JP4567493B2 - Seismic isolation system for buildings over railway tracks - Google Patents

Seismic isolation system for buildings over railway tracks Download PDF

Info

Publication number
JP4567493B2
JP4567493B2 JP2005068450A JP2005068450A JP4567493B2 JP 4567493 B2 JP4567493 B2 JP 4567493B2 JP 2005068450 A JP2005068450 A JP 2005068450A JP 2005068450 A JP2005068450 A JP 2005068450A JP 4567493 B2 JP4567493 B2 JP 4567493B2
Authority
JP
Japan
Prior art keywords
seismic isolation
vibration
foundation
building
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005068450A
Other languages
Japanese (ja)
Other versions
JP2006249795A (en
Inventor
泰 武居
聖治 山田
努 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2005068450A priority Critical patent/JP4567493B2/en
Publication of JP2006249795A publication Critical patent/JP2006249795A/en
Application granted granted Critical
Publication of JP4567493B2 publication Critical patent/JP4567493B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、線路上空建築物の免震防振構造システムに関するものである。   The present invention relates to a seismic isolation and vibration isolation structure system for buildings over railway tracks.

線路上空を利用した建築物は、鉄道事業者の関連事業展開や都市再開発の面で今後ますます必要性が高まることが予想される。そのような建築物は、軌道を跨ぐことから一般建築物より耐震性能を高める必要がある。
従来、免震機能を有すると共に、建物周辺の鉄道や道路から伝搬してくる微振動や固体伝搬音を遮断する機能を合わせ持つ免震・防振構法建物についての提案が、下記非特許文献1,2としてなされている。
安藤:「建物の免震防振構法の研究開発(その10)」鹿島技術研究所年報,第39号,第141〜147頁,1991年10月31日発行 中村他:「厚肉積層ゴムを用いた免震・除振システムの開発(その1)」,大林組技術研究所報 No.42,第15〜22頁 寺村他:「厚肉積層ゴムを用いた免震・除振システムの開発(その2)」,大林組技術研究所報 No.42,第23〜26頁
It is expected that buildings using railway tracks will become more and more necessary in the future in terms of business development related to railway operators and urban redevelopment. Such buildings need to have higher seismic performance than ordinary buildings because they straddle the track.
Conventionally, a proposal for a seismic isolation / vibration isolation building having a seismic isolation function and a function of blocking fine vibration and solid propagation sound propagating from railways and roads around the building has been disclosed in Non-Patent Document 1 below. , 2.
Ando: “Research and development of seismic isolation systems for buildings (10)” Kashima Technical Research Institute Annual Report, No. 39, pages 141-147, published on October 31, 1991 Nakamura et al: “Development of seismic isolation and vibration isolation system using thick laminated rubber (Part 1)”, Obayashi Institute of Technology Report No. 42, pages 15-22 Teramura et al: “Development of seismic isolation and vibration isolation system using thick laminated rubber (Part 2)”, Obayashi Institute of Technology Report No. 42, pp. 23-26

しかしながら、鉄道線路上空の建築物の構築に当たって、耐震性能を高めるためには免震構造が有利であるが、軌道を跨ぐために基礎同士を繋ぐ剛強な地中梁を設けることは施工上難しく、一般建築物のように基礎に免震層を設けることは難しい。
さらに、列車走行時に発生する振動が建物内を伝搬するため、一般的な構造ではホテル等の騒音・振動の少ない高い品質が求められる空間を確保することは難しい。
However, seismic isolation structure is advantageous to improve the seismic performance when building buildings over railway tracks, but it is difficult to construct a rigid underground beam that connects the foundations to straddle the track. It is difficult to install a seismic isolation layer on the foundation like a building.
Furthermore, since vibration generated during train traveling propagates through the building, it is difficult to secure a space that requires high quality with low noise and vibration, such as a hotel, in a general structure.

本発明は、上記状況に鑑みて、耐震性能を向上させるとともに、免震層の鉛直方向の剛性を柔らかくすることにより列車振動に対する防振効果を高めることができる線路上空建築物の免震防振構造システムを提供することを目的とする。   In view of the above circumstances, the present invention improves the seismic performance and improves the vibration isolation effect against train vibration by softening the vertical rigidity of the base isolation layer. The object is to provide a structural system.

本発明は、上記目的を達成するために、
〔1〕建築物の基礎の下部に線路が敷設される線路上空建築物の免震防振構造システムにおいて、鉄道車両の通路として供するための、地中梁を設けない基礎杭に連結して配置される基礎柱と、駅施設を含む前記基礎柱上に構築され、かつ線路上空に構築される多層の建築物の基礎部の柱に配置される鉛直方向の剛性を柔らかくした積層ゴムを配置した免震層と、前記積層ゴムを配置した免震層の上下の梁の間に配置され、かつ滑り支承機構が組み込まれた粘弾性ダンパーとを具備することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a seismic isolation system for a building over the track where the track is laid at the bottom of the building foundation, it is connected to a foundation pile without an underground beam to serve as a passage for a railway vehicle. And a laminated rubber that is built on the foundation pillar including the station facility and is placed on the pillar of the foundation of the multi-layered building built above the railroad track and has a soft vertical rigidity. and isolation layer is disposed between the upper and lower beams seismic isolation layer arranged the laminated rubber, and characterized by comprising a viscoelastic dampers sliding bearing mechanism is incorporated.

〔2〕上記〔1〕記載の線路上空建築物の免震防振構造システムにおいて、前記粘弾性ダンパーを前記免震層の中央部に配置することを特徴とする。   [2] In the seismic isolation system for buildings above the railway line according to [1], the viscoelastic damper is disposed in a central portion of the seismic isolation layer.

本発明によれば、次のような効果を奏することができる。
(1)基礎柱上に構築される建築物の基礎部に積層ゴムを配置した免震層を設けるようにしたので、耐震性能を向上させることができるとともに、積層ゴムを配置した免震層の鉛直方向の剛性を柔らかくすることで列車振動に対する防振効果を高めることができる。
(2)免震層の鉛直方向の剛性を柔らかくすることにより生じる免震層より上部の構築物の振動増幅を低減させるための粘弾性ダンパーを免震層に設置することにより、防振効果を高めることができる。
According to the present invention, the following effects can be achieved.
(1) Since the seismic isolation layer with laminated rubber was provided on the foundation of the building constructed on the foundation pillar, the seismic performance could be improved and the seismic isolation layer with laminated rubber Anti-vibration effect against train vibration can be enhanced by softening the rigidity in the vertical direction.
(2) Improve the vibration isolation effect by installing a viscoelastic damper in the base isolation layer to reduce the vibration amplification of the structure above the base isolation layer generated by softening the vertical rigidity of the base isolation layer be able to.

(3)建築物が駅施設を含む場合には、隣接してペデストリアンデッキ(歩行者専用の広場や通路)等の構造物が併設されている場合が多く、基礎免震構造の場合には隣接した構造物との境界部において地震時の相対変形を考慮した大規模な伸縮継ぎ目(エキスパンションジョイント)が必要となる。一方、中間層免震構造の場合、免震層より下部の変位は隣接構造物の変位と同程度のため小規模な伸縮継ぎ目で十分である点を考慮して、合理的な免震・除震手段を講じることができる。   (3) When a building includes a station facility, there are many cases where a structure such as a pedestrian deck (a pedestrian plaza or passage) is adjacent to the building. Large scale expansion joints (expansion joints) that take into account the relative deformation at the time of an earthquake are required at the boundary with the structure. On the other hand, in the case of an intermediate layer seismic isolation structure, considering that the displacement below the seismic isolation layer is the same as the displacement of the adjacent structure, a small expansion joint is sufficient. You can take tremors.

本発明の線路上空建築物の免震防振構造システムは、鉄道車両の通路として供するための、地中梁を設けない基礎杭に連結して配置される基礎柱と、駅施設を含む前記基礎柱上に構築され、かつ線路上空に構築される多層の建築物の基礎部の柱に配置される鉛直方向の剛性を柔らかくした積層ゴムを配置した免震層と、前記積層ゴムを配置した免震層の上下の梁の間に配置され、かつ滑り支承機構が組み込まれた粘弾性ダンパーとを具備する。よって、耐震性能を向上させるとともに、積層ゴムを配置した免震層の鉛直方向の剛性を柔らかくすることで、列車振動に対する防振効果を高める。また、免震層より上部の建築物の振動増幅を抑えるための粘弾性ダンパーを免震層に設置する。 The seismic isolation / vibration isolation system for a building above a railway track according to the present invention includes a foundation column connected to a foundation pile not provided with an underground beam and provided as a passage for a railway vehicle, and the foundation including a station facility. Base is built on the pillars, and arranged with the seismic isolation layer arranged the laminated rubber to soften the vertical stiffness disposed pillars of foundation of multilayer building is built over-track, the laminated rubber A viscoelastic damper disposed between the upper and lower beams of the seismic layer and incorporating a sliding bearing mechanism . Therefore, while improving seismic performance, the vibration isolation effect with respect to train vibration is enhanced by softening the vertical rigidity of the seismic isolation layer in which the laminated rubber is arranged. In addition, a viscoelastic damper is installed in the seismic isolation layer to suppress vibration amplification of the building above the seismic isolation layer.

以下、本発明の実施の形態について詳細に説明する。
図1は本発明の基本的な線路上空建築物の免震防振構造システムの原理を示す模式図である。
この図において、1は地中に設けられる基礎杭、2はこの基礎杭1に連結され地中から立ち上げられる基礎柱、3は列車4が通過する空間である。上記したように、地中に設けられる基礎杭1の間には地中梁は設けることができない。このような基礎上に例えば、多層の建築物5が構築される。ここでは、列車の通過に伴う振動を抑制するために、厚肉型積層ゴム6を建築物5の基部に配置した免震層を設けるようにしている。このように積層ゴム6を配置することにより、鉛直方向の剛性を柔らかくし、防振効果を高めることができる。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a schematic view showing the principle of a basic seismic isolation system for a building over a track according to the present invention.
In this figure, 1 is a foundation pile provided in the ground, 2 is a foundation pillar connected to the foundation pile 1 and raised from the ground, and 3 is a space through which a train 4 passes. As described above, no underground beam can be provided between the foundation piles 1 provided in the ground. On such a foundation, for example, a multi-layered building 5 is constructed. Here, a seismic isolation layer in which the thick laminated rubber 6 is arranged at the base of the building 5 is provided in order to suppress the vibration accompanying the passage of the train. By arranging the laminated rubber 6 in this way, it is possible to soften the rigidity in the vertical direction and enhance the vibration isolation effect.

図2はかかる積層ゴムによる防振効果(実験結果)を示す図であり、列車走行時の基礎からの建築物の梁中央への振動伝導度を示している。この図において、横軸は1/3オクターブバンド中心周波数(Hz)、縦軸は振動加速度レベル差(dB)を表し、■は本発明にかかる免震層(積層ゴム)を設けていない場合(非免震)、□は本発明にかかる免震層(積層ゴム)を設けた場合(免震)を示している。特に、鉄道による振動の主成分が63〜125Hzであるため、その周波数帯域での免震効果が著しくなるように構成している。   FIG. 2 is a diagram showing the vibration isolation effect (experimental result) of such a laminated rubber, and shows the vibration conductivity from the foundation to the center of the building beam during train travel. In this figure, the horizontal axis represents the 1/3 octave band center frequency (Hz), the vertical axis represents the vibration acceleration level difference (dB), and ■ indicates the case where the seismic isolation layer (laminated rubber) according to the present invention is not provided ( (Non-Seismic Isolation), □ indicates the case where a seismic isolation layer (laminated rubber) according to the present invention is provided (seismic isolation). In particular, since the main component of railway vibration is 63 to 125 Hz, the seismic isolation effect in the frequency band is remarkable.

図3は本発明の第1実施例を示す線路上空建築物の免震防振構造システムの模式図である。
この図において、11は地中に設けられる基礎杭、12は基礎杭11に連結された地中から立ち上げられる基礎柱、13は列車などが通過する空間であり、上記したように、地中に設けられる基礎杭11の間には地中梁は設けることができない。このような基礎の構造体上に例えば、建築物14が構築される。ここでは、列車の通過に伴う振動を抑制するために積層ゴム15を建築物14の基部に配置するとともに、建築物14の梁16と梁17との間の中央部には粘弾性ダンパー18を配置するようにしている。
FIG. 3 is a schematic diagram of a seismic isolation system for a building over a track showing the first embodiment of the present invention.
In this figure, 11 is a foundation pile provided in the ground, 12 is a foundation pillar raised from the ground connected to the foundation pile 11, 13 is a space through which a train passes, and as described above, An underground beam cannot be provided between the foundation piles 11 provided on the ground. For example, a building 14 is constructed on such a basic structure. Here, the laminated rubber 15 is disposed at the base of the building 14 in order to suppress the vibration accompanying the passage of the train, and the viscoelastic damper 18 is provided at the center between the beam 16 and the beam 17 of the building 14. I try to arrange it.

このように構成することにより、特に、基礎杭11の間隔が大きくなる場合に、上下の梁16,17の上下振動を有効に抑えることができる。
図4はこの第1実施例を施工した場合の粘弾性ダンパーによる防振効果(実験結果)を示す図であり、建築物の梁中央に粘弾性ダンパーを設けた場合を示している。この図において、横軸は1/3オクターブバンド中心周波数(Hz)、縦軸は振動加速度レベル差(dB)を表し、□は本発明にかかる粘弾性ダンパーを設けていない場合、■は本発明にかかる粘弾性ダンパーを設けた場合を示している。
By comprising in this way, especially when the space | interval of the foundation pile 11 becomes large, the vertical vibration of the upper and lower beams 16, 17 can be suppressed effectively.
FIG. 4 is a diagram showing a vibration isolation effect (experimental result) by the viscoelastic damper when the first embodiment is constructed, and shows a case where a viscoelastic damper is provided at the center of the beam of the building. In this figure, the horizontal axis represents 1/3 octave band center frequency (Hz), the vertical axis represents vibration acceleration level difference (dB), □ indicates that the viscoelastic damper according to the present invention is not provided, and ■ indicates the present invention. The case where the viscoelastic damper concerning this is provided is shown.

図2と図4によって本発明の作用効果を明らかにすることができる。すなわち、図2と図4の縦軸は、基礎部(杭頭)と免震層上部梁中央部との振動加速度レベル差を示したもので、正が増幅、負が減衰を意味する。図2では一般的な鉄道振動で振動が最も大きくなる周波数帯の63〜125Hzにおいて、積層ゴムを設けた免震(本発明)のほうが積層ゴムを設けない非免震より減衰量が大きくなっており、本発明を実施することにより、防振の効果が顕著であることが示されている。ここで、本発明に用いられる積層ゴムの組成、構造および機能について述べると、通常の積層ゴムに比べて一層あたりのゴム厚を大きくして鉛直方向の剛性を低めることにより、建物の鉛直方向の固有振動数を下げて鉄道振動が卓越する周波数帯(概ね63〜125Hz)の振動を低減させる(上記非特許文献2参照)。   The operational effects of the present invention can be clarified with reference to FIGS. That is, the vertical axis of FIG. 2 and FIG. 4 shows the vibration acceleration level difference between the foundation (pile head) and the central part of the base isolation layer upper beam, and positive means amplification and negative means attenuation. In FIG. 2, in a frequency band of 63 to 125 Hz where the vibration is the largest in general railway vibration, the seismic isolation with the laminated rubber (the present invention) has a greater attenuation than the non-seismic isolation without the laminated rubber. Thus, it is shown that the effect of vibration isolation is remarkable by carrying out the present invention. Here, the composition, structure and function of the laminated rubber used in the present invention will be described. By increasing the rubber thickness per layer and lowering the vertical rigidity as compared with ordinary laminated rubber, The natural frequency is lowered to reduce the vibration in the frequency band (approximately 63 to 125 Hz) where the railway vibration is dominant (see Non-Patent Document 2 above).

一方、図4は本発明にかかるダンパーの効果を示したものであり、鉛直方向の振動が卓越する固有振動数における振動増幅を低減している。
本発明の粘弾性ダンパーの組成、構造および機能について述べると、粘弾性材料とは、粘性と弾性を有する高分子材料である(ここではジエン系粘弾性材料を使用)。粘弾性ダンパーは、粘弾性材料と金属を交互に積層して接着した構造を有し、粘弾性材料をせん断変形させることにより、振動エネルギーを熱エネルギーに変換して吸収する。
On the other hand, FIG. 4 shows the effect of the damper according to the present invention, in which the vibration amplification at the natural frequency where the vibration in the vertical direction is dominant is reduced.
The composition, structure and function of the viscoelastic damper of the present invention will be described. The viscoelastic material is a polymer material having viscosity and elasticity (here, a diene viscoelastic material is used). The viscoelastic damper has a structure in which a viscoelastic material and a metal are alternately laminated and bonded, and the vibrational energy is converted into thermal energy and absorbed by shear deformation of the viscoelastic material.

このような粘弾性ダンパーを用いることにより、特に、体感振動で問題となる10Hz付近の振動増幅の低減を図ることができる。
図5は本発明の第2実施例を示す線路上空建築物の免震防振構造システムの模式図である。
この実施例では、粘弾性ダンパー21は滑り支承22を組み込むようにしている。
By using such a viscoelastic damper, it is possible to reduce vibration amplification in the vicinity of 10 Hz, which is a problem particularly in body vibration.
FIG. 5 is a schematic diagram of a seismic isolation system for a building over a track showing a second embodiment of the present invention.
In this embodiment, the viscoelastic damper 21 incorporates a sliding bearing 22.

図6は本発明にかかる滑り支承機構の例を示す図である。
この図において、31は梁、32はその梁31の表面に配置される滑り板(SUS板)、33は取付板、34は取付板33に固定される滑り材取付板、35はその滑り材取付板34の中央の下面に設けられる滑り材、36は滑り板(SUS板)32と滑り材取付板34との隙間である。
FIG. 6 is a view showing an example of a sliding support mechanism according to the present invention.
In this figure, 31 is a beam, 32 is a sliding plate (SUS plate) disposed on the surface of the beam 31, 33 is a mounting plate, 34 is a sliding material mounting plate fixed to the mounting plate 33, and 35 is the sliding material. A sliding material 36 provided on the lower surface at the center of the mounting plate 34 is a gap between the sliding plate (SUS plate) 32 and the sliding material mounting plate 34.

図6に示される滑り支承機構を参照しながら、滑り支承の具体的機構とその機能について説明する。
滑り支承は滑り材35と滑り板32により構成され〔ここでは滑り材35に四フッ化エチレン樹脂(PTFE)、滑り板32にSUS(ステンレス鋼板)を使用〕、大地震時に免震層が水平方向に変形すると、滑り材35が滑り板32上を摺動する。このように滑り支承を鉛直振動(列車振動)用の粘弾性ダンパーの下部または上部に設置することにより、大地震時に生ずる免震層の水平変形により粘弾性ダンパーを損傷させないようにし、また、粘弾性ダンパーが積層ゴムの水平挙動に影響を与えないようにする。
A specific mechanism and function of the sliding bearing will be described with reference to the sliding bearing mechanism shown in FIG.
The sliding bearing is composed of a sliding material 35 and a sliding plate 32 (here, tetrafluoroethylene resin (PTFE) is used for the sliding material 35 and SUS (stainless steel plate) is used for the sliding plate 32), and the seismic isolation layer is horizontal during a large earthquake. When deformed in the direction, the sliding member 35 slides on the sliding plate 32. By installing the sliding bearing below or above the viscoelastic damper for vertical vibration (train vibration), the viscoelastic damper is prevented from being damaged by the horizontal deformation of the seismic isolation layer caused by a large earthquake. The elastic damper should not affect the horizontal behavior of the laminated rubber.

建築物が駅施設を含む場合には、隣接してペデストリアンデッキ等の構造物が併設されている場合が多く、基礎免震構造の場合には隣接した構造物との境界部において地震時の相対変形を考慮した大規模な伸縮継ぎ目が必要となる。一方、中間層免震構造の場合、免震層より下部の変位は隣接構造物の変位と同程度のため小規模な伸縮継ぎ目で十分である点を考慮して、本発明は、上記したように、合理的な免震・除震手段を講じることができる。   When a building includes a station facility, there are many cases where a structure such as a pedestrian deck is adjacent to the building. A large-scale expansion seam considering deformation is required. On the other hand, in the case of an intermediate layer seismic isolation structure, the present invention is as described above in consideration that a small expansion joint is sufficient because the displacement below the base isolation layer is the same as the displacement of the adjacent structure. In addition, rational seismic isolation and seismic removal measures can be taken.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の線路上空建築物の免震防振構造システムは、線路上空に構築される高層のオフィスビルやマンションなどの免震防振機構として利用可能である。   The seismic isolation / vibration isolation system for buildings over railways according to the present invention can be used as a seismic isolation system for high-rise office buildings and apartments constructed over railways.

本発明の基本的な線路上空建築物の免震防振構造システムの原理を示す模式図である。It is a schematic diagram which shows the principle of the seismic isolation system of the basic building above a track of this invention. 図1に示す積層ゴムによる防振効果(実験結果)を示す図である。It is a figure which shows the anti-vibration effect (experimental result) by the laminated rubber shown in FIG. 本発明の第1実施例を示す線路上空建築物の免震防振構造システムの模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram of the seismic isolation vibration isolation structure system of the building above a track which shows 1st Example of this invention. 図3に示す実施例を施工した場合の粘弾性ダンパーによる防振効果(解析結果)を示す図である。It is a figure which shows the anti-vibration effect (analysis result) by a viscoelastic damper at the time of constructing the Example shown in FIG. 本発明の第2実施例を示す線路上空建築物の免震防振構造システムの模式図である。It is a schematic diagram of the seismic isolation system for a building over the track showing the second embodiment of the present invention. 本発明にかかる滑り支承機構の例を示す図である。It is a figure which shows the example of the sliding bearing mechanism concerning this invention.

1,11 地中に設けられる基礎杭
2,12 地中から立ち上げられる基礎柱
3,13 列車が通過する空間
4 列車
5 多層の建築物
6,15 積層ゴム
14 建築物
16,17,31 梁
18,21 粘弾性ダンパー
22 滑り支承
32 滑り板(SUS板)
33 取付板
34 滑り材取付板
35 滑り材
36 隙間
DESCRIPTION OF SYMBOLS 1,11 Foundation piles installed in the ground 2,12 Foundation pillars launched from the ground 3,13 Space through which the train passes 4 Trains 5 Multi-layered buildings 6,15 Laminated rubber 14 Buildings 16, 17, 31 Beams 18, 21 Viscoelastic damper 22 Sliding bearing 32 Sliding plate (SUS plate)
33 Mounting plate 34 Sliding material mounting plate 35 Sliding material 36 Clearance

Claims (2)

建築物の基礎の下部に線路が敷設される線路上空建築物の免震防振構造システムにおいて、
(a)鉄道車両の通路として供するための、地中梁を設けない基礎杭に連結して配置される基礎柱と、
(b)駅施設を含む前記基礎柱上に構築され、かつ線路上空に構築される多層の建築物の基礎部の柱に配置される鉛直方向の剛性を柔らかくした積層ゴムを配置した免震層と、
(c)前記積層ゴムを配置した免震層の上下の梁の間に配置され、かつ滑り支承機構が組み込まれた粘弾性ダンパーとを具備することを特徴とする線路上空建築物の免震防振構造システム。
In the seismic isolation and vibration isolation structure system for buildings over the track where the track is laid at the bottom of the foundation of the building,
(A) a foundation pillar connected to a foundation pile not provided with underground beams to serve as a passage for a railway vehicle;
(B) Seismic isolation layer in which laminated rubber with softened vertical rigidity is arranged on the pillar of the foundation of a multi-layer building constructed on the foundation pillar including the station facility and constructed above the railway When,
(C) MenShinbo of the disposed between the upper and lower beams seismic isolation layer disposed laminated rubber, and over-track building, characterized in that it comprises a viscoelastic dampers sliding bearing mechanism is incorporated Vibration structure system.
請求項1記載の線路上空建築物の免震防振構造システムにおいて、前記粘弾性ダンパーを前記免震層の中央部に配置することを特徴とする線路上空建築物の免震防振構造システム。   The seismic isolation and vibration isolation structure system for buildings above the railway track according to claim 1, wherein the viscoelastic damper is disposed at a central portion of the isolation base layer.
JP2005068450A 2005-03-11 2005-03-11 Seismic isolation system for buildings over railway tracks Expired - Fee Related JP4567493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005068450A JP4567493B2 (en) 2005-03-11 2005-03-11 Seismic isolation system for buildings over railway tracks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005068450A JP4567493B2 (en) 2005-03-11 2005-03-11 Seismic isolation system for buildings over railway tracks

Publications (2)

Publication Number Publication Date
JP2006249795A JP2006249795A (en) 2006-09-21
JP4567493B2 true JP4567493B2 (en) 2010-10-20

Family

ID=37090571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005068450A Expired - Fee Related JP4567493B2 (en) 2005-03-11 2005-03-11 Seismic isolation system for buildings over railway tracks

Country Status (1)

Country Link
JP (1) JP4567493B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103174234A (en) * 2013-03-11 2013-06-26 浙江海天建设集团有限公司 Construction method of construction damping device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5377890B2 (en) * 2007-06-26 2013-12-25 旭化成ホームズ株式会社 Seismic isolation structure
JP2011102530A (en) * 2009-10-15 2011-05-26 Ohbayashi Corp Vibration control building
JP2012127140A (en) * 2010-12-16 2012-07-05 Ohbayashi Corp Base isolation structure of railroad station, construction method thereof, and replacement method of base isolation device at railroad station
JP7009725B2 (en) * 2017-02-08 2022-01-26 株式会社竹中工務店 Construction method of seismic isolation structure
JP7066944B2 (en) * 2017-04-03 2022-05-16 株式会社竹中工務店 Structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169022A (en) * 1987-12-25 1989-07-04 Mitsui Constr Co Ltd Support structure of artificial ground on traffic facility means
JPH0363361A (en) * 1989-07-31 1991-03-19 Ohbayashi Corp Response control device
JP2000220316A (en) * 1999-02-01 2000-08-08 East Japan Railway Co Building vibration-control device and vibrastion-control method for building
JP2002235454A (en) * 2001-02-07 2002-08-23 Toyo Tire & Rubber Co Ltd Vibration damper device
JP2003328585A (en) * 2002-05-08 2003-11-19 Takenaka Komuten Co Ltd Vibration control structure for building having piloti

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169022A (en) * 1987-12-25 1989-07-04 Mitsui Constr Co Ltd Support structure of artificial ground on traffic facility means
JPH0363361A (en) * 1989-07-31 1991-03-19 Ohbayashi Corp Response control device
JP2000220316A (en) * 1999-02-01 2000-08-08 East Japan Railway Co Building vibration-control device and vibrastion-control method for building
JP2002235454A (en) * 2001-02-07 2002-08-23 Toyo Tire & Rubber Co Ltd Vibration damper device
JP2003328585A (en) * 2002-05-08 2003-11-19 Takenaka Komuten Co Ltd Vibration control structure for building having piloti

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103174234A (en) * 2013-03-11 2013-06-26 浙江海天建设集团有限公司 Construction method of construction damping device

Also Published As

Publication number Publication date
JP2006249795A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4567493B2 (en) Seismic isolation system for buildings over railway tracks
Ouakka et al. Railway ground vibration and mitigation measures: benchmarking of best practices
Kuo et al. Vibration characteristics of floating slab track
Alten et al. Finite element simulation prior to reconstruction of a steel railway bridge to reduce structure-borne noise
KR20070097063A (en) Fixed track bed for rail vehicles
Erkal et al. Interaction of vibrations of road and rail traffic with buildings and surrounding environment
JP5406631B2 (en) Seismic isolation structure and seismic isolation structure
Talbot On the performance of base-isolated buildings: A generic model
Talbot et al. Isolation of buildings from rail-tunnel vibration: a review
Anastasopoulos et al. Numerical and experimental assessment of advanced concepts to reduce noise and vibration on urban railway turnouts
RU84850U1 (en) UPPER WAY STRUCTURE
Ouakka et al. Mitigation measures dedicated to railway-induced ground vibration: an analysis of recent advances
JP5163297B2 (en) Sound insulation for road bridges
JP2011102530A (en) Vibration control building
Massarsch Mitigation of traffic-induced ground vibrations
CN104480849A (en) Rail transit noise reduction box type bridge and external bonding noise reduction method of rail transit box type bridge
JP2007032165A (en) Noise reduction structure of viaduct
Bruni et al. Train-induced vibrations on urban metro and tram turnouts
CN106522461B (en) A kind of shockproof sound-insulating composite wallboard structure
Hasheminezhad Reduction of railway-induced vibration using in-filled trenches with pipes
Loy et al. Reduction of vibration emissions and secondary airborne noise with under-sleeper pads—Effectiveness and experiences
CN203700878U (en) Vibration attenuation transition device applied to connection area of monolithic track bed and floating slab
JP2012202097A (en) Vibration control structure of sleeper
Talbot Reduction of train-induced vibration in buildings
Çelebi et al. Mitigation of high-speed train induced surface vibrations by open trench with aerated concrete panel walls

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees