JP4564288B2 - DC motor current control circuit and DC motor having this circuit - Google Patents

DC motor current control circuit and DC motor having this circuit Download PDF

Info

Publication number
JP4564288B2
JP4564288B2 JP2004183401A JP2004183401A JP4564288B2 JP 4564288 B2 JP4564288 B2 JP 4564288B2 JP 2004183401 A JP2004183401 A JP 2004183401A JP 2004183401 A JP2004183401 A JP 2004183401A JP 4564288 B2 JP4564288 B2 JP 4564288B2
Authority
JP
Japan
Prior art keywords
motor
circuit
current
voltage
attenuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004183401A
Other languages
Japanese (ja)
Other versions
JP2006014392A (en
Inventor
憲一 中里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2004183401A priority Critical patent/JP4564288B2/en
Publication of JP2006014392A publication Critical patent/JP2006014392A/en
Application granted granted Critical
Publication of JP4564288B2 publication Critical patent/JP4564288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Direct Current Motors (AREA)
  • Electronic Switches (AREA)

Description

この発明は、直流モータの電流制御回路およびこの回路を具備する直流モータに関し、特に、PWM駆動のHブリッジ回路を採用してモータ駆動電流を精度良く検出し、直流モータを効率よく正転、逆転制御する直流モータの電流制御回路およびこの回路を具備する直流モータに関する。   The present invention relates to a current control circuit for a DC motor and a DC motor including the circuit, and in particular, employs a PWM-driven H-bridge circuit to detect a motor drive current with high accuracy and efficiently forward and reverse the DC motor. The present invention relates to a current control circuit for a direct current motor to be controlled and a direct current motor including the circuit.

直流モータの電流制御回路の従来例を図5を参照して説明する。
図5にPWM駆動のHブリッジ回路を示す。Hブリッジ回路の第1アーム上側の素子をスイッチング素子A、第1アーム下側の素子をスイッチング素子B、第2アーム上側の素子をスイッチング素子C、第2アーム下側の素子をスイッチング素子Dとする。第1アームから第2アームに向かって+向きに通電するときはスイッチング素子Aをオン、スイッチング素子DをPWM駆動することによりモータ印加電圧若しくはモータ駆動電流を制御し、第2アームから第1アームに向かって−向きに通電するときはスイッチング素子Bをオン、スイッチング素子CをPWM駆動することにより、直流モータMに通電する電流の極性を切り替える構成としている。スイッチング素子Aとスイッチング素子Bのなす第1アームと直流モータMとの間にシャント抵抗RSを挿入し、シャント抵抗RSの両端に発生する電圧を増幅することにより、直流モータMに流れるモータ駆動電流を検出している(特許文献1 参照)。
特開2002−238290号 公報
A conventional example of a current control circuit for a DC motor will be described with reference to FIG.
FIG. 5 shows a PWM-driven H-bridge circuit. The element above the first arm of the H-bridge circuit is switching element A, the element below the first arm is switching element B, the element above the second arm is switching element C, and the element below the second arm is switching element D. To do. When energizing in the positive direction from the first arm toward the second arm, the switching element A is turned on and the switching element D is PWM-driven to control the motor applied voltage or the motor driving current. From the second arm to the first arm When the current is applied in the negative direction, the switching element B is turned on and the switching element C is PWM-driven to switch the polarity of the current supplied to the DC motor M. A motor driving current that flows through the DC motor M by inserting a shunt resistor RS between the first arm formed by the switching element A and the switching element B and the DC motor M and amplifying the voltage generated at both ends of the shunt resistor RS. Is detected (see Patent Document 1).
JP 2002-238290 A

図5により図示説明される直流モータの電流制御回路は、シャント抵抗RSの両端を差動増幅器OPの両入力端に抵抗R1、R2を介して接続してモータ駆動電流を検出している。シャント抵抗RSの両端間に生ずる微小な電圧差に基づいて発生する電流を検出するには、差動増幅器OPに数十倍のゲインを持たせる必要がある。シャント抵抗RSの両端から差動増幅器OPに入力する場合、差動増幅器OPの入力電圧範囲をモータ駆動電圧VBと同程度にする必要があるが、モータ駆動電圧VBを余り大きく設計することができない。   The current control circuit of the DC motor illustrated and described with reference to FIG. 5 detects the motor drive current by connecting both ends of the shunt resistor RS to both input ends of the differential amplifier OP via resistors R1 and R2. In order to detect a current generated based on a small voltage difference generated across the shunt resistor RS, the differential amplifier OP needs to have a gain of several tens of times. When inputting to the differential amplifier OP from both ends of the shunt resistor RS, the input voltage range of the differential amplifier OP needs to be approximately the same as the motor drive voltage VB, but the motor drive voltage VB cannot be designed to be too large. .

ここで、モータ駆動電流IMは、右向き矢印のとき+電流と称し、左向き矢印のとき−電流と称す。+電流を流通せしめる場合、スイッチング素子B、Cは何れもオフの状態とし、スイッチング素子Aをオンの状態とする。そして、スイッチング素子DをPWM駆動とすることにより、モータ駆動電流を+電流に制御することができる。一方、−電流を流通せしめる場合は、スイッチング素子A、Dを何れもオフの状態とし、スイッチング素子Bをオンの状態とする。そして、スイッチング素子CをPWM駆動とすることにより、モータ駆動電流を−電流に制御することができる。   Here, the motor drive current IM is referred to as + current when it is a right-pointing arrow, and is referred to as −current when it is a left-pointing arrow. When passing + current, the switching elements B and C are both turned off and the switching element A is turned on. The motor drive current can be controlled to a positive current by switching the switching element D to PWM drive. On the other hand, when the -current is allowed to flow, both the switching elements A and D are turned off and the switching element B is turned on. The motor driving current can be controlled to a negative current by switching the switching element C to PWM driving.

しかし、この制御の場合、微小なモータ駆動電流の制御は困難である。これを図6を参照して説明するに、スイッチング素子は一般にFETにより構成されるが、FETの立ち上がり速度、立ち下がり速度は図6(a)に示される如く傾斜していて有限であることが微小なモータ駆動電流の制御を困難にしている。図6(b)を参照するに、例えば+方向に微小な電流を流通せしめようとする場合、PWM駆動されるスイッチング素子Dは非常に小さなパルス幅で駆動されるところから、非常に小さな時間のパルス幅の間においてはパルスが正常な高さに迄立ち上がることができないので、結局、微小電流の制御は困難である。   However, in this control, it is difficult to control a minute motor drive current. This will be described with reference to FIG. 6. Although the switching element is generally composed of an FET, the rising speed and falling speed of the FET are inclined and finite as shown in FIG. This makes it difficult to control a minute motor drive current. Referring to FIG. 6B, for example, when a small current is to be circulated in the + direction, the switching element D that is driven by PWM is driven with a very small pulse width. Since the pulse cannot rise to a normal height during the pulse width, it is difficult to control the minute current.

そこで、この発明は、PWM変調駆動のHブリッジ回路を採用してモータ駆動電流を精度良く検出し、直流モータを効率よく正転、逆転制御する直流モータの電流制御回路およびこの回路を具備する直流モータを提供するものである。   Therefore, the present invention employs a PWM modulation drive H-bridge circuit to detect a motor drive current with high accuracy, and to efficiently control forward and reverse rotation of a DC motor, and a DC control circuit equipped with this circuit. A motor is provided.

請求項1:シャント抵抗RSを用いてモータ電流を検出するパルス幅変調(PWM)駆動方式のHブリッジ回路を用いた直流モータの電流制御回路において、シャント抵抗RSの両端を分圧回路より成る2個のアッテネータ21a、21bのそれぞれの一端に接続し、アッテネータ21a、21bの他端とシャント抵抗RSの何れか一方の側との間にアッテネータ駆動回路22を接続し、アッテネータ駆動回路22をこれが接続されている側のアッテネータの分圧回路の中点の電圧が常にゼロとなるように構成し、2個のアッテネータ21a、21bの分圧回路それぞれの中点a、bの電圧を差動増幅器23で増幅してモータ電流IMを検出する直流モータの電流制御回路を構成した。 In a current control circuit of a direct current motor using a pulse width modulation (PWM) drive type H bridge circuit that detects a motor current using a shunt resistor RS, both ends of the shunt resistor RS are formed by voltage dividing circuits. number of attenuator 21a, and connected to one end of each of 21b, connect the attenuator driver circuit 22 between either side of the attenuator 21a, the other end of the 21b and the shunt resistor RS, which connects the attenuator driver circuit 22 The voltage at the midpoint of the voltage divider circuit of the attenuator on the side where the current is applied is always zero. A current control circuit for a DC motor that detects the motor current IM by amplification is configured.

た、請求項:請求項1に記載される直流モータの電流制御回路を具備する直流モータを構成した。 Also, according to claim 2 constituted a DC motor having a current control circuit for a DC motor as claimed in claim 1.

この発明によれば、差動増幅器に入力する電圧に含まれる矩形波成分が減少して、同相信号除去比が高い部分を使用することができるので、精度の良い電流検出をすることができる。そして、アッテネータがシャント抵抗と差動増幅器との間に接続されるところからシャント抵抗両端の電圧を小さくし、このことに基づいてモータ駆動電圧を大きく設計することができる。   According to the present invention, the rectangular wave component included in the voltage input to the differential amplifier is reduced, and a portion having a high in-phase signal rejection ratio can be used, so that accurate current detection can be performed. . The voltage across the shunt resistor can be reduced from where the attenuator is connected between the shunt resistor and the differential amplifier, and based on this, the motor drive voltage can be designed to be large.

発明を実施するための最良の形態を図1を参照して説明する。
図1において、1はモータ駆動部を示し、Hブリッジ回路11,PWM駆動回路12、制御器13より成る。
このHブリッジ回路11は、第1アーム上側の素子をスイッチング素子Aとし、第1アーム下側の素子をスイッチング素子Bとし、第2アーム上側の素子をスイッチング素子Cとし、第2アーム下側の素子をスイッチング素子Dとしている。スイッチング素子A、B、C、Dは電界効果トランジスタFETにより構成している。そして、第1アームの上側のスイッチング素子Aと下側スイッチング素子Bの相互接続点と、第2アームの上側のスイッチング素子Cと下側スイッチング素子Dの相互接続点との間に、シャント抵抗RSと直流モータMの直列接続経路を接続している。+VBは第1アームと第2アームの上側相互接続点に供給されるモータ駆動電圧を示す。第1アームと第2アームの下側相互接続点は接地している。
The best mode for carrying out the invention will be described with reference to FIG.
In FIG. 1, reference numeral 1 denotes a motor drive unit, which includes an H bridge circuit 11, a PWM drive circuit 12, and a controller 13.
The H bridge circuit 11 has an element on the upper side of the first arm as a switching element A, an element on the lower side of the first arm as a switching element B, an element on the upper side of the second arm as a switching element C, and an element on the lower side of the second arm. The element is a switching element D. The switching elements A, B, C, and D are composed of field effect transistors FET. The shunt resistor RS is connected between the interconnection point of the upper switching element A and the lower switching element B of the first arm and the interconnection point of the upper switching element C and the lower switching element D of the second arm. And a series connection path of the DC motor M are connected. + VB represents a motor drive voltage supplied to the upper interconnection point of the first arm and the second arm. The lower interconnection point of the first arm and the second arm is grounded.

PWM駆動回路12は、スイッチング素子A、B、C、Dそれぞれの制御電極に接続する出力端子*A 、*B 、*C 、*D を有している。
制御器13は、後で説明されるモータ駆動電流検出部2の出力する検出電流と指令値とにより決まる制御信号に基づいて、PWM駆動回路12の出力を制御し、スイッチング素子A、B、C、Dの制御電極に対する出力を決定している。
モータ駆動電流検出部2は、分圧回路より成る2個のアッテネータ21a、21bと、演算増幅器より成るアッテネータ駆動回路22と、差動増幅器23とより成る。アッテネータ21aは、2個の抵抗R1、R2を直列接続した第1分圧回路より成り、アッテネータ21bは2個の抵抗R3、R4を直列接続した第2分圧回路より成る。第1分圧回路の一方の端子はシャント抵抗RSの端子の第1アーム側に接続すると共に、第2分圧回路の一方の端子はシャント抵抗RSの端子の直流モータ側に接続している。第1分圧回路と第2分圧回路の他方の端子は相互接続してアッテネータ駆動回路22の出力の点cに接続している。ここで、アッテネータ駆動回路22の入力はシャント抵抗RSの端子の第1アーム側に接続している。第1分圧回路の2個の抵抗R1、R2の中点aと第2分圧回路の2個の抵抗R3、R4の中点bは、差動増幅器23の各別の入力に接続している。差動増幅器23の出力は加算器3の−端子に供給される。加算器3の+端子には指令値が供給される。加算器3の計算結果はモータ駆動部1の制御器13に入力される。
The PWM drive circuit 12 has output terminals * A , * B , * C , and * D that are connected to the control electrodes of the switching elements A, B, C, and D, respectively.
The controller 13 controls the output of the PWM drive circuit 12 based on a control signal determined by a detected current output from the motor drive current detector 2 and a command value, which will be described later, and switching elements A, B, C , D are determined for the control electrodes.
The motor drive current detection unit 2 includes two attenuators 21 a and 21 b formed of a voltage dividing circuit, an attenuator drive circuit 22 formed of an operational amplifier, and a differential amplifier 23. The attenuator 21a is composed of a first voltage dividing circuit in which two resistors R1 and R2 are connected in series, and the attenuator 21b is composed of a second voltage dividing circuit in which two resistors R3 and R4 are connected in series. One terminal of the first voltage dividing circuit is connected to the first arm side of the terminal of the shunt resistor RS, and one terminal of the second voltage dividing circuit is connected to the DC motor side of the terminal of the shunt resistor RS. The other terminals of the first voltage dividing circuit and the second voltage dividing circuit are connected to each other and connected to the output point c of the attenuator driving circuit 22. Here, the input of the attenuator driving circuit 22 is connected to the first arm side of the terminal of the shunt resistor RS. The middle point a of the two resistors R1 and R2 of the first voltage dividing circuit and the middle point b of the two resistors R3 and R4 of the second voltage dividing circuit are connected to respective different inputs of the differential amplifier 23. Yes. The output of the differential amplifier 23 is supplied to the minus terminal of the adder 3. The command value is supplied to the + terminal of the adder 3. The calculation result of the adder 3 is input to the controller 13 of the motor drive unit 1.

実施例においては、スイッチング素子Aとスイッチング素子Dとを一方の素子対とし、スイッチング素子Bとスイッチング素子Cとを他方の素子対とする。これにより、対をなすスイッチング素子は同時にオン、オフすることになる。即ち、スイッチング素子Aがオンである場合、スイッチング素子Dもオンとなる。スイッチング素子A、B、C、Dのオン、オフ、デューティの関係を示すと図2の如くになる。ここで、図示されないスイッチング素子A、Dのオン時間と、スイッチング素子B、Cのオン時間とが等しいとき、即ち、デューティ50%のときは、モータ駆動電流IM=0となる。そして、スイッチング素子A、Dのオン時間が、スイッチング素子B、Cのオン時間と比較して長いとき、即ち、デューティが50%より大きい図2(a)、(b)のときはモータ駆動電流IMの向きは+となる。逆に、スイッチング素子A、Dのオン時間が、スイッチング素子B、Cのオン時間と比較して短いとき、即ち、デューティが50%より小さい図2(c)ときはモータ駆動電流IMの向きは−となる。   In the embodiment, the switching element A and the switching element D are set as one element pair, and the switching element B and the switching element C are set as the other element pair. As a result, the paired switching elements are simultaneously turned on and off. That is, when the switching element A is on, the switching element D is also on. FIG. 2 shows the relationship between on, off, and duty of the switching elements A, B, C, and D. Here, when the ON times of the switching elements A and D (not shown) and the ON times of the switching elements B and C are equal, that is, when the duty is 50%, the motor drive current IM = 0. When the ON times of the switching elements A and D are longer than the ON times of the switching elements B and C, that is, when the duty is greater than 50% in FIGS. The direction of IM is +. Conversely, when the on-time of the switching elements A and D is shorter than the on-time of the switching elements B and C, that is, when the duty is smaller than 50% in FIG. -.

スイッチング素子AとB、或いはスイッチング素子CとDが同時にオンとなると、モータ電源が短絡されるところから、スイッチング素子A、B、C、Dを構成する電界効果トランジスタFETには、スイッチング素子AとBとの間、或いはスイッチング素子CとDとの間には必ず同時にオフの時間、即ち、デッドタイムが設定される。この様な駆動パターンでHブリッジを駆動するアッテネータ駆動回路を説明する。
直流モータMに大きな駆動力を発生させようとする場合、直流モータMの発生する駆動力は流通する電流に比例するので、直流モータMに大きな電流を流通する必要がある。直流モータMに流れる電流IMは、当該モータに印加されるモータ駆動電圧VBで決まるところから、結局、大きなモータ駆動電圧VBを必要とすることになる。この様な事情から、差動増幅器23の入力電圧範囲より大きな電圧で直流モータMを駆動したいという必要に迫られる場合もある。しかし、この様な過大な電圧で直流モータMを駆動した場合、シャント抵抗RSの両端に直接に差動増幅器23を接続すると当然に差動増幅器23は損傷する。そこで、図1の実施例においては、シャント抵抗RSの両端と差動増幅器23の入力との間に2個のアッテネータ21a、21bを挿入接続することで、差動増幅器23の入力電圧範囲より大きな電圧で直流モータMを駆動する構成を採用している。
When the switching elements A and B or the switching elements C and D are simultaneously turned on, the motor power supply is short-circuited, so that the field effect transistor FET constituting the switching elements A, B, C, and D includes the switching element A and An OFF time, that is, a dead time is always set between B and the switching elements C and D. An attenuator drive circuit for driving the H bridge with such a drive pattern will be described.
When a large driving force is to be generated in the DC motor M, the driving force generated by the DC motor M is proportional to the flowing current, so that a large current needs to flow through the DC motor M. Since the current IM flowing through the DC motor M is determined by the motor drive voltage VB applied to the motor, a large motor drive voltage VB is eventually required. Under such circumstances, there is a case where it is necessary to drive the DC motor M with a voltage larger than the input voltage range of the differential amplifier 23. However, when the DC motor M is driven with such an excessive voltage, if the differential amplifier 23 is directly connected to both ends of the shunt resistor RS, the differential amplifier 23 is naturally damaged. Therefore, in the embodiment of FIG. 1, two attenuators 21 a and 21 b are inserted and connected between both ends of the shunt resistor RS and the input of the differential amplifier 23, so that the input voltage range of the differential amplifier 23 is larger. A configuration in which the DC motor M is driven by voltage is adopted.

ところで、図1においてアッテネータ駆動回路22の出力c点をGNDとしたときの、差動増幅器23の入力a点およびb点の波形を示すと、図3(b)、(c)に示される如くになる。なお、図3(a)は直流モータMの両端の電圧を示す。即ち、差動増幅器23の入力a点およびb点の電圧は、アッテネータ21により、下記の通りになる。
Va=VS1・RB/(RA+RB)
Vb=VS2・RB/(RA+RB)
但し、RA=R1=R3、RB=R2=R4
この両電圧Va、Vbを差動増幅器23に入力すると、電圧Va、Vbは矩形波であるところから、高い周波数成分を含んでおり、同相信号除去比が悪化して正常な差動増幅結果は得られない。
By the way, when the output point c of the attenuator driving circuit 22 in FIG. 1 is set to GND, the waveforms at the points a and b of the differential amplifier 23 are shown as shown in FIGS. 3B and 3C. become. FIG. 3A shows the voltage across the DC motor M. That is, the voltages at the points a and b of the differential amplifier 23 are as follows by the attenuator 21.
Va = V S 1 · RB / (RA + RB)
Vb = V S 2 · RB / (RA + RB)
However, RA = R1 = R3, RB = R2 = R4
When these voltages Va and Vb are input to the differential amplifier 23, the voltages Va and Vb are rectangular waves, and therefore contain high frequency components, and the common-mode signal rejection ratio deteriorates and normal differential amplification results are obtained. Cannot be obtained.

そこで、アッテネータ駆動回路22の出力c点にアッテネータ21bを接続する。そして、アッテネータ駆動回路22を反転増幅器とし、ゲイン=−RB/RAに設定する。図4を参照するに、この通りに設定することにより、a点の電圧Vaは図4(b)に示される如く常に0とし、b点の電圧Vbを図4(c)に示される如くIM・RSとすることができる。これにより、差動増幅器23に入力される電圧に含まれる矩形波成分が減少するところから、高い周波数成分は減少する。従って、同相信号除去比が高い部分を使用することができるので、精度の良い電流検出をすることができ、リニアリティが保たれる。そして、直流モータの電流制御回路の以上の実施例は、アッテネータ21a、21bがシャント抵抗RSと差動増幅器23との間に接続されるところからシャント抵抗の両端の電圧は小さくなり、これに基づいてモータ駆動電圧VBを大きく設計することができる。これにより、電気的時定数の大きな直流モータMでも応答速度を上げることができる。   Therefore, the attenuator 21b is connected to the output c point of the attenuator driving circuit 22. Then, the attenuator driving circuit 22 is an inverting amplifier, and gain = −RB / RA is set. Referring to FIG. 4, by setting in this way, the voltage Va at the point a is always 0 as shown in FIG. 4B, and the voltage Vb at the point b is IM as shown in FIG. 4C. -It can be RS. Thereby, since the rectangular wave component contained in the voltage input to the differential amplifier 23 decreases, the high frequency component decreases. Therefore, a portion having a high in-phase signal rejection ratio can be used, so that accurate current detection can be performed and linearity is maintained. The above embodiment of the current control circuit of the DC motor is based on the fact that the voltage across the shunt resistor is reduced since the attenuators 21a and 21b are connected between the shunt resistor RS and the differential amplifier 23. Thus, the motor drive voltage VB can be designed large. As a result, the response speed can be increased even with a DC motor M having a large electrical time constant.

実施例を説明する図。The figure explaining an Example. スイッチング素子のオン、オフ、デューティの関係を示す図。The figure which shows the relationship of ON, OFF, and a duty of a switching element. c点をGNDとしたときのa点およびb点の波形を示す図。The figure which shows the waveform of a point and b point when c point is set to GND. c点をアッテネータ21bを接続した場合のa点、b点の波形を示す図。The figure which shows the waveform of the point a and b point at the time of connecting the attenuator 21b to point c. 従来例を説明する図。The figure explaining a prior art example. 従来例の問題点を説明する図。The figure explaining the problem of a prior art example.

符号の説明Explanation of symbols

1 モータ駆動部 11 Hブリッジ回路
12 PWM駆動回路 13 制御器
A、B、C、D スイッチング素子 RS シャント抵抗
M 直流モータ VB モータ駆動電圧
A 、*B 、*C 、*D 出力端子 2 モータ駆動電流検出部
21 アッテネータ 22 アッテネータ駆動回路
23 差動増幅器 3 加算器
a 第1分圧回路の2個の抵抗R1、R2の中点
b 第2分圧回路の2個の抵抗R3、R4の中点
IM モータ駆動電流
DESCRIPTION OF SYMBOLS 1 Motor drive part 11 H bridge circuit 12 PWM drive circuit 13 Controller A, B, C, D Switching element RS Shunt resistance M DC motor VB Motor drive voltage * A , * B , * C , * D output terminal 2 Motor drive Current detection unit 21 Attenuator 22 Attenuator drive circuit 23 Differential amplifier 3 Adder a Middle point of two resistors R1 and R2 of the first voltage divider circuit b Middle point of two resistors R3 and R4 of the second voltage divider circuit IM motor drive current

Claims (2)

シャント抵抗を用いてモータ電流を検出するパルス幅変調(PWM)駆動方式のHブリッジ回路を用いた直流モータの電流制御回路において、
シャント抵抗の両端を分圧回路より成る2個のアッテネータのそれぞれの一端に接続し、
2個のアッテネータのそれぞれの他端とシャント抵抗の何れか一方の側の間にアッテネータ駆動回路を接続し、当該アッテネータ駆動回路をこれが接続されている側のアッテネータの分圧回路の中点の電圧が常にゼロとなるように構成し、
2個のアッテネータの分圧回路それぞれの中点の電圧を差動増幅器で増幅してモータ電流を検出する、
ことを特徴とする直流モータの電流制御回路。
In a current control circuit for a DC motor using an H-bridge circuit of a pulse width modulation (PWM) drive system that detects a motor current using a shunt resistor,
Connect both ends of the shunt resistor to one end of each of the two attenuators consisting of a voltage divider,
Connect the attenuator driver circuit between the two respective other end either side of the shunt resistor of the attenuator, the voltage divider circuit of the midpoint voltage of the side of the attenuator the attenuator driver circuit which is connected Is always set to zero ,
The motor voltage is detected by amplifying the midpoint voltage of each of the voltage divider circuits of the two attenuators using a differential amplifier.
A current control circuit for a direct current motor.
請求項1に記載される直流モータの電流制御回路を具備することを特徴とする直流モータ。 A DC motor comprising the DC motor current control circuit according to claim 1 .
JP2004183401A 2004-06-22 2004-06-22 DC motor current control circuit and DC motor having this circuit Expired - Fee Related JP4564288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004183401A JP4564288B2 (en) 2004-06-22 2004-06-22 DC motor current control circuit and DC motor having this circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004183401A JP4564288B2 (en) 2004-06-22 2004-06-22 DC motor current control circuit and DC motor having this circuit

Publications (2)

Publication Number Publication Date
JP2006014392A JP2006014392A (en) 2006-01-12
JP4564288B2 true JP4564288B2 (en) 2010-10-20

Family

ID=35780962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004183401A Expired - Fee Related JP4564288B2 (en) 2004-06-22 2004-06-22 DC motor current control circuit and DC motor having this circuit

Country Status (1)

Country Link
JP (1) JP4564288B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4607075B2 (en) * 2006-09-05 2011-01-05 三菱電機株式会社 DC motor current detection device and galvano scanner system
JP2008271628A (en) * 2007-04-16 2008-11-06 Jtekt Corp Current sensing circuit
US7477082B2 (en) * 2007-05-15 2009-01-13 Freescale Semiconductor, Inc. Method and circuit for driving H-bridge that reduces switching noise
JP2016164490A (en) * 2015-03-06 2016-09-08 キヤノン株式会社 Current detector, driving device, and industrial machine
JP6570671B2 (en) 2018-02-01 2019-09-04 油研工業株式会社 Bipolar current control drive circuit for inductive load
CN110971159B (en) * 2019-11-13 2022-02-08 齐鲁工业大学 High-power speed regulation and protection circuit system of H-bridge direct-current motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115905A (en) * 1985-11-15 1987-05-27 Hitachi Micro Comput Eng Ltd Electronic switch
JP2002051540A (en) * 2000-07-27 2002-02-15 Fdk Corp Non-insulating step-down dc-dc converter
JP2002238290A (en) * 2001-02-13 2002-08-23 Mitsubishi Electric Corp Motor drive control apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115905A (en) * 1985-11-15 1987-05-27 Hitachi Micro Comput Eng Ltd Electronic switch
JP2002051540A (en) * 2000-07-27 2002-02-15 Fdk Corp Non-insulating step-down dc-dc converter
JP2002238290A (en) * 2001-02-13 2002-08-23 Mitsubishi Electric Corp Motor drive control apparatus

Also Published As

Publication number Publication date
JP2006014392A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP5230068B2 (en) Inverter device
JP6361562B2 (en) Motor control device and electric power steering device
KR20070008143A (en) Over current detection apparatus of dual motor for car
JP4765316B2 (en) Power amplifier device
JP4564288B2 (en) DC motor current control circuit and DC motor having this circuit
JP3566214B2 (en) Motor drive control device
JP5130835B2 (en) Differential amplifier circuit and current control device using the same
JP7425082B2 (en) Motor control device using power feedback loop
JP2004053528A (en) Current detecting circuit
JP4382768B2 (en) Electric power steering device
JP2004259902A (en) Semiconductor integrated circuit device
JP4106704B2 (en) Three-phase current controller
JP4543888B2 (en) Electric power steering device
JP4607075B2 (en) DC motor current detection device and galvano scanner system
JPH09321555A (en) Differential amplifier for semiconductor integrated circuit
JP2001108712A (en) Current detector
JP4628051B2 (en) Motor drive device
JP4020221B2 (en) Push-pull amplifier circuit
JP2007097333A (en) Short-circuit protecting circuit
JP3859961B2 (en) Electric power steering control device
JP3457151B2 (en) Coil drive circuit
JP2544746B2 (en) Pulse width modulated wave generator
JP2006129637A (en) Motor drive circuit and electric steering device using the same
JP2005201665A (en) Voltage detection circuit
JP2008215949A (en) Current measuring apparatus

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4564288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees