JP4106704B2 - Three-phase current controller - Google Patents

Three-phase current controller Download PDF

Info

Publication number
JP4106704B2
JP4106704B2 JP2002200683A JP2002200683A JP4106704B2 JP 4106704 B2 JP4106704 B2 JP 4106704B2 JP 2002200683 A JP2002200683 A JP 2002200683A JP 2002200683 A JP2002200683 A JP 2002200683A JP 4106704 B2 JP4106704 B2 JP 4106704B2
Authority
JP
Japan
Prior art keywords
terminal
shunt resistor
potential
differential amplifier
arm transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002200683A
Other languages
Japanese (ja)
Other versions
JP2004048863A (en
Inventor
昭浩 櫃ノ上
泰広 圓山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2002200683A priority Critical patent/JP4106704B2/en
Priority to PCT/JP2003/008622 priority patent/WO2004008620A1/en
Publication of JP2004048863A publication Critical patent/JP2004048863A/en
Application granted granted Critical
Publication of JP4106704B2 publication Critical patent/JP4106704B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は三相モータの駆動装置の電流制御装置の電流検出に関する。
【0002】
【従来の技術】
従来、三相電流制御装置は図3に示すようになっている。図において、S1〜S6はパワーMOSFETやIGBTといった半導体スイッチ素子であり、三相ブリッジを構成している。R1、R2はシャント抵抗であり、それぞれU相、V相の出力電流をシャント抵抗両端の電圧降下によって検出する。R3〜R10は分圧抵抗である。R1、R2の両端の電位は高電圧のP、N間の主回路電圧まで上昇するので、後段の差動増幅器に入力可能な電圧まで分圧する。A1、A2は差動増幅器である。それぞれ分圧されたR1、R2の両端の電位差を増幅することにより、U相電流iUとV相電流iVに比例した電圧を出力する。A3、A4は誤差増幅器である。A3はU相電流指令値と検出されたU相電流値との誤差を増幅して出力し、A4はV相電流指令値と検出されたV相電流値との誤差を増幅して出力する。
【0003】
B1はPWM変調回路である。U相、V相の誤差増幅器の出力を受け、誤差を解消するべくパルス幅変調された、主回路スイッチのドライブ信号を生成する。B2はゲートドライブ回路である。PWM変調回路によって生成されたドライブ信号を主回路の各スイッチのゲート(G1〜G6)をドライブするのに必要な増幅とレベルシフトを行う。G1〜G6のゲートドライブ信号によってオン・オフ制御されたスイッチS1〜S6は出力端の電位をPの正電位またはNの基底電位に適切にドライブすることにより、U相電流指令とV相電流指令に相当する負荷電流iU、iVを発生させる。W相の負荷電流iWついては、常にiW=−(iU+iV)の関係があるので、iU、iVを制御すれば、iWは同時に一意に制御される。この他にシャント抵抗をインバータ出力とモータとの間に入れてモータの各相に流れる電流を検出する技術として特開平11−75396、特開平10−123184がある。
【0004】
図3の従来技術において負荷電流を検出するシャント抵抗R1、R2は各相アームの出力端と負荷の間に直列に接続されているためにシャント抵抗両端の電位はスイッチがオン・オフする度に基底電位Nと高電圧の正電位Pの間を瞬間的に変移することになる。一方、シャント抵抗の抵抗値は発熱と電力の損失を最小限に抑えるためになるべく小さな値に設定される。通常、数mΩから数十mΩが一般的である。そのためシャント抵抗の両端にあらわれる電位差は非常に小さい。
【0005】
図4はシャント抵抗R1のある状態での両端の電位を示したものである。e1はR1のU相アーム側の電位であり、実線で示している。e2はR1の負荷側の電位であり、破線で示している。Vdはe1とe2の電位差であり、負荷電流によって生じた電圧降下に相当する。この図に示されるように、e1、e2の電位波形は大振幅の矩形波形に負荷電流による微小な電圧降下が重畳されたものとなる。例えば主回路電圧200VでR1の抵抗値10mΩで1Aの負荷電流を検出すると仮定すると、電圧降下は10mVとなり、スイッチングによる200Vの電圧スイングに対してわずか0.005%となる。e1、e2は分圧抵抗によって、適当に分圧され、それぞれe1’、e2’となるが、この比率は変らない。差動増幅器A1によってe1’とe2’の電位差を正確に増幅することができれば、負荷電流iUを検出できることになるが、ここで問題が生じる。
【0006】
差動増幅器A1から入力信号であるe1’、e2’を見ると、大振幅のコモンモード電圧に微小な検出すべき信号電圧が重畳していることになる。一般的に差動増幅器のCMRR即ちコモンモード電圧除去比は周波数特性を持っており、周波数が高くなるほど悪化する。従って、スイッチングの周波数が高くなるほど、誤差が増加し、電流検出精度が低下することになる。電流検出精度が低下すれば、結果として電流指令に対する出力電流の精度も低下する。この従来技術では、スイッチング周波数は数kHzから十数kHzまでが実用的な限界であると考えられる。出力電流のリップル成分を低減するため或いは高速な応答を実現するために高いスイッチング周波数と精度の高い電流制御特性を求めることは従来技術では困難である。
【0007】
【発明が解決しようとする課題】
そこで、本発明は前述の問題点を解決するためになされたものであり、その目的はスイッチング周波数が電流検出精度に影響することなく、高いスイッチング周波数と精度の高い電流検出を両立することにある。
【0008】
【課題を解決するための手段】
上記問題を解決するため、本発明は三相ブリッジによる主回路と、正側端子Pと上アームトランジスタS1との間に設けられたシャント抵抗R1、負側端子Nと前記上アームトランジスタS1と同相にある下アームトランジスタS2との間に設けられたシャント抵抗R2、前記トランジスタS1およびS2と異なる相の上アームトランジスタS3と正側端子Pとの間に設けられたシャント抵抗R3、並びに前記上アームトランジスタS3と同相にある下アームトランジスタS4と負側端子Nとの間に設けられたシャント抵抗R4で構成し、前記シャント抵抗R1〜R4によって計測された電流値に基づいて負荷電流を演算する負荷電流検出手段と電流制御手段を備えた三相電流制御装置において、
前記負荷電流検出手段は、前記シャント抵抗R1の正側端子P側端子と前記負側端子Nとの間に挿入して前記シャント抵抗R1の前記正側端子P側端子と前記負側端子Nとの間の電圧を分圧して後段の差動増幅器に入力可能な第一の分圧電位を作る第一の分圧手段と、前記シャント抵抗R1の上アームトランジスタS1側端子と前記負側端子Nとの間に挿入して前記シャント抵抗R1の前記上アームトランジスタS1側端子と前記負側端子Nとの間の電圧を分圧して後段の差動増幅器に入力可能な第二の分圧電位を作る第二の分圧手段と、前記負側端子Nを基準として、前記第一の分圧電位と前記第二の分圧電位との電位差を増幅する差動増幅器A1と、前記負側端子Nを基準として、前記シャント抵抗R2の下アームトランジスタS2側端子の電位と前記シャント抵抗R2の負側端子N側の電位との電位差を増幅する差動増幅器A2と、前記負側端子Nを基準として、前記差動増幅器A1の出力電圧と前記差動増幅器A2の出力電圧との電位差を増幅する差動増幅器A5と、前記シャント抵抗R3の正側端子P側端子と前記負側端子Nとの間に挿入して前記シャント抵抗R3の前記正側端子P側端子と前記負側端子Nとの間の電圧を分圧して後段の差動増幅器に入力可能な第三の分圧電位を作る第三の分圧手段と、前記シャント抵抗R3の上アームトランジスタS3側端子と前記負側端子Nとの間に挿入して前記シャント抵抗R3の前記上アームトランジスタS3側端子と前記負側端子Nとの間の電圧を分圧して後段の差動増幅器に入力可能な第四の分圧電位を作る第四の分圧手段と、前記負側端子Nを基準として、前記第三の分圧電位と前記第四の分圧電位との電位差を増幅する差動増幅器A3と、前記負側端子Nを基準として、前記シャント抵抗R4の下アームトランジスタS4側端子の電位と前記シャント抵抗R4の負側端子N側の電位との電位差を増幅する差動増幅器A4と、前記負側端子Nを基準として、前記差動増幅器A3の出力電圧と前記差動増幅器A4の出力電圧との電位差を増幅する差動増幅器A6と、を備えたことを特徴とするものである。
また、前記上アームトランジスタ、前記下アームトランジスタをIGBTとしたものである。
また、前記上アームトランジスタ、前記下アームトランジスタをパワーMOSFETとしたものである。
【0009】
【発明の実施の形態】
以下、本発明の実施例を図1に基づいて説明する。図において、Mは三相電流制御装置の負荷となる電動機、P、Nは三相電流制御装置の主回路部に直流電圧を供給するための端子であり、正側がP、負側がNである。三相電流制御装置は、この直流電圧をパルス幅変調することによって、可変周波の可変電圧を負荷となる電動機へ供給する。主回路部はU、V、Wの各相毎に2つの半導体素子から構成される。U相の直流電圧の正側端子PとU相の主回路部出力端子Tuとの間に設けられた上アーム側スイッチングトランジスタをS1、前記端子Tuと負側端子Nとの間に設けられた下アーム側スイッチトランジスタをS2とする。U相と同様にして、V相の上アーム側スイッチングトランジスタ、下アーム側スイッチングトランジスタを各々S3、S4とする。またW相の上アーム側スイッチングトランジスタ、下アームスイッチングトランジスタも同様にして、各々S5、S6とする。V、W相の主回路部出力端子を各々Tv、Twとする。
【0010】
U相に設けられたシャント抵抗R1は正側端子Pと上アームトランジスタS1との間に、シャント抵抗R2は負側端子Nと下アームトランジスタS2との間に構成される。U相と同様にして、V相に設けられたシャント抵抗R3は正側端子Pと上アームトランジスタS3との間に、シャント抵抗R4は負側端子Nと下アームトランジスタS4との間に構成される。
半導体スイッチS1〜S6はパワーMOSFETやIGBT等が一般に用いられ、三相ブリッジを構成している。シャント抵抗R1〜R4は、両端の電位差によってそのノードに流れる電流を検出する。R5〜R12は分圧抵抗である。R1、R3の両端の電位は高電圧のP、N間の主回路電圧まで上昇するので、後段の差動増幅器に入力可能な電圧まで分圧する。
【0011】
今、R1を流れる電流をi1、R2を流れる電流をi2、U相に流れる負荷電流をiUとすると、
iU=i1−i2・・・・・・・・・・・・・・・(1)式
となる。
従って、i1とi2をそれぞれR1とR2の両端の電位差から検出すれば、U相の負荷電流iUを求めることができる。同様に、
iV=i3−i4・・・・・・・・・・・・・・・(2)式
となるので、R3、R4の両端の電位差からV相の負荷電流iVを求めることができる。A1〜A4は差動増幅器である。それぞれシャント抵抗R1〜R4の両端の電位差からi1〜i4の電流値を検出する。
【0012】
A1〜A4の差動増幅器のゲインとR5〜R12の分圧抵抗の分圧比はi1〜i4の電流値に対するゲインが等しくなるように適切に設定される。A5、A6は差動増幅器であり、それぞれ(1)式、(2)式に示される演算を行い、iU、iVに比例した電圧を出力する。A7、A8は誤差増幅器であり、それぞれU相電流指令値、V相電流指令値と対応する相の電流検出値の誤差である偏差を増幅して出力する。B1はPWM変調回路である。U相、V相の誤差増幅器の出力を受け、誤差を解消するべくパルス幅変調された、主回路スイッチのドライブ信号を生成する。B2はゲートドライブ回路である。PWM変調回路によって生成されたドライブ信号を主回路の各スイッチのゲート(G1〜G6)をドライブするのに必要な増幅とレベルシフトを行う。G1〜G6のゲートドライブ信号によってオン・オフ制御されたスイッチS1〜S6は出力端の電位をPの正電位またはNの基底電位に適切にドライブすることにより、U相電流指令とV相電流指令に相当する負荷電流iU、iVを発生させる。W相の負荷電流iWついては、常にiW=−(iU+iV)の関係があるので、iU、iVを制御すれば、iWは同時に一意に制御される。
【0013】
ここで、図2にU相負荷電流を検出するR1、R2の両端の電位を示す。R1の主回路電源のP側に接続された端子の電位e1は常に一定の高電位の状態にある。R1のもう一方の端子の電位e2はe1に対して、R1に流れる電流i1による電圧降下Vd1の分だけ変移することになるので、ごく僅かな電位変動しか生じない。また、R2の主回路電源のN側に接続された端子の電位e4は常に一定の基底電位の状態にある。R2のもう一方の端子の電位e3はe4に対してR2に流れる電流i2による電圧降下Vd2の分だけ変移することになるので、こちらもまた僅かな電位変動しか生じない。A1の差動増幅器から入力信号であるe1’、e2’を見ると一定の直流高電圧に負荷電流による微小な電圧降下が重畳されたものとなる。即ちコモンモード電圧が一定の直流電圧になるので、スイッチング周波数によるCMRRの悪化の影響が無くなる。A2の差動増幅器についてはさらに高電圧のコモンモード電圧も生ぜず、CMRRが悪化する要因は存在しない。以上のことはV相についても全く同様である。電流検出精度がスイッチング周波数によって影響を受けないので、結果として精度の高い電流制御特性が得られる。
【0014】
【発明の効果】
本発明は三相ブリッジによる主回路と負荷電流検出手段と電流制御手段を備えた三相電流制御装置において、前記負荷電流検出手段は、正側端子Pと上アームトランジスタS1との間に設けられたシャント抵抗R1と、負側端子Nと前記上アームトランジスタS1と同相にある下アームトランジスタS2との間に設けられたシャント抵抗R2と、前記トランジスタS1、S2と異なる相の上アームトランジスタS3と正側端子Pとの間に設けられたシャント抵抗R3と、前記上アームトランジスタS3と同相にある下アームトランジスタS4と負側端子Nとの間に設けられたシャント抵抗R4と、前記シャント抵抗R1〜R4によって計測された電流値に基づいて負荷電流を演算する手段から構成されているので、検出すべき電圧に含まれるコモンモード電圧が一定の直流電圧になり、スイッチング周波数が電流検出精度に影響を与えないので、高いスイッチング周波数と精度の高い電流制御特性を両立することができる。
【図面の簡単な説明】
【図1】本発明の実施例を示す回路図
【図2】本発明の実施例の電流検出シャント抵抗の端子電位波形図
【図3】従来の三相電流制御装置を示す回路図
【図4】従来の三相電流制御装置の電流検出シャント抵抗の端子電位波形図
【符号の説明】
S1〜S6 半導体スイッチ
R1〜R4 シャント抵抗
R5〜R12 分圧抵抗
A1〜A6 差動増幅器
A7〜A8 誤差増幅器
B1 PWM変調回路
B2 ゲートドライブ回路
G1〜G6 S1〜S6のゲート
iU U相負荷電流
iV V相負荷電流
iW W相負荷電流
i1 R1を流れる電流
i2 R2を流れる電流
i3 R3を流れる電流
i4 R4を流れる電流
e1 R1のP側端子電位
e2 R1のS1側端子電位
e3 R2のS2側端子電位
e4 R2のN側端子電位
e1’ 分圧されたR1のP側端子電位
e2’ 分圧されたR1のS1側端子電位
e3’ 分圧されたR2のS2側端子電位
e4’ 分圧されたR2のN側端子電位
Vd1 R1の端子間電位差
Vd2 R2の端子間電位差
Vd R1の端子間電位差
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to current detection of a current control device of a driving device for a three-phase motor.
[0002]
[Prior art]
Conventionally, a three-phase current control device is as shown in FIG. In the figure, S1 to S6 are semiconductor switch elements such as power MOSFETs and IGBTs, and constitute a three-phase bridge. R1 and R2 are shunt resistors, which detect U-phase and V-phase output currents by voltage drops across the shunt resistors, respectively. R3 to R10 are voltage dividing resistors. Since the potential at both ends of R1 and R2 rises to the main circuit voltage between the high voltage P and N, the voltage is divided to a voltage that can be input to the subsequent differential amplifier. A1 and A2 are differential amplifiers. A voltage proportional to the U-phase current iU and the V-phase current iV is output by amplifying the potential difference between both ends of the divided R1 and R2. A3 and A4 are error amplifiers. A3 amplifies and outputs the error between the U-phase current command value and the detected U-phase current value, and A4 amplifies and outputs the error between the V-phase current command value and the detected V-phase current value.
[0003]
B1 is a PWM modulation circuit. The output of the U-phase and V-phase error amplifiers is received, and a drive signal for the main circuit switch that is pulse-width modulated to eliminate the error is generated. B2 is a gate drive circuit. The drive signal generated by the PWM modulation circuit is amplified and level-shifted to drive the gates (G1 to G6) of the switches of the main circuit. The switches S1 to S6, which are on / off controlled by the gate drive signals G1 to G6, appropriately drive the potential of the output terminal to the positive potential of P or the base potential of N, so that the U-phase current command and the V-phase current command Load currents iU and iV are generated. Since the W-phase load current iW always has a relationship of iW = − (iU + iV), if iU and iV are controlled, iW is uniquely controlled at the same time. In addition, there are JP-A-11-75396 and JP-A-10-123184 as techniques for detecting a current flowing in each phase of the motor by inserting a shunt resistor between the inverter output and the motor.
[0004]
In the prior art of FIG. 3, the shunt resistors R1 and R2 for detecting the load current are connected in series between the output end of each phase arm and the load. Therefore, the potential at both ends of the shunt resistor is changed every time the switch is turned on / off. There is an instantaneous transition between the base potential N and the high positive potential P. On the other hand, the resistance value of the shunt resistor is set as small as possible in order to minimize heat generation and power loss. Usually, several mΩ to several tens mΩ is common. Therefore, the potential difference appearing at both ends of the shunt resistor is very small.
[0005]
FIG. 4 shows the potentials at both ends when the shunt resistor R1 is present. e1 is a potential on the U-phase arm side of R1, and is indicated by a solid line. e2 is a potential on the load side of R1, and is indicated by a broken line. Vd is a potential difference between e1 and e2, and corresponds to a voltage drop caused by the load current. As shown in this figure, the potential waveforms of e1 and e2 are obtained by superimposing a small voltage drop due to a load current on a large amplitude rectangular waveform. For example, assuming that the main circuit voltage is 200 V and the load current of 1 A is detected when the resistance value of R1 is 10 mΩ, the voltage drop is 10 mV, which is only 0.005% with respect to the voltage swing of 200 V due to switching. e1 and e2 are appropriately divided by voltage dividing resistors to become e1 ′ and e2 ′, respectively, but this ratio does not change. If the potential difference between e1 ′ and e2 ′ can be accurately amplified by the differential amplifier A1, the load current iU can be detected, but this causes a problem.
[0006]
When e1 ′ and e2 ′ that are input signals from the differential amplifier A1 are viewed, a minute signal voltage to be detected is superimposed on a large-amplitude common mode voltage. In general, the CMRR, that is, the common mode voltage rejection ratio of the differential amplifier has frequency characteristics, and becomes worse as the frequency becomes higher. Therefore, as the switching frequency increases, the error increases and the current detection accuracy decreases. If the current detection accuracy decreases, as a result, the accuracy of the output current with respect to the current command also decreases. In this prior art, the switching frequency is considered to be a practical limit from several kHz to several tens of kHz. In order to reduce the ripple component of the output current or to realize a high-speed response, it is difficult to obtain a high switching frequency and a highly accurate current control characteristic with the conventional technology.
[0007]
[Problems to be solved by the invention]
Therefore, the present invention has been made to solve the above-described problems, and an object thereof is to achieve both high switching frequency and high-precision current detection without affecting the current detection accuracy. .
[0008]
[Means for Solving the Problems]
In order to solve the above problem, the present invention provides a main circuit by a three-phase bridge, a shunt resistor R1 provided between the positive terminal P and the upper arm transistor S1, a negative terminal N and the upper arm transistor S1. A shunt resistor R2 provided between the lower arm transistor S2 in the same phase, a shunt resistor R3 provided between the upper arm transistor S3 and a positive terminal P different from the transistors S1 and S2, and the upper shunt resistor R3. A shunt resistor R4 provided between the lower arm transistor S4 in phase with the arm transistor S3 and the negative terminal N is configured, and a load current is calculated based on a current value measured by the shunt resistors R1 to R4. a load current detecting means, in the three-phase current controller having a current control means,
The load current detecting means is inserted between the positive terminal P side terminal of the shunt resistor R1 and the negative terminal N, and the positive terminal P side terminal and the negative terminal N of the shunt resistor R1 A first voltage dividing means for dividing the voltage between the first and second differential amplifiers to generate a first divided potential that can be input to the differential amplifier of the subsequent stage, and the upper arm transistor S1 side terminal and the negative side terminal N of the shunt resistor R1. Between the upper arm transistor S1 side terminal and the negative side terminal N of the shunt resistor R1, and a second divided potential that can be input to the subsequent differential amplifier. A second voltage dividing means to be made; a differential amplifier A1 for amplifying a potential difference between the first divided potential and the second divided potential with reference to the negative terminal N; and the negative terminal N , The lower arm transistor S2 side end of the shunt resistor R2 The differential amplifier A2 amplifies the potential difference between the potential of the shunt resistor R2 and the potential on the negative terminal N side of the shunt resistor R2, and the output voltage of the differential amplifier A1 and the differential amplifier A2 with reference to the negative terminal N A differential amplifier A5 that amplifies the potential difference between the output voltage and the positive terminal P side of the shunt resistor R3 inserted between the positive terminal P side terminal and the negative terminal N of the shunt resistor R3. A third voltage dividing means for dividing a voltage between the terminal and the negative terminal N to generate a third divided potential that can be input to a differential amplifier at a subsequent stage, and an upper arm transistor S3 of the shunt resistor R3. Inserted between the side terminal and the negative side terminal N, the voltage between the upper arm transistor S3 side terminal of the shunt resistor R3 and the negative side terminal N can be divided and input to the differential amplifier at the subsequent stage. Fourth partial pressure hand that creates a fourth partial voltage potential A differential amplifier A3 that amplifies a potential difference between the third divided potential and the fourth divided potential with respect to the negative terminal N, and the shunt resistor with respect to the negative terminal N as a reference. A differential amplifier A4 that amplifies the potential difference between the potential of the lower arm transistor S4 side terminal of R4 and the potential of the negative side terminal N side of the shunt resistor R4, and the differential amplifier A3 using the negative side terminal N as a reference. And a differential amplifier A6 for amplifying a potential difference between the output voltage and the output voltage of the differential amplifier A4 .
The upper arm transistor and the lower arm transistor are IGBTs.
The upper arm transistor and the lower arm transistor are power MOSFETs.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to FIG. In the figure, M is an electric motor serving as a load of the three-phase current control device, P and N are terminals for supplying a DC voltage to the main circuit section of the three-phase current control device, P on the positive side and N on the negative side. . The three-phase current control device supplies a variable voltage having a variable frequency to an electric motor as a load by performing pulse width modulation on the DC voltage. The main circuit section is composed of two semiconductor elements for each of U, V, and W phases. The upper arm side switching transistor provided between the positive side terminal P of the U-phase DC voltage and the U-phase main circuit part output terminal Tu is provided between S1 and the terminal Tu and the negative side terminal N. The lower arm side switch transistor is S2. Similarly to the U phase, the upper arm side switching transistor and the lower arm side switching transistor of the V phase are denoted by S3 and S4, respectively. Similarly, the upper arm side switching transistor and the lower arm switching transistor of the W phase are denoted by S5 and S6, respectively. The V and W-phase main circuit unit output terminals are denoted by Tv and Tw, respectively.
[0010]
The shunt resistor R1 provided in the U phase is configured between the positive terminal P and the upper arm transistor S1, and the shunt resistor R2 is configured between the negative terminal N and the lower arm transistor S2. Similarly to the U phase, the shunt resistor R3 provided in the V phase is configured between the positive terminal P and the upper arm transistor S3, and the shunt resistor R4 is configured between the negative terminal N and the lower arm transistor S4. The
As the semiconductor switches S1 to S6, power MOSFETs, IGBTs and the like are generally used, and constitute a three-phase bridge. The shunt resistors R1 to R4 detect a current flowing through the node based on a potential difference between both ends. R5 to R12 are voltage dividing resistors. Since the potential at both ends of R1 and R3 rises to the main circuit voltage between the high voltage P and N, the voltage is divided to a voltage that can be input to the subsequent differential amplifier.
[0011]
Assuming that the current flowing through R1 is i1, the current flowing through R2 is i2, and the load current flowing through the U phase is iU,
iU = i1-i2 (1).
Therefore, if i1 and i2 are detected from the potential difference between both ends of R1 and R2, respectively, the U-phase load current iU can be obtained. Similarly,
Since iV = i3-i4 (2), the V-phase load current iV can be obtained from the potential difference between both ends of R3 and R4. A1 to A4 are differential amplifiers. Current values i1 to i4 are detected from potential differences between both ends of the shunt resistors R1 to R4, respectively.
[0012]
The gain of the differential amplifiers A1 to A4 and the voltage dividing ratio of the voltage dividing resistors R5 to R12 are appropriately set so that the gains for the current values i1 to i4 are equal. A5 and A6 are differential amplifiers that perform the calculations shown in equations (1) and (2), respectively, and output voltages proportional to iU and iV. A7 and A8 are error amplifiers, which amplify and output deviations that are errors in the detected current values of the phases corresponding to the U-phase current command value and the V-phase current command value, respectively. B1 is a PWM modulation circuit. The output of the U-phase and V-phase error amplifiers is received, and a drive signal for the main circuit switch that is pulse-width modulated to eliminate the error is generated. B2 is a gate drive circuit. The drive signal generated by the PWM modulation circuit is amplified and level-shifted to drive the gates (G1 to G6) of the switches of the main circuit. The switches S1 to S6, which are on / off controlled by the gate drive signals G1 to G6, appropriately drive the potential of the output terminal to the positive potential of P or the base potential of N, so that the U-phase current command and the V-phase current command Load currents iU and iV are generated. Since the W-phase load current iW always has a relationship of iW = − (iU + iV), if iU and iV are controlled, iW is uniquely controlled at the same time.
[0013]
Here, FIG. 2 shows potentials at both ends of R1 and R2 for detecting the U-phase load current. The potential e1 of the terminal connected to the P side of the main circuit power supply of R1 is always in a constant high potential state. Since the potential e2 of the other terminal of R1 is shifted by e1 by the voltage drop Vd1 due to the current i1 flowing through R1, only a slight potential fluctuation occurs. Further, the potential e4 of the terminal connected to the N side of the main circuit power supply of R2 is always at a constant base potential. Since the potential e3 of the other terminal of R2 is shifted by the amount of the voltage drop Vd2 due to the current i2 flowing through R2 with respect to e4, this also causes a slight potential fluctuation. When the input signals e1 ′ and e2 ′ are viewed from the differential amplifier A1, a small voltage drop due to the load current is superimposed on a constant DC high voltage. That is, since the common mode voltage is a constant DC voltage, the influence of CMRR deterioration due to the switching frequency is eliminated. The A2 differential amplifier does not generate a higher common mode voltage, and there is no cause for CMRR deterioration. The above is also true for the V phase. Since the current detection accuracy is not affected by the switching frequency, a highly accurate current control characteristic can be obtained as a result.
[0014]
【The invention's effect】
The present invention is a three-phase current control device comprising a main circuit by a three-phase bridge, a load current detection means and a current control means, wherein the load current detection means is provided between the positive terminal P and the upper arm transistor S1. A shunt resistor R1, a shunt resistor R2 provided between the negative terminal N and the lower arm transistor S2 in phase with the upper arm transistor S1, and an upper arm transistor S3 having a phase different from that of the transistors S1 and S2. A shunt resistor R3 provided between the positive terminal P, a shunt resistor R4 provided between the lower arm transistor S4 and the negative terminal N in phase with the upper arm transistor S3, and the shunt resistor R1. Since it is composed of means for calculating the load current based on the current value measured by R4, it is included in the voltage to be detected Common mode voltage is a constant DC voltage, the switching frequency does not affect the current detection accuracy, it is possible to achieve both high current control characteristics of high switching frequency and accuracy.
[Brief description of the drawings]
FIG. 1 is a circuit diagram illustrating an embodiment of the present invention. FIG. 2 is a terminal potential waveform diagram of a current detection shunt resistor according to an embodiment of the present invention. FIG. 3 is a circuit diagram illustrating a conventional three-phase current control apparatus. ] Terminal potential waveform diagram of current detection shunt resistor of conventional three-phase current controller [Explanation of symbols]
S1 to S6 Semiconductor switches R1 to R4 Shunt resistors R5 to R12 Voltage dividing resistors A1 to A6 Differential amplifiers A7 to A8 Error amplifier B1 PWM modulation circuit B2 Gate drive circuits G1 to G6 S1 to S6 gates iU U-phase load current iV V Phase load current iW current W2 phase load current i1 current R2 flowing through R1 current i3 flowing through R2 current i4 flowing through R3 current e1 flowing through R4 P1 terminal potential e2 of R1 S1 terminal potential e3 of R1 S2 terminal potential e4 of R2 R2 N-side terminal potential e1 'divided R1 P-side terminal potential e2' divided R1 S1-side terminal potential e3 'divided R2 S2-side terminal potential e4' divided R2 N side terminal potential Vd1 R1 terminal potential difference Vd2 R2 terminal potential difference Vd R1 terminal potential difference

Claims (3)

三相ブリッジによる主回路と、正側端子Pと上アームトランジスタS1との間に設けられたシャント抵抗R1、負側端子Nと前記上アームトランジスタS1と同相にある下アームトランジスタS2との間に設けられたシャント抵抗R2、前記トランジスタS1およびS2と異なる相の上アームトランジスタS3と正側端子Pとの間に設けられたシャント抵抗R3、並びに前記上アームトランジスタS3と同相にある下アームトランジスタS4と負側端子Nとの間に設けられたシャント抵抗R4で構成し、前記シャント抵抗R1〜R4によって計測された電流値に基づいて負荷電流を演算する負荷電流検出手段と電流制御手段を備えた三相電流制御装置において、
前記負荷電流検出手段は、前記シャント抵抗R1の正側端子P側端子と前記負側端子Nとの間に挿入して前記シャント抵抗R1の前記正側端子P側端子と前記負側端子Nとの間の電圧を分圧して後段の差動増幅器に入力可能な第一の分圧電位を作る第一の分圧手段と、
前記シャント抵抗R1の上アームトランジスタS1側端子と前記負側端子Nとの間に挿入して前記シャント抵抗R1の前記上アームトランジスタS1側端子と前記負側端子Nとの間の電圧を分圧して後段の差動増幅器に入力可能な第二の分圧電位を作る第二の分圧手段と、
前記負側端子Nを基準として、前記第一の分圧電位と前記第二の分圧電位との電位差を増幅する差動増幅器A1と、
前記負側端子Nを基準として、前記シャント抵抗R2の下アームトランジスタS2側端子の電位と前記シャント抵抗R2の負側端子N側の電位との電位差を増幅する差動増幅器A2と、
前記負側端子Nを基準として、前記差動増幅器A1の出力電圧と前記差動増幅器A2の出力電圧との電位差を増幅する差動増幅器A5と、
前記シャント抵抗R3の正側端子P側端子と前記負側端子Nとの間に挿入して前記シャント抵抗R3の前記正側端子P側端子と前記負側端子Nとの間の電圧を分圧して後段の差動増幅器に入力可能な第三の分圧電位を作る第三の分圧手段と、
前記シャント抵抗R3の上アームトランジスタS3側端子と前記負側端子Nとの間に挿入して前記シャント抵抗R3の前記上アームトランジスタS3側端子と前記負側端子Nとの間の電圧を分圧して後段の差動増幅器に入力可能な第四の分圧電位を作る第四の分圧手段と、
前記負側端子Nを基準として、前記第三の分圧電位と前記第四の分圧電位との電位差を増幅する差動増幅器A3と、
前記負側端子Nを基準として、前記シャント抵抗R4の下アームトランジスタS4側端子の電位と前記シャント抵抗R4の負側端子N側の電位との電位差を増幅する差動増幅器A4と、
前記負側端子Nを基準として、前記差動増幅器A3の出力電圧と前記差動増幅器A4の出力電圧との電位差を増幅する差動増幅器A6と、を備えたことを特徴とする三相電流制御装置。
Between the main circuit of the three-phase bridge, the shunt resistor R1 provided between the positive terminal P and the upper arm transistor S1, the negative terminal N and the lower arm transistor S2 in phase with the upper arm transistor S1. A shunt resistor R2 provided, a shunt resistor R3 provided between the upper arm transistor S3 and the positive terminal P different in phase from the transistors S1 and S2, and a lower arm transistor S4 in phase with the upper arm transistor S3 and provided is constituted by a shunt resistor R4 between the negative terminal N, the load current detection means for calculating the load current on the basis of the current value measured by the shunt resistor R1 to R4, and a current control means In the provided three-phase current control device,
The load current detecting means is inserted between the positive terminal P side terminal of the shunt resistor R1 and the negative terminal N, and the positive terminal P side terminal and the negative terminal N of the shunt resistor R1 A first voltage dividing means that divides the voltage between the first and second voltages to generate a first divided potential that can be input to a differential amplifier at a subsequent stage;
Inserted between the upper arm transistor S1 side terminal and the negative terminal N of the shunt resistor R1, and divides the voltage between the upper arm transistor S1 side terminal and the negative terminal N of the shunt resistor R1. A second voltage dividing means for generating a second divided potential that can be input to the differential amplifier at the subsequent stage;
A differential amplifier A1 that amplifies a potential difference between the first divided potential and the second divided potential with respect to the negative terminal N;
A differential amplifier A2 for amplifying a potential difference between a potential of the lower arm transistor S2 side terminal of the shunt resistor R2 and a potential of the negative side terminal N side of the shunt resistor R2 with respect to the negative side terminal N;
A differential amplifier A5 that amplifies a potential difference between an output voltage of the differential amplifier A1 and an output voltage of the differential amplifier A2 with respect to the negative terminal N;
Inserted between the positive terminal P side terminal and the negative terminal N of the shunt resistor R3 to divide the voltage between the positive terminal P side terminal and the negative terminal N of the shunt resistor R3. A third voltage dividing means for generating a third divided potential that can be input to the differential amplifier at the subsequent stage;
Inserted between the upper arm transistor S3 side terminal and the negative terminal N of the shunt resistor R3, and divides the voltage between the upper arm transistor S3 side terminal and the negative terminal N of the shunt resistor R3. A fourth voltage dividing means for generating a fourth divided potential that can be input to the differential amplifier at the subsequent stage;
A differential amplifier A3 for amplifying a potential difference between the third divided potential and the fourth divided potential with respect to the negative terminal N;
A differential amplifier A4 for amplifying a potential difference between a potential of the lower arm transistor S4 side terminal of the shunt resistor R4 and a potential of the negative side terminal N side of the shunt resistor R4 with respect to the negative side terminal N;
A three-phase current control comprising: a differential amplifier A6 that amplifies a potential difference between an output voltage of the differential amplifier A3 and an output voltage of the differential amplifier A4 with respect to the negative terminal N. apparatus.
前記上アームトランジスタ、前記下アームトランジスタがIGBTである請求項1記載の三相電流制御装置。  The three-phase current control device according to claim 1, wherein the upper arm transistor and the lower arm transistor are IGBTs. 前記上アームトランジスタ、前記下アームトランジスタがパワーMOSFETである請求項1記載の三相電流制御装置。  The three-phase current control device according to claim 1, wherein the upper arm transistor and the lower arm transistor are power MOSFETs.
JP2002200683A 2002-07-10 2002-07-10 Three-phase current controller Expired - Fee Related JP4106704B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002200683A JP4106704B2 (en) 2002-07-10 2002-07-10 Three-phase current controller
PCT/JP2003/008622 WO2004008620A1 (en) 2002-07-10 2003-07-07 Three-phase current control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002200683A JP4106704B2 (en) 2002-07-10 2002-07-10 Three-phase current controller

Publications (2)

Publication Number Publication Date
JP2004048863A JP2004048863A (en) 2004-02-12
JP4106704B2 true JP4106704B2 (en) 2008-06-25

Family

ID=30112528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002200683A Expired - Fee Related JP4106704B2 (en) 2002-07-10 2002-07-10 Three-phase current controller

Country Status (2)

Country Link
JP (1) JP4106704B2 (en)
WO (1) WO2004008620A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078599A (en) * 2005-09-16 2007-03-29 Hitachi Ltd Resistor for current detection and controller
JP4607075B2 (en) * 2006-09-05 2011-01-05 三菱電機株式会社 DC motor current detection device and galvano scanner system
WO2011003220A1 (en) * 2009-07-09 2011-01-13 Texas Instruments Incorporated Inverter current measurement using shunt resistor
JP2013172528A (en) * 2012-02-20 2013-09-02 Toyota Motor Corp Voltage conversion device
JP2016164490A (en) * 2015-03-06 2016-09-08 キヤノン株式会社 Current detector, driving device, and industrial machine
CN104820124A (en) * 2015-03-20 2015-08-05 国家电网公司 Three-phase harmonic wave current detection method based on synchronization rotation mean value theory

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166247A (en) * 1998-12-01 2000-06-16 Hitachi Ltd Inverter device
JP2002204581A (en) * 2001-01-09 2002-07-19 Fuji Electric Co Ltd Power semiconductor module

Also Published As

Publication number Publication date
WO2004008620A1 (en) 2004-01-22
JP2004048863A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
JP3681374B2 (en) Current detection device and PWM inverter using the same
US5204594A (en) Circuit for providing a signal proportional to the average current flowing through coils of a motor operated in both linear and PWM modes
US8378745B2 (en) Current sensing
JP4396539B2 (en) Rare short detection circuit and abnormality monitoring signal generation circuit
EP2066021A2 (en) Controller of Multi-Phase Electric Motor
WO2005085879A1 (en) Current detecting circuit, load drive, and storage
JP2009207242A (en) Power supply device
JP4492397B2 (en) Three-phase voltage type inverter device
CN102025317A (en) Motor drive device
CN106851474A (en) D audio frequency amplifier and corresponding read method including the circuit for reading the electric current supplied to load from amplifier
JP4034279B2 (en) Current detection circuit, load drive circuit, and storage device
JP4765316B2 (en) Power amplifier device
JPWO2014045380A1 (en) Power converter
JP4106704B2 (en) Three-phase current controller
JP6958234B2 (en) Current detector
IT201600122087A1 (en) RINGING PEAK DETECTION MODULE FOR A PILOT CIRCUIT OF AN INDUCTIVE ELECTRIC LOAD, ITS RELATED SYSTEM AND INTEGRATED CIRCUIT
US8842455B2 (en) Electric-power conversion apparatus
JPH10290593A (en) Drive circuit for sensorless brushless motor
JP4246679B2 (en) Current detector
JP3733986B2 (en) Output current direction discrimination method and inverter using the method
JP4564288B2 (en) DC motor current control circuit and DC motor having this circuit
JP5611181B2 (en) Motor control device
JP4888714B2 (en) Voltage applied current measurement circuit
JP2010165116A (en) Current detecting circuit
JP2005210871A (en) Motor drive controller and method of detecting motor current

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees