11a 3 to 14a 3 bent at 45 ° to the connection portions 11a to 14a. These bent portions 11a 3 to 14a 3 are formed in the same shape.
In this case, since the distortion amount is almost the same in all the connecting portions 11a to 14a regardless of the direction of the ultrasonic vibration, the selectivity of the direction of the ultrasonic vibration is improved. Further, no special wiring design is required so that the distortion amounts are almost the same.
It may be arcuate portion in place of the bent portion 11a 3 ~14a 3.
[0031]
In the case of the fifth embodiment to the ninth embodiment, the widths of the wirings 11 and 13 are made constant, and the amount of distortion is made substantially uniform by providing the connecting portion with a convex portion or a concave portion, or bending or bending. Therefore, there is no need to change the pitch between wirings or connection parts. Therefore, there exists an advantage that an electronic component apparatus does not enlarge.
[0032]
The present invention is not limited to the above embodiments.
In the present invention, the direction X of ultrasonic vibration is not limited to only one direction, and may be rotational vibration that twists within a certain angle range. In addition, vibrations with different vibration directions and frequencies may be synthesized.
The material of the substrate is not particularly limited, but the present invention is effective when the resin substrate is used and bonding is performed by thermocompression bonding using ultrasonic vibration. This is because, in the case of a resin substrate, if thermocompression bonding using ultrasonic vibration is performed, the substrate is deformed, resulting in an increase in the amount of wiring distortion.
The electronic component device of the present invention is not limited to the one using a semiconductor chip as an electronic component element, and can be applied to face-down mounting of any chip component such as a resistance element, a capacitor, and a piezoelectric component.
[0033]
【The invention's effect】
As is apparent from the above description, according to the first to fifth aspects of the present invention, the plurality of electrodes of the electronic component are connected to the plurality of wirings formed in different directions on the substrate via the bumps. When joining together using sonic vibration, the wiring shape is set so that the amount of distortion of the wiring due to ultrasonic vibration is almost the same, so the transmission efficiency of ultrasonic waves is almost uniform, and all wiring A substantially uniform joining state can be obtained.
Therefore, incomplete joining and occurrence of cracks can be prevented, and a highly reliable electronic component device can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a configuration of a general electronic component device.
2 is a perspective view showing a method for joining the electronic component device of FIG. 1; FIG.
3 is a perspective view of a substrate used in the electronic component device of FIG. 1. FIG.
4 is an enlarged view when ultrasonic vibration is applied in the electronic component device of FIG. 1. FIG.
FIG. 5 is a plan view of an example of an electronic component device according to the present invention.
6 is a side view of the electronic component device shown in FIG. 5 at the time of joining.
7 is a plan view of a substrate used in the electronic component device shown in FIG. 5. FIG.
8 is a partial enlarged view of the substrate shown in FIG.
FIG. 9 is a plan view of a second embodiment of the substrate according to the present invention.
FIG. 10 is a plan view of a third embodiment of the substrate according to the present invention.
FIG. 11 is a plan view of a fourth embodiment of the substrate according to the present invention.
FIG. 12 is a plan view of a fifth embodiment of the wiring shape according to the present invention.
FIG. 13 is a plan view of a sixth embodiment of the wiring shape according to the present invention.
FIG. 14 is a plan view of a seventh embodiment of the wiring shape according to the present invention.
FIG. 15 is a plan view of an eighth embodiment of the wiring shape according to the present invention.
FIG. 16 is a plan view of a ninth embodiment of the substrate according to the present invention.
[Explanation of symbols]
10A, 10B, 10C, 10D Substrate 11-14, 16 Wiring 15 Bump 20 Electronic component 30 Bonding tool

Claims (5)

基板上に互いに異なる方向に複数の配線を形成し、当該複数の配線に対し、電子部品の複数の電極をバンプを介して超音波振動を用いて一括して接合する電子部品装置の製造方法において、
上記超音波振動による上記配線の歪み量がほぼ同一になるように、上記基板に上記超音波振動の方向とのなす角度θが異なる複数の配線を形成し、かつ上記角度θが大きい方の配線を角度θが小さい方の配線より幅広に形成したことを特徴とする電子部品装置の製造方法。
In a method of manufacturing an electronic component device , wherein a plurality of wirings are formed in different directions on a substrate, and a plurality of electrodes of the electronic component are collectively bonded to the plurality of wirings using ultrasonic vibration via bumps ,
A plurality of wirings having different angles θ with respect to the direction of the ultrasonic vibration are formed on the substrate so that the distortion amounts of the wiring due to the ultrasonic vibrations are substantially the same , and the wiring having the larger angle θ is formed. Is formed wider than the wiring with the smaller angle θ .
基板上に互いに異なる方向に複数の配線を形成し、当該複数の配線に対し、電子部品の複数の電極をバンプを介して超音波振動を用いて一括して接合する電子部品装置の製造方法において、
上記超音波振動による上記配線の歪み量がほぼ同一になるように、上記基板の少なくとも1本の配線を、電子部品の電極と接続される部位の近傍でL字形に屈曲させ、上記L字形配線の電子部品の電極と接続される部位の幅D3を、超音波振動の方向とのなす角度θが45°以上の配線の幅D2より狭くしたことを特徴とする電子部品装置の製造方法。
In a method of manufacturing an electronic component device, wherein a plurality of wirings are formed in different directions on a substrate, and a plurality of electrodes of the electronic component are collectively bonded to the plurality of wirings using ultrasonic vibration via bumps ,
The L-shaped wiring is formed by bending at least one wiring of the substrate in the vicinity of a portion connected to the electrode of the electronic component so that the amount of distortion of the wiring due to the ultrasonic vibration becomes substantially the same. A method for manufacturing an electronic component device , characterized in that a width D3 of a portion connected to an electrode of the electronic component is made narrower than a width D2 of a wiring having an angle θ with the direction of ultrasonic vibration of 45 ° or more .
基板上に互いに異なる方向に複数の配線を形成し、当該複数の配線に対し、電子部品の複数の電極をバンプを介して超音波振動を用いて一括して接合する電子部品装置の製造方法において、
上記超音波振動による上記配線の歪み量がほぼ同一になるように、上記基板の少なくとも1本の配線をL字形に屈曲させ、このL字形配線の電子部品の電極と接続される部位の長さLを超音波振動が波及する範囲より長く設定したことを特徴とする電子部品装置の製造方法。
In a method of manufacturing an electronic component device, wherein a plurality of wirings are formed in different directions on a substrate, and a plurality of electrodes of the electronic component are collectively bonded to the plurality of wirings using ultrasonic vibration via bumps ,
The length of the portion of the L-shaped wiring connected to the electrode of the electronic component is bent so that at least one wiring of the substrate is bent so that the amount of distortion of the wiring due to the ultrasonic vibration becomes substantially the same. A method of manufacturing an electronic component device , wherein L is set longer than a range in which ultrasonic vibrations are spread .
基板上に互いに異なる方向に複数の配線を形成し、当該複数の配線に対し、電子部品の複数の電極をバンプを介して超音波振動を用いて一括して接合する電子部品装置の製造方法において、
上記超音波振動による上記配線の歪み量がほぼ同一になるように、上記基板に、
上記超音波振動の方向とのなす角度θが45°以上の配線と45°未満の配線とを形成し、上記角度θが45°未満の配線の電子部品の電極と接続される部位の近傍部に、上記角度θが変化する屈曲部あるいは湾曲部を形成したことを特徴とする電子部品装置の製造方法。
In a method of manufacturing an electronic component device, wherein a plurality of wirings are formed in different directions on a substrate, and a plurality of electrodes of the electronic component are collectively bonded to the plurality of wirings using ultrasonic vibration via bumps ,
In the substrate so that the amount of distortion of the wiring due to the ultrasonic vibration is almost the same ,
A portion in the vicinity of a portion connected to an electrode of an electronic component of a wiring having an angle θ of 45 ° or more and a wiring having a angle of less than 45 ° formed with the ultrasonic vibration direction and a wiring having an angle θ of less than 45 °. In addition, a bending part or a bending part where the angle θ changes is formed .
基板上に互いに異なる方向に複数の配線を形成し、当該複数の配線に対し、電子部品の複数の電極をバンプを介して超音波振動を用いて一括して接合する電子部品装置の製造方法において、
上記超音波振動による上記配線の歪み量がほぼ同一になるように、上記基板に互いに直交方向に延びる複数の配線を形成し、これら配線の電子部品の電極と接続される部位の近傍部のそれぞれに、1本の配線に対して45°屈曲した部分を複数箇所形成したことを特徴とする電子部品装置の製造方法。
In a method of manufacturing an electronic component device, wherein a plurality of wirings are formed in different directions on a substrate, and a plurality of electrodes of the electronic component are collectively bonded to the plurality of wirings using ultrasonic vibration via bumps ,
A plurality of wirings extending in a direction orthogonal to each other are formed on the substrate so that the amount of distortion of the wiring due to the ultrasonic vibration is substantially the same, and each of the vicinity portions of the portions connected to the electrodes of the electronic components of these wirings And a plurality of portions bent by 45 ° with respect to one wiring .
JP2000381624A 2000-12-15 2000-12-15 Manufacturing method of electronic component device Expired - Fee Related JP4572465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000381624A JP4572465B2 (en) 2000-12-15 2000-12-15 Manufacturing method of electronic component device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000381624A JP4572465B2 (en) 2000-12-15 2000-12-15 Manufacturing method of electronic component device

Publications (2)

Publication Number Publication Date
JP2002184812A JP2002184812A (en) 2002-06-28
JP4572465B2 true JP4572465B2 (en) 2010-11-04

Family

ID=18849591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000381624A Expired - Fee Related JP4572465B2 (en) 2000-12-15 2000-12-15 Manufacturing method of electronic component device

Country Status (1)

Country Link
JP (1) JP4572465B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI119583B (en) * 2003-02-26 2008-12-31 Imbera Electronics Oy Procedure for manufacturing an electronics module
FI20030293A (en) * 2003-02-26 2004-08-27 Imbera Electronics Oy Method for manufacturing an electronic module and an electronic module
JP3855947B2 (en) 2003-03-10 2006-12-13 株式会社村田製作所 Electronic component device and manufacturing method thereof
JP3736638B2 (en) * 2003-10-17 2006-01-18 セイコーエプソン株式会社 Semiconductor device, electronic module and electronic device
JP4685583B2 (en) * 2005-10-11 2011-05-18 富士通株式会社 Semiconductor chip mounting method and circuit board
JP2008072144A (en) * 2007-11-30 2008-03-27 Matsushita Electric Ind Co Ltd Wiring substrate
JP4811437B2 (en) * 2008-08-11 2011-11-09 日本テキサス・インスツルメンツ株式会社 Mounting electronic components on IC chips
JP5229296B2 (en) * 2010-10-14 2013-07-03 日本テキサス・インスツルメンツ株式会社 Mounting electronic components on IC chips
JP6908068B2 (en) * 2019-03-29 2021-07-21 株式会社大真空 Piezoelectric vibration device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340611A (en) * 1999-05-31 2000-12-08 Nec Kansai Ltd Semiconductor device and its manufacture

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258436A (en) * 1988-04-08 1989-10-16 Nec Corp Lead frame for tab ic
JPH06318620A (en) * 1993-05-06 1994-11-15 Seiko Epson Corp Structure of semiconductor device
JP3627895B2 (en) * 1997-11-19 2005-03-09 ソニー株式会社 Wiring board
JP3520410B2 (en) * 1999-11-05 2004-04-19 株式会社村田製作所 Electronic component mounting method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340611A (en) * 1999-05-31 2000-12-08 Nec Kansai Ltd Semiconductor device and its manufacture

Also Published As

Publication number Publication date
JP2002184812A (en) 2002-06-28

Similar Documents

Publication Publication Date Title
US6946380B2 (en) Method for forming bump, semiconductor element having bumps and method of manufacturing the same, semiconductor device and method of manufacturing the same, circuit board, and electronic equipment
US7064425B2 (en) Semiconductor device circuit board, and electronic equipment
US6921016B2 (en) Semiconductor device and method of manufacturing the same, circuit board, and electronic equipment
KR100368776B1 (en) Semiconductor device and method for manufacturing same
JP4572465B2 (en) Manufacturing method of electronic component device
JP3855947B2 (en) Electronic component device and manufacturing method thereof
JP3509507B2 (en) Mounting structure and mounting method of electronic component with bump
JP2006229632A (en) Surface acoustic wave device
TWI378546B (en) Substrate and package for micro bga
JP2005340393A (en) Small-sized mount module and manufacturing method thereof
KR101021821B1 (en) Semiconductor device
JP2007141963A (en) Substrate-mounting method and semiconductor device mounted therewith
TW200426961A (en) Semiconductor device
JP3520410B2 (en) Electronic component mounting method
JP3572254B2 (en) Circuit board
JP3824545B2 (en) Wiring board, semiconductor device using the same, and manufacturing method thereof
US7119423B2 (en) Semiconductor device and method of manufacturing the same, electronic module, and electronic instrument
JP2001007155A (en) Flip chip connection structure body
JP3659406B2 (en) Bump structure and bump manufacturing method
JP4203193B2 (en) Mounting method of semiconductor element
JP2002076048A (en) Layout method of bump by flip chip connection
JP3880879B2 (en) Semiconductor device
JP4608178B2 (en) Electronic device and electronic device forming method
JPH10173301A (en) Circuit board, wiring board, and manufacturing method of circuit board
JP2005217082A (en) Semiconductor mounter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4572465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees