JP5377890B2 - Seismic isolation structure - Google Patents

Seismic isolation structure Download PDF

Info

Publication number
JP5377890B2
JP5377890B2 JP2008148707A JP2008148707A JP5377890B2 JP 5377890 B2 JP5377890 B2 JP 5377890B2 JP 2008148707 A JP2008148707 A JP 2008148707A JP 2008148707 A JP2008148707 A JP 2008148707A JP 5377890 B2 JP5377890 B2 JP 5377890B2
Authority
JP
Japan
Prior art keywords
seismic isolation
plate
isolation plate
ceiling member
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008148707A
Other languages
Japanese (ja)
Other versions
JP2009030429A (en
Inventor
信治 中田
伸一 桐山
暁 矢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP2008148707A priority Critical patent/JP5377890B2/en
Publication of JP2009030429A publication Critical patent/JP2009030429A/en
Application granted granted Critical
Publication of JP5377890B2 publication Critical patent/JP5377890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress an increase in cost and the extension of a construction term and hardly affects a construction plan when arranging a base-isolated device between a lower structure of reinforced concrete construction and a relatively lightweight superstructure of steel construction. <P>SOLUTION: In a base-isolated building A, a base-isolated plate E having a face larger than the horizontal cross section of the column of the lower structure is fixed to the upper end of the column of the lower structure B of reinforced concrete construction, and the base-isolated device D is mounted or fixed on the upper face of the base-isolated plate, and the superstructure C of steel construction is constructed through the base-isolated device. A plate ceiling member 24 for covering the superstructure C from the below is arranged and the ceiling member is supported by the superstructure C in a position which is below the base-isolated plate E of the lower structure B with an interval S2 between the lower structure and the base-isolated plate. Windshield members 40 which prevent the inflow of air from the gaps S2 and allow the relative displacement of the base-isolated plates and the ceiling members are arranged between the base-isolated plates E and the ceiling members 24. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は建物の中間階に免震装置を介装した免震構造に関するものである。   The present invention relates to a seismic isolation structure in which a seismic isolation device is interposed on an intermediate floor of a building.

従来より免震ピットを備え該免震ピットに免震装置を配した免震建物が存在するが、免震ピットの築造には多大なコストを要し、工期も長期化しやすいという欠点があった。そこで、例えば特許文献1のように柱の中間部に免震装置を配置したり、特許文献2のように柱頭部に免震装置を配置する等して免震ピットを省略した、いわゆる中間階免震構造が提案されている。   There are seismically isolated buildings with seismic isolation pits and seismic isolation devices installed in the seismic isolation pits, but there were drawbacks in that the construction of the seismic isolation pits required significant costs and the construction period was protracted. . So, for example, a so-called intermediate floor in which seismic isolation pits are omitted by disposing a seismic isolation device in the middle of the column as in Patent Document 1 or by disposing a seismic isolation device in the head of the column as in Patent Document 2. Seismic isolation structures have been proposed.

免震ピットを設け1階部分も含めて免震構造とした場合、地震時の相対的変位によって上部構造体が地盤面上に載置された物や歩行者と衝突するおそれがあるが、中間階免震構造はこのような事態を回避することも可能である。また、中間階免震構造は新築時のみならず既存の鉄筋コンクリート造建物に免震装置を付加し免震構造とする場合にも比較的容易に施工ができ好ましい。   If a seismic isolation pit is provided and the seismic isolation structure includes the first floor, the upper structure may collide with objects or pedestrians placed on the ground due to relative displacement during the earthquake. The floor seismic isolation structure can avoid such a situation. In addition, the intermediate floor seismic isolation structure is preferable because it can be constructed relatively easily when a seismic isolation system is added to an existing reinforced concrete building as well as a new construction.

免震構造は建物(上部構造体)の固有周期を長くして地震の揺れを建物(上部構造体)に伝えにくくするものであり、免震装置としては、積層ゴム、滑り支承、転がり支承等様々なタイプのものが開発されている。   The seismic isolation structure extends the natural period of the building (upper structure) to make it difficult to transmit the earthquake vibration to the building (upper structure). As the seismic isolation device, laminated rubber, sliding bearing, rolling bearing, etc. Various types have been developed.

軽量な建物において免震装置として上部構造体の支持機能、復元機能、減衰機能の全ての機能を賄う積層ゴムを採用した場合、建物の固有周期を長くする為には積層ゴムの断面積を小さくする必要があるが、積層ゴムの断面積を小さくすると建物の荷重の支持が困難となったり、変形時に座屈が生じる虞がある。逆に、荷重を支持する為に積層ゴムの断面積を大きくすると長周期化が困難となって十分な免震効果が得られなくなる。従って、現状中低層鉄骨造の住宅等軽量な建物を免震構造とする場合は、充分な支持力も得られ固有周期の調整も容易なすべり支承型や転がり支承型を採用するのが一般的である。なおこの場合、支承及び支承を受ける受け板とは別に、復元機能部や減衰機能部を有する部材や装置を設ける必要がある。   When using laminated rubber that covers all functions of the superstructure support function, restoration function, and damping function as a seismic isolation device in a lightweight building, the cross-sectional area of the laminated rubber must be reduced to increase the natural period of the building. However, if the cross-sectional area of the laminated rubber is reduced, it may be difficult to support the building load, or buckling may occur during deformation. Conversely, if the cross-sectional area of the laminated rubber is increased in order to support the load, it is difficult to increase the period and a sufficient seismic isolation effect cannot be obtained. Therefore, when light-weight buildings such as low-rise steel-framed houses are used as seismic isolation structures, it is common to adopt a sliding support type or a rolling support type that provides sufficient support and allows easy adjustment of the natural period. is there. In this case, it is necessary to provide a member and a device having a restoring function part and a damping function part separately from the support and the receiving plate that receives the support.

一方、特許文献2のように上部構造体を鉄筋コンクリート造に比べて軽量な鉄骨造とした場合、下部構造体の柱の断面積は構造計算上小さく設定することが可能である。特に、中低層の住宅の場合には他の用途の建物に比べて積載荷重を小さく見込むことができるので、柱の断面積の低減効果は大きい。   On the other hand, when the upper structure is made lighter than the reinforced concrete structure as in Patent Document 2, the cross-sectional area of the column of the lower structure can be set small in the structural calculation. In particular, in the case of a low-rise housing, the load capacity can be expected to be smaller than that of buildings for other uses, so the effect of reducing the cross-sectional area of the pillar is great.

特開2001−115656号公報JP 2001-115656 A 特開2004−60281号公報JP 2004-60281 A

しかし、上記の通り建物の固有周期を長くし免震効果を発揮させる為に滑り支承型や転がり支承型の免震装置を採用した場合、構造計算に基づいた柱の断面積だけでは支承を受ける受け板、復元機能や減衰機能を有する部材や装置を載置する面を確保することが難しくなることがあった。   However, as mentioned above, when a seismic isolation device of sliding bearing type or rolling bearing type is adopted to lengthen the natural period of the building and to exert the seismic isolation effect, the bearing is received only by the cross-sectional area of the column based on the structural calculation. It may be difficult to secure a surface on which a backing plate, a member or a device having a restoring function or a damping function is placed.

この場合、ボルトの頭部のように下部構造体の柱頭部のみを大きくして上記免震装置の載置面を確保することは可能ではあるが、鉄筋コンクリート造の柱と一体でせり出し部を構築すると、型枠工事や配筋工事等において施工が煩雑になり工期の延期やコストの増加が生じるという問題や、せり出し部は相応の厚みが必要となり建物の計画に影響が出るという問題があった。   In this case, it is possible to enlarge only the column head of the lower structure, such as the head of the bolt, to secure the mounting surface of the seismic isolation device, but build the protruding part integrally with the reinforced concrete column Then, there was a problem that the construction work was complicated in formwork and bar arrangement work, and the construction period was postponed and the cost increased, and there was a problem that the projecting part needed to have an appropriate thickness and the building plan was affected. .

本発明は、上記従来技術の課題を解決し、鉄筋コンクリート造の下部構造体と比較的軽量な鉄骨造の上部構造体との間に免震装置を配した際に、コストの上昇や工期の長期化を抑制することができ、建築計画にも影響を与えにくい免震構造を提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, and when a seismic isolation device is arranged between a reinforced concrete lower structure and a relatively light steel upper structure, the cost increases and the construction period becomes longer. The purpose is to provide a seismic isolation structure that can be controlled and that does not affect the construction plan.

上記従来技術の課題を解決する為の本発明に係る免震構造の第1の構成は、基礎と、該基礎から片持ち状態で突出して1階柱を形成する複数本の柱とからなる鉄筋コンクリート造の下部構造体の柱上端部に当該柱の水平断面よりも大きな面を有する免震プレートを固定し、該免震プレート上面に免震装置を載置あるいは固定し、該免震装置を介して1階柱上に鉄骨造の上部構造体の2階柱を設置したことを特徴とする。 The first structure of the seismic isolation structure according to the present invention for solving the problems of the prior art described above is a reinforced concrete comprising a foundation and a plurality of pillars that project from the foundation in a cantilevered manner to form a first-floor pillar. each pillar upper end of the undercarriage forming, fixing the seismic isolation plate having a large surface than the horizontal cross-section of the column, the seismic isolation device mounted or fixed to the upper surface of該免Shin plate,該免Shin It is characterized in that the 2nd floor pillar of the steel structure upper structure is installed on the 1st floor pillar through the apparatus.

また、本発明に係る免震構造の第2の構成は、前記免震装置が滑り支承型または転がり支承型であり、前記免震プレートは、その中心部に前記免震装置を受ける受け板載置備えると共に、該受け板載置部の周縁であって且つ前記よりもせり出した周縁に復元機能部又は減衰機能部の取付部を備えていることを特徴とする。 According to a second configuration of the base isolation structure of the present invention, the base isolation device is a sliding support type or a rolling support type, and the base isolation plate is mounted on a receiving plate that receives the base isolation device at the center thereof. provided with a location part, characterized in that it comprises a mounting portion of the periphery to the restoration function unit or the attenuation function portion protruding than and said post a peripheral edge of the receiving receiving plates mounting portion.

また、前記上部構造体を下方より覆う板状の天井部材が設けられ、該天井部材は、前記震プレートよりも下方に位置し、且つ前記下部構造体との間に間隔を設けると共に前記免震プレートの間に間隔を設けた位置で前記上部構造体に支持されていることが好ましい。 Further, the upper structure is plate-shaped roof member covering from below is provided, the ceiling member, the located below the seismic isolation plate, and wherein provided with a gap between the lower structure it is preferably supported on the upper structure at a position spaced between the base isolation plate.

また、前記免震プレートと天井部材との間には、これら免震プレートと天井部材の間の隙間から該天井部材と前記下部構造体の間への風の流入を防止すると共にこれら免震プレートと天井部材との相対移動を許容する風防部材が設けられていることが好ましい。   Further, between the seismic isolation plate and the ceiling member, the inflow of wind from the gap between the seismic isolation plate and the ceiling member to the ceiling member and the lower structure is prevented and the seismic isolation plates It is preferable that a windshield member that allows relative movement between the ceiling member and the ceiling member is provided.

本発明に係る免震構造第1の構成によれば、免震装置を鉄筋コンクリート造の下部構造体の柱上端部に該柱の水平断面積よりも大きな面を有する免震プレートの上面に載置あるいは固定するように構成したので、鉄筋コンクリート造の下部柱全体あるいは下部柱の上端部の断面を免震装置の構成にあわせて大きくする必要がない。従って、経済的な架構を構築することができ、工期が長期化することもない。   According to the first configuration of the seismic isolation structure according to the present invention, the seismic isolation device is mounted on the upper surface of the seismic isolation plate having a surface larger than the horizontal sectional area of the column at the upper end of the column of the reinforced concrete substructure. Or since it comprised so that it might fix, it is not necessary to enlarge the cross section of the whole lower column of a reinforced concrete structure, or the upper end part of a lower column according to the structure of a seismic isolation apparatus. Therefore, an economical frame can be constructed, and the construction period is not prolonged.

本発明に係る免震構造の第2の構成によれば、免震プレートの中心部すなわち下部構造体の柱で支持された部分に大きな鉛直荷重が作用する支承の受け板の載置面が形成されており、下部構造体の柱よりもせり出した周縁には大きな鉛直荷重の作用しない復元部機能又は減衰機能部の取付部が形成されているので、免震プレートを薄くすることができる。   According to the second configuration of the base isolation structure according to the present invention, the mounting surface of the support receiving plate on which a large vertical load acts on the center portion of the base isolation plate, that is, the portion supported by the column of the lower structure is formed. In addition, since the mounting portion of the restoring portion function or the damping function portion where a large vertical load does not act is formed on the periphery protruding from the column of the lower structure, the seismic isolation plate can be made thin.

従って、建物の絶対高さを抑制したり、下部構造体内部への突出部のボリュームを小さくすることができ建物の計画に与える影響を低減させることができる。 Therefore, the absolute height of the building can be suppressed, and the volume of the protruding portion into the lower structure can be reduced, thereby reducing the influence on the building plan.

また、復元機能部又は減衰機能部の取付部がせり出しその下方が空間となっているので復元部又は減衰部の固定作業も容易に行うことができる。   In addition, since the attachment portion of the restoration function portion or the attenuation function portion protrudes and the space below is a space, the fixing operation of the restoration portion or the attenuation portion can be easily performed.

また、本発明に係る免震構造の第3の構成によれば、免震プレートの上面が下部構造体の下面と共に天井部材に覆われることとなる。このため、天井部材によって意匠性の向上が図られると共に、該免震プレートの上面に埃やごみ等が堆積することを抑制することができる。   Moreover, according to the 3rd structure of the seismic isolation structure which concerns on this invention, the upper surface of a seismic isolation plate will be covered with a ceiling member with the lower surface of a lower structure. For this reason, while improving the designability by a ceiling member, it can suppress that dust, dust, etc. accumulate on the upper surface of this seismic isolation plate.

なお、該免震プレートや上部構造体と天井部材との間の隙間によって、地震動等に伴う免震プレートに対する上部構造体の振動は当然に許容されるものとなっている。   Note that due to the gap between the seismic isolation plate or the upper structure and the ceiling member, the vibration of the upper structure with respect to the seismic isolation plate due to seismic motion or the like is naturally allowed.

また、上部構造体の下方、すなわち下部構造体間には横風等が流れ込むこととなるが、この場合、上述の如く天井部材を設けることにより、前記隙間を介して天井部材と下部構造体の間に該横風等が流入することとなり、上記横風による負圧の発生と相俟って、天井部材には、上部構造体から離間する方向への過大な外力が作用することが考えられる。これに対し、本発明に係る免震構造の第4の構成によれば、前記隙間に風防部材が設けられることとなり、これによって該隙間を通じての横風等の流入は著しく制限することができ、天井部材に作用する外力を減少させることができる。 Further, a cross wind or the like flows below the upper structure, that is, between the lower structures. In this case, by providing the ceiling member as described above, the ceiling member and the lower structure are interposed via the gap. It is considered that an excessive external force in a direction away from the upper structure acts on the ceiling member in combination with the generation of the negative pressure due to the cross wind. On the other hand, according to the fourth configuration of the seismic isolation structure according to the present invention, a windshield member is provided in the gap, whereby the inflow of a cross wind or the like through the gap can be remarkably restricted, and the ceiling External force acting on the member can be reduced.

本発明に係る免震構造の最も好ましい実施形態について図を用いて説明する。図1は本発明に係る免震構造を適用した免震建物Aの斜視図、図2は免震建物Aの主に下部構造体Bの断面図、図3は免震装置Dまわりの詳細図、図4は免震プレートEまわりの詳細図、図5は免震プレートEの固定要領を示す図、図6は免震プレートEを利用した上部構造体の施工手順を示す図である。図7は免震プレートE及びその周囲を拡大して示す平面図である。図8は免震装置D及び軒天井まわりの側面図である。図9は風防部材まわりの断面図である。図10(a)及び(b)は風防部材の他の実施例を示す断面図である。   A most preferred embodiment of the seismic isolation structure according to the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a base-isolated building A to which the base-isolated structure according to the present invention is applied, FIG. 2 is a cross-sectional view mainly of a lower structure B of the base-isolated building A, and FIG. 4 is a detailed view around the seismic isolation plate E, FIG. 5 is a diagram showing a fixing procedure of the seismic isolation plate E, and FIG. 6 is a diagram showing a construction procedure of the upper structure using the seismic isolation plate E. FIG. 7 is an enlarged plan view showing the seismic isolation plate E and its surroundings. FIG. 8 is a side view of the seismic isolation device D and the eaves ceiling. FIG. 9 is a sectional view around the windshield member. FIGS. 10A and 10B are cross-sectional views showing another embodiment of the windshield member.

先ず、図1を参照して免震建物Aの全体構成を説明する。免震建物Aは3層の住宅であり、1階は玄関及び階段室以外はピロティであり、2、3階が居室となっている。また構造種別としては、下部構造体Bを構成する基礎1及び円柱(1階柱)2が鉄筋コンクリート造で、上部構造体Cを構成する2階及び3階の柱3、大梁4a〜4cからなる架構が鉄骨造で、ともに妻方向1スパン、桁行き方向2スパンで構成されている。   First, the whole structure of the seismic isolation building A is demonstrated with reference to FIG. The base-isolated building A is a three-story house, the first floor is a piloti except the entrance and the staircase, and the second and third floors are rooms. As the structure type, the foundation 1 and the column (first floor pillar) 2 constituting the lower structure B are reinforced concrete, and are composed of the second and third floor pillars 3 and the large beams 4a to 4c constituting the upper structure C. The frame is steel-framed, and it consists of a span in the wife direction and two spans in the girder direction.

次に、下部構造体Bの構成について、図1及び図2を参照して説明する。下部構造体Bは、ベタ基礎形式の基礎1を有し、基礎1から円柱2が立ち上がっている。円柱2の柱脚部2bは基礎梁1aと耐圧盤1bにより剛に固定されているが、柱頭部2aは梁で連結されておらず、円柱2は片持ち状態で突出している。円柱2の直径は上部構造体Cから作用する荷重に基づき700mmに設定されている。なお、1cはピロティの床を構成する土間コンクリートである。   Next, the configuration of the lower structure B will be described with reference to FIGS. 1 and 2. The lower structure B has a solid foundation type foundation 1, and a column 2 rises from the foundation 1. The column base 2b of the column 2 is rigidly fixed by the foundation beam 1a and the pressure platen 1b, but the column head 2a is not connected by the beam, and the column 2 protrudes in a cantilever state. The diameter of the cylinder 2 is set to 700 mm based on the load acting from the upper structure C. In addition, 1c is the soil concrete which comprises the floor of a piloti.

次に、図1〜図3を参照して上部構造体Cの構成について説明する。上部構造体Cにおいて、柱3は150mm角のシームレス(水平断面内に継目を持たない)角形鋼管で構成されており、平面的に円柱2と同じ位置に配置されている。柱3の側面の所定の位置にはボルト孔が穿設され後述する大梁4a〜4cが接合される梁接合部3aが形成されており、柱3の下端部には後述する滑り支承11が柱3と一体で形成されている。  Next, the configuration of the upper structure C will be described with reference to FIGS. In the upper structure C, the pillar 3 is formed of a 150 mm square seamless (not having a seam in a horizontal cross section) rectangular steel pipe, and is arranged in the same position as the cylinder 2 in a plan view. A bolt hole is drilled at a predetermined position on the side surface of the column 3 to form a beam joint 3a to which large beams 4a to 4c, which will be described later, are joined. 3 is formed integrally.

隣接する柱3どうしを連結する大梁4a〜4cはH形鋼からなる。H形鋼の両端には柱3の梁接合部3aに形成されたボルト孔に対応する位置にボルト孔が穿設された接合プレート4a1〜4c1が溶接されている。そして、梁接合部3aにメタルタッチされ高力ボルトで剛接合されている。   The large beams 4a to 4c connecting the adjacent columns 3 are made of H-section steel. Joined plates 4a1 to 4c1 having bolt holes drilled at positions corresponding to the bolt holes formed in the beam joint portion 3a of the column 3 are welded to both ends of the H-shaped steel. The beam joint 3a is metal touched and rigidly joined with a high strength bolt.

柱3の梁接合部3aのうち大梁4a〜4cが接合されていない建物の外側方向の梁接合部3aには、大梁4a〜4cと同一断面のH形鋼からなる片持ち梁5a〜5cが配置され、これらの片持ち梁5a〜5cの一端に大梁4a〜4cの接合プレート4a1〜4c1と同様に構成された接合プレート5a1〜5c1が溶接されている。そして、梁接合部3aにメタルタッチされ高力ボルトで剛接合されている。   The cantilever beams 5a to 5c made of H-shaped steel having the same cross section as the large beams 4a to 4c are formed on the beam joint portion 3a in the outer direction of the building where the large beams 4a to 4c are not joined among the beam joint portions 3a of the column 3. The joining plates 5a1 to 5c1 that are arranged and configured similarly to the joining plates 4a1 to 4c1 of the large beams 4a to 4c are welded to one end of these cantilever beams 5a to 5c. The beam joint 3a is metal touched and rigidly joined with a high strength bolt.

片持ち梁5a〜5cの先端側には大梁4a〜4cと同一断面のH形鋼からなる鼻先梁6a〜6cが取り付けられている。   Nose tip beams 6a to 6c made of H-shaped steel having the same cross section as the large beams 4a to 4c are attached to the distal ends of the cantilevers 5a to 5c.

H形鋼からなる小梁(不図示)が対向する大梁4a〜4cの間に適宜架け渡され、ALCパネルからなる床パネル9が前記各種梁に支持され床10が構成されている。   A small beam (not shown) made of H-shaped steel is appropriately bridged between the opposed large beams 4a to 4c, and a floor panel 9 made of an ALC panel is supported by the various beams to constitute a floor 10.

鼻先梁6a〜6cのフランジには外壁パネルの支持と位置決めの為の金物(不図示)が取り付けられ、該金物によってALC(軽量気泡コンクリート)パネルからなる外壁パネル7が固定され外壁8が構成されている。   A metal fitting (not shown) for supporting and positioning the outer wall panel is attached to the flanges of the nose tip beams 6a to 6c, and the outer wall panel 7 made of an ALC (lightweight cellular concrete) panel is fixed by the hardware to constitute the outer wall 8. ing.

上記片持ち梁5a〜5cや鼻先梁6a〜6cによって上部構造体Cの床10は柱3よりもせり出した状態となり、後述する免震プレートEや免震装置Dは床面の領域内に配置される。   The floor 10 of the upper structure C protrudes from the column 3 by the cantilever beams 5a to 5c and the nose tip beams 6a to 6c, and the seismic isolation plate E and the seismic isolation device D, which will be described later, are arranged in the area of the floor surface. Is done.

次に、図2、図3を参照して免震装置Dの構成について説明する。本実施例で使用される免震装置Dは滑り支承型であり、支持機能を有する滑り支承11と受け板13、復元機能を有する復元ゴム14、減衰機能を有するオイルダンパー15、で構成される。滑り支承11は柱3の下端部に柱3と一体で形成されている。滑り支承11の摺動面11aの大きさは、上部構造体Cが最大限変位した際にも上部構造体Cからの鉛直荷重が免震プレートEに対し圧縮力のみが作用し曲げが作用しないように設定されている。   Next, the structure of the seismic isolation apparatus D is demonstrated with reference to FIG. 2, FIG. The seismic isolation device D used in this embodiment is of a sliding bearing type, and includes a sliding bearing 11 having a supporting function and a receiving plate 13, a restoring rubber 14 having a restoring function, and an oil damper 15 having a damping function. . The sliding bearing 11 is formed integrally with the column 3 at the lower end of the column 3. The size of the sliding surface 11a of the sliding bearing 11 is such that even when the upper structure C is displaced to the maximum, the vertical load from the upper structure C acts only on the seismic isolation plate E, and no bending acts. Is set to

次に、図4を参照して免震プレートEの構成について説明する。免震プレートEは免震装置Dを載置或いは固定するための部材である。材質は表面に防錆塗装が施された鋼製である。尚、防錆塗装にかえて溶融亜鉛めっき等の防錆処理を施したものでも良い。形状は、外径1370mm、厚さ29mmの円盤状であり、上面には滑り支承11の移動範囲を規制する環状の突起部12が溶接されて突起部12の内部の面が受け板載置部16となっている。受け板載置部16の直径は、上部構造体Cに求められる免震効果から算定された相対的な最大変位に基づき890mmに設定されている。   Next, the configuration of the seismic isolation plate E will be described with reference to FIG. The seismic isolation plate E is a member for mounting or fixing the seismic isolation device D. The material is made of steel with a rust-proof coating on the surface. In addition, what gave rust prevention processing, such as hot dip galvanizing, instead of rust prevention coating may be used. The shape is a disk shape having an outer diameter of 1370 mm and a thickness of 29 mm, and an annular protrusion 12 that regulates the moving range of the sliding bearing 11 is welded to the upper surface, and the inner surface of the protrusion 12 is the receiving plate mounting portion. It is 16. The diameter of the receiving plate mounting portion 16 is set to 890 mm based on the relative maximum displacement calculated from the seismic isolation effect required for the upper structure C.

突起部12よりも外側の周縁部17には復元ゴム14、オイルダンパー15をボルト固定する為のボルト孔17aが形成されている。このボルト孔17aは等間隔で4個所(90度間隔)穿設されており、夫々対応する機能部材(復元ゴム14あるいはオイルダンパー15)のボルト孔に対応させて4個、6個の孔が穿設されている。   Bolt holes 17a for fixing the restoring rubber 14 and the oil damper 15 to the bolts are formed in the peripheral edge portion 17 outside the protruding portion 12. The bolt holes 17a are formed at four equal intervals (90 degree intervals), and there are four or six holes corresponding to the bolt holes of the corresponding functional members (the restoring rubber 14 or the oil damper 15). It has been drilled.

受け板載置部16の中心には、グラウト注入用の注入孔16aと、レベル調整具20を操作し免震プレートEのレベルを調整する為の調整具用孔16bが穿設されている。また、免震プレートEの下面には、免震プレートEを円柱2の柱頭部2aに固着する為の複数のスタッドジベル18が突設されている。   In the center of the receiving plate mounting portion 16, an injection hole 16a for grout injection and an adjustment tool hole 16b for adjusting the level of the seismic isolation plate E by operating the level adjustment tool 20 are formed. Further, on the lower surface of the seismic isolation plate E, a plurality of stud dowels 18 for fixing the seismic isolation plate E to the column head 2a of the cylinder 2 are projected.

図4に示すように、円柱2の柱頭部2aは免震プレートEの設置レベルより若干低めにコンクリートが打設されており、またワインディングパイプ19を予め埋設することによりスタッドジベル埋設用の埋設用孔2cが形成されている。また、免震プレートEのレベル調整具20を打ち込む為のアンカー用孔2dがコンクリート硬化後に穿設されアンカー用孔2dには打込みアンカー21が打ち込まれている。   As shown in FIG. 4, the column head 2 a of the column 2 is laid with concrete slightly lower than the installation level of the seismic isolation plate E, and the winding pipe 19 is pre-embedded to embed the stud gibber. A hole 2c is formed. An anchor hole 2d for driving the level adjuster 20 of the seismic isolation plate E is drilled after the concrete is hardened, and a driving anchor 21 is driven into the anchor hole 2d.

レベル調整具20は、図4、図5に示すように、免震プレートEを支持する円形の支持プレート20a1の下面に雄ネジの切られた軸20a2を溶接し、上面に高ナット20a3を溶接して構成された支持部20aと、仮止めボルト20b1の首下に長方形の押さえプレート20b2を溶接した押さえ部20bと、からなる。   As shown in FIGS. 4 and 5, the level adjuster 20 welds a male threaded shaft 20 a 2 to the lower surface of a circular support plate 20 a 1 that supports the seismic isolation plate E, and a high nut 20 a 3 to the upper surface. And a holding part 20b in which a rectangular pressing plate 20b2 is welded to the neck of the temporary fixing bolt 20b1.

次に、免震プレートEを固定する要領について図5を参照して説明する。免震プレートEはレベル調整具20利用し以下の要領で円柱2の上面に固定される。   Next, the procedure for fixing the seismic isolation plate E will be described with reference to FIG. The seismic isolation plate E is fixed to the upper surface of the cylinder 2 using the level adjuster 20 in the following manner.

先ず、図5(a)に示すように、円柱2の柱頭部2aの所定位置にアンカー用孔2dを穿設し、アンカー用孔2dに打ち込みアンカー21を打ち込む。次に、同図(b)に示すように、打ち込みアンカー21の雌ネジにレベル調整具20の支持部20aの軸20a2を螺入し、支持プレート20a1が所定のレベルになるように調整する。   First, as shown in FIG. 5A, an anchor hole 2d is drilled at a predetermined position of the column head 2a of the cylinder 2, and the anchor 21 is driven into the anchor hole 2d. Next, as shown in FIG. 2B, the shaft 20a2 of the support portion 20a of the level adjuster 20 is screwed into the female screw of the driving anchor 21, and the support plate 20a1 is adjusted to a predetermined level.

次に、同図(c)に示すように、免震プレートEを、支持部20aと調整具用孔16bの位置が合致するようにして支持部20aに載置し、4箇所のボルト孔17a群の位置が通り芯上になるように平面的に位置決めする。そして、押さえ部20bを支持部20aの高ナット20a3に螺入し、免震プレートEを仮固定する。   Next, as shown in FIG. 4C, the seismic isolation plate E is placed on the support portion 20a so that the positions of the support portion 20a and the adjustment tool hole 16b coincide with each other, and the four bolt holes 17a. Position in a plane so that the position of the group is on the core. Then, the holding portion 20b is screwed into the high nut 20a3 of the support portion 20a, and the seismic isolation plate E is temporarily fixed.

次に、同図(d)に示すように、注入孔16aより免震プレートEと円柱2を構成するコンクリートとの間の空隙2eにグラウト22を注入する。(グラウト22の固化により免震プレートEは所定の位置に固定される)   Next, as shown in FIG. 4D, the grout 22 is injected into the gap 2e between the seismic isolation plate E and the concrete constituting the column 2 from the injection hole 16a. (The seismic isolation plate E is fixed at a predetermined position by the solidification of the grout 22)

同図(e)に示すように、グラウト22固化後、押さえ部20bを取り外す。次いで、同図(f)に示すように、調整具用孔16bにグラウト23を注入する。以上の手順を経ることで、免震プレートEを円柱2の柱頭部2aに固定することが可能である。   As shown in FIG. 5E, after the grout 22 is solidified, the pressing portion 20b is removed. Next, as shown in FIG. 5F, the grout 23 is injected into the adjustment tool hole 16b. Through the above procedure, the seismic isolation plate E can be fixed to the column head 2a of the cylinder 2.

次に、上部構造体C及び免震装置Dの施工手順について図3を参照して説明する。上記のようにして円柱2の上部に固定された免震プレートEの受け板載置部16には、受け板13が載置されて、受け板13の上には支承11と一体の柱3が建てられるとともに、大梁4a〜4c、片持ち梁5a〜5cを含む梁が接合され上部構造体Cの架構が構築される。そして、復元ゴム14とオイルダンパー15の一端がボルト孔17aを利用して免震プレートEの周縁部17に固定され、他端は2階の大梁4aの下フランジのボルト孔に固定される。   Next, the construction procedure of the upper structure C and the seismic isolation device D will be described with reference to FIG. The receiving plate 13 is placed on the receiving plate mounting portion 16 of the seismic isolation plate E fixed to the upper portion of the cylinder 2 as described above, and the pillar 3 integral with the support 11 is placed on the receiving plate 13. Are built, and beams including the large beams 4a to 4c and the cantilever beams 5a to 5c are joined to construct a frame of the upper structure C. Then, one end of the restoring rubber 14 and the oil damper 15 is fixed to the peripheral edge 17 of the seismic isolation plate E using the bolt hole 17a, and the other end is fixed to the bolt hole of the lower flange of the second beam 4a.

また、免震プレートEよりも若干下方のレベルには軒天井(天井部材)24が2階の大梁4aから吊り下げられており、上部構造体Cの下面を覆っている。後述のとおり、軒天井24は地震時に円柱2の側面と衝突して破損しないように円柱2との間にクリアランス(隙間S1、S2(図8参照))を有しているが、免震プレートEが円柱2よりもせり出している。   Further, an eaves ceiling (ceiling member) 24 is suspended from the large beam 4a on the second floor at a level slightly below the seismic isolation plate E, and covers the lower surface of the upper structure C. As will be described later, the eaves ceiling 24 has a clearance (gap S1, S2 (see FIG. 8)) between the eaves ceiling 24 and the cylinder 2 so as not to be damaged by colliding with the side surface of the cylinder 2 during an earthquake. E protrudes from the cylinder 2.

上記構成において、円柱2の断面積の算定は上部構造物Cの荷重に基づいて行い、免震装置の載置固定に必要な領域は円柱よりも大きな径の免震プレートEによって確保したので、経済的な構造を短工期で施工することができる。   In the above configuration, the calculation of the cross-sectional area of the cylinder 2 is performed based on the load of the upper structure C, and the region necessary for mounting and fixing the seismic isolation device is secured by the seismic isolation plate E having a larger diameter than the cylinder. Economic structure can be constructed in a short construction period.

また、免震プレートEのボルト孔17aの下方は開放され空間が確保されているので復元ゴム14やオイルダンパー15の固定作業は容易に行うことができる。   In addition, since the space below the bolt hole 17a of the seismic isolation plate E is opened and the space is secured, the fixing work of the restoring rubber 14 and the oil damper 15 can be easily performed.

また、突起部12によって上部構造体Cの移動範囲が制限されている為、地震時に上部構造物Cが最大限変位した場合であっても、柱3は円柱2の上部の領域から外れてしまうことはなく、また、復元ゴム14やオイルダンパー15は上部構造体Cの鉛直荷重を支持する部材ではない。従って、免震プレートEは周縁部17が片持ち状態であっても大きな曲げが作用しないので厚みを持たせたり補強を施したりする必要がなく、薄く平坦な形状で充分な強度が得られる。   In addition, since the movement range of the upper structure C is limited by the protrusions 12, even if the upper structure C is displaced to the maximum during an earthquake, the pillar 3 is out of the region above the cylinder 2. In addition, the restoring rubber 14 and the oil damper 15 are not members that support the vertical load of the upper structure C. Therefore, the seismic isolation plate E is not bent greatly even when the peripheral edge portion 17 is cantilevered, so that it is not necessary to give it thickness or to reinforce it, and a sufficient strength can be obtained with a thin and flat shape.

また、免震プレートEが円柱2よりもせり出しているので、ピロティから上方を見上げても上部構造体Cの下面を見ることができず免震建物Aの美観を保つことができる。また、前述した通り免震プレートEは鉄筋コンクリートで構成した場合に比べ厚みが小さいので、軒天井24の設置レベルを高く設定することができ、ピロティの有効高さを大きく確保することができる。   In addition, since the seismic isolation plate E protrudes beyond the column 2, the lower surface of the upper structure C cannot be seen even when looking upward from the piloti, and the aesthetic appearance of the seismic isolation building A can be maintained. Further, as described above, since the seismic isolation plate E is smaller in thickness than the case where it is made of reinforced concrete, the installation level of the eaves ceiling 24 can be set high, and the effective height of the piloti can be secured large.

免震プレートEの他の用途について図6を参照して説明する。免震プレートEのボルト孔17aは、下記の要領で上部構造体Cの建方工事の際にも利用される。   Another application of the seismic isolation plate E will be described with reference to FIG. The bolt hole 17a of the seismic isolation plate E is also used in the construction of the upper structure C in the following manner.

即ち、図6(a)に示すように、コ字断面で上下フランジにボルト孔17aと2階の大梁4aのフランジのボルト孔の位置に対応したボルト孔を有し、且つ高さ及びボルト孔位置が2階の大梁4aが柱3と連結された状態の最終的な位置になるように設計されている仮設金物25を、ボルト孔17aを利用して免震プレートE上に固定し、更に、仮設金物25の上に2階の大梁4aを固定する。   That is, as shown in FIG. 6A, the upper and lower flanges have bolt holes 17a and bolt holes corresponding to the positions of the bolt holes of the flange of the second-order large beam 4a in the U-shaped cross section. A temporary metal fitting 25 designed to be in a final position where the large beam 4a on the second floor is connected to the pillar 3 is fixed on the seismic isolation plate E using the bolt holes 17a, and Then, the large beam 4a on the second floor is fixed on the temporary hardware 25.

次に、同図(b)に示すように、2階の大梁4aに設けた接合プレート4a1に柱3の梁接合部3aを当接しボルト接合する。なお、対向する2方向に2階の大梁4aが存在する場合は、柱3を垂直に起立させた状態で2階の大梁4aの横方向(図の前後方向)にスライドさせて2階の大梁4aの間にはめ込みボルト接合する。   Next, as shown in FIG. 2B, the beam joint portion 3a of the column 3 is brought into contact with the joining plate 4a1 provided on the second-floor large beam 4a to be bolt-joined. When the second-floor girder 4a exists in two opposite directions, the second-floor girder is slid in the lateral direction (front-rear direction in the figure) of the second-floor girder 4a with the pillar 3 standing vertically. A fitting bolt is joined between 4a.

2階の大梁4aと柱3とを接合した後、仮設金物25を免震プレートE及び2階の大梁4aからはずすことで、同図(c)に示すように、2階の大梁4aを柱3で支持することが可能である。   After joining the second floor girder 4a and the column 3, the temporary fixture 25 is detached from the seismic isolation plate E and the second floor girder 4a, so that the second floor girder 4a is pillared as shown in FIG. 3 can be supported.

このような施工方法とすることで、柱脚部をアンカーボルトで固定せず不安定な上部構造体Cの柱3の下端部を安定して保持しておくことができ、その後の建方工事を精度よく速やかに行うことができる。   By adopting such a construction method, it is possible to stably hold the lower end portion of the column 3 of the unstable upper structure C without fixing the column base portion with the anchor bolt, and subsequent construction work Can be performed accurately and promptly.

また、図7及び図8に示す如く、上部構造体Cの最下に位置する大梁4aには、複数の懸垂部材31が取り付けられ、各懸垂部材31の下端には吊プレート32が設けられている。また、梁行き方向に隣り合う吊プレート32の下端部に亘って野縁受け33が架設されており、これら複数の野縁受け33の下部に亘って野縁34が架設されている。各野縁34は、野縁受け33と互いに直交する状態に架設されており、これによってこれら野縁受け33と野縁34により格子状の下地35が組み上げられている。また、これら野縁受け33及び野縁34は下部構造体Bの免震プレートEよりも下方となる位置で支持されており、野縁34の下部に複数枚の板状の天井部材(上述の軒天井24のことを示しており、以下では当該部材を天井部材24と称することとする)24が取り付けられている。なお、本実施形態においては大梁4aに懸垂部材31等を懸架した構成が開示されているが、大梁間に架設される小梁に当該懸垂部材31等を懸架する構成も採用可能である。   7 and 8, a plurality of suspension members 31 are attached to the large beam 4a located at the bottom of the upper structure C, and a suspension plate 32 is provided at the lower end of each suspension member 31. Yes. Further, a field edge receiver 33 is installed over the lower end of the suspension plate 32 adjacent in the beam direction, and a field edge 34 is installed over the lower parts of the plurality of field edge receivers 33. Each field edge 34 is installed in a state of being orthogonal to the field edge receiver 33, whereby a lattice-shaped base 35 is assembled by the field edge receiver 33 and the field edge 34. The field edge receiver 33 and the field edge 34 are supported at a position below the seismic isolation plate E of the lower structure B, and a plurality of plate-like ceiling members (described above) are provided below the field edge 34. The eaves ceiling 24 is shown, and the member will be referred to as a ceiling member 24 below) 24 is attached. In the present embodiment, a configuration in which the suspension member 31 or the like is suspended on the large beam 4a is disclosed, but a configuration in which the suspension member 31 or the like is suspended on a small beam provided between the large beams can also be employed.

また、上部構造体Cの外壁8の下端部も上部構造体Cの大梁4aよりも下方まで延設されており、該下端部には、天井部材24を保持する保持具8aが設けられている。   Further, the lower end portion of the outer wall 8 of the upper structure C is also extended below the large beam 4a of the upper structure C, and a holder 8a for holding the ceiling member 24 is provided at the lower end portion. .

該天井部材24は、けい酸カルシウムを主材として平板状に形成されており、野縁34及び保持具8aに支持された状態で敷設されている。また、下部構造体Bとオーバラップすることとなる天井部材24は、該下部構造体Bの形状に沿う円弧部37を備えており、該天井部材24を敷設すると円弧部37の縁部と下部構造体Bの外周面の間には充分な隙間S1が介在する。また、該天井部材24は免震プレートEよりも下方となる位置で支持されており、これによって天井部材24と免震プレートEの間にも充分な隙間S2が介在することとなる。また、該天井部材24の円弧部37の半径は免震プレートEの半径と同程度若しくは僅かに小さく設定されており、これによって、免震プレートEの最外縁部と天井部材24の円弧部37とは互いに対向している。   The ceiling member 24 is formed in a flat plate shape using calcium silicate as a main material, and is laid in a state of being supported by the field edge 34 and the holder 8a. The ceiling member 24 that overlaps the lower structure B includes an arc portion 37 that follows the shape of the lower structure B. When the ceiling member 24 is laid, an edge portion and a lower portion of the arc portion 37 are provided. A sufficient gap S <b> 1 is interposed between the outer peripheral surfaces of the structures B. Further, the ceiling member 24 is supported at a position below the seismic isolation plate E, whereby a sufficient gap S2 is interposed between the ceiling member 24 and the seismic isolation plate E. Further, the radius of the arc portion 37 of the ceiling member 24 is set to be the same as or slightly smaller than the radius of the seismic isolation plate E, whereby the outermost edge portion of the seismic isolation plate E and the arc portion 37 of the ceiling member 24 are set. Are facing each other.

上記隙間S1、S2は地震動等に伴う下部構造体Bや免震プレートEに対する上部構造体Cの相対移動のための遊びとなり、これによって下部構造体Bや免震プレートEと天井部材24との衝突・干渉は防止される。   The gaps S1 and S2 become play for the relative movement of the upper structure C with respect to the lower structure B and the seismic isolation plate E due to seismic motion and the like, and thereby the lower structure B and the seismic isolation plate E and the ceiling member 24 Collisions and interferences are prevented.

また、上記実施形態によれば、免震プレートEの上面は上部構造体Cの下面と共に天井部材24に覆われる。このため、天井部材24によって上部構造体Cの下面を覆い隠すことによって、該上部構造体Cの下方となる1階ピロティの意匠性の向上が図られると共に上部構造体Cの下面を平坦なものとすることによって、当該1階ピロティを通過する横風の通り道の安定化が図られ、さらには、該免震プレートEの上面に埃やごみ等が堆積することが抑制されている。   Further, according to the embodiment, the upper surface of the seismic isolation plate E is covered with the ceiling member 24 together with the lower surface of the upper structure C. For this reason, by covering up the lower surface of the upper structure C with the ceiling member 24, the design of the first floor piloti below the upper structure C is improved and the lower surface of the upper structure C is flat. By doing so, the passage of the cross wind passing through the first-floor piloti is stabilized, and further, accumulation of dust and dirt on the upper surface of the seismic isolation plate E is suppressed.

また、上述の如く、免震プレートEと天井部材24との間には隙間S2が確保されていることにより当該隙間S2を介して天井部材24の上方となる該天井部材の裏側の空間にまで横風等が流れ込み、これによって上記横風により天井部材24に作用する負圧と相俟って、天井部材24には該天井部材24を上部構造体Cから離間させようとする外力が過大に作用することが考えられる。かかる事態に対応すべく、本実施形態においては、該免震プレートEと天井部材24との間の隙間S2には風防部材40が設けられている。   Further, as described above, since the gap S2 is secured between the seismic isolation plate E and the ceiling member 24, the space behind the ceiling member 24 above the ceiling member 24 is passed through the gap S2. A cross wind flows into the ceiling member 24 and, due to this, combined with the negative pressure acting on the ceiling member 24 due to the cross wind, an excessive external force is applied to the ceiling member 24 to separate the ceiling member 24 from the upper structure C. It is possible. In order to cope with such a situation, in the present embodiment, a windshield member 40 is provided in the gap S <b> 2 between the seismic isolation plate E and the ceiling member 24.

図9に示す如く、該風防部材40は、天井部材24の円弧部37に取り付けられており、当該円弧部37に沿って立上る円弧状の立上り部41と、該立上り部41の上端部から屈曲して免震プレートEの下面に沿う屈曲部42とを備えている。下部構造体Bに対する上部構造体Cの相対移動を確保すべくこれら風防部材40の屈曲部42と免震プレートEの下面との間にはきわめて僅かな間隔が形成されるものの、立上り部41によって免震プレートと天井部材24の間の隙間S2は略閉鎖され、これによって該隙間S2を通じての横風等の流入は著しく制限され、天井部材24に作用する上述の如き外力は著しく減少することとなる。また、該隙間S2からの埃や虫等の侵入も制限され、上部構造体Cの支承11の摺動面11cの滑り面となる免震プレートEの上面を清浄に保つことが可能となるばかりでなく、清掃困難な天井部材24の裏側も長期にわたって清浄に維持されることとなる。   As shown in FIG. 9, the windshield member 40 is attached to an arc portion 37 of the ceiling member 24, and includes an arc-shaped rising portion 41 that rises along the arc portion 37, and an upper end portion of the rising portion 41. And a bent portion 42 that is bent and extends along the lower surface of the seismic isolation plate E. In order to ensure the relative movement of the upper structure C with respect to the lower structure B, a very slight gap is formed between the bent portion 42 of the windshield member 40 and the lower surface of the seismic isolation plate E. The gap S <b> 2 between the seismic isolation plate and the ceiling member 24 is substantially closed, so that the inflow of a cross wind or the like through the gap S <b> 2 is remarkably restricted, and the above-described external force acting on the ceiling member 24 is significantly reduced. . Further, entry of dust, insects, and the like from the gap S2 is limited, and it becomes possible to keep the upper surface of the seismic isolation plate E as a sliding surface of the sliding surface 11c of the support 11 of the upper structure C clean. In addition, the back side of the ceiling member 24 that is difficult to clean is also kept clean over a long period of time.

なお、免震プレートEと天井部材24の互いの相対移動が可能であれば、免震プレートEの下面に風防部材40の屈曲部42を接触させて地震時等の際に当該屈曲部42を免震プレートE裏面上で滑らせることとする構成を採用することも可能である。これによれば、隙間S2は略完全に遮断され、当該隙間S2を通じての天井部材24の裏側への横風や埃等の流入は略完全に遮断されることとなる。   If the seismic isolation plate E and the ceiling member 24 can be moved relative to each other, the bent portion 42 of the windshield member 40 is brought into contact with the lower surface of the seismic isolation plate E so that the bent portion 42 can be moved in the event of an earthquake or the like. It is also possible to adopt a configuration in which sliding is performed on the rear surface of the seismic isolation plate E. According to this, the gap S2 is substantially completely cut off, and the inflow of cross wind and dust to the back side of the ceiling member 24 through the gap S2 is almost completely cut off.

図10(a)〜図10(d)は、上記風防部材40の他の実施形態を示している。図10(a)に示す如く、風防部材40は、免震プレートEの下面に取り付ける構成を採用することも可能である。該風防部材40は、免震プレートEの下面に接触する接触部44と、該接触部44の内側の端部から垂下される垂下部45と、該垂下部45の下端部から屈曲して天井部材24を支持する野縁34の上面に沿う屈曲部46とを備える断面コ字状に形成されている。本実施形態によれば、免震プレートEと天井部材24の間の隙間S2は野縁34と当該風防部材40によって略遮断されることとなり、当該天井部材24の裏側への横風の流入は著しく制限されるものとなる。   FIG. 10A to FIG. 10D show another embodiment of the windshield member 40. As shown in FIG. 10A, the windshield member 40 may be configured to be attached to the lower surface of the seismic isolation plate E. The windshield member 40 is bent from the contact portion 44 that contacts the lower surface of the seismic isolation plate E, the hanging portion 45 that is suspended from the inner end portion of the contact portion 44, and the lower end portion of the hanging portion 45. It is formed in a U-shaped cross section including a bent portion 46 along the upper surface of the field edge 34 that supports the member 24. According to the present embodiment, the gap S2 between the seismic isolation plate E and the ceiling member 24 is substantially blocked by the field edge 34 and the windshield member 40, and the inflow of cross wind to the back side of the ceiling member 24 is remarkable. Be limited.

また、図10(b)に示す風防部材40は、シート状に形成されて免震プレートEの最外縁部に取り付けられて免震プレートEの円弧部37を覆う位置まで垂れ下がっており、該風防部材40によって免震プレートEと天井部材24との間の隙間S2は塞がれる。これによって、該隙間S2を通じての横風の流入は著しく制限されることとなる。   Further, the windshield member 40 shown in FIG. 10B is formed in a sheet shape, is attached to the outermost edge portion of the seismic isolation plate E, and hangs down to a position covering the arc portion 37 of the seismic isolation plate E. A gap S <b> 2 between the seismic isolation plate E and the ceiling member 24 is closed by the member 40. As a result, the inflow of cross wind through the gap S2 is significantly limited.

また、図10(c)は、免震プレートEと天井部材24とがオーバラップする位置に野縁34を設けない構成であって、風防部材40は、免震プレートEの縁部に被さる被装部47と、該被装部47の端部から垂下する垂下部48と、垂下部48の先端部から屈曲して天井部材24の裏面に僅かな隙間を介して対向する対向部49とを備えている。該垂下部48により免震プレートEと天井部材24との間の隙間S2は略遮断され、対向部49と天井部材24との間の僅かな隙間のみが存することとなり、これによって、天井部材24の裏側の空間に向けての横風の侵入は著しく遮断されるものとなる。   FIG. 10C shows a configuration in which the field edge 34 is not provided at the position where the seismic isolation plate E and the ceiling member 24 overlap, and the windshield member 40 is covered with the edge of the seismic isolation plate E. A mounting portion 47, a hanging portion 48 that hangs down from an end portion of the covered portion 47, and a facing portion 49 that is bent from the tip portion of the hanging portion 48 and faces the back surface of the ceiling member 24 with a slight gap. I have. The gap 48 between the seismic isolation plate E and the ceiling member 24 is substantially blocked by the hanging portion 48, and there is only a slight gap between the facing portion 49 and the ceiling member 24. The intrusion of the cross wind toward the space on the back side of the door is remarkably blocked.

また、図10(d)は、上記図10(c)の風防部材40の垂下部48を短小化させると共に、対向部49の下面から弾性素材からなる突出部50が設けられており、該突出部50の先端部が天井部材24の円弧部37に当接している。これによって、免震プレートEと天井部材24との間の隙間S2は遮断されることとなり、天井部材24の裏側の空間に向けての横風の侵入は遮断される。また、地震動等により上部構造体Cが振動する場合であっても、弾性素材からなる突出部50が上部構造体Cの振動に伴って適宜変形することとなるため、該突出部50の天井部材24への当接が上部構造体Cの振動を遮断するものとはならない。また、かかる構成によれば、地震時等に下部構造体Bに対して上部構造体Cが上下動する場合であっても、天井部材24の上下動は風防部材40の対向部より下方でなされ、当該上下動によって天井部材24が風防部材40に当接することはなく、これによって、これら天井部材24と風防部材40の接触によるこれらの部材及びこれらの周囲の部材の損傷も免れることとなる。   10 (d) shortens the hanging portion 48 of the windshield member 40 of FIG. 10 (c), and is provided with a protruding portion 50 made of an elastic material from the lower surface of the facing portion 49. The tip of the portion 50 is in contact with the arc portion 37 of the ceiling member 24. As a result, the gap S <b> 2 between the seismic isolation plate E and the ceiling member 24 is blocked, and the intrusion of the cross wind toward the space on the back side of the ceiling member 24 is blocked. Further, even when the upper structure C vibrates due to seismic motion or the like, the projecting portion 50 made of an elastic material is appropriately deformed along with the vibration of the upper structure C. Therefore, the ceiling member of the projecting portion 50 The contact with 24 does not block the vibration of the upper structure C. Further, according to this configuration, even when the upper structure C moves up and down with respect to the lower structure B during an earthquake or the like, the ceiling member 24 moves up and down below the facing portion of the windshield member 40. Thus, the ceiling member 24 does not come into contact with the windshield member 40 due to the vertical movement, so that damage to these members and surrounding members due to contact between the ceiling member 24 and the windshield member 40 is also avoided.

また、該風防部材40は、ゴム等の伸縮性を有する材料により形成し、一方を免震プレートEに止めつけると共に他方を天井部材24に止めつける構成を採用することも可能である。かかる構成によれば、風防部材40によって免震プレートEと天井部材24との間の隙間S2は完全に閉鎖され、該隙間S2を通じての横風の流入は略完全に遮断される。また、風防部材40は伸縮性を有しているので、該風防部材40が上部構造体Cに支持される天井部材24と下部構造体Bに支持される免震プレートEに止めつけられると言えども、上部構造体Cの相対移動に伴って風防部材40が伸縮することとなり、上部構造体Cの地震動等の振動に対する応答性能は十分に発揮されるものとなるのである。   Further, the windshield member 40 may be formed of a material having elasticity such as rubber, and may adopt a configuration in which one is fixed to the seismic isolation plate E and the other is fixed to the ceiling member 24. According to such a configuration, the gap S2 between the seismic isolation plate E and the ceiling member 24 is completely closed by the windshield member 40, and the inflow of the cross wind through the gap S2 is almost completely blocked. Further, since the windshield member 40 has elasticity, it can be said that the windshield member 40 is fastened to the ceiling member 24 supported by the upper structure C and the seismic isolation plate E supported by the lower structure B. However, the windshield member 40 expands and contracts with the relative movement of the upper structure C, and the response performance of the upper structure C to vibrations such as seismic motion is sufficiently exhibited.

なお、図10(b)に示す免震プレートEは、鉄筋コンクリート製であって下部構造体Bと一体に形成されている。かかる免震プレートEを採用する場合であっても、上記本願発明の実施形態と同様の効果を奏する。   The seismic isolation plate E shown in FIG. 10B is made of reinforced concrete and is formed integrally with the lower structure B. Even when the seismic isolation plate E is employed, the same effects as those of the embodiment of the present invention are achieved.

本発明の免震構造は、下部構造体が2層以上である建物や、上部構造体が鉄骨同様に軽量な木造で構成された建物にも適用することができる。   The seismic isolation structure of the present invention can also be applied to a building having a lower structure having two or more layers and a building in which the upper structure is made of a light wooden structure like a steel frame.

本発明に係る免震構造を適用した免震建物Aの斜視図である。It is a perspective view of the base isolation building A to which the base isolation structure according to the present invention is applied. 免震建物Aの主に下部構造体Bの断面図である。It is sectional drawing of the lower structure B mainly of the seismic isolation building A. FIG. 免震装置Dまわりの詳細図である。It is a detailed view around the seismic isolation device D. 免震プレートEまわりの詳細図である。It is a detailed view around the seismic isolation plate E. 免震プレートEの固定要領を示す図である。It is a figure which shows the fixed point of the seismic isolation plate E. FIG. 免震プレートEを利用した上部構造体の施工手順を示す図である。It is a figure which shows the construction procedure of the upper structure using the seismic isolation plate E. FIG. 免震プレートE及びその周囲を拡大して示す平面図である。It is a top view which expands and shows the seismic isolation plate E and its circumference | surroundings. 免震装置D及び軒天井まわりの側面図である。It is a side view around the seismic isolation device D and the eaves ceiling. 風防部材まわりの断面図である。It is sectional drawing around a windshield member. (a)及び(b)は風防部材の他の実施例を示す断面図である。(A) And (b) is sectional drawing which shows the other Example of a windshield member.

符号の説明Explanation of symbols

A…免震建物
B…下部構造体
C…上部構造体
D…免震装置
E…免震プレート
S1…隙間
S2…隙間
1…基礎
1a…基礎梁
1b…耐圧盤
1c…土間コンクリート
2…円柱(1階柱)
2a…柱頭部
2b…柱脚部
2c…埋設用孔
2d…調整具用孔
2e…空隙
3…柱
3a…梁接合部
4a〜4c…大梁
4a1〜4c1…接合プレート
5a〜5c…片持ち梁
5a1〜5c1…接合プレート
6a〜6c…鼻先梁
7…外壁パネル
8…外壁
8a…保持具
9…床パネル
10…床
11…支承
11a…摺動面
12…突起部
13…受け板
14…復元ゴム
15…オイルダンパー
16…受け板載置部
16a…注入孔
16b…レベル調整孔
17…周縁部
17a…ボルト孔
18…スタッドジベル
19…ワインディングパイプ
20…レベル調整具
20a…支持部
20a1…支持プレート
20a2…軸
20a3…高ボルト
20b…押さえ部
20b1…仮止めボルト
20b2…押さえプレート
21…打込みアンカー
22、23…グラウト
24…軒天井(天井部材)
25…仮設金物
33…野縁受け
34…野縁
35…下地
40…風防部材
A ... Seismic isolation building B ... Lower structure C ... Upper structure D ... Seismic isolation device E ... Seismic isolation plate S1 ... Gap S2 ... Gap 1 ... Foundation 1a ... Base beam 1b ... Pressure panel 1c ... Soil concrete 2 ... Cylinder ( 1st floor pillar)
2a ... pillar head 2b ... pillar leg 2c ... embedding hole 2d ... adjusting tool hole 2e ... gap 3 ... pillar 3a ... beam joint 4a-4c ... large beam 4a1-4c1 ... joining plate 5a-5c ... cantilever 5a1 5c1 ... Joint plate 6a-6c ... Nose tip beam 7 ... Outer wall panel 8 ... Outer wall 8a ... Holding tool 9 ... Floor panel 10 ... Floor 11 ... Support 11a ... Sliding surface 12 ... Protrusion 13 ... Receiving plate 14 ... Restoring rubber 15 ... Oil damper 16 ... Base plate mounting part 16a ... Injection hole
16b ... Level adjustment hole 17 ... Peripheral part 17a ... Bolt hole 18 ... Stud gibber 19 ... Winding pipe 20 ... Level adjustment tool 20a ... Supporting part 20a1 ... Support plate 20a2 ... Shaft 20a3 ... High bolt 20b ... Holding part 20b1 ... Temporary fixing bolt 20b2 ... presser plate 21 ... driven anchor 22, 23 ... grout 24 ... eaves ceiling (ceiling member)
25 ... Temporary fittings 33 ... Field edge receiver 34 ... Field edge 35 ... Base 40 ... Windshield member

Claims (4)

基礎と、該基礎から片持ち状態で突出して1階柱を形成する複数本の柱とからなる鉄筋コンクリート造の下部構造体の柱上端部に当該柱の水平断面よりも大きな面を有する免震プレートを固定し、
該免震プレート上面に免震装置を載置あるいは固定し、
該免震装置を介して前記1階柱上に鉄骨造の上部構造体の2階柱を設置したことを特徴とする免震構造。
Seismic having a foundation, each pillar upper end of the plurality of pillars and reinforced concrete substructure consisting of forming a protruding by 1 Kaibashira in a cantilevered state from the foundation, the large surface than the horizontal cross-section of the column Fix the seismic plate,
Place or fix the seismic isolation device on the upper surface of the seismic isolation plate,
A seismic isolation structure characterized in that a second-order pillar of a steel frame upper structure is installed on the first-floor pillar via the seismic isolation device.
前記免震装置が滑り支承型または転がり支承型であり、
前記免震プレートは、その中心部に前記免震装置を受ける受け板載置備えると共に、該受け板載置部の周縁であって且つ前記よりもせり出した周縁に復元機能部又は減衰機能部の取付部を備えていることを特徴とする請求項1に記載免震構造。
The seismic isolation device is a sliding bearing type or a rolling bearing type;
The seismic isolation plate is provided with a receiving plate mounted portion for receiving the seismic isolation device at the center thereof, restoring functional unit or attenuate the periphery that protrudes than and said post a peripheral edge of the receiving receiving plates mounting portion seismic isolation structure according to claim 1, characterized in that it comprises a mounting portion of the functional unit.
前記上部構造体を下方より覆う板状の天井部材が設けられ、
該天井部材は、前記震プレートよりも下方に位置し、且つ前記下部構造体との間に間隔を設けると共に前記免震プレートの間に間隔を設けた位置で前記上部構造体に支持されていることを特徴とする請求項1又は請求項2に記載の免震構造。
A plate-like ceiling member that covers the upper structure from below is provided,
The ceiling member is positioned below the seismic isolation plate, and, supported on the upper structure at a position spaced between said seismic isolation plate provided with a gap between the lower structure The seismic isolation structure according to claim 1, wherein the seismic isolation structure is provided.
前記免震プレートと天井部材との間には、これら免震プレートと天井部材の間の隙間から該天井部材と前記下部構造体の間への風の流入を防止すると共にこれら免震プレートと天井部材との相対移動を許容する風防部材が設けられていることを特徴とする請求項3に記載の免震構造。   Between the seismic isolation plate and the ceiling member, the flow of wind from the gap between the seismic isolation plate and the ceiling member to the ceiling member and the lower structure is prevented and the seismic isolation plate and the ceiling The seismic isolation structure according to claim 3, further comprising a windshield member that allows relative movement with the member.
JP2008148707A 2007-06-26 2008-06-06 Seismic isolation structure Active JP5377890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008148707A JP5377890B2 (en) 2007-06-26 2008-06-06 Seismic isolation structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007167190 2007-06-26
JP2007167190 2007-06-26
JP2008148707A JP5377890B2 (en) 2007-06-26 2008-06-06 Seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2009030429A JP2009030429A (en) 2009-02-12
JP5377890B2 true JP5377890B2 (en) 2013-12-25

Family

ID=40401215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008148707A Active JP5377890B2 (en) 2007-06-26 2008-06-06 Seismic isolation structure

Country Status (1)

Country Link
JP (1) JP5377890B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206648A (en) * 2002-01-11 2003-07-25 Yoshio Suzuki Seismic isolation device for wooden house
JP2003313952A (en) * 2002-04-22 2003-11-06 Taisei Corp Building
JP4567493B2 (en) * 2005-03-11 2010-10-20 財団法人鉄道総合技術研究所 Seismic isolation system for buildings over railway tracks
JP4212610B2 (en) * 2006-07-10 2009-01-21 三井住友建設株式会社 Seismic isolation structure

Also Published As

Publication number Publication date
JP2009030429A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP5283774B1 (en) Seismic damper for temporary building
JP2004211288A (en) Structure of building
JP2008111331A (en) Building with joint metal
JPH11241524A (en) Building used jointly for both base isolation and seismic control
JP5377890B2 (en) Seismic isolation structure
JP3962758B1 (en) Middle-rise base-isolated building
JP3170535B2 (en) Damping structure
JP5059687B2 (en) Building seismic control structure
JP2008202316A (en) Base isolation structure building
JP5808570B2 (en) building
JP6383533B2 (en) Seismic retrofit method for existing buildings
JP7055986B2 (en) building
JP6196455B2 (en) Exterior wall structure
JP6427315B2 (en) Column reinforcement structure
JP4071192B2 (en) Damping structure of building structure
JP5682035B2 (en) Vibration control structure
JP5503200B2 (en) Unit building
JP2006274733A (en) Triple tube structure and vibration control system thereof
KR20200076066A (en) Seismic reinforcing structure
JPH0336990B2 (en)
JP5465378B2 (en) Seismic isolation building
JP2012233374A (en) Seismic reinforcement structure
JP7272800B2 (en) Seismic ceiling structure
JP3211098U (en) Seismic reinforcement structure for existing steel buildings
JP3977225B2 (en) Structure of the outer wall of the steel structure

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Ref document number: 5377890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350