JP2003007149A - Manufacturing method of superconductive wire material and superconductive wire material - Google Patents

Manufacturing method of superconductive wire material and superconductive wire material

Info

Publication number
JP2003007149A
JP2003007149A JP2001184787A JP2001184787A JP2003007149A JP 2003007149 A JP2003007149 A JP 2003007149A JP 2001184787 A JP2001184787 A JP 2001184787A JP 2001184787 A JP2001184787 A JP 2001184787A JP 2003007149 A JP2003007149 A JP 2003007149A
Authority
JP
Japan
Prior art keywords
superconducting wire
mgb
composite
manufacturing
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001184787A
Other languages
Japanese (ja)
Other versions
JP4569053B2 (en
Inventor
Katsumi Miyashita
克己 宮下
Junichi Sato
淳一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001184787A priority Critical patent/JP4569053B2/en
Publication of JP2003007149A publication Critical patent/JP2003007149A/en
Application granted granted Critical
Publication of JP4569053B2 publication Critical patent/JP4569053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method which enables high current density characteristic and does not require powdering of Mg to form a MgB2 superconductive wire material and to provide a MgB2 superconductive wire obtained there by. SOLUTION: A composite rod 6 is formed by winding a core Nb material with a composite sheet 4 consisting of Mg sheets 2a and 2b and a powder layer B. The rod 6 is successively treated by following processes of forming a single billet (d), extruding (e), stretching (f), forming multiple billets and stretching process (i) to form a wire like product having a specific size. Finally a heat-treatment (j) is applied to the above wire to form a MgB2 superconductive wire material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超電導線材の製造
方法、および超電導線材に関し、特に、高い臨界電流密
度特性を有するMgB2 系超電導線材の製造方法と、こ
れより得られるMgB2系超電導線材に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method of manufacturing a superconducting wire, and to a superconducting wire, in particular, high manufacturing method of MgB 2 superconducting wire having a critical current density characteristic, MgB 2 superconducting wire obtained from this Regarding

【0002】[0002]

【従来の技術】臨界温度が高く、線材への加工が可能な
超電導体としてMgB2 が注目を集めている。このMg
2 を超電導の構成部材とした線材を得るための標準的
な製造方法としては、反応済みのMgB2 より構成され
る超電導粉末を金属パイプ内に充填したものを断面六角
形に線引きし、さらに、これを金属パイプ内に複数本組
み込んで多心構造とした後、所定のサイズへの伸線を行
い、最後に、600〜800℃程度の熱処理を施すこと
によってMgB2 の粉末同士を固相反応により結合させ
る方法が一般的となる。
2. Description of the Related Art MgB 2 has attracted attention as a superconductor having a high critical temperature and capable of being processed into a wire. This Mg
As a standard manufacturing method for obtaining a wire having B 2 as a superconducting constituent member, a metal pipe filled with superconducting powder composed of reacted MgB 2 is drawn into a hexagonal cross section, After incorporating a plurality of these into a metal pipe to form a multi-core structure, wire drawing to a predetermined size is performed, and finally, heat treatment at about 600 to 800 ° C. is performed to solidify the MgB 2 powders into a solid phase. A method of binding by a reaction is generally used.

【0003】また、他の標準的な製造方法としては、M
gB2 の原料となるMgとB(ホウ素)の粉末を金属パ
イプ内に充填したものを断面六角形に線引きし、これを
金属パイプ内に複数本組み込んで多心構造とした後、所
定のサイズへの伸線加工を行い、これに、上記温度での
熱処理を施すことによってMgB2 を生成させる方法が
考えられる。
Another standard manufacturing method is M
After the powder of Mg and B (boron), which is the raw material of gB 2 , is filled in a metal pipe and drawn into a hexagonal cross section, a plurality of this is incorporated into the metal pipe to make a multi-core structure, and then a predetermined size A method is conceivable in which MgB 2 is produced by subjecting the wire to a wire drawing process and subjecting this to a heat treatment at the above temperature.

【0004】[0004]

【発明が解決しようとする課題】しかし、以上に述べた
製造方法によると、前者の方法の場合、MgB2 粉末の
表面に酸化膜が存在すると、最終熱処理の際に粉末粒子
の境界部分に異相が析出するため、個々の粒子は超電導
を示すにしても、粒子の境界部分では電流の流れが阻害
され、全体的な臨界電流密度特性の向上は得られないよ
うになる。
However, according to the manufacturing method described above, in the case of the former method, if an oxide film is present on the surface of the MgB 2 powder, a different phase is formed at the boundary portion of the powder particles during the final heat treatment. Therefore, even if the individual particles exhibit superconductivity, the current flow is hindered at the boundary portion of the particles, and the improvement of the overall critical current density characteristics cannot be obtained.

【0005】このため、MgB2 の超電導体のバルク体
に関する報告は多いけれども、線材構成の超電導体に関
しては、既に実用化されているNb‐Ti系超電導線材
あるいはNb3Sn系超電導線材に匹敵した臨界電流密
度特性を示すものの報告は、いまだ行われていないのが
実情である。
For this reason, although there are many reports regarding bulk bodies of MgB 2 superconductors, regarding the superconductors of wire material construction, the critical currents comparable to those of the Nb-Ti based superconducting wire materials or Nb3Sn based superconducting wire materials already in practical use. In fact, the fact that density characteristics have been reported has not yet been reported.

【0006】一方、後者の方法の場合には、Mg粉末が
表面に酸化膜を生成させやすい性質を有しているため、
前者と同様の問題を抱えているとともに、さらに、この
方法の場合には、粉末粒度がμmオーダとなることもあ
って原料となるMg粉末の製造が難しいうえに、Mg粉
末に粉塵爆発を招く危険性が高く、安全上の観点からも
好ましい方法とはいえない。
On the other hand, in the case of the latter method, since the Mg powder has a property of easily forming an oxide film on the surface,
In addition to having the same problem as the former, further, in the case of this method, since the powder particle size is on the order of μm, it is difficult to manufacture the Mg powder as a raw material, and dust explosion occurs in the Mg powder. It is highly dangerous and not a preferable method from the viewpoint of safety.

【0007】従って、本発明の目的は、高い臨界電流密
度特性が得られるとともに、Mgの粉末化を必要としな
いMgB2系超電導線材の製造方法と、これより得られ
るMgB2系超電導線材を提供することにある。
Accordingly, it is an object of the present invention, with a high critical current density characteristics can be obtained, provides a method for producing a MgB 2 superconducting wire which does not require powder of Mg, a MgB 2 superconducting wire obtained from this To do.

【0008】[0008]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、超電導性を示す構成部材としてMgB 2
を有する超電導線材の製造方法において、Mgのシート
と粉末状のBの層を組み合わせた複合シート材を構成
し、前記複合シート材を金属の心材上に巻き付けること
によって複合棒状体を形成し、前記複合棒状体に伸線等
の所定の加工を施して得られる線条体に熱処理を施すこ
とによってMgB2 を生成させることを特徴とする超電
導線材の製造方法を提供するものである。
The present invention has the above-mentioned object.
In order to achieve, MgB as a constituent member showing superconductivity 2
In a method of manufacturing a superconducting wire having
A composite sheet material that combines a powdery B layer
And wrapping the composite sheet material on a metal core.
To form a composite rod, and draw wire on the composite rod.
The heat treatment should be applied to the filaments obtained by
By MgB2Is characterized by generating
The present invention provides a method for manufacturing a conductor.

【0009】また、本発明は、上記の目的を達成するた
め、超電導性を示す構成部材としてMgB2を有する超
電導線材において、Mgのシートと粉末状のBの層を組
み合わせた複合シート材を金属の心材上に巻き付けた複
合棒状体に伸線等の所定の加工を施して線条体としたも
のに熱処理を施すことによって生成させられたMgB2
であることを特徴とする超電導線材を提供するものであ
る。
Further, in order to achieve the above object, the present invention is a superconducting wire having MgB 2 as a constituent member exhibiting superconducting property, wherein a composite sheet material obtained by combining a Mg sheet and a powdery B layer is used as a metal. MgB 2 produced by subjecting a composite rod-shaped body wound on the core
The present invention provides a superconducting wire rod.

【0010】上記の線条体は、多くの場合、上記した複
合棒状体の集合体をベースにして構成される。具体的に
は、複合棒状体を押出し、スウェージング、伸線等の減
面加工手段によって加工した加工体の複数本を互いに集
合した後、これに、減面加工を施すことによって所定の
サイズの線条体とされるもので、複合棒状体の減面加工
体の集合には、銅パイプ等が使用され、この中に複数の
減面加工体が挿入された状態で押出加工等が行われた後
に、減面加工が施さることによって所定のサイズの線条
体とされる。
In many cases, the above-mentioned filamentous body is formed on the basis of the above-mentioned assembly of composite rod-shaped bodies. Specifically, after extruding a composite rod-shaped body, swaging, drawing, and the like, a plurality of processed bodies processed by surface-reducing processing means such as wire gathering together, and then subjecting this to surface-reduction processing It is a linear body, and copper pipes, etc. are used for the assembly of the surface-reduced products of the composite rod-shaped body, and extrusion processing etc. are performed with a plurality of the surface-reduced products inserted in it. After that, the surface is reduced to obtain a linear body having a predetermined size.

【0011】上記の製造方法におけるMgのシートと粉
末状のBの層の複合シート材としては、たとえば、Mg
のシート上にBの層を塗布または敷き詰め等によって形
成したもの、あるいはBの層の両面をMgシートによっ
てサンドウイッチ状に挟んだ形態などが考えられ、この
うち後者の形態は、加工中のB粉末の離脱を防いでBの
層を安定的に保持する効果を生むため、実際的な構成と
いえる。
As the composite sheet material of the Mg sheet and the powdery B layer in the above manufacturing method, for example, Mg
The sheet B may be formed by coating or spreading the layer B, or the sheet B may be sandwiched on both sides by a Mg sheet in a sandwich form. It can be said that this is a practical structure because it has the effect of preventing the powder from separating and stably holding the layer B.

【0012】MgとBの比率は、前者1に対して後者が
2±0.2モルとなる比が好ましい。これは、MgB2
の化学量論比からすれば、両者のモル比はMg:B=
1:2のモル比となるべきであるが、Mgの融点が65
0℃と低いのに対してBのそれは2300℃と高く、従
って、最終の熱処理温度である600〜800℃におい
て、Mgと反応しないB成分が線材中に残留する可能性
があることから、これを防いでMgB2の占積率を高め
るために、Bが最大で0.2モル少ない比率を好ましい
形態として推奨するものである。
The ratio of Mg and B is preferably such that the latter is 2 ± 0.2 mol with respect to the former 1. This is MgB 2
From the stoichiometric ratio of, the molar ratio of the two is Mg: B =
The molar ratio should be 1: 2, but the melting point of Mg should be 65
Although it is as low as 0 ° C., that of B is as high as 2300 ° C. Therefore, at the final heat treatment temperature of 600 to 800 ° C., B component that does not react with Mg may remain in the wire. In order to prevent the above and increase the space factor of MgB 2 , it is recommended that the ratio of B is 0.2 mol less at the maximum as a preferable form.

【0013】一方、これとは逆のBが0.2モル多いモ
ル比の設定は、シート状のMgより粉末状のBの表面積
が大きく、従って、MgとBの複合シート材の肉厚が大
きい場合、あるいは熱処理前の最終線材に加工したとき
のMg層とB層の厚さが数十μmオーダの場合に、未反
応のMgが残存する可能性が生ずるため、これを防ぐ意
味から、Bのモル比を最大で0.2モル多く設定するも
のである。
On the other hand, when the molar ratio of B is 0.2 mol more, which is the opposite of the above, the surface area of powder B is larger than that of sheet Mg, and therefore the thickness of the composite sheet material of Mg and B is large. When the thickness is large or when the thickness of the Mg layer and the B layer when processed into the final wire before heat treatment is on the order of several tens of μm, there is a possibility that unreacted Mg will remain. The molar ratio of B is increased by 0.2 mol at maximum.

【0014】[0014]

【発明の実施の形態】次に、本発明による超電導線材の
製造方法と、これより得られる超電導線材の実施の形態
を説明する。図1は、製造手順を示したもので、まず、
(a)の工程のにおいて、平均粒子径が0.9μm、
純度が99.9%の粉末状のBを準備し、これをバイン
ダとなるグリセリンと混合することによりスラリー1を
調合する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of a method for manufacturing a superconducting wire according to the present invention and a superconducting wire obtained by the method will be described. FIG. 1 shows a manufacturing procedure. First,
In the step (a), the average particle size is 0.9 μm,
A powdery B having a purity of 99.9% is prepared, and the slurry 1 is prepared by mixing this with glycerin serving as a binder.

【0015】次いで、このスラリー1をのように0.
2mmの厚さのMgのシート2a上にスクリーン印刷法
により塗布した後、200℃のArガス雰囲気中で乾燥
を行い、のようにグリセリンを蒸発させることによっ
て粉末状のBの層3を形成する。
Then, this slurry 1 was treated with 0.
After being coated on a Mg sheet 2a having a thickness of 2 mm by a screen printing method, it is dried in an Ar gas atmosphere at 200 ° C., and glycerin is evaporated as described above to form a powdery layer 3 of B. .

【0016】次に、得られた複合体におけるMgとBの
モル比が、Mg:B=1:1.1であることを確認した
後、(b)の工程において、シート2aと同じMgのシ
ート2bを層3の上に積層し、これによってモル比がM
g:B=1:2.2のサンドウイッチ状の所定の構成の
複合シート材4を製作する。
Next, after confirming that the molar ratio of Mg and B in the obtained composite is Mg: B = 1: 1.1, in the step (b), the same Mg content as that of the sheet 2a is obtained. Sheet 2b is laminated on layer 3 so that the molar ratio is M
A composite sheet material 4 having a predetermined configuration in a sandwich shape of g: B = 1: 2.2 is manufactured.

【0017】(c)は、複合シート材4を直径が8mm
のNbの心材5上に10層となるように巻き付けること
によって複合棒状体を製作する工程を示し、(d)は、
その後に行われるシングルビレットへの組立加工工程を
示す。
(C) shows the composite sheet material 4 having a diameter of 8 mm.
Shows a step of manufacturing a composite rod-shaped body by winding 10 layers of Nb core material 5 of FIG.
The process of assembling into a single billet that is performed after that is shown.

【0018】工程(d)においては、まず、工程(c)
で得られた複合棒状体6を内径25mm×外径27mm
の銅のパイプ7内に挿入するとともに、これを、内径2
7.1mm×外径29mmの銅のパイプ8内に挿入し、
さらに、パイプ8の前端と後端に銅のプラグと鉄のプラ
グを取り付けることによってシングルビレットを構成す
る。
In the step (d), first, the step (c)
The inner diameter of the composite rod 6 obtained in step 25 mm x the outer diameter 27 mm
Insert it into the copper pipe 7 of
Insert into the copper pipe 8 of 7.1 mm x 29 mm outer diameter,
Further, a single billet is constructed by attaching a copper plug and an iron plug to the front and rear ends of the pipe 8.

【0019】(e)は、静水圧押出機による押出工程を
示し、工程(d)で得られたシングルビレットを外径が
12mmとなるように押出加工する。次いで、押し出さ
れたビレットを(f)の工程において対辺寸法が1.4
mmの断面六角形の六角線9に伸線加工した後、(g)
の工程においてこれらを集合し、マルチビレット化す
る。
(E) shows an extrusion step using a hydrostatic extruder, in which the single billet obtained in step (d) is extruded to have an outer diameter of 12 mm. Then, in the step (f), the extruded billet was adjusted to have an opposite side dimension of 1.4.
After drawing into hexagonal wire 9 having a hexagonal cross section of mm, (g)
In the process of, these are assembled and made into a multi-billet.

【0020】マルチビレット化は、六角線9を150m
mの長さに切り分け、これを、内径29mm×外径32
mm×長さ150mmの銅のパイプ10内に互いに六角
形の辺同士を密接させた状態で349本挿入するととも
に、パイプ10の前端と後端に銅のプラグと鉄のプラグ
をそれぞれ取り付けることによって行われる。
The multi billet is produced by setting the hexagonal wire 9 to 150 m.
Cut into m length, which is 29mm inner diameter x 32 outer diameter
By inserting 349 pieces of hexagonal sides in close contact with each other in a copper pipe 10 of mm × 150 mm in length, and attaching a copper plug and an iron plug to the front and rear ends of the pipe 10, respectively. Done.

【0021】マルチビレット11は、次に、工程(h)
において静水圧押出機により所定の径に押し出され、そ
の後、工程(i)で外径が0.8mmの線条体となるま
で伸線加工を施された後、工程(j)において、Ar雰
囲気中での700℃×5時間の熱処理を施され、これに
よってMgB2 を生成させられる。
The multi-billet 11 is then subjected to the step (h).
In the step (i), the wire is extruded to a predetermined diameter by a hydrostatic extruder, and then wire drawing is performed in the step (i) until a filament having an outer diameter of 0.8 mm is obtained. Heat treatment is carried out at 700 ° C. for 5 hours, whereby MgB 2 is produced.

【0022】図2は、以上により得られたMgB2系超
電導線材の磁界と臨界電流密度の相互関係を示す。同図
によれば、本実施の形態により製造されたMgB2 系超
電導線材が、温度10KにおいてNb−Ti並みの臨界
電流密度特性を得ることが可能であり、10Kクラスの
伝導冷却方式によって7〜8Tの磁界発生を示すマグネ
ットの製作が可能であることを示している。
FIG. 2 shows the mutual relationship between the magnetic field and the critical current density of the MgB 2 type superconducting wire obtained as described above. According to the figure, it is possible for the MgB 2 -based superconducting wire manufactured according to the present embodiment to obtain a critical current density characteristic comparable to that of Nb-Ti at a temperature of 10K, and a 10K-class conduction cooling method can be used to obtain 7- It is shown that it is possible to manufacture a magnet showing a magnetic field generation of 8T.

【0023】MgB2 系超電導体本来の高臨界温度に基
づいて冷凍機の負荷の低減を図るとともに、極細多心構
成に基づくクエンチのない超電導マグネットを提供する
うえにおいて、図1の実施の形態より得られる超電導線
材の有用性は大であるといえる。
In order to reduce the load on the refrigerator based on the originally high critical temperature of the MgB 2 system superconductor, and to provide a quench-free superconducting magnet based on the ultra-fine multicore structure, the embodiment shown in FIG. It can be said that the obtained superconducting wire is very useful.

【0024】[0024]

【発明の効果】以上説明したように、本発明による超電
導線材の製造方法によれば、Mgのシート上に粉末状の
Bを塗布すること等によってMgのシートと粉末状のB
を組み合わせた複合シート材を構成し、これを金属の心
材上に巻き付けた複合棒状体に伸線等の所定の加工を施
すとともに、得られた線条体に熱処理を施すことによっ
てMgB2 を生成させるため、Mgの粉末化を必要とし
ない実際的な製造方法を提供することができる。そし
て、これにより得られたMgB2 系超電導線材は、高い
臨界電流密度特性を有するため、実用性に富む超電導マ
グネット等を構成することができる。
As described above, according to the method for manufacturing a superconducting wire according to the present invention, the Mg sheet and the powder B are coated by applying the powder B onto the Mg sheet.
To form MgB 2 by constructing a composite sheet material that combines the above, and subjecting the composite rod-shaped body wound around a metal core material to predetermined processing such as wire drawing and heat-treating the obtained filamentous body. Therefore, it is possible to provide a practical manufacturing method that does not require pulverization of Mg. Since the MgB 2 -based superconducting wire thus obtained has high critical current density characteristics, it is possible to construct a superconducting magnet or the like with high practicality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超電導線材の製造方法の実施の形
態を示す説明図であり、(a)〜(j)は、その手順を
示す。
FIG. 1 is an explanatory view showing an embodiment of a method for manufacturing a superconducting wire according to the present invention, in which (a) to (j) show the procedure.

【図2】図1の実施の形態より得られたMgB2 系超電
導線材の磁界と臨界電流密度の相互関係を示す説明図。
FIG. 2 is an explanatory diagram showing the mutual relationship between the magnetic field and the critical current density of the MgB 2 -based superconducting wire obtained from the embodiment of FIG.

【符号の説明】[Explanation of symbols]

1 スラリー 2a、2b Mgのシート 3 粉末状のBの層 4 複合シート材 5 Nbの心材 6 複合棒状体 7、8、10 銅のパイプ 9 六角線 11 マルチビレット 1 slurry 2a, 2b Mg sheet 3 Layers of powdered B 4 Composite sheet material 5 Nb heartwood 6 composite rods 7,8,10 copper pipes 9 Hexagonal line 11 multi billets

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】超電導性を示す構成部材としてMgB2
有する超電導線材の製造方法において、 Mgのシートと粉末状のBの層を組み合わせた複合シー
ト材を構成し、 前記複合シート材を金属の心材上に巻き付けることによ
って複合棒状体を形成し、 前記複合棒状体に伸線等の所定の減面加工を施して得ら
れる線条体に熱処理を施すことによってMgB2 を生成
させることを特徴とする超電導線材の製造方法。
1. A method of manufacturing a superconducting wire having MgB 2 as a constituent member exhibiting superconductivity, comprising a composite sheet material in which a Mg sheet and a powdery B layer are combined, and the composite sheet material is made of metal. A composite rod-shaped body is formed by winding it around a core material, and MgB 2 is generated by heat-treating a filament obtained by subjecting the composite rod-shaped body to a predetermined surface-reducing process such as wire drawing. A method for manufacturing a superconducting wire.
【請求項2】前記熱処理のステップは、前記複合棒状体
の減面加工体の複数を集合して前記線条体に加工したも
のを対象として行われることを特徴とする請求項1項記
載の超電導線材の製造方法。
2. The heat treatment step is performed on a plurality of surface-reduced bodies of the composite rod-shaped body that are assembled and processed into the linear body. Manufacturing method of superconducting wire.
【請求項3】前記複合シート材を構成するステップは、
前記複合シート材が、前記粉末状のBの層を前記Mgの
シートによって両面から挟んだ構成となるように行われ
ることを特徴とする請求項1項記載の超電導線材の製造
方法。
3. The step of constructing the composite sheet material comprises:
2. The method for producing a superconducting wire according to claim 1, wherein the composite sheet material is formed so that the powdery B layer is sandwiched by the Mg sheets from both sides.
【請求項4】前記複合棒状体を形成するステップは、前
記Mgと前記Bのモル比がMg:B=1:2±0.2と
なるように行われることを特徴とする請求項1項記載の
超電導線材の製造方法。
4. The step of forming the composite rod-shaped body is performed so that a molar ratio of the Mg and the B is Mg: B = 1: 2 ± 0.2. A method for producing the superconducting wire described.
【請求項5】超電導性を示す構成部材としてMgB2
有する超電導線材において、 前記MgB2 は、Mgのシート上に粉末状のBを塗布す
ること等によって前記Mgのシートと前記粉末状のBの
層を組み合わせた複合シート材を金属の心材上に巻き付
けた複合棒状体に伸線等の所定の加工を施して線条体と
したものに熱処理を施すことによって生成させられたM
gB2 であることを特徴とする超電導線材。
5. A superconducting wire having MgB 2 as a constituent member exhibiting superconductivity, said MgB 2 comprising Mg sheet and said powder B by applying powder B on Mg sheet or the like. M produced by heat-treating a composite rod-shaped body obtained by winding a composite sheet material in which layers of
A superconducting wire which is gB 2 .
JP2001184787A 2001-06-19 2001-06-19 Superconducting wire manufacturing method and superconducting wire Expired - Fee Related JP4569053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001184787A JP4569053B2 (en) 2001-06-19 2001-06-19 Superconducting wire manufacturing method and superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001184787A JP4569053B2 (en) 2001-06-19 2001-06-19 Superconducting wire manufacturing method and superconducting wire

Publications (2)

Publication Number Publication Date
JP2003007149A true JP2003007149A (en) 2003-01-10
JP4569053B2 JP4569053B2 (en) 2010-10-27

Family

ID=19024492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001184787A Expired - Fee Related JP4569053B2 (en) 2001-06-19 2001-06-19 Superconducting wire manufacturing method and superconducting wire

Country Status (1)

Country Link
JP (1) JP4569053B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100970369B1 (en) 2008-02-28 2010-07-15 한국원자력연구원 Fabrication of glycerin-doped MgB2 superconductor
CN101989472A (en) * 2010-12-06 2011-03-23 西北有色金属研究院 Method for preparing core-reinforced multi-core MgB2 superconducting wires/strips
JP2011076821A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Magnesium diboride wire, and manufacturing method thereof
JP2012074244A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Manufacturing method of superconducting wire rod, and wire rod

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148620A (en) * 1988-11-30 1990-06-07 Showa Electric Wire & Cable Co Ltd Manufacture of nb3al superconductive wire
JPH02177217A (en) * 1988-12-27 1990-07-10 Showa Electric Wire & Cable Co Ltd Manufacture of nb3al superconducting wire

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148620A (en) * 1988-11-30 1990-06-07 Showa Electric Wire & Cable Co Ltd Manufacture of nb3al superconductive wire
JPH02177217A (en) * 1988-12-27 1990-07-10 Showa Electric Wire & Cable Co Ltd Manufacture of nb3al superconducting wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100970369B1 (en) 2008-02-28 2010-07-15 한국원자력연구원 Fabrication of glycerin-doped MgB2 superconductor
JP2011076821A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Magnesium diboride wire, and manufacturing method thereof
JP2012074244A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Manufacturing method of superconducting wire rod, and wire rod
CN101989472A (en) * 2010-12-06 2011-03-23 西北有色金属研究院 Method for preparing core-reinforced multi-core MgB2 superconducting wires/strips

Also Published As

Publication number Publication date
JP4569053B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
GB2050878A (en) Making superconductors
JPS6331884B2 (en)
JP2003007149A (en) Manufacturing method of superconductive wire material and superconductive wire material
KR0158459B1 (en) Superconductive wire material and method of producing the same
JP2889286B2 (en) Superconducting body and superconducting coil formed using the superconducting body
JPH09223418A (en) Oxide superconductive wire rod and manufacture thereof
JP3187829B2 (en) Superconductor and manufacturing method
JPH02273418A (en) Manufacture of oxide superconductive conductor
JP2003297162A (en) METHOD FOR MANUFACTURING Nb3Ga EXTRAFINE MULTI-CORE WIRE ROD
JPH05334921A (en) Ceramic superconductor
JPH0773757A (en) Manufacture of oxide superconductor
JP2779210B2 (en) Conductor for current lead
JPH0855527A (en) Fabrication of nb3sn superconducting wire
JP3108543B2 (en) Manufacturing method of multilayer ceramic superconductor
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JPS6029165B2 (en) Superconducting compound wire and its manufacturing method
JPH04329218A (en) Superconductive wire material
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
US6451742B1 (en) High temperature superconducting composite conductor and method for manufacturing the same
JP3033606B2 (en) Manufacturing method of oxide superconducting wire
JPH1139963A (en) Oxide superconductive wire material, stranded wire, method for producing material and stranded wire thereof, and oxide superconductor
JPH08227621A (en) Compound superconducting wire material
JP4203313B2 (en) Bi-based rectangular oxide superconductor
JP2000348553A (en) Manufacture of oxide superconducting wire
JPH02192619A (en) Manufacture of oxide superconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees