JP4569053B2 - Superconducting wire manufacturing method and superconducting wire - Google Patents

Superconducting wire manufacturing method and superconducting wire Download PDF

Info

Publication number
JP4569053B2
JP4569053B2 JP2001184787A JP2001184787A JP4569053B2 JP 4569053 B2 JP4569053 B2 JP 4569053B2 JP 2001184787 A JP2001184787 A JP 2001184787A JP 2001184787 A JP2001184787 A JP 2001184787A JP 4569053 B2 JP4569053 B2 JP 4569053B2
Authority
JP
Japan
Prior art keywords
superconducting wire
mgb
composite
manufacturing
sheet material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001184787A
Other languages
Japanese (ja)
Other versions
JP2003007149A (en
Inventor
克己 宮下
淳一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001184787A priority Critical patent/JP4569053B2/en
Publication of JP2003007149A publication Critical patent/JP2003007149A/en
Application granted granted Critical
Publication of JP4569053B2 publication Critical patent/JP4569053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超電導線材の製造方法、および超電導線材に関し、特に、高い臨界電流密度特性を有するMgB2 系超電導線材の製造方法と、これより得られるMgB2系超電導線材に関する。
【0002】
【従来の技術】
臨界温度が高く、線材への加工が可能な超電導体としてMgB2 が注目を集めている。このMgB2 を超電導の構成部材とした線材を得るための標準的な製造方法としては、反応済みのMgB2 より構成される超電導粉末を金属パイプ内に充填したものを断面六角形に線引きし、さらに、これを金属パイプ内に複数本組み込んで多心構造とした後、所定のサイズへの伸線を行い、最後に、600〜800℃程度の熱処理を施すことによってMgB2 の粉末同士を固相反応により結合させる方法が一般的となる。
【0003】
また、他の標準的な製造方法としては、MgB2 の原料となるMgとB(ホウ素)の粉末を金属パイプ内に充填したものを断面六角形に線引きし、これを金属パイプ内に複数本組み込んで多心構造とした後、所定のサイズへの伸線加工を行い、これに、上記温度での熱処理を施すことによってMgB2 を生成させる方法が考えられる。
【0004】
【発明が解決しようとする課題】
しかし、以上に述べた製造方法によると、前者の方法の場合、MgB2 粉末の表面に酸化膜が存在すると、最終熱処理の際に粉末粒子の境界部分に異相が析出するため、個々の粒子は超電導を示すにしても、粒子の境界部分では電流の流れが阻害され、全体的な臨界電流密度特性の向上は得られないようになる。
【0005】
このため、MgB2 の超電導体のバルク体に関する報告は多いけれども、線材構成の超電導体に関しては、既に実用化されているNb‐Ti系超電導線材あるいはNb3Sn系超電導線材に匹敵した臨界電流密度特性を示すものの報告は、いまだ行われていないのが実情である。
【0006】
一方、後者の方法の場合には、Mg粉末が表面に酸化膜を生成させやすい性質を有しているため、前者と同様の問題を抱えているとともに、さらに、この方法の場合には、粉末粒度がμmオーダとなることもあって原料となるMg粉末の製造が難しいうえに、Mg粉末に粉塵爆発を招く危険性が高く、安全上の観点からも好ましい方法とはいえない。
【0007】
従って、本発明の目的は、高い臨界電流密度特性が得られるとともに、Mgの粉末化を必要としないMgB2系超電導線材の製造方法と、これより得られるMgB2系超電導線材を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、上記の目的を達成するため、超電導性を示す構成部材としてMgB2 を有する超電導線材の製造方法において、
Mgのシートと粉末状のBの層を組み合わせた複合シート材を構成し、
前記複合シート材を金属の心材上に巻き付けることによって複合棒状体を形成し、
前記複合棒状体に伸線等の所定の加工を施して得られる線条体に熱処理を施すことによってMgB2 を生成させることを特徴とする超電導線材の製造方法を提供するものである。
【0009】
また、本発明は、上記の目的を達成するため、超電導性を示す構成部材としてMgB2を有する超電導線材において、
Mgのシートと粉末状のBの層を組み合わせた複合シート材を金属の心材上に巻き付けた複合棒状体に伸線等の所定の加工を施して線条体としたものに熱処理を施すことによって生成させられたMgB2 であることを特徴とする超電導線材を提供するものである。
【0010】
上記の線条体は、多くの場合、上記した複合棒状体の集合体をベースにして構成される。具体的には、複合棒状体を押出し、スウェージング、伸線等の減面加工手段によって加工した加工体の複数本を互いに集合した後、これに、減面加工を施すことによって所定のサイズの線条体とされるもので、複合棒状体の減面加工体の集合には、銅パイプ等が使用され、この中に複数の減面加工体が挿入された状態で押出加工等が行われた後に、減面加工が施さることによって所定のサイズの線条体とされる。
【0011】
上記の製造方法におけるMgのシートと粉末状のBの層の複合シート材としては、たとえば、Mgのシート上にBの層を塗布または敷き詰め等によって形成したもの、あるいはBの層の両面をMgシートによってサンドウイッチ状に挟んだ形態などが考えられ、このうち後者の形態は、加工中のB粉末の離脱を防いでBの層を安定的に保持する効果を生むため、実際的な構成といえる。
【0012】
MgとBの比率は、前者1に対して後者が2±0.2モルとなる比が好ましい。これは、MgB2 の化学量論比からすれば、両者のモル比はMg:B=1:2のモル比となるべきであるが、Mgの融点が650℃と低いのに対してBのそれは2300℃と高く、従って、最終の熱処理温度である600〜800℃において、Mgと反応しないB成分が線材中に残留する可能性があることから、これを防いでMgB2の占積率を高めるために、Bが最大で0.2モル少ない比率を好ましい形態として推奨するものである。
【0013】
一方、これとは逆のBが0.2モル多いモル比の設定は、シート状のMgより粉末状のBの表面積が大きく、従って、MgとBの複合シート材の肉厚が大きい場合、あるいは熱処理前の最終線材に加工したときのMg層とB層の厚さが数十μmオーダの場合に、未反応のMgが残存する可能性が生ずるため、これを防ぐ意味から、Bのモル比を最大で0.2モル多く設定するものである。
【0014】
【発明の実施の形態】
次に、本発明による超電導線材の製造方法と、これより得られる超電導線材の実施の形態を説明する。
図1は、製造手順を示したもので、まず、(a)の工程の▲1▼において、平均粒子径が0.9μm、純度が99.9%の粉末状のBを準備し、これをバインダとなるグリセリンと混合することによりスラリー1を調合する。
【0015】
次いで、このスラリー1を▲2▼のように0.2mmの厚さのMgのシート2a上にスクリーン印刷法により塗布した後、200℃のArガス雰囲気中で乾燥を行い、▲3▼のようにグリセリンを蒸発させることによって粉末状のBの層3を形成する。
【0016】
次に、得られた複合体におけるMgとBのモル比が、Mg:B=1:1.1であることを確認した後、(b)の工程において、シート2aと同じMgのシート2bを層3の上に積層し、これによってモル比がMg:B=1:2.2のサンドウイッチ状の所定の構成の複合シート材4を製作する。
【0017】
(c)は、複合シート材4を直径が8mmのNbの心材5上に10層となるように巻き付けることによって複合棒状体を製作する工程を示し、(d)は、その後に行われるシングルビレットへの組立加工工程を示す。
【0018】
工程(d)においては、まず、工程(c)で得られた複合棒状体6を内径25mm×外径27mmの銅のパイプ7内に挿入するとともに、これを、内径27.1mm×外径29mmの銅のパイプ8内に挿入し、さらに、パイプ8の前端と後端に銅のプラグと鉄のプラグを取り付けることによってシングルビレットを構成する。
【0019】
(e)は、静水圧押出機による押出工程を示し、工程(d)で得られたシングルビレットを外径が12mmとなるように押出加工する。次いで、押し出されたビレットを(f)の工程において対辺寸法が1.4mmの断面六角形の六角線9に伸線加工した後、(g)の工程においてこれらを集合し、マルチビレット化する。
【0020】
マルチビレット化は、六角線9を150mmの長さに切り分け、これを、内径29mm×外径32mm×長さ150mmの銅のパイプ10内に互いに六角形の辺同士を密接させた状態で349本挿入するとともに、パイプ10の前端と後端に銅のプラグと鉄のプラグをそれぞれ取り付けることによって行われる。
【0021】
マルチビレット11は、次に、工程(h)において静水圧押出機により所定の径に押し出され、その後、工程(i)で外径が0.8mmの線条体となるまで伸線加工を施された後、工程(j)において、Ar雰囲気中での700℃×5時間の熱処理を施され、これによってMgB2 を生成させられる。
【0022】
図2は、以上により得られたMgB2系超電導線材の磁界と臨界電流密度の相互関係を示す。同図によれば、本実施の形態により製造されたMgB2 系超電導線材が、温度10KにおいてNb−Ti並みの臨界電流密度特性を得ることが可能であり、10Kクラスの伝導冷却方式によって7〜8Tの磁界発生を示すマグネットの製作が可能であることを示している。
【0023】
MgB2 系超電導体本来の高臨界温度に基づいて冷凍機の負荷の低減を図るとともに、極細多心構成に基づくクエンチのない超電導マグネットを提供するうえにおいて、図1の実施の形態より得られる超電導線材の有用性は大であるといえる。
【0024】
【発明の効果】
以上説明したように、本発明による超電導線材の製造方法によれば、Mgのシート上に粉末状のBを塗布すること等によってMgのシートと粉末状のBを組み合わせた複合シート材を構成し、これを金属の心材上に巻き付けた複合棒状体に伸線等の所定の加工を施すとともに、得られた線条体に熱処理を施すことによってMgB2 を生成させるため、Mgの粉末化を必要としない実際的な製造方法を提供することができる。そして、これにより得られたMgB2 系超電導線材は、高い臨界電流密度特性を有するため、実用性に富む超電導マグネット等を構成することができる。
【図面の簡単な説明】
【図1】本発明による超電導線材の製造方法の実施の形態を示す説明図であり、(a)〜(j)は、その手順を示す。
【図2】図1の実施の形態より得られたMgB2 系超電導線材の磁界と臨界電流密度の相互関係を示す説明図。
【符号の説明】
1 スラリー
2a、2b Mgのシート
3 粉末状のBの層
4 複合シート材
5 Nbの心材
6 複合棒状体
7、8、10 銅のパイプ
9 六角線
11 マルチビレット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a superconducting wire, and to a superconducting wire, in particular, a method of manufacturing a MgB 2 superconducting wire having a high critical current density characteristic relates MgB 2 superconducting wire obtained from this.
[0002]
[Prior art]
MgB 2 is attracting attention as a superconductor having a high critical temperature and capable of being processed into a wire. As a standard manufacturing method for obtaining a wire using MgB 2 as a superconducting component, a metal pipe filled with a superconducting powder composed of reacted MgB 2 is drawn into a hexagonal cross section, Further, a plurality of these are incorporated into a metal pipe to form a multi-core structure, followed by wire drawing to a predetermined size, and finally heat treatment at about 600 to 800 ° C. to fix the MgB 2 powders together. A method of bonding by a phase reaction is common.
[0003]
As another standard manufacturing method, Mg and B (boron) powder, which is a raw material for MgB 2 , is filled in a metal pipe and drawn into a hexagonal cross section. A method of forming MgB 2 by performing a drawing process to a predetermined size after being assembled to form a multi-core structure, and performing a heat treatment at the above temperature is considered.
[0004]
[Problems to be solved by the invention]
However, according to the manufacturing method described above, in the case of the former method, if an oxide film is present on the surface of the MgB 2 powder, a different phase precipitates at the boundary of the powder particles during the final heat treatment. Even if superconductivity is shown, the current flow is hindered at the boundary between the particles, and the improvement of the overall critical current density characteristic cannot be obtained.
[0005]
For this reason, although there are many reports on bulk bodies of MgB 2 superconductors, the critical current density characteristics comparable to the Nb-Ti superconducting wires or Nb3Sn superconducting wires that have already been put into practical use are available for the superconductors with wire configuration. The facts that are shown have not yet been reported.
[0006]
On the other hand, in the case of the latter method, the Mg powder has the property of easily generating an oxide film on the surface, and thus has the same problem as the former. The production of Mg powder as a raw material is difficult because the particle size is on the order of μm, and there is a high risk of causing a dust explosion in the Mg powder, which is not a preferable method from the viewpoint of safety.
[0007]
Accordingly, an object of the present invention, with a high critical current density characteristics can be obtained to provide a method of manufacturing a MgB 2 superconducting wire which does not require powder of Mg, a MgB 2 superconducting wire obtained from this is there.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for producing a superconducting wire having MgB 2 as a constituent member exhibiting superconductivity.
Composing a composite sheet material combining a Mg sheet and a powdery B layer,
Forming a composite bar by winding the composite sheet material on a metal core,
An object of the present invention is to provide a method for producing a superconducting wire, characterized in that MgB 2 is produced by subjecting a linear body obtained by subjecting the composite rod-like body to a predetermined processing such as wire drawing, as a heat treatment.
[0009]
In order to achieve the above object, the present invention provides a superconducting wire having MgB 2 as a constituent member exhibiting superconductivity.
By subjecting a composite rod-shaped body obtained by combining a composite sheet material combining a Mg sheet and a powdered B layer on a metal core to a predetermined shape such as wire drawing to heat treatment to a linear body The present invention provides a superconducting wire characterized by being produced MgB 2 .
[0010]
In many cases, the above-mentioned striate body is configured on the basis of an assembly of the above-described composite rod-shaped bodies. Specifically, after extruding a composite rod-like body and gathering together a plurality of processed bodies processed by surface-reducing means such as swaging and wire drawing, a surface of a predetermined size is obtained by subjecting it to surface-reducing processing. Copper pipes are used for the assembly of the surface-reduced body of the composite rod-shaped body, and extrusion is performed with a plurality of surface-reduced bodies inserted in this. After that, by performing a surface-reducing process, a filament having a predetermined size is obtained.
[0011]
As the composite sheet material of Mg sheet and powdery B layer in the above production method, for example, a layer of B formed on Mg sheet by coating or spreading, or both sides of B layer are Mg There are conceivable forms sandwiched between sheets, among which the latter form prevents the detachment of B powder during processing and produces an effect of stably holding the B layer. I can say that.
[0012]
The ratio of Mg and B is preferably such that the latter is 2 ± 0.2 mol with respect to the former 1. From the stoichiometric ratio of MgB 2 , the molar ratio of both should be Mg: B = 1: 2, but the melting point of Mg is as low as 650 ° C. It is as high as 2300 ° C. Therefore, at the final heat treatment temperature of 600 to 800 ° C., B component that does not react with Mg may remain in the wire, so this is prevented and the space factor of MgB 2 is increased. In order to increase the ratio, a ratio of B by a maximum of 0.2 mol is recommended as a preferable form.
[0013]
On the other hand, the setting of the molar ratio in which B is 0.2 mol opposite to this is larger in the surface area of the powdery B than the sheet-like Mg, and accordingly, when the thickness of the composite sheet material of Mg and B is large, Alternatively, if the thickness of the Mg layer and B layer when processed into the final wire before heat treatment is on the order of several tens of μm, there is a possibility that unreacted Mg may remain. The ratio is set to a maximum of 0.2 mol.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of a superconducting wire manufacturing method according to the present invention and a superconducting wire obtained therefrom will be described.
FIG. 1 shows a production procedure. First, in the step (1) of (a), a powdery B having an average particle diameter of 0.9 μm and a purity of 99.9% is prepared. Slurry 1 is prepared by mixing with glycerin as a binder.
[0015]
Next, the slurry 1 was applied by screen printing on the 0.2 mm thick Mg sheet 2a as shown in (2) and then dried in an Ar gas atmosphere at 200 ° C., as shown in (3). The glycerin is evaporated to form a powdery B layer 3.
[0016]
Next, after confirming that the molar ratio of Mg and B in the obtained composite is Mg: B = 1: 1.1, in the step (b), the same Mg sheet 2b as the sheet 2a is formed. The composite sheet material 4 having a predetermined structure in a sandwich shape with a molar ratio of Mg: B = 1: 2.2 is manufactured by laminating on the layer 3.
[0017]
(C) shows a step of manufacturing a composite rod-like body by winding the composite sheet material 4 on an Nb core material 5 having a diameter of 8 mm so as to form 10 layers, and (d) shows a single billet performed thereafter. The assembly processing process is shown.
[0018]
In the step (d), first, the composite rod-like body 6 obtained in the step (c) is inserted into a copper pipe 7 having an inner diameter of 25 mm × an outer diameter of 27 mm, and this is inserted into an inner diameter of 27.1 mm × an outer diameter of 29 mm. A single billet is constructed by inserting a copper plug and an iron plug into the front and rear ends of the pipe 8.
[0019]
(E) shows the extrusion process by a hydrostatic extruder, and extrudes the single billet obtained in the process (d) so that the outer diameter becomes 12 mm. Next, the extruded billet is drawn into a hexagonal wire 9 having a hexagonal cross section with an opposite side dimension of 1.4 mm in the step (f), and these are assembled into a multi billet in the step (g).
[0020]
In the multi billet formation, the hexagonal wire 9 is cut into a length of 150 mm, and 349 pieces of the hexagonal wire 9 are in close contact with each other in a copper pipe 10 having an inner diameter of 29 mm × an outer diameter of 32 mm × a length of 150 mm. Insertion is performed by attaching a copper plug and an iron plug to the front end and the rear end of the pipe 10, respectively.
[0021]
Next, the multi billet 11 is extruded to a predetermined diameter by a hydrostatic extruder in the step (h), and then subjected to wire drawing until it becomes a linear body having an outer diameter of 0.8 mm in the step (i). After that, in step (j), heat treatment is performed in an Ar atmosphere at 700 ° C. × 5 hours, whereby MgB 2 is generated.
[0022]
FIG. 2 shows the correlation between the magnetic field and critical current density of the MgB 2 -based superconducting wire obtained as described above. According to the figure, the MgB 2 -based superconducting wire manufactured according to the present embodiment can obtain a critical current density characteristic similar to Nb—Ti at a temperature of 10K, and it is 7 to 7 by a 10K class conduction cooling method. This shows that it is possible to produce a magnet that generates a magnetic field of 8T.
[0023]
In order to reduce the load on the refrigerator based on the inherently high critical temperature of the MgB 2 -based superconductor and to provide a superconducting magnet without quenching based on an ultrafine multi-core configuration, the superconductivity obtained from the embodiment of FIG. It can be said that the usefulness of the wire is great.
[0024]
【The invention's effect】
As described above, according to the method of manufacturing a superconducting wire according to the present invention, a composite sheet material in which an Mg sheet and a powdered B are combined is formed by applying powdered B on the Mg sheet. In addition, the composite rod-shaped body wound on a metal core is subjected to predetermined processing such as wire drawing, and heat treatment is performed on the obtained striated body to produce MgB 2 , which requires Mg powdering. A practical manufacturing method can be provided. And, thereby resulting MgB 2 superconducting wire has a high critical current density characteristic, it is possible to constitute a superconducting magnet or the like rich in practicability.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an embodiment of a method of manufacturing a superconducting wire according to the present invention, and (a) to (j) show the procedure.
FIG. 2 is an explanatory diagram showing the correlation between the magnetic field and critical current density of the MgB 2 -based superconducting wire obtained from the embodiment of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Slurry 2a, 2b Mg sheet 3 Powdery B layer 4 Composite sheet material 5 Nb core material 6 Composite rod-like body 7, 8, 10 Copper pipe 9 Hexagonal wire 11 Multi billet

Claims (5)

超電導性を示す構成部材としてMgB2 を有する超電導線材の製造方法において、
シート状に形成されたMgと粉末状のBの層を組み合わせた複合シート材を構成し、
前記複合シート材を金属の心材上に巻き付けることによって複合棒状体を形成し、
前記複合棒状体を銅からなるパイプ内へ挿入し、さらに、伸線の所定の減面加工を施して得られる線条体に熱処理を施すことによってMgB2を生成させることを特徴とする超電導線材の製造方法。
In the method of manufacturing a superconducting wire having MgB 2 as a constituent member exhibiting superconductivity,
Composing a composite sheet material that combines the layer of Mg and powder B formed in a sheet,
Forming a composite bar by winding the composite sheet material on a metal core,
Wherein the composite rod-like body inserted into the pipe made of copper, and further, superconducting wire, characterized in that to produce the MgB 2 by heat treatment in the striatum obtained by performing a predetermined reduction process of wire drawing Manufacturing method.
前記熱処理のステップは、前記複合棒状体の減面加工体の複数を集合して前記線条体に加工したものを対象として行われることを特徴とする請求項1項記載の超電導線材の製造方法。  2. The method of manufacturing a superconducting wire according to claim 1, wherein the heat treatment step is performed on an object obtained by gathering a plurality of surface-reduced bodies of the composite rod-shaped body and processing the same into the linear body. . 前記複合シート材を構成するステップは、前記複合シート材が、前記粉末状のBの層を前記Mgのシートによって両面から挟んだ構成となるように行われることを特徴とする請求項1項記載の超電導線材の製造方法。  2. The step of configuring the composite sheet material is performed such that the composite sheet material has a configuration in which the powdery B layer is sandwiched from both sides by the Mg sheet. Manufacturing method of superconducting wire. 前記複合棒状体を形成するステップは、前記Mgと前記Bのモル比がMg:B=1:2±0.2となるように行われることを特徴とする請求項1項記載の超電導線材の製造方法。  2. The superconducting wire according to claim 1, wherein the step of forming the composite rod-shaped body is performed such that a molar ratio of Mg to B is Mg: B = 1: 2 ± 0.2. Production method. 超電導性を示す構成部材としてMgB2 を有する超電導線材において、
前記MgB2 は、Mgのシート上に粉末状のBを塗布すること等によって前記Mgのシートと前記粉末状のBの層を組み合わせた複合シート材を金属の心材上に巻き付けた複合棒状体を銅からなるパイプ内へ挿入し、線の所定の加工を施して線条体としたものに熱処理を施すことによって生成させられたMgB2 であることを特徴とする超電導線材。
In a superconducting wire having MgB 2 as a constituent member showing superconductivity,
The MgB 2 is a composite rod-like body in which a composite sheet material obtained by combining the Mg sheet and the powdery B layer is wound around a metal core by applying powdered B on an Mg sheet. was inserted into the pipe made of copper, the superconducting wire, characterized by performing predetermined processing of the wire drawing is a MgB 2, which is to produce by applying a heat treatment to those with striatum.
JP2001184787A 2001-06-19 2001-06-19 Superconducting wire manufacturing method and superconducting wire Expired - Fee Related JP4569053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001184787A JP4569053B2 (en) 2001-06-19 2001-06-19 Superconducting wire manufacturing method and superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001184787A JP4569053B2 (en) 2001-06-19 2001-06-19 Superconducting wire manufacturing method and superconducting wire

Publications (2)

Publication Number Publication Date
JP2003007149A JP2003007149A (en) 2003-01-10
JP4569053B2 true JP4569053B2 (en) 2010-10-27

Family

ID=19024492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001184787A Expired - Fee Related JP4569053B2 (en) 2001-06-19 2001-06-19 Superconducting wire manufacturing method and superconducting wire

Country Status (1)

Country Link
JP (1) JP4569053B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100970369B1 (en) 2008-02-28 2010-07-15 한국원자력연구원 Fabrication of glycerin-doped MgB2 superconductor
JP2011076821A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Magnesium diboride wire, and manufacturing method thereof
JP5517866B2 (en) * 2010-09-29 2014-06-11 株式会社日立製作所 Superconducting wire manufacturing method and wire
CN101989472B (en) * 2010-12-06 2011-11-23 西北有色金属研究院 Method for preparing core-reinforced multi-core MgB2 superconducting wires/strips

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148620A (en) * 1988-11-30 1990-06-07 Showa Electric Wire & Cable Co Ltd Manufacture of nb3al superconductive wire
JPH02177217A (en) * 1988-12-27 1990-07-10 Showa Electric Wire & Cable Co Ltd Manufacture of nb3al superconducting wire

Also Published As

Publication number Publication date
JP2003007149A (en) 2003-01-10

Similar Documents

Publication Publication Date Title
JPH09259660A (en) Oxide superconducting wire, manufacture thereof, oxide superconductive stranded wire and conductor using the oxide superconducting wire
GB2050878A (en) Making superconductors
JP4569053B2 (en) Superconducting wire manufacturing method and superconducting wire
JPS6331884B2 (en)
US5174831A (en) Superconductor and process of manufacture
JP2003217369A (en) Manufacturing method of magnesium diboride superconductive wire
KR0158459B1 (en) Superconductive wire material and method of producing the same
JP3716304B2 (en) Manufacturing method of Nb3Ga extra fine multi-core superconducting wire
EP3961658B1 (en) Blank for producing a long nb3 sn-based superconducting wire
JP2889286B2 (en) Superconducting body and superconducting coil formed using the superconducting body
JPH09223418A (en) Oxide superconductive wire rod and manufacture thereof
JP3187829B2 (en) Superconductor and manufacturing method
JPS6029165B2 (en) Superconducting compound wire and its manufacturing method
JP3108543B2 (en) Manufacturing method of multilayer ceramic superconductor
JP3724128B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
JPH02273418A (en) Manufacture of oxide superconductive conductor
JP3621294B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JPH05334921A (en) Ceramic superconductor
JPH0773757A (en) Manufacture of oxide superconductor
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JP4189779B2 (en) Manufacturing method and connecting method of oxide superconductor
JPH04329218A (en) Superconductive wire material
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
JP2000348553A (en) Manufacture of oxide superconducting wire
JPH0589727A (en) Multilayer ceramics superconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees