JP4570051B2 - Circuit boards, electronic devices and their manufacture - Google Patents

Circuit boards, electronic devices and their manufacture Download PDF

Info

Publication number
JP4570051B2
JP4570051B2 JP2006337424A JP2006337424A JP4570051B2 JP 4570051 B2 JP4570051 B2 JP 4570051B2 JP 2006337424 A JP2006337424 A JP 2006337424A JP 2006337424 A JP2006337424 A JP 2006337424A JP 4570051 B2 JP4570051 B2 JP 4570051B2
Authority
JP
Japan
Prior art keywords
circuit
circuit board
electrode
hole
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006337424A
Other languages
Japanese (ja)
Other versions
JP2008153303A (en
JP2008153303A5 (en
Inventor
重信 関根
由莉奈 関根
良治 桑名
Original Assignee
有限会社ナプラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ナプラ filed Critical 有限会社ナプラ
Priority to JP2006337424A priority Critical patent/JP4570051B2/en
Publication of JP2008153303A publication Critical patent/JP2008153303A/en
Publication of JP2008153303A5 publication Critical patent/JP2008153303A5/ja
Application granted granted Critical
Publication of JP4570051B2 publication Critical patent/JP4570051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

本発明は、三次元回路を有する回路基板、電子デバイス、及び、その製造方法に関する。   The present invention relates to a circuit board having a three-dimensional circuit, an electronic device, and a manufacturing method thereof.

三次元回路を有する電子デバイスの例としては、例えば、各種スケールの集積回路、各種半導体素子もしくはそのチップ等を挙げることができる。   Examples of electronic devices having a three-dimensional circuit include various scale integrated circuits, various semiconductor elements, or chips thereof.

この種の電子デバイスにおいて、その三次元回路配置を実現する手法として、従来は、半導体パッケージを基板上で積み重ね、半導体パッケージと基板上の導体パターンとの間を、ワイヤボンディング、又は、TABテープで接続するのが一般的であった。   In this type of electronic device, as a technique for realizing the three-dimensional circuit arrangement, conventionally, semiconductor packages are stacked on a substrate, and a wire bonding or a TAB tape is used between the semiconductor package and a conductor pattern on the substrate. It was common to connect.

しかし、パッケージを積み重ねる構造では、全体のモジュールが極めて厚くなってしまう。ワイヤボンディングやTABテープを用いる場合も、素子自体がモールドされた大きな形状を持つことから、小型化に対する大きな障害になる。   However, in a structure in which packages are stacked, the entire module becomes extremely thick. Even when wire bonding or TAB tape is used, the element itself has a large molded shape, which is a major obstacle to miniaturization.

更に、従来の実装技術では、この種の電子デバイスの主な用途であるIT機器の高速・高集積化に対応できない。即ち、IT機器は、小型化、低消費電力化とともに一層の高機能化(高速、大容量)が求められているところ、上述した従来技術では、まず、小型化の観点から、この要請に応えることができない。しかも、IT機器の主要部を構成するLSIの内部クロックは、最近のCPUでは数GHzと高速であるが、チップの外との信号伝達クロックは数百MHzであり、配線遅延が大きな問題となっている。更に、外部に信号を出すためのバッファ回路での遅れと駆動のための消費電力も無視できない。これらの要請に対しても、従来技術では対応することができない。   Furthermore, conventional mounting technology cannot cope with high-speed and high-integration of IT equipment, which is the main application of this type of electronic device. In other words, IT devices are required to be more compact (low power consumption) as well as more compact (high speed, large capacity). In the above-described conventional technology, first, this requirement is met from the viewpoint of miniaturization. I can't. Moreover, the internal clock of the LSI that constitutes the main part of the IT equipment is as fast as several GHz in recent CPUs, but the signal transmission clock to the outside of the chip is several hundred MHz, and wiring delay becomes a big problem. ing. Furthermore, the delay in the buffer circuit for outputting the signal to the outside and the power consumption for driving cannot be ignored. These requests cannot be met by the prior art.

従来、複数のLSIを接続するには、プリント回路基板上にLSIを2次元的に配置し、その間を多層の配線で接続する方法がとられてきた。しかし、この方法では、実装面積がLSIの数とともに増加し、配線長の増加から、LSI間の信号遅延が大きくなる。   Conventionally, in order to connect a plurality of LSIs, a method has been used in which LSIs are two-dimensionally arranged on a printed circuit board and connected between them by multilayer wiring. However, in this method, the mounting area increases with the number of LSIs, and the signal delay between LSIs increases due to the increase in wiring length.

そこで、基板に、信号伝送線路を構成するための回路パターンを設ける一方、回路パターンに導通し、かつ、基板の厚み方向に貫通する貫通電極を設けた回路基板を利用する技術が提案されている。   In view of this, a technique has been proposed in which a circuit pattern for forming a signal transmission line is provided on the substrate, while a circuit substrate is provided which is conductive to the circuit pattern and has a through electrode penetrating in the thickness direction of the substrate. .

このような基板として、例えば、特許文献1には、多層回路基板の貫通孔又は非貫通孔に液状粘性材料を充填せしめる方法において、前記液状粘性材料を真空雰囲気下で前記回路基板上に孔版印刷した後、前記真空雰囲気の真空度を低下せしめるか若しくは前記真空雰囲気を通常の大気圧雰囲気にせしめて差圧充填を行う液状粘性材料の充填方法が開示されている。   As such a substrate, for example, in Patent Document 1, in a method of filling a liquid viscous material into a through hole or a non-through hole of a multilayer circuit substrate, the liquid viscous material is stencil printed on the circuit substrate in a vacuum atmosphere. After that, a method of filling a liquid viscous material is disclosed in which the vacuum degree of the vacuum atmosphere is lowered or the vacuum atmosphere is changed to a normal atmospheric pressure to perform differential pressure filling.

また、特許文献2には、光励起電解研磨法により基板に高アスペクト比の貫通孔を形成し、この貫通孔の内壁を酸化処理して絶縁層としての酸化膜を形成し、次いで、前記貫通孔に溶融金属埋め戻し法により金属を充填して、貫通電極を形成する方法が開示されている。   In Patent Document 2, a through hole having a high aspect ratio is formed in a substrate by a photoexcited electrolytic polishing method, an inner wall of the through hole is oxidized to form an oxide film as an insulating layer, and then the through hole is formed. Discloses a method of forming a through electrode by filling a metal with a molten metal backfilling method.

しかし、特許文献1、2に開示された技術を含め、何れの従来技術においても、貫通電極と回路パターンとを、別々の工程で形成し、両者を機械的、物理的に接続する構造であるため、特に、高周波領域で、両者の接続部分における接触抵抗が無視できなくなり、高周波損失の増大など、高周波特性の低下を招くという問題点を生じる。   However, in any conventional technique including the techniques disclosed in Patent Documents 1 and 2, the through electrode and the circuit pattern are formed in separate steps, and both are mechanically and physically connected. Therefore, in particular, in the high frequency region, the contact resistance at the connection portion between the two cannot be ignored, and there is a problem that the high frequency characteristics are deteriorated such as an increase in high frequency loss.

また、従来技術は、主として、貫通孔の孔径が50μm程度またはそれ以上で、孔の深さ/孔の直径比(L/d:アスペクト比)が2〜3程度を対象としたものであるところ、最近では、高密度配線等の要請から、貫通電極について、孔径25μm以下、アスペクト比5以上が要求されるようになっている。このような条件下で、上述した従来技術を適用すると、特に非貫通孔の底部に、未充填部分が残り易く、それ故、貫通電極の信頼性、品質を損なう虞があった。   The prior art is mainly intended for the case where the through hole has a hole diameter of about 50 μm or more and a hole depth / hole diameter ratio (L / d: aspect ratio) of about 2 to 3. Recently, due to the demand for high-density wiring and the like, a through-electrode having a pore diameter of 25 μm or less and an aspect ratio of 5 or more is required. When the above-described prior art is applied under such a condition, an unfilled portion tends to remain particularly at the bottom of the non-through hole, and thus there is a possibility that the reliability and quality of the through electrode may be impaired.

別の手法として、ソルダーペースト法、ハンダボール法又はメッキ法により、基板の面上に存在するバンプの形成領域内にビアを設け、このビア内に、ソルダーペースト、ハンダボールを充填し、またはメッキする方法も知られている。   As another method, vias are formed in bump formation areas existing on the surface of the substrate by a solder paste method, solder ball method or plating method, and solder paste or solder balls are filled or plated in the vias. The method of doing is also known.

しかし、この方法では、穴径100μm以下、打点径100μm以下、ピッチ幅100μm以下のビアを正確に規則正しく形成することが困難である。環境保全に対応すべく、鉛フリー化を満たさなければならない現状では、更に困難性が増す。しかも、バンプ形成工程と、貫通電極形成工程とが別々の工程にならざるを得ないため、両者間の接続の信頼性を損ない易い。   However, with this method, it is difficult to accurately and regularly form vias having a hole diameter of 100 μm or less, a spot diameter of 100 μm or less, and a pitch width of 100 μm or less. In the current situation where lead-free products must be satisfied in order to cope with environmental conservation, the difficulty is further increased. In addition, since the bump forming step and the through electrode forming step must be separate steps, it is easy to impair the reliability of the connection between the two.

高密度化を達成する手段として、フォトリソグラフィ工程及び薄膜形成技術等を用いて、微細化された多段積層構造を持つ薄膜を形成する方法もあるが、この方法は、技術的な難易度が高く、又、莫大な設備投資が必要となり、高コストである等などの問題点を有している。   As a means for achieving high density, there is a method of forming a thin film having a miniaturized multi-layered structure by using a photolithography process and a thin film forming technique, but this method is technically difficult. In addition, huge capital investment is required and there are problems such as high cost.

また、特許文献3には、雰囲気圧差による微細孔への金属充填方法が開示され、特許文献4には、微細孔に導電性ペーストを充填する充填方法が記載されている。更に、特許文献5には、メッキ埋め込み工程の前後に直接貫通孔に金属を埋め込む貫通電極の形成方法が開示されている。しかし、いずれの特許文献にも、上述した問題点を解決する技術は開示されていない。
特開平11−298138号公報 特開2000−228410号公報 特開2002−158191号公報 特開2003−257891号公報 特開2006−111896号公報
Further, Patent Document 3 discloses a method for filling a metal with a fine hole by an atmospheric pressure difference, and Patent Document 4 describes a filling method for filling a fine hole with a conductive paste. Further, Patent Document 5 discloses a method of forming a through electrode in which a metal is directly embedded in a through hole before and after the plating embedding process. However, none of the patent documents discloses a technique for solving the above-described problems.
JP 11-298138 A JP 2000-228410 A JP 2002-158191 A JP 2003-257891 A JP 2006-111896 A

本発明の課題は、高周波損失が少なく、従って高周波特性に優れた三次元回路構造を持つ回路基板及びそれを用いた電子デバイスを提供することである。   An object of the present invention is to provide a circuit board having a three-dimensional circuit structure with low high-frequency loss and thus excellent high-frequency characteristics, and an electronic device using the circuit board.

本発明のもう一つの課題は、高アスペクト比であっても、貫通孔の内部に未充填部分が生じるのを回避し、高信頼性及び高品質の貫通電極を形成し得る回路基板の製造方法を提供することである。   Another object of the present invention is to provide a circuit board manufacturing method capable of forming a through electrode with high reliability and high quality by avoiding generation of an unfilled portion inside a through hole even at a high aspect ratio. Is to provide.

本発明の更にもう一つの課題は、三次元回路を有する回路基板を安価に製造できる方法を提供することである。   Still another object of the present invention is to provide a method capable of inexpensively manufacturing a circuit board having a three-dimensional circuit.

上述した課題を解決するため、本発明は、回路基板、これを用いた電子デバイスおよび回路基板の製造方法を開示する。   In order to solve the above-described problems, the present invention discloses a circuit board, an electronic device using the circuit board, and a method for manufacturing the circuit board.

<回路基板>
本発明に係る回路基板は、基板に回路パターンと貫通電極とによる三次元回路を構成する。前記回路パターンは、前記基板の少なくとも一面上に設けられており、前記貫通電極は、前記基板の前記一面からその厚み方向に延びる貫通孔の内部に充填されている。
<Circuit board>
The circuit board according to the present invention constitutes a three-dimensional circuit including a circuit pattern and a through electrode on the board. The circuit pattern is provided on at least one surface of the substrate, and the through electrode is filled in a through hole extending in the thickness direction from the one surface of the substrate.

前記回路パターン及び前記貫通電極は、相互間に接合部分を持たずに、同一の金属材料又は合金材料により、同体に形成された連続導体である。   The circuit pattern and the through electrode are continuous conductors formed in the same body from the same metal material or alloy material without having a joint portion therebetween.

上述したように、回路パターン及び貫通電極は、相互間に接合部分を持たずに、同一の金属材料又は合金材料により、同体に形成された連続導体であるから、貫通電極と回路パターンとを別々に形成し、両者を物理的に重ねて接続する従来構造と異なって、機械的、物理的接続部分が存在しない。このため、接触抵抗の発生、それによる高周波損失の増大など、高周波特性の低下を招く要因がなくなる。   As described above, since the circuit pattern and the through electrode are continuous conductors formed of the same metal material or alloy material without having a joint portion therebetween, the through electrode and the circuit pattern are separated from each other. Unlike the conventional structure in which the two are physically overlapped and connected to each other, there are no mechanical and physical connection portions. For this reason, there are no factors causing the deterioration of the high frequency characteristics such as the generation of contact resistance and the increase of the high frequency loss.

本発明は、貫通電極について、孔径100μm以下、アスペクト比が1以上、好ましくは、孔径25μm以下、アスペクト比5以上の微細な孔である場合に特に有効である。このような微細、かつ、高密度配線の条件下でも、接触抵抗による高周波損失の増大を回避し、優れた高周波特性を確保することができる。   The present invention is particularly effective when the through electrode is a fine hole having a pore diameter of 100 μm or less and an aspect ratio of 1 or more, preferably a pore diameter of 25 μm or less and an aspect ratio of 5 or more. Even under such fine and high-density wiring conditions, an increase in high-frequency loss due to contact resistance can be avoided and excellent high-frequency characteristics can be ensured.

具体的な態様として、前記基板は複数で、それぞれの基板は順次に積層された構造とし、そのうちの少なくとも1層は、前記回路パターン及び前記貫通電極を含んでいる構造を採用することができる。これにより、複雑な三次元回路を有する回路基板を実現することができる。   As a specific aspect, a plurality of substrates can be used, and each substrate can be sequentially stacked, and at least one of the substrates can employ a structure including the circuit pattern and the through electrode. Thereby, a circuit board having a complicated three-dimensional circuit can be realized.

<電子デバイス>
本発明に係る電子デバイスは、回路基板と、回路機能部とを有する。前記回路基板は、本発明に係る回路基板である。前記回路機能部は、前記回路基板と組み合わされている。
<Electronic device>
The electronic device according to the present invention includes a circuit board and a circuit function unit. The circuit board is a circuit board according to the present invention. The circuit function unit is combined with the circuit board.

本発明に係る電子デバイスは、本発明に係る回路基板を有するので、回路基板の有する作用効果をそのまま奏することができる。   Since the electronic device according to the present invention includes the circuit board according to the present invention, the function and effect of the circuit board can be exhibited as they are.

<回路基板の製造方法>
本発明に係る回路基板の製造方法に当たっては、まず、ウエハの一面の面内に非貫通の孔を形成する。そして、真空雰囲気中で、前記ウエハに超音波振動を与えながら、溶融金属材料を、その溶融流圧を利用して、前記孔の内部に充填し、かつ、前記一面上に拡散させる。
<Circuit board manufacturing method>
In the method of manufacturing a circuit board according to the present invention, first, a non-through hole is formed in one surface of the wafer. Then, while applying ultrasonic vibration to the wafer in a vacuum atmosphere, the molten metal material is filled into the hole and diffused on the one surface using the melt flow pressure.

上記工程を含むことにより、高アスペクト比の貫通孔であっても、その内部に未充填部分が生じるのを回避しつつ、高信頼性及び高品質の貫通電極を形成し得る。   By including the above process, even if the through hole has a high aspect ratio, a highly reliable and high quality through electrode can be formed while avoiding the occurrence of an unfilled portion inside the through hole.

しかも、真空雰囲気中で、ウエハに微細振動を与えながら、溶融金属材料を、その溶融流圧を利用して孔の内部に充填し、かつ、ウエハの一面に拡散させればよいので、フォトリソグラフィ工程及び薄膜形成技術等を用いて、微細化された多段積層構造を持つ薄膜を形成する方法と異なって、技術的な難度が低く、設備投資も少なくて済む。このため、回路基板自体のコストダウンを図ることが可能になる。   Moreover, it is only necessary to fill the inside of the hole with the molten metal material and diffuse it to one surface of the wafer while applying fine vibrations to the wafer in a vacuum atmosphere. Unlike a method for forming a thin film having a miniaturized multi-layered structure by using a process and a thin film forming technique, the technical difficulty is low and the capital investment is small. For this reason, the cost of the circuit board itself can be reduced.

回路パターン及び貫通電極は、好ましくは、Snを主成分とし、融点が500℃〜130℃の範囲内にある材料でなる。このような材料によれば、孔径25μm以下、アスペクト比5以上の微細な孔に対しても、基板に微細振動を与えながら、溶融金属材料を、その溶融流圧を利用して孔の内部に充填することにより、その内部に未充填部分が生じるのを回避しつつ、高信頼性及び高品質の貫通電極及び連続する回路パターンを形成し得る。   The circuit pattern and the through electrode are preferably made of a material having Sn as a main component and a melting point in the range of 500 ° C. to 130 ° C. According to such a material, the molten metal material is introduced into the inside of the hole using the melt flow pressure while giving fine vibration to the substrate even for a fine hole having a hole diameter of 25 μm or less and an aspect ratio of 5 or more. By filling, it is possible to form a highly reliable and high quality through electrode and a continuous circuit pattern while avoiding the occurrence of an unfilled portion in the interior.

回路パターン及び前記貫通電極は、更に好ましくは、Snを主成分とし、凝固結晶が500nm以下の多結晶集合体である。これにより、電気抵抗が小さく、かつ、安定した回路パターン及び貫通電極を形成することができる。 More preferably, the circuit pattern and the through electrode are polycrystalline aggregates mainly composed of Sn and having a re- solidified crystal of 500 nm or less. As a result, it is possible to form a stable circuit pattern and through electrode having a low electrical resistance.

以上述べたように、本発明によれば次のような効果を得ることができる。
(a)高周波損失が少なく、従って高周波特性に優れた三次元回路構造を持つ回路基板及び電子デバイスを提供することができる。
(b)高アスペクト比であっても、貫通孔の内部に未充填部分が生じるのを回避し、高信頼性及び高品質の貫通電極を形成し得る回路基板の製造方法を提供することができる。
(c)三次元回路を有する回路基板、延いてはそれを用いた電子デバイスを安価に製造できる方法を提供することができる。
As described above, according to the present invention, the following effects can be obtained.
(A) It is possible to provide a circuit board and an electronic device having a three-dimensional circuit structure with low high-frequency loss and thus excellent high-frequency characteristics.
(B) Even when the aspect ratio is high, it is possible to provide a circuit board manufacturing method that can avoid formation of an unfilled portion in the through hole and can form a highly reliable and high quality through electrode. .
(C) It is possible to provide a method capable of manufacturing a circuit board having a three-dimensional circuit, and thus an electronic device using the circuit board, at low cost.

本発明の他の目的、構成及び利点については、添付図面を参照し、更に詳しく説明する。但し、添付図面は、単なる例示に過ぎない。   Other objects, configurations and advantages of the present invention will be described in more detail with reference to the accompanying drawings. However, the attached drawings are merely examples.

<回路基板>
図1は、本発明に係る回路基板の構造を概略的に示す断面図である。図1は、簡単な構成を示すのみであるが、実際には、上述した回路基板の種類に応じた機能、及び、構造を満たすべく、より複雑な構造がとられる。
<Circuit board>
FIG. 1 is a sectional view schematically showing the structure of a circuit board according to the present invention. Although FIG. 1 only shows a simple configuration, in practice, a more complicated structure is taken to satisfy the functions and structures corresponding to the types of circuit boards described above.

図1を参照すると、回路基板は、基板1に回路パターン2と、貫通電極3とによる三次元回路を構成してある。基板1は、各種半導体基板、誘電体基板、絶縁基板又は磁性基板などで構成される。実施例の基板1は、絶縁性を有する基板、例えば、誘電体基板又は絶縁基板である。シリコンウエハなどの半導体基板である場合は、その両面及び貫通電極3と基板1との界面に、絶縁膜を設ける。絶縁膜は、金属酸化物、例えばSiO又はAlなどの膜であり、すでに知られた化学的処理によって、必要な箇所に必要な厚さ(深さ)で形成することができる。 Referring to FIG. 1, the circuit board forms a three-dimensional circuit with a circuit pattern 2 and a through electrode 3 on the board 1. The substrate 1 is composed of various semiconductor substrates, dielectric substrates, insulating substrates, magnetic substrates, or the like. The substrate 1 according to the embodiment is an insulating substrate, for example, a dielectric substrate or an insulating substrate. In the case of a semiconductor substrate such as a silicon wafer, insulating films are provided on both surfaces thereof and on the interface between the through electrode 3 and the substrate 1. The insulating film is a film of a metal oxide, for example, SiO 2 or Al 2 O 3 , and can be formed in a necessary thickness (depth) at a necessary position by a known chemical treatment.

回路パターン2は、基板1の少なくとも一面上に設けられている。図示はされていないが、回路パターン2は基板1の両面に設けてもよい。この回路パターン2は、信号伝送線路を構成するものであって、要求されるパターンに応じて、種々の平面パターンをとる。単に、貫通電極2のための接続導体として用いられるいわゆる「ランド」とは異なる。回路パターン2の周りは、必要に応じ、絶縁膜によって埋められていてもよい。   The circuit pattern 2 is provided on at least one surface of the substrate 1. Although not shown, the circuit pattern 2 may be provided on both surfaces of the substrate 1. This circuit pattern 2 constitutes a signal transmission line, and takes various plane patterns according to a required pattern. It is simply different from a so-called “land” used as a connection conductor for the through electrode 2. The circuit pattern 2 may be filled with an insulating film as necessary.

貫通電極3は、基板1の一面からその厚み方向に延びる貫通孔20の内部に充填されている。図の貫通電極3は、1つの回路パターン2に対して1つだけ備えられている場合を例示しているが、これに限定する趣旨ではない。1つの回路パターン2に対して複数の貫通電極3を備えていてもよい。貫通孔20の深さL及び直径dは、直径dが100μm以下、アスペクト比(L/d)が1以上、特に好ましくは、直径dが25μm以下で、アスペクト比 (L/d)が5以上となるように選定する。このような貫通孔20は、たとえば、レーザ穿孔又は化学的処理によって形成することができる。   The through electrode 3 is filled in a through hole 20 extending in the thickness direction from one surface of the substrate 1. Although only one through electrode 3 in the figure is provided for one circuit pattern 2, the present invention is not limited to this. A plurality of through electrodes 3 may be provided for one circuit pattern 2. The depth L and the diameter d of the through-hole 20 have a diameter d of 100 μm or less and an aspect ratio (L / d) of 1 or more, particularly preferably a diameter d of 25 μm or less and an aspect ratio (L / d) of 5 or more. Select so that Such a through hole 20 can be formed by, for example, laser drilling or chemical treatment.

本発明のもっとも大きな特徴は、回路パターン2及び貫通電極3が、相互間に接合部分を持たずに、同一の金属材料又は合金材料により、同体に形成された連続導体でなることである。   The most significant feature of the present invention is that the circuit pattern 2 and the through electrode 3 are formed of a continuous conductor formed of the same metal material or alloy material without having a joint portion therebetween.

上述したように、回路パターン2及び貫通電極3は、相互間に接合部分を持たずに、同一の金属材料又は合金材料により、同体に形成された連続導体であるから、貫通電極3と回路パターン2とを別々に形成し、両者を物理的に重ねて接続する従来構造と異なって、機械的、物理的接続部分が存在しない。このため、接触抵抗の発生、それによる高周波損失の増大など、高周波特性の低下を招く要因がなくなる。   As described above, since the circuit pattern 2 and the through electrode 3 are continuous conductors formed of the same metal material or alloy material without having a joint portion therebetween, the through electrode 3 and the circuit pattern Unlike the conventional structure in which the two are formed separately and the two are physically overlapped and connected, there are no mechanical and physical connection portions. For this reason, there are no factors causing the deterioration of the high frequency characteristics such as the generation of contact resistance and the increase of the high frequency loss.

特に、貫通電極3について、直径dが25μm以下、アスペクト比が5以上であるような微細、かつ、高密度配線の条件下でも、接触抵抗による高周波損失の増大を回避し、優れた高周波特性を確保することができる。   In particular, the through electrode 3 avoids an increase in high-frequency loss due to contact resistance and has excellent high-frequency characteristics even under the condition of a fine and high-density wiring having a diameter d of 25 μm or less and an aspect ratio of 5 or more. Can be secured.

回路パターン2及び貫通電極3は、好ましくは、Snを主成分とする金属材料又は合金材料によって構成する。Snを主成分とする金属材料又は合金材料によれば、後述する製造上のメリットが得られるほか、必要な導電性を確保できる。   The circuit pattern 2 and the through electrode 3 are preferably made of a metal material or alloy material containing Sn as a main component. According to the metal material or alloy material containing Sn as a main component, the following merit in manufacturing can be obtained and necessary conductivity can be ensured.

図2は、本発明に係る回路基板の例を示す分解図、図3は積層状態(完成品)を示す図である。図示された回路基板では、任意数の回路基板A1〜A6を、順次に積層した多層積層構造となっている。そのうちの少なくとも1層は、回路パターン2及び貫通電極3を含んでいる構造を採用することができる。   FIG. 2 is an exploded view showing an example of a circuit board according to the present invention, and FIG. 3 is a view showing a laminated state (finished product). The illustrated circuit board has a multi-layered structure in which an arbitrary number of circuit boards A1 to A6 are sequentially stacked. A structure including the circuit pattern 2 and the through electrode 3 can be employed in at least one of the layers.

図示の実施例では、回路基板A1〜A6のそれぞれが、基板1に、回路パターン2及び貫通電極3を設けた構造となっている。回路パターン2は、回路基板A1〜A6のそれぞれの一面に形成されている。また、回路パターン2のいくつかは、隣接する複数の貫通電極3にまたがって配置されている。   In the illustrated embodiment, each of the circuit boards A1 to A6 has a structure in which the circuit pattern 2 and the through electrode 3 are provided on the board 1. The circuit pattern 2 is formed on one surface of each of the circuit boards A1 to A6. Some of the circuit patterns 2 are arranged across a plurality of adjacent through electrodes 3.

回路基板A1〜A6は、積層界面において、接着剤によって接着されている。図では、貫通電極3は、回路基板A1〜A6の間において、全て連なっているが、回路構成によっては連ならない場合もあり得る。更に、最外側の回路基板A1、A6には、必要に応じて、バンプ(取出電極)60〜69が設けられる。図2及び図3に示した多層積層構造は、複雑な三次元回路を有する回路基板を実現するのに適している。次にその例を示す。   The circuit boards A1 to A6 are bonded by an adhesive at the laminated interface. In the drawing, the through electrodes 3 are all connected between the circuit boards A1 to A6, but may not be connected depending on the circuit configuration. Further, bumps (extraction electrodes) 60 to 69 are provided on the outermost circuit boards A1 and A6 as necessary. The multilayer laminated structure shown in FIGS. 2 and 3 is suitable for realizing a circuit board having a complicated three-dimensional circuit. An example is shown below.

<電子デバイス>
本発明に係る電子デバイスには、センサーモジュル、光電気モジュール、ユニポーラトランジスタ、MOS FET、CMOS FET、メモリーセル、FC(Field Complementary)のチップ、もしくは、それらの集積回路部品(IC)、又は各種スケールのLSI等、凡そ、電子回路を機能要素とするほとんどのものが含まれ得る。特に、本発明に係る回路基板を、インターポーザとして用いた集積回路LSIが、その代表例として、好適である。本発明において、集積回路LSIと称する場合、小規模集積回路、中規模集積回路、大規模集積回路、超大規模集積回路VLSI、ULSI等の全てを含む。
<Electronic device>
The electronic device according to the present invention includes a sensor module, a photoelectric module, a unipolar transistor, a MOS FET, a CMOS FET, a memory cell, an FC (Field Complementary) chip, or an integrated circuit component (IC) thereof, or various scales. In general, most LSIs having an electronic circuit as a functional element can be included. In particular, an integrated circuit LSI using the circuit board according to the present invention as an interposer is suitable as a representative example. In the present invention, the term “integrated circuit LSI” includes all of small scale integrated circuits, medium scale integrated circuits, large scale integrated circuits, ultra large scale integrated circuits VLSI, ULSI, and the like.

図4にその一例を示す。図4において、本発明に係る回路基板を利用した第1のインターポーザINT1の一面上に、回路機能部としての第1の集積回路LSI1が実装されており、第1の集積回路LSI1の一面上に、本発明に係る回路基板を利用した第2のインターポーザINT2が実装されており、第2のインターポーザINT2の一面上に、第2の集積回路LSI2が実装されている。   An example is shown in FIG. In FIG. 4, a first integrated circuit LSI1 as a circuit function unit is mounted on one surface of a first interposer INT1 using a circuit board according to the present invention, and the first integrated circuit LSI1 is mounted on one surface. The second interposer INT2 using the circuit board according to the present invention is mounted, and the second integrated circuit LSI2 is mounted on one surface of the second interposer INT2.

もっとも、第1及び第2のインターポーザINT1、INT2の数、内部配線、厚み、形状などは任意である。第1及び第2の集積回路LSI1、LSI2も同様である。   However, the number of the first and second interposers INT1, INT2, the internal wiring, the thickness, the shape, and the like are arbitrary. The same applies to the first and second integrated circuits LSI1 and LSI2.

第1の集積回路LSI1から上部の第2の集積回路LSI2への信号は、バンプと呼ばれる接続部分を通して第2のインターポーズINT2に伝達される。第2のインターポーズINT2の内部では、内部の配線2、3を通じて、目的のバンプ65〜69まで伝達し、バンプ65〜69を通じて、第2の集積回路LSI2に信号を伝える。下部の第1の集積回路LSI1への信号伝達も同様に行うことができる。   Signals from the first integrated circuit LSI1 to the upper second integrated circuit LSI2 are transmitted to the second interpose INT2 through connection portions called bumps. In the second interpose INT2, the signal is transmitted to the target bumps 65 to 69 through the internal wirings 2 and 3, and the signal is transmitted to the second integrated circuit LSI2 through the bumps 65 to 69. Signal transmission to the lower first integrated circuit LSI1 can be similarly performed.

図4に示したように、本発明に係る回路基板を、第1及び第2のインターポーザINT1、INT2とし、これに第1及び第2の集積回路LSI1、LSI2を重ねて一つのチップとして動作させることにより、IT機器の心臓となる電子回路の超小型実装と、第1及び第2の集積回路LSI1、LSI2間の高速信号伝送を実現することができる。   As shown in FIG. 4, the circuit board according to the present invention is the first and second interposers INT1 and INT2, and the first and second integrated circuits LSI1 and LSI2 are overlapped on this to operate as a single chip. As a result, it is possible to realize ultra-small packaging of electronic circuits that are the heart of IT equipment and high-speed signal transmission between the first and second integrated circuits LSI1 and LSI2.

しかも、第2のインターポーザINT2は、第1及び第2の集積回路LSI1、LSI2を重ねた層間に配置し、高密度・高速の信号伝達を可能にする。   In addition, the second interposer INT2 is arranged between the stacked layers of the first and second integrated circuits LSI1 and LSI2, and enables high-density and high-speed signal transmission.

また、集積回路の内部クロックは、最近のCPUでは数GHzと高速であるのに対し、チップの外との信号伝達クロックは数百MHzであることから、配線遅延が大きな問題となっているが、本発明に係る回路基板を、第1及び第2のインターポーザINT1、INT2として用いることにより、配線長を最小化し、配線遅延に起因する問題を解決することができる。   In addition, the internal clock of the integrated circuit is as fast as several GHz in recent CPUs, whereas the signal transmission clock to the outside of the chip is several hundred MHz, so wiring delay is a big problem. By using the circuit board according to the present invention as the first and second interposers INT1 and INT2, the wiring length can be minimized and the problem caused by the wiring delay can be solved.

更に、外部に信号を出すためのバッファ回路での遅れと、駆動のための消費電力も無視できないが、本発明に係る回路基板を、第1及び第2のインターポーザINT1、INT2として用いることにより、消費電力も低減することができる。   Furthermore, the delay in the buffer circuit for outputting the signal to the outside and the power consumption for driving cannot be ignored, but by using the circuit board according to the present invention as the first and second interposers INT1, INT2, Power consumption can also be reduced.

また、CPU、キャッシュ・メインメモリ、IOチップなどを一つのチップ上に積層すれば、超小型・高性能のマイクロコンピュータシステムが実現できる。   If a CPU, a cache main memory, an IO chip, and the like are stacked on one chip, an ultra-compact and high-performance microcomputer system can be realized.

<その他>
図4では、本発明に係る回路基板を、第1及び第2の集積回路LSI1、LSI2から独立するものとして構成してあるが、第1及び第2の集積回路LSI1、LSI2の内部構造、特に、そのローカル配線部に本発明を適用することもできる。更に、能動回路素子に限らず、受動回路素子の内部配線構造にも適用が可能である。
<Others>
In FIG. 4, the circuit board according to the present invention is configured as independent from the first and second integrated circuits LSI1 and LSI2, but the internal structure of the first and second integrated circuits LSI1 and LSI2, in particular, The present invention can also be applied to the local wiring portion. Further, the present invention can be applied not only to the active circuit element but also to the internal wiring structure of the passive circuit element.

<回路基板の製造方法>
次に、図7〜図10を参照し、本発明に係る回路基板の製造方法を説明する。本発明に係る回路基板の製造方法に当たっては、まず、図5に示すように、基板(ウエハ)1の一面上にレジストマスク7を形成する。レジストマスク7は、周知のフォトリソグラフィ工程を実行することによって得ることができる。
<Circuit board manufacturing method>
Next, with reference to FIGS. 7-10, the manufacturing method of the circuit board based on this invention is demonstrated. In the method of manufacturing a circuit board according to the present invention, first, a resist mask 7 is formed on one surface of a substrate (wafer) 1 as shown in FIG. The resist mask 7 can be obtained by performing a well-known photolithography process.

続いて、レジストマスク7によって囲まれた抜きパターン71内の所定位置に、例えば、レーザを照射して、図6に図示するように、孔20を形成する。孔20は、基板1の内部に留まる非貫通孔として形成される。レーザの代わりに、化学反応エッチング方法を用いてもよい。   Subsequently, a predetermined position in the extraction pattern 71 surrounded by the resist mask 7 is irradiated with, for example, a laser to form a hole 20 as illustrated in FIG. The holes 20 are formed as non-through holes that remain inside the substrate 1. Instead of the laser, a chemical reaction etching method may be used.

次に、図7に示すように、孔20の穿孔された基板1を、真空チャンバ8内の真空雰囲気の中に配置し、基板(ウエハ)1に、超音波振動F1、F2を与えながら、溶融金属材料を、その溶融流圧を利用して、孔20の内部に充填し、かつ、抜きパターン71の面に拡散させる。孔20は非貫通孔であるから、溶融金属材料の充填には何ら問題はない。   Next, as shown in FIG. 7, the substrate 1 with the holes 20 drilled is placed in a vacuum atmosphere in the vacuum chamber 8, and ultrasonic vibrations F1 and F2 are applied to the substrate (wafer) 1, The molten metal material is filled into the holes 20 using the melt flow pressure and diffused to the surface of the punch pattern 71. Since the hole 20 is a non-through hole, there is no problem in filling the molten metal material.

次に、図8及び図9に図示するように、回路パターン2を設けたとは反対側の面を、ΔHだけ研磨して、孔20内の充填金属を面出し(図9)し、貫通電極3を得る。この後、図10に図示するように、面出しされた面に露出する貫通電極3の端面に重なるように、バンプ60、61を形成する。   Next, as shown in FIGS. 8 and 9, the surface opposite to the side where the circuit pattern 2 is provided is polished by ΔH, the filling metal in the hole 20 is surfaced (FIG. 9), and the through electrode Get 3. Thereafter, as shown in FIG. 10, bumps 60 and 61 are formed so as to overlap the end surface of the through electrode 3 exposed on the surface that has been exposed.

上記工程により、高アスペクト比の孔20であっても、その内部に未充填部分(ボイド)が生じるのを回避しつつ、高信頼性及び高品質の貫通電極3を形成し得る。   By the above process, even if the hole 20 has a high aspect ratio, the through electrode 3 having high reliability and high quality can be formed while avoiding the generation of an unfilled portion (void) inside the hole 20.

しかも、真空雰囲気中で、基板(ウエハ)に超音波振動を与えながら、溶融金属材料を、その溶融流圧を利用して、孔20の内部に充填し、かつ、抜きパターン71の面に拡散させればよいので、フォトリソグラフィ工程及び薄膜形成技術等を用いて、微細化された多段積層構造を持つ薄膜を形成する方法と異なって、技術的な難度が低く、設備投資も少なくて済む。このため、回路基板自体のコストダウンを図ることが可能になる。   In addition, while applying ultrasonic vibration to the substrate (wafer) in a vacuum atmosphere, the molten metal material is filled into the holes 20 using the melt flow pressure and diffused to the surface of the punch pattern 71. Therefore, unlike a method of forming a thin film having a miniaturized multi-layered structure by using a photolithography process and a thin film forming technique, the technical difficulty is low and the capital investment is small. For this reason, the cost of the circuit board itself can be reduced.

回路パターン2及び貫通電極3は、好ましくは、Snを主成分とし、融点が500℃〜130℃の範囲内にある材料でなる。このような材料によれば、孔径25μm以下、アスペクト比5以上の微細な孔に対しても、基板1に微細振動を与えながら、溶融金属材料を、その溶融流圧を利用して孔の内部に充填することにより、その内部に未充填部分が生じるのを回避しつつ、高信頼性及び高品質の貫通電極3及び連続する回路パターン2を形成し得る。   The circuit pattern 2 and the through electrode 3 are preferably made of a material having Sn as a main component and a melting point in the range of 500 ° C. to 130 ° C. According to such a material, the molten metal material is applied to the inside of the hole using the melt flow pressure while giving fine vibration to the substrate 1 even for a fine hole having a hole diameter of 25 μm or less and an aspect ratio of 5 or more. By filling in, high-reliability and high-quality through electrodes 3 and continuous circuit patterns 2 can be formed while avoiding the occurrence of unfilled portions in the interior.

回路パターン2及び貫通電極3は、更に好ましくは、Snを主成分とし、凝固結晶が500nm以下の多結晶集合体である。これにより、電気抵抗が小さく、かつ、安定した回路パターン2及び貫通電極3を形成することができる。
The circuit pattern 2 and the through electrode 3 are more preferably a polycrystal aggregate whose main component is Sn and whose re- solidified crystal is 500 nm or less. As a result, it is possible to form the circuit pattern 2 and the through electrode 3 that have a low electrical resistance and are stable.

<実施例>
次に実施例について説明する。まず、Snを主成分としBi、In、Cu、Ag、Ga、を含有する合金であって、粒径30μm以下、酸素含有量300ppm以下の粉末を製造し、この粉末を貫通電極及び回路配線材料として準備した。具体的には、Snを主成分とし、Bi、In、Cu、Ag、Ga、を含有するナノマイズ合金粉末を用いた。この粉末に含まれる粒子の粒径は、10μm〜30μmの範囲にある。
<Example>
Next, examples will be described. First, an alloy containing Sn as a main component and containing Bi, In, Cu, Ag, Ga and having a particle size of 30 μm or less and an oxygen content of 300 ppm or less is manufactured, and this powder is used as a through electrode and a circuit wiring material. Prepared as. Specifically, a nanomized alloy powder containing Sn as a main component and containing Bi, In, Cu, Ag, and Ga was used. The particle size of the particles contained in this powder is in the range of 10 μm to 30 μm.

一方、基板に対して、フォトリソグラフィ工程により、レジストマスクを形成した後、露光し、ウエハ面の露出したところに、化学反応エッチングで、直径dが20μm、深さLが170μmの孔(アスペクト比8.5)を形成した。その後再び、フォトリソグラフィ工程を実行して、パッドおよび回路パターンの配線形状を画定するように、ウエハ面を露出させた。その後、パッドおよび回路パターンを取り巻く領域を、SiO(絶縁物)で覆った。 On the other hand, after a resist mask is formed on the substrate by a photolithography process, the resist mask is exposed and exposed to a hole (aspect ratio) having a diameter d of 20 μm and a depth L of 170 μm by chemical reaction etching. 8.5) was formed. Thereafter, a photolithography process was performed again to expose the wafer surface so as to define the wiring shapes of the pads and the circuit pattern. Thereafter, the area surrounding the pad and the circuit pattern was covered with SiO 2 (insulator).

次に、真空チャンバ内にて、ガス濃度10ppmの真空雰囲気中、上記基板を保持冶具に設置して、保持冶具に設置された振動器により、30Hzから徐々に超音波領域2000KHzまでの音響的振動を加えつつ、上記金属材料を再溶解させた。金属材料は250℃の溶融温度に保持すると同時に、溶融金属に0.1m/S2以上の加速度を付与し、0.1Pa〜1Paの流圧を発生させ、基板上の貫通孔と基板面における孔内に溶融金属を強制的に充填した。その後、大気に戻し、大気中でウエハレジスト上の溶融金属を取り除き、その後温度を下げ金属を凝固させ、レジストを取り除くことにより、貫通電極及び回路パターンを一括一体化した三次元回路配線を得た。 Next, in a vacuum chamber, the substrate is placed on a holding jig in a vacuum atmosphere with a gas concentration of 10 ppm, and acoustic vibration from 30 Hz to an ultrasonic region of 2000 KHz is gradually performed by a vibrator placed on the holding jig. The metal material was redissolved while adding. The metal material is maintained at a melting temperature of 250 ° C., and at the same time, an acceleration of 0.1 m / S 2 or more is applied to the molten metal, and a flow pressure of 0.1 Pa to 1 Pa is generated. The hole was forcibly filled with molten metal. After that, returning to the atmosphere, removing the molten metal on the wafer resist in the atmosphere, then lowering the temperature to solidify the metal and removing the resist, a three-dimensional circuit wiring in which the through electrodes and the circuit pattern were integrated together was obtained. .

金属材料充填にあたっては、ウエハ上で粉末を溶かし、流速溶解と振動で微細孔に含浸させた。流圧のコントロールは、回転スクリュー又はポンプの動作を制御することによって調整した。再溶解に当たっては、金属の融点より、約50℃だけ高くなるように、加熱した。その後、レジストマスクを洗い流すことにより、高アスペクトを有する微細な貫通電極と回路パターンとを一括形成することができた。   When filling the metal material, the powder was melted on the wafer and impregnated into the micropores by dissolution at a flow rate and vibration. Flow pressure control was adjusted by controlling the operation of the rotating screw or pump. In re-dissolution, heating was performed so that the melting point of the metal was higher by about 50 ° C. Thereafter, by washing away the resist mask, a fine through electrode having a high aspect and a circuit pattern could be collectively formed.

図11は、上記実施例によって得られたサンプルの貫通電極断面SEM像である。SEM像から、金属材料が、170μmの孔に、上部から底部まで100%充填されているのが分かる。図12は、図11のA部の、X線レントゲン写真像である。ボイドの映像は認められず、完全充填されたことが確認できた。   FIG. 11 is a cross-sectional SEM image of the through electrode of the sample obtained by the above example. From the SEM image, it can be seen that the metal material is filled 100% from the top to the bottom in the 170 μm hole. FIG. 12 is an X-ray X-ray image of part A in FIG. The video of the void was not recognized, and it was confirmed that it was completely filled.

<比較例1>
特許文献3(特開2002−158191号公報)に記載された方法により、三次元回路配線を製造し、SEM像による確認を行った。図13は、比較例1によって得られたサンプルの貫通電極断面SEM像である。SEM像から、埋め込み不完全な領域(B1)と、目視で確認できるほどの大きさを有するボイド(B2)があることが確認できた。
<Comparative Example 1>
A three-dimensional circuit wiring was manufactured by the method described in Patent Document 3 (Japanese Patent Application Laid-Open No. 2002-158191) and confirmed by an SEM image. FIG. 13 is a cross-sectional SEM image of the through electrode of the sample obtained in Comparative Example 1. From the SEM image, it was confirmed that there was an incompletely embedded region (B1) and a void (B2) having a size that can be visually confirmed.

<比較例2>
特許文献4(特開2003−257891号公報)に記載された方法により、三次元回路配線を製造し、SEM像による確認を行った。トーレ方法によると、貫通電極にのみ樹脂が介在するためガスが発生する。図14は、比較例2によって得られたサンプルの貫通電極断面SEM像である。C1は、樹脂のガス化による空域領域であり、又、充填部にも、目視で確認できるほどの大きさを有するボイド(C2)がある。更に、C3の空域により、埋め込み不完全であることが確認できた。
<Comparative Example 2>
A three-dimensional circuit wiring was manufactured by the method described in Patent Document 4 (Japanese Patent Application Laid-Open No. 2003-257891) and confirmed by an SEM image. According to the Tore method, gas is generated because the resin is present only in the through electrode. FIG. 14 is a cross-sectional SEM image of the through electrode of the sample obtained in Comparative Example 2. C1 is an airspace region due to resin gasification, and a void (C2) having a size that can be visually confirmed is also present in the filling portion. Furthermore, it was confirmed that the filling was incomplete due to the air space of C3.

<比較例3>
特許文献5(特開2006−111896号公報)に記載された方法により、三次元回路配線を製造し、SEM像による確認を行った。図15は、比較例3によって得られたサンプルの貫通電極断面SEM像である。SEM像により、孔の底部に隙間領域が確認され、不完全充填であることが分かった。
<Comparative Example 3>
A three-dimensional circuit wiring was manufactured by the method described in Patent Document 5 (Japanese Patent Application Laid-Open No. 2006-111896) and confirmed by an SEM image. FIG. 15 is a cross-sectional SEM image of the through electrode of the sample obtained in Comparative Example 3. From the SEM image, a gap region was confirmed at the bottom of the hole, indicating that it was incompletely filled.

図16は、図15に示されたD部のX線レントゲン写真像である。かなり大きなボイドがあることが確認できた。   FIG. 16 is an X-ray X-ray image of part D shown in FIG. It was confirmed that there were quite large voids.

以上得られた実施例1、比較例1〜3について電気特性(挿入損失)とボイドの有無をまとめたものを表1に示した。表1は、貫通電極を通して周波数0.3GHz〜5GHzの高周波電流を流したときの挿入損失(dB)及びSEM像の観察によるボイドの有無を示している。挿入損失の許容値は(−0.5dB)とした。   Table 1 shows a summary of the electrical characteristics (insertion loss) and the presence or absence of voids for Example 1 and Comparative Examples 1 to 3 obtained above. Table 1 shows the insertion loss (dB) when a high-frequency current having a frequency of 0.3 GHz to 5 GHz is passed through the through electrode and the presence or absence of voids by observation of the SEM image. The allowable value of insertion loss was (−0.5 dB).

表1を参照すると、まず、比較例1の場合、挿入損失は、0.3GHzで−0.24(dB)、2GHzで許容値−0.5(dB)に達しているから、許容値−0.5(dB)とした場合は、2GHzまでの使用が許容できるに留まる。次に、比較例2の場合、挿入損失は、周波数0.3GHzで−0.35(dB)、1GHzで許容値−0.5(dB)に到達するから、1GHzまでの使用が許容できるに留まる。比較例3の場合、挿入損失は、周波数0.3GHzで−0.04(dB)、5GHzで許容値−0.5(dB)に到達するので、5GHzまでは、かろうじて、許容値を確保できる。逆に言えば、5GHzを超える領域では、許容値−0.5(dB)を守る限り、これに対応することができない。   Referring to Table 1, first, in the case of Comparative Example 1, since the insertion loss reaches −0.24 (dB) at 0.3 GHz and the allowable value −0.5 (dB) at 2 GHz, the allowable value − In the case of 0.5 (dB), use up to 2 GHz is acceptable. Next, in the case of Comparative Example 2, the insertion loss reaches −0.35 (dB) at a frequency of 0.3 GHz and an allowable value −0.5 (dB) at 1 GHz, so that the use up to 1 GHz can be allowed. stay. In the case of Comparative Example 3, the insertion loss reaches −0.04 (dB) at a frequency of 0.3 GHz and reaches an allowable value of −0.5 (dB) at 5 GHz. Therefore, the allowable value can be barely secured up to 5 GHz. . In other words, in a region exceeding 5 GHz, this cannot be handled as long as the allowable value −0.5 (dB) is maintained.

これに対して、本発明に係る実施例1の場合、周波数0.3〜5GHzの広い高周波領域において、挿入損失が−0.03(dB)〜−0.05(dB)の範囲にあり、比較例1〜3の何れに対しても、優れた高周波損失特性を示している。   On the other hand, in the case of Example 1 according to the present invention, the insertion loss is in the range of -0.03 (dB) to -0.05 (dB) in a wide high-frequency region with a frequency of 0.3 to 5 GHz. Excellent high frequency loss characteristics are shown for any of Comparative Examples 1 to 3.

ボイドの有無に関しては、比較例1〜3の何れにおいても、その存在が確認されているのに対し、本発明に係る実施例1では、その存在を確認することができなかった(添付のSEM像参照)。   The presence or absence of voids was confirmed in any of Comparative Examples 1 to 3, whereas in Example 1 according to the present invention, the presence could not be confirmed (attached SEM). See image).

以上、好ましい実施例を参照して本発明を詳細に説明したが、本発明はこれらに限定されるものではなく、当業者であれば、その基本的技術思想および教示に基づき、種々の変形例を想到できることは自明である。   The present invention has been described in detail with reference to the preferred embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made by those skilled in the art based on the basic technical idea and teachings. It is self-evident that

本発明に係る回路基板の構造を概略的に示す断面図である。It is sectional drawing which shows the structure of the circuit board based on this invention roughly. 本発明に係る回路基板の例を示す分解図である。It is an exploded view showing an example of a circuit board according to the present invention. 積層状態(完成品)を示す図である。It is a figure which shows a lamination | stacking state (finished product). 本発明に係る電子デバイスの一例を概略的に示す図である。It is a figure showing roughly an example of an electronic device concerning the present invention. 本発明に係る回路基板の製造方法を説明する図である。It is a figure explaining the manufacturing method of the circuit board based on this invention. 図5に示した工程の後の工程を示す図である。FIG. 6 is a diagram showing a step after the step shown in FIG. 5. 図6に示した工程の後の工程を示す図である。It is a figure which shows the process after the process shown in FIG. 図7に示した工程の後の工程を示す図である。It is a figure which shows the process after the process shown in FIG. 図8に示した工程の後の工程を示す図である。It is a figure which shows the process after the process shown in FIG. 図9に示した工程の後の工程を示す図である。FIG. 10 is a diagram showing a step after the step shown in FIG. 9. 本発明に係る実施例によって得られたサンプルの貫通電極断面SEM像である。It is a penetration electrode cross-sectional SEM image of the sample obtained by the Example which concerns on this invention. 図11のA部のX線レントゲン写真像である。12 is an X-ray X-ray image of part A in FIG. 比較例1によって得られたサンプルの貫通電極断面SEM像である。4 is a cross-sectional SEM image of a through electrode of a sample obtained in Comparative Example 1. 比較例2によって得られたサンプルの貫通電極断面SEM像である。6 is a through electrode cross-sectional SEM image of a sample obtained in Comparative Example 2. FIG. 比較例3によって得られたサンプルの貫通電極断面SEM像である。10 is a through electrode cross-sectional SEM image of a sample obtained in Comparative Example 3. FIG. 図15に示されたD部のX線レントゲン写真像である。FIG. 16 is an X-ray X-ray image of a D part shown in FIG. 15.

符号の説明Explanation of symbols

1 基板
2 回路パターン
3 貫通電極
1 Substrate 2 Circuit pattern 3 Through electrode

Claims (6)

基板に回路パターンと電極とによる三次元回路を設けた回路基板であって、
前記回路パターンは、前記基板の少なくとも一面上に設けられており、
前記電極は、前記基板の前記一面からその厚み方向に延びる孔の内部に充填されており、
前記回路パターン及び前記電極は、Snを主成分とする同一の金属材料又は合金材料からなり、同体で連続する溶融凝固導体であって、溶融状態で供給された溶融金属を凝固させたものでなる
回路基板。
A circuit board provided with a three-dimensional circuit with circuit patterns and electrodes on the board,
The circuit pattern is provided on at least one surface of the substrate;
The electrode is filled in a hole extending in the thickness direction from the one surface of the substrate,
The circuit pattern and the electrode are made of the same metal material or alloy material containing Sn as a main component, and are the same and continuous molten and solidified conductor, which is obtained by solidifying molten metal supplied in a molten state. ,
Circuit board.
請求項1に記載された回路基板であって、前記回路パターン及び前記電極は、凝固結晶が500nm以下の多結晶集合体である、回路基板。   The circuit board according to claim 1, wherein the circuit pattern and the electrode are a polycrystal aggregate having a solidified crystal of 500 nm or less. 請求項1又は2に記載された回路基板であって、前記基板は、複数で、それぞれの基板は順次に積層されており、そのうちの少なくとも1層は、前記回路パターン及び前記電極を含んでいる、回路基板。   3. The circuit board according to claim 1, wherein there are a plurality of the substrates, and each substrate is sequentially laminated, and at least one of the substrates includes the circuit pattern and the electrodes. Circuit board. 回路基板と、回路機能部とを有する電子デバイスであって、
前記回路基板は、請求項1乃至3の何れかに記載されたものであり、
前記回路機能部は、前記回路基板と組み合わされている、
電子デバイス。
An electronic device having a circuit board and a circuit function unit,
The circuit board is described in any one of claims 1 to 3,
The circuit function unit is combined with the circuit board,
Electronic devices.
請求項4に記載された電子デバイスであって、センサーモジュル、光電気モジュール、FET、MOS−FET、CMOS−FET、メモリーセルもしくは集積回路素子又はこれらのチップである、電子デバイス。   5. The electronic device according to claim 4, wherein the electronic device is a sensor module, a photoelectric module, a FET, a MOS-FET, a CMOS-FET, a memory cell or an integrated circuit element, or a chip thereof. 請求項1乃至3の何れかに記載された回路基板の製造方法であって、
ウエハの一面に孔を形成し、
真空雰囲気中で、前記ウエハに微細な振動を与えながら、Snを主成分とする金属材料又は合金材料の溶融金属を、前記孔の内部に充填し、かつ、前記ウエハの前記一面の面上に拡散させる、
工程を含む製造方法。
A method of manufacturing a circuit board according to any one of claims 1 to 3,
Forming a hole in one side of the wafer,
In a vacuum atmosphere, while applying minute vibrations to the wafer, a molten metal of a metal material or alloy material containing Sn as a main component is filled into the hole, and on the one surface of the wafer. Diffuse,
A manufacturing method including a process.
JP2006337424A 2006-12-14 2006-12-14 Circuit boards, electronic devices and their manufacture Active JP4570051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006337424A JP4570051B2 (en) 2006-12-14 2006-12-14 Circuit boards, electronic devices and their manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006337424A JP4570051B2 (en) 2006-12-14 2006-12-14 Circuit boards, electronic devices and their manufacture

Publications (3)

Publication Number Publication Date
JP2008153303A JP2008153303A (en) 2008-07-03
JP2008153303A5 JP2008153303A5 (en) 2009-09-17
JP4570051B2 true JP4570051B2 (en) 2010-10-27

Family

ID=39655202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006337424A Active JP4570051B2 (en) 2006-12-14 2006-12-14 Circuit boards, electronic devices and their manufacture

Country Status (1)

Country Link
JP (1) JP4570051B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670185A (en) * 2020-12-22 2021-04-16 厦门通富微电子有限公司 Chip packaging structure and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714839A (en) * 1993-06-18 1995-01-17 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device and manufacturing device thereof
JP2002319758A (en) * 2001-04-20 2002-10-31 Murata Mfg Co Ltd Ceramic circuit board and its producing method
JP2003347733A (en) * 2002-05-28 2003-12-05 Yamanashi Matsushita Electric Works Ltd Printed circuit board and method for its manufacturing
JP2006165508A (en) * 2004-11-09 2006-06-22 Sony Corp Multilayer wiring board and method of manufacturing the board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714839A (en) * 1993-06-18 1995-01-17 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device and manufacturing device thereof
JP2002319758A (en) * 2001-04-20 2002-10-31 Murata Mfg Co Ltd Ceramic circuit board and its producing method
JP2003347733A (en) * 2002-05-28 2003-12-05 Yamanashi Matsushita Electric Works Ltd Printed circuit board and method for its manufacturing
JP2006165508A (en) * 2004-11-09 2006-06-22 Sony Corp Multilayer wiring board and method of manufacturing the board

Also Published As

Publication number Publication date
JP2008153303A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
US7674362B2 (en) Method for fabrication of a conductive bump structure of a circuit board
JP3813402B2 (en) Manufacturing method of semiconductor device
US9646926B2 (en) Wiring substrate and method of manufacturing the same
JP4444995B2 (en) Conductive composition for circuit board wiring, circuit board and electronic device
JP4800606B2 (en) Method for manufacturing element-embedded substrate
US9257379B2 (en) Coreless packaging substrate and method of fabricating the same
JP2008085089A (en) Resin wiring board and semiconductor device
US20110140286A1 (en) Multilayer wiring substrate mounted with electronic component and method for manufacturing the same
TW200904278A (en) Circuitized substrate assembly with internal stacked semiconductor chips, method of making same, electrical assembly utilizing same and information handling system utilizing same
TWI544599B (en) Fabrication method of package structure
JP2002043468A (en) Obverse and reverse conduction board and its manufacturing method
JP2004343030A (en) Wiring circuit board, manufacturing method thereof, circuit module provided with this wiring circuit board
TW200908262A (en) Mounting substrate and manufacturing method thereof
JP4386458B2 (en) Circuit board, electronic device and manufacturing method thereof
JP4608297B2 (en) Manufacturing method of multilayer wiring board
KR20110112974A (en) Package substrate and fabricating method of the same
JP4580027B1 (en) Circuit board and electronic device
KR20150065029A (en) Printed circuit board, manufacturing method thereof and semiconductor package
JP4570051B2 (en) Circuit boards, electronic devices and their manufacture
JP2007194646A (en) Method for manufacturing front and rear conducting board, and front and rear conducting board
TW200816336A (en) Integrated circuit mount system with solder mask PAD
JP4172238B2 (en) Electronic component mounting structure
TWI361483B (en) Aluminum oxide-based substrate and method for manufacturing the same
KR20140114932A (en) Package using a hybrid substrate and manufacturing method thereof
JP2005101186A (en) Laminated semiconductor integrated circuit

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090731

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090731

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4570051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250