JP4564081B2 - Heating apparatus, substrate processing apparatus, and semiconductor device manufacturing method - Google Patents

Heating apparatus, substrate processing apparatus, and semiconductor device manufacturing method Download PDF

Info

Publication number
JP4564081B2
JP4564081B2 JP2008154369A JP2008154369A JP4564081B2 JP 4564081 B2 JP4564081 B2 JP 4564081B2 JP 2008154369 A JP2008154369 A JP 2008154369A JP 2008154369 A JP2008154369 A JP 2008154369A JP 4564081 B2 JP4564081 B2 JP 4564081B2
Authority
JP
Japan
Prior art keywords
reflectors
heating
heating element
substrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008154369A
Other languages
Japanese (ja)
Other versions
JP2009033116A (en
Inventor
晃 林田
正昭 上野
真一 島田
雅士 杉下
敏光 宮田
公男 北村
健司 田中
淳一 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Teitokusha Co Ltd
Original Assignee
Hitachi Kokusai Electric Inc
Teitokusha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc, Teitokusha Co Ltd filed Critical Hitachi Kokusai Electric Inc
Priority to JP2008154369A priority Critical patent/JP4564081B2/en
Priority to KR1020080059568A priority patent/KR101001331B1/en
Priority to US12/213,823 priority patent/US8116618B2/en
Publication of JP2009033116A publication Critical patent/JP2009033116A/en
Application granted granted Critical
Publication of JP4564081B2 publication Critical patent/JP4564081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、半導体製造技術、特に、被処理基板を処理室に収容して発熱体により加熱した状態で処理を施す熱処理技術に関し、加熱装置、基板処理装置及び半導体装置の製造方法に関する。   The present invention relates to a semiconductor manufacturing technique, and more particularly, to a heat treatment technique for performing processing in a state where a substrate to be processed is accommodated in a processing chamber and heated by a heating element, and relates to a heating apparatus, a substrate processing apparatus, and a semiconductor device manufacturing method.

図1に従来の加熱装置を用いた処理炉500の概略断面図を示す。加熱装置は、略円筒形状で上端が蓋された金属製のケーシング501と、このケーシング501の内側に設けられた略円筒形状の断熱材502と、この断熱材502の内壁に設けられた発熱線503とを有する。この加熱装置の内側に、均熱管504及び処理室を形成する反応管505が設けられ、この反応管505中でウエハ506に所望の熱処理が施される。   FIG. 1 shows a schematic cross-sectional view of a processing furnace 500 using a conventional heating apparatus. The heating device includes a metal casing 501 having a substantially cylindrical shape with an upper end covered, a substantially cylindrical heat insulating material 502 provided inside the casing 501, and a heating wire provided on the inner wall of the heat insulating material 502. 503. A soaking tube 504 and a reaction tube 505 forming a processing chamber are provided inside the heating device, and a desired heat treatment is performed on the wafer 506 in the reaction tube 505.

近年、メタル配線プロセス(Cuアニールなど)で、プロセス温度の低温化(300℃以下)と、さらなるスループット向上が求められている。よって、ウエハの昇降温時間の短縮が重要とされている。しかし、かかる要請に図1に記載の如き加熱装置で応じると、現状のヒータは中高温領域で使用できるように大容量の断熱材を持っているため、昇降温特性が悪く、スループットの向上が困難であった。したがって、熱容量が少なく、高応答性の加熱装置が必要とされている。   In recent years, in the metal wiring process (Cu annealing or the like), a reduction in process temperature (300 ° C. or less) and further improvement in throughput are required. Therefore, it is important to shorten the temperature raising / lowering time of the wafer. However, if the heating device as shown in FIG. 1 responds to such a request, the current heater has a large-capacity heat insulating material so that it can be used in the middle and high temperature range, so the temperature rise / fall characteristics are poor and the throughput is improved. It was difficult. Therefore, there is a need for a highly responsive heating device with a small heat capacity.

また、特許文献1に係る基板処理装置では、発熱体に複数のピンを貫通させ、このピンから加熱空間に冷却ガスを送り込むことで、急激な冷却を可能としている。そして、冷却特性に着目することで、加熱装置の応答性を向上させている。   Further, in the substrate processing apparatus according to Patent Document 1, rapid cooling is enabled by passing a plurality of pins through a heating element and feeding a cooling gas from the pins into the heating space. And the responsiveness of a heating apparatus is improved by paying attention to a cooling characteristic.

近年、ウエハ処理の微細化に伴い、ウエハの面内偏差(ウエハ面内における温度偏差や膜厚偏差等)をさらに少なくする必要がある。そこで、特許文献2では、処理室の上端部に反射鏡を設け、周部ヒータの輻射熱線をウエハの中央部に集光させることで、面内偏差を低減させている。   In recent years, with the miniaturization of wafer processing, it is necessary to further reduce the in-plane deviation (temperature deviation, film thickness deviation, etc. in the wafer plane) of the wafer. Therefore, in Patent Document 2, an in-plane deviation is reduced by providing a reflecting mirror at the upper end of the processing chamber and condensing the radiant heat rays of the peripheral heater at the center of the wafer.

しかし、反射鏡の姿勢が固定されており、ウエハ中央部の温度調整はウエハ周部と独立に調整できず、面内偏差の問題は解消されていない。   However, the attitude of the reflecting mirror is fixed, and the temperature adjustment at the center of the wafer cannot be adjusted independently from the peripheral portion of the wafer, and the problem of in-plane deviation has not been solved.

特許文献3に係る熱処理装置では、基板より上方に基板周縁部に設けたヒータからの放射熱を基板に向けて反射させる反射体を移動可能に設けている。しかし、反射体を基板に対し上下動させて熱処理温度を調節しているに過ぎず、面内偏差の問題を解消するものではない。   In the heat treatment apparatus according to Patent Literature 3, a reflector that reflects the radiant heat from the heater provided at the peripheral edge of the substrate toward the substrate is movably provided above the substrate. However, the reflector is merely moved up and down with respect to the substrate to adjust the heat treatment temperature, and does not solve the problem of in-plane deviation.

特許文献4に記載の熱処理装置では、基板と対向する位置に紫外線ランプを設置し、基板と該ランプとの間に反射体を移動又は反射面の角度を変更可能に複数設けて、基板上への紫外線を均一に照射している。しかし、面内偏差に関して開示も示唆もされていない。   In the heat treatment apparatus described in Patent Document 4, an ultraviolet lamp is installed at a position facing the substrate, and a plurality of reflectors are provided between the substrate and the lamp so that the reflector can be moved or the angle of the reflecting surface can be changed. Are uniformly irradiated. However, there is no disclosure or suggestion regarding in-plane deviation.

また、特許文献5に記載の熱処理装置では、最上段の基板の周縁部と基板の中心部の温度を測定可能な温度センサを設け、この温度センサの情報により異なる位置に複数の加熱手段を制御している。しかし、複数の加熱手段の制御は煩雑となり、面内偏差を十分に解消させるに至っていない。
WO2007/023855 特開2005−32883号 特開平7−321059号 特開2006−114848号 特開2004−119510号
In addition, in the heat treatment apparatus described in Patent Document 5, a temperature sensor capable of measuring the temperatures of the peripheral portion of the uppermost substrate and the central portion of the substrate is provided, and a plurality of heating means are controlled at different positions based on information of the temperature sensor. is doing. However, the control of the plurality of heating means is complicated, and the in-plane deviation has not been sufficiently eliminated.
WO2007 / 023855 JP 2005-32883 A JP 7-321059 A JP 2006-114848 A JP 2004-119510 A

かかる従来の実情に鑑みて、本発明は、処理される基板の面内偏差をさらに低減させることを目的とする。   In view of such a conventional situation, an object of the present invention is to further reduce an in-plane deviation of a substrate to be processed.

上記目的を達成するため、本発明に係る加熱装置は、加熱空間を囲う壁体と、該壁体内部で筒状に配置された発熱体と、前記発熱体の筒状端部で、前記加熱空間の中心部から前記加熱空間の周縁部までを覆うように配置され、該発熱体からの熱線を反射する複数の反射体と、該複数の反射体それぞれの前記中心部に位置する一端側に接続され該複数の反射体を可動させる可動部と、少なくとも前記複数の反射体それぞれの他端側に接続され、前記可動部が動作する際に前記反射体の動きを支軸として規制する複数の支軸体とを備えたことにある。   In order to achieve the above object, a heating device according to the present invention includes a wall body surrounding a heating space, a heating element disposed in a cylindrical shape inside the wall body, and a cylindrical end portion of the heating element. A plurality of reflectors that are arranged so as to cover from the center of the space to the peripheral edge of the heating space, and that reflect the heat rays from the heating element, and at one end located at the center of each of the plurality of reflectors A movable part connected to move the plurality of reflectors, and connected to at least the other end side of each of the plurality of reflectors, and a plurality of parts that regulate the movement of the reflectors as support axes when the movable part operates. It has a support shaft body.

上記本発明に係る基板処理装置の特徴によれば、面内偏差に基づき移動機構により反射状態を変更させるので、さらに基板の面内偏差を低減させることが可能になった。   According to the feature of the substrate processing apparatus according to the present invention, since the reflection state is changed by the moving mechanism based on the in-plane deviation, the in-plane deviation of the substrate can be further reduced.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.

次に、適宜添付図面を参照しながら、本発明をさらに詳しく説明する。
以下、図面を参照しつつ本発明を実施する為の最良の形態としての第一の実施形態を説明する。
Next, the present invention will be described in more detail with reference to the accompanying drawings as appropriate.
Hereinafter, a first embodiment as the best mode for carrying out the present invention will be described with reference to the drawings.

図2〜7に示すように、基板処理装置1は、大略、処理室308を形成する反応容器309と、この反応容器の外周に配置された加熱装置3と、主制御装置4とを備えている。   As shown in FIGS. 2 to 7, the substrate processing apparatus 1 generally includes a reaction vessel 309 that forms a processing chamber 308, a heating device 3 disposed on the outer periphery of the reaction vessel, and a main controller 4. Yes.

加熱装置3は、大略、天井部10、円筒状の中間部11、下部12及び端子ケース13を有し、中間部11には発熱体20が支持されている。天井部10には下面と側面に開口するエルボ状の排気導路81が形成され、さらにその下部に反射装置90を有している。中間部11は、発熱体20を支持するインナシェル50を絶縁状態でアウタシェル60により包囲し、さらに外周を化粧パネル70で包囲している。インナシェル50とアウタシェル60とは導電性の材料から構成されており、例えば、ステンレス材等の金属材から構成されている。   The heating device 3 generally includes a ceiling portion 10, a cylindrical intermediate portion 11, a lower portion 12, and a terminal case 13, and a heating element 20 is supported on the intermediate portion 11. The ceiling portion 10 is formed with an elbow-shaped exhaust conduit 81 that opens to the lower surface and the side surface, and further includes a reflection device 90 at the lower portion thereof. The intermediate portion 11 surrounds the inner shell 50 that supports the heating element 20 with the outer shell 60 in an insulated state, and further surrounds the outer periphery with a decorative panel 70. The inner shell 50 and the outer shell 60 are made of a conductive material, for example, a metal material such as a stainless steel material.

中間部11の上部と吸気アタッチメント7xとの間には冷却ガス導入ダクト7yが取り付けられる。吸気アタッチメント7xの開口には開閉バルブ7aとして例えばバタフライバルブが装着され、流路が開閉できるようになっている。吸気アタッチメント7xは冷却ガス供給ライン7に接続される。インナシェル50及びアウタシェル60の間に円筒状の冷却媒体流通通路としての気道14が形成される。冷却ガス導入ダクト7yは環状に略均等に配置された複数のパイプ61により気道14と連通している。一方、排気導路81には強制排気を行う排気ブロア8aを備えた強制排気ライン8が接続され、加熱装置3の内部空間である加熱空間の強制排気が行われる。そして、冷却ガス供給ライン7から導入された空気若しくは不活性ガス等のガスは気道14及び後述の複数の碍子孔から加熱空間18に冷却ガスとして供給され、強制排気ライン8から排気される。   A cooling gas introduction duct 7y is attached between the upper part of the intermediate part 11 and the intake attachment 7x. For example, a butterfly valve is attached as an opening / closing valve 7a to the opening of the intake attachment 7x so that the flow path can be opened and closed. The intake attachment 7 x is connected to the cooling gas supply line 7. An air passage 14 is formed between the inner shell 50 and the outer shell 60 as a cylindrical cooling medium circulation passage. The cooling gas introduction duct 7y communicates with the airway 14 by a plurality of pipes 61 that are arranged substantially equally in an annular shape. On the other hand, a forced exhaust line 8 having an exhaust blower 8 a that performs forced exhaust is connected to the exhaust conduit 81, and forced exhaust of a heating space that is an internal space of the heating device 3 is performed. A gas such as air or an inert gas introduced from the cooling gas supply line 7 is supplied as a cooling gas to the heating space 18 from the airway 14 and a plurality of insulator holes described later, and is exhausted from the forced exhaust line 8.

反応容器309は、加熱空間18に順次同心に配置される均熱管315及び反応管310を備え、この反応管310内に処理室308が形成される。この処理室308にはウェーハ305を水平多段に保持するボート300が収納される。このボート300は図示しないボートエレベータにより、処理室内308へ装入、引出し可能である。   The reaction vessel 309 includes a soaking tube 315 and a reaction tube 310 that are sequentially arranged concentrically in the heating space 18, and a processing chamber 308 is formed in the reaction tube 310. The processing chamber 308 stores a boat 300 that holds wafers 305 in multiple horizontal stages. The boat 300 can be loaded into and pulled out from the processing chamber 308 by a boat elevator (not shown).

反応管310内には反応ガス導入管5x及び排気管6xが連通される。反応ガス導入管5xには流量制御器5aが設けられ、排気管6xには圧力制御器6aが設けられる。反応ガスが所定流量で導入されると共に前記反応管310内が所定圧力に維持される様に、排出口6yから内部ガスが排気され、排気管6xを通じて処理室外に排出される。   In the reaction tube 310, a reaction gas introduction tube 5x and an exhaust tube 6x are communicated. The reaction gas introduction pipe 5x is provided with a flow rate controller 5a, and the exhaust pipe 6x is provided with a pressure controller 6a. The reaction gas is introduced at a predetermined flow rate, and the internal gas is exhausted from the exhaust port 6y so that the inside of the reaction tube 310 is maintained at a predetermined pressure, and is discharged out of the processing chamber through the exhaust pipe 6x.

他の冷却ガス供給ライン5yは、均熱管315と反応管310との間に形成される均熱管内空間317に連通される。前記冷却ガス供給ライン5yには流量制御器5bが設けられる。また、吸気アタッチメント7xには開閉バルブ7aが設けられる。強制排気ライン8には排気装置としての排気ブロア8aが設けられる。すなわち、均熱管内空間317と加熱空間18の双方に対して冷却ガスを適宜導入・調整することが可能である。   The other cooling gas supply line 5 y is communicated with a soaking tube inner space 317 formed between the soaking tube 315 and the reaction tube 310. The cooling gas supply line 5y is provided with a flow rate controller 5b. The intake attachment 7x is provided with an open / close valve 7a. The forced exhaust line 8 is provided with an exhaust blower 8a as an exhaust device. That is, it is possible to introduce and adjust the cooling gas as appropriate to both the soaking tube inner space 317 and the heating space 18.

発熱体20は中間部11の円筒の軸心方向に対し、所要のゾーンZ1〜Z5に複数段に区分けされ、ゾーン制御が可能となっている。各ゾーンには各ゾーンの加熱温度を検出する温度検出器が設けられている。なお、発熱体20は各ゾーンそれぞれの成形パターンを同じにすることにより、発熱量を各ゾーンとも均一にする様にしてもよい。   The heating element 20 is divided into a plurality of zones Z1 to Z5 as required with respect to the axial direction of the cylinder of the intermediate portion 11, and zone control is possible. Each zone is provided with a temperature detector that detects the heating temperature of each zone. Note that the heating element 20 may have the same calorific value in each zone by making the molding pattern of each zone the same.

基板処理装置1の各部は主制御装置4によって制御され、例えば、反応管310内で処理されるウェーハ305の処理状態は、主制御装置4によって制御される。この主制御装置4は、温度モニタ部4a、加熱制御部(加熱制御装置)4b、反射制御部4c、第一流量制御部4d、反応管310内の圧力を制御する圧力制御部4e、第二流量制御部4f、排気制御部4g及び前記ボートエレベータ等の機構部を制御する駆動制御部4hを備えている。   Each part of the substrate processing apparatus 1 is controlled by the main controller 4. For example, the processing state of the wafer 305 processed in the reaction tube 310 is controlled by the main controller 4. The main controller 4 includes a temperature monitor 4a, a heating controller (heating controller) 4b, a reflection controller 4c, a first flow controller 4d, a pressure controller 4e that controls the pressure in the reaction tube 310, and a second A flow control unit 4f, an exhaust control unit 4g, and a drive control unit 4h for controlling mechanical units such as the boat elevator are provided.

温度モニタ部4aは第一〜第三温度検出器TC1〜TC3の温度を検出する。ここで、第一温度検出器TC1は発熱体20近傍で各ゾーンZ1〜Z5毎に設けられる。第二温度検出器TC2は反応管310内の周部における前記各ゾーンZ1〜Z5毎に設けられる。さらに、第3温度検出器TC3は反応管310より上方若しくは反応管310の上部中央を含む範囲に設けられている。   The temperature monitor unit 4a detects the temperatures of the first to third temperature detectors TC1 to TC3. Here, the first temperature detector TC1 is provided for each of the zones Z1 to Z5 in the vicinity of the heating element 20. The second temperature detector TC <b> 2 is provided for each of the zones Z <b> 1 to Z <b> 5 in the peripheral portion in the reaction tube 310. Further, the third temperature detector TC3 is provided above the reaction tube 310 or in a range including the upper center of the reaction tube 310.

加熱制御部4bは、温度モニタ部4aの検出結果に基づき各ゾーンZ1〜Z5の発熱体20の発熱量を制御する。また、反射制御部4cは、温度モニタ部4aの検出結果に基づき反射装置90の駆動装置としてのアクチュエータ99を制御する。そして、下面が鏡面仕上げされた反射体(リフレクタ)91を適宜傾斜させて発熱体20から反応管310の上部中央に対する集光度を変更し、同部分の温度制御を行う。   The heating control unit 4b controls the amount of heat generated by the heating elements 20 in the zones Z1 to Z5 based on the detection result of the temperature monitoring unit 4a. Further, the reflection control unit 4c controls the actuator 99 as a driving device of the reflection device 90 based on the detection result of the temperature monitor unit 4a. Then, the reflector (reflector) 91 having a mirror-finished lower surface is appropriately tilted to change the light collection degree from the heating element 20 to the upper center of the reaction tube 310, and the temperature of the same part is controlled.

第一流量制御部4dは流量制御器5aを制御し、圧力制御部4eは圧力制御器6aを制御し、反応ガスの導入と圧力を制御する。また、第二流量制御部4fは流量制御器5bを制御し、排気制御部4gは開閉バルブ7a及び排気ブロア8aを制御し、冷却ガスの導入と排出とを制御する。   The first flow rate control unit 4d controls the flow rate controller 5a, and the pressure control unit 4e controls the pressure controller 6a to control the introduction of the reaction gas and the pressure. The second flow rate control unit 4f controls the flow rate controller 5b, and the exhaust control unit 4g controls the opening / closing valve 7a and the exhaust blower 8a to control introduction and discharge of the cooling gas.

図4に図2中のA部の拡大図を示す。発熱体(ヒータ素線)20は、アルミナ等の絶縁素材としての吊り碍子30によりインナシェル50に固定されている。前記発熱体20には急速加熱が可能である発熱材料、例えばFe−Al−Cr合金が用いられ、発熱表面積が大きくなる様に、断面は平板形状等の形状が採用され、面状発熱体として構成されている。発熱体20は上下に蛇行状の折返部21,22を有しており、中間部は上折返部21と下折返部22とをそれぞれ半ピッチずらして接続する素線部23と、各素線部23間に位置する隙間24から構成されている。また、発熱体20の上部は吊り碍子30に保持される折曲部20aとして折り曲げ加工がなされている。インナシェル50内面は鏡面仕上げされており、発熱体の素線部23裏面から輻射される熱線を前記内面で反射させ、隙間24から加熱空間18に向かって放射する。   FIG. 4 shows an enlarged view of portion A in FIG. The heating element (heater wire) 20 is fixed to the inner shell 50 by a hanging insulator 30 as an insulating material such as alumina. The heating element 20 is made of a heat-generating material that can be rapidly heated, such as an Fe-Al-Cr alloy, and has a cross-sectional shape such as a flat plate so as to increase the heat-generating surface area. It is configured. The heating element 20 has meandering folded portions 21 and 22 above and below, and an intermediate portion includes a strand portion 23 that connects the upper folded portion 21 and the lower folded portion 22 with a half-pitch shift, and each strand. The gap 24 is located between the portions 23. The upper portion of the heating element 20 is bent as a bent portion 20 a held by the hanging insulator 30. The inner surface of the inner shell 50 is mirror-finished, and heat rays radiated from the rear surface of the wire portion 23 of the heating element are reflected by the inner surface and radiated from the gap 24 toward the heating space 18.

絶縁材料としての吊り碍子30はアルミナ等の耐熱絶縁材料よりなる上碍子31及び下碍子32からなり、上金具33と下金具34で発熱体20の上部における折曲部20aを挟んで、ピン35で溶着固定されている。下金具34は二カ所の折曲部においてボルト36によりインナシェル50に取り付けられる。   The hanging insulator 30 as an insulating material includes an upper insulator 31 and a lower insulator 32 made of a heat-resistant insulating material such as alumina, and the pin 35 is sandwiched between the upper metal member 33 and the lower metal member 34 with the bent portion 20a at the upper part of the heating element 20 interposed therebetween. It is fixed by welding. The lower metal fitting 34 is attached to the inner shell 50 by bolts 36 at two bent portions.

インナシェル50には中央に貫通孔40aを有し気道14内の冷却ガスをインナシェル50内部に供給する複数の急冷パイプ40がインナシェル50の内壁から加熱空間18側に向かって突出するように設けられている。急冷パイプ40はアルミナ等の絶縁耐熱材料により形成されている。この急冷パイプ40は、隙間24において発熱体20を貫通する貫通部40dと、この貫通部40dが発熱体20を貫通する貫通方向Vに交差する方向にこの貫通部40dよりも突出する突出部としての略円形の鍔40b、40cにより発熱体20の中腹の動きを制限する。すなわち、一対の鍔40b、40c間の貫通部40dに溝を形成する。さらに発熱体20の下端を下段の吊り碍子30の上端位置に重なる位置に設け、発熱体20の下端の急冷パイプ40の突出方向に対する動きを制限する。   The inner shell 50 has a through hole 40a in the center, and a plurality of quench pipes 40 for supplying the cooling gas in the air passage 14 into the inner shell 50 protrude from the inner wall of the inner shell 50 toward the heating space 18 side. Is provided. The quench pipe 40 is made of an insulating heat resistant material such as alumina. The quenching pipe 40 includes a through portion 40d that penetrates the heating element 20 in the gap 24, and a protruding portion that protrudes from the through portion 40d in a direction that intersects the penetration direction V in which the penetration portion 40d penetrates the heating element 20. The movement of the middle of the heating element 20 is limited by the substantially circular ridges 40b and 40c. That is, a groove is formed in the through portion 40d between the pair of flanges 40b and 40c. Further, the lower end of the heating element 20 is provided at a position overlapping the upper end position of the lower hanging insulator 30 to restrict the movement of the lower end of the heating element 20 in the protruding direction of the quench pipe 40.

インナシェル50の裏面には冷却媒体流通通路としての水冷管59が設けられている。この水冷管59は、インナシェル50の外面に軸心方向に螺旋状に巻き付けられて溶着される。例えば給・排水経路59a,59bを介して冷却水等の冷却媒体を流すことによりインナシェル50の温度上昇を防ぎ、ほぼ一定に保つ。   On the back surface of the inner shell 50, a water cooling pipe 59 as a cooling medium circulation passage is provided. The water-cooled tube 59 is wound around the outer surface of the inner shell 50 in a spiral manner in the axial direction and welded. For example, by flowing a cooling medium such as cooling water through the supply / drainage paths 59a and 59b, the temperature of the inner shell 50 is prevented from rising and kept almost constant.

インナシェル50の外側には複数の接続碍子51を介して絶縁状態でアウタシェル60が取り付けられる。接続碍子51は絶縁性と耐熱性を有するアルミナ材で製作されているため、不測に発熱体20とインナシェル50とが接触し、インナシェル50に電流が伝わる等により例えば短絡しても、接続碍子51により電流がアウタシェル60に伝わることはない。   The outer shell 60 is attached to the outside of the inner shell 50 in an insulated state via a plurality of connecting insulators 51. Since the connecting insulator 51 is made of an alumina material having insulation and heat resistance, even if the heating element 20 and the inner shell 50 are unexpectedly brought into contact with each other and a current is transmitted to the inner shell 50, for example, the connection insulator 51 is connected. The insulator 51 does not transmit current to the outer shell 60.

接続碍子51の内側はインナシェル50に対し第一のボルト52で固定される。一方、接続碍子51の外側はアウタシェル60に対し絶縁耐熱材料としての環状中空状のカラー53を介して第二のボルト54で固定される。カラー53はアウタシェルの取付孔を貫通して設けられ、アウタシェル60の肉厚よりも厚く形成され、第二のボルト54の頭部下面と接続碍子51外面との間にクリアランス(隙間)を設けている。インナシェル50が熱膨張によって膨らんでも、その変形分をこのクリアランスにより吸収し、アウタシェル60に熱応力が作用することを防ぎ、アウタシェル60の変形を防止している。   The inner side of the connecting insulator 51 is fixed to the inner shell 50 with a first bolt 52. On the other hand, the outer side of the connecting insulator 51 is fixed to the outer shell 60 with a second bolt 54 via an annular hollow collar 53 as an insulating heat resistant material. The collar 53 is provided through the mounting hole of the outer shell, is formed thicker than the thickness of the outer shell 60, and provides a clearance (gap) between the lower surface of the head of the second bolt 54 and the outer surface of the connecting insulator 51. Yes. Even if the inner shell 50 swells due to thermal expansion, the amount of deformation is absorbed by this clearance to prevent thermal stress from acting on the outer shell 60 and to prevent deformation of the outer shell 60.

アウタシェル60のさらに外側には柱62を介して最外殻である側壁外層としての化粧パネル70が設けられている。この化粧パネル70はフランジを有する柱62を介してアウタシェル60と例えば金属製のリべット62aにより固定アウタシェル60の上部には円筒状の前記気道14に連通する開口61aが設けられ、この開口61aにパイプ61の一端が溶接される。パイプ61は化粧パネル70を貫通し、その他端が冷却ガス導入ダクト7yに連通している。なお、柱62、化粧パネル70は導電性を有する材料から構成されており、例えば、ステンレス材料等の金属材料から構成されている。このため、化粧パネル70とアウタシェル60とは柱62を介して導電する状態で接続されている。なお、アウタシェル60や化粧パネル70に対する導電を上述の如く防ぐことで基板処理装置全体への導電を防止し、作業時の感電等や基板処理装置内の電装品が破損することを防いでいる。   On the outer side of the outer shell 60, a decorative panel 70 is provided as a side wall outer layer which is an outermost shell through a column 62. The decorative panel 70 is provided with an opening 61a communicating with the cylindrical airway 14 at the upper part of the outer shell 60 through a pillar 62 having a flange, for example, by a metal rivet 62a. One end of the pipe 61 is welded to 61a. The pipe 61 penetrates the decorative panel 70, and the other end communicates with the cooling gas introduction duct 7y. In addition, the pillar 62 and the decorative panel 70 are comprised from the material which has electroconductivity, for example, is comprised from metal materials, such as stainless steel material. For this reason, the decorative panel 70 and the outer shell 60 are connected in a conductive state via the pillar 62. In addition, by preventing the conduction to the outer shell 60 and the decorative panel 70 as described above, the conduction to the entire substrate processing apparatus is prevented, and an electric shock at the time of work and the electrical components in the substrate processing apparatus are prevented from being damaged.

図4に示すように、インナシェル50は上下に複数分割されている。分割された上側のシェルとこれに隣接する下側のシェルとの間には隙間50sが設けられている。そして、インナシェル50のうち上側のシェルである上側シェルに設けられた第一フランジ50tと下側シェルの水冷管59との間にセラミックファイバー等の断熱部材よりなる断熱ブランケット50aを介在させ、隙間50sからの熱逃げを防ぎ、熱的に上下のシェルを分断している。   As shown in FIG. 4, the inner shell 50 is divided into a plurality of parts in the vertical direction. A gap 50 s is provided between the divided upper shell and the lower shell adjacent thereto. And between the 1st flange 50t provided in the upper shell which is an upper shell among the inner shells 50, and the water cooling pipe 59 of a lower shell, the heat insulation blanket 50a which consists of heat insulation members, such as a ceramic fiber, is interposed, and gap The heat escape from 50s is prevented, and the upper and lower shells are thermally divided.

図7に示すように、中間部11の下部では、インナシェル50の外側に張り出した第二フランジ50xとアウタシェル60の内側に張り出した第三フランジ60xとの間に断熱及び絶縁部材としての断熱ブランケット50yを介在させてある。これにより、インナシェル50とアウタシェル60との間は絶縁されると共に断熱ブランケット50yにより気密状態が保たれる。また、第三フランジ60xと底蓋72aとの間に断熱部材としての断熱ブランケット60yを設け、インナシェル50内部空間の気密を保っている。中間部11と天井部10との間にも同趣旨の構造が採用され、絶縁状態と気密状態が保たれる。最下段の発熱体20の下部は発熱体20の中腹の動きを制限する急冷パイプ40とは別に設けられた急冷パイプ42により支持されている。   As shown in FIG. 7, at the lower part of the intermediate part 11, a heat insulation and a heat insulation blanket as an insulation member are provided between the second flange 50 x projecting outside the inner shell 50 and the third flange 60 x projecting inside the outer shell 60. 50y is interposed. Thereby, the inner shell 50 and the outer shell 60 are insulated from each other and kept airtight by the heat insulating blanket 50y. Further, a heat insulating blanket 60y as a heat insulating member is provided between the third flange 60x and the bottom lid 72a to keep the inner shell 50 internal space airtight. A structure having the same concept is also adopted between the intermediate portion 11 and the ceiling portion 10 to maintain an insulating state and an airtight state. The lower part of the lowermost heating element 20 is supported by a quenching pipe 42 provided separately from the quenching pipe 40 that restricts the movement of the middle of the heating element 20.

近年、ウエハ処理の微細化が進み、ウエハの面内偏差をさらに低減させる必要が生じてきた。特に、ボート300の上部に位置するウエハ305は、天井ユニット10からの放熱の影響で、ウエハ305中心部の温度が周縁部に比べて低くなり易い。これでは、ウエハの中心部と周縁部での均一な熱処理が行なえない。また、CVD処理では、処理ガスはボートの周縁部から供給されるため、ボート中心部での処理ガス濃度が低下し、ウエハ中心部の膜厚が周縁部に比べてさらに薄くなる問題を生じていた。   In recent years, miniaturization of wafer processing has progressed, and it has become necessary to further reduce the in-plane deviation of the wafer. In particular, the temperature of the wafer 305 located at the upper part of the boat 300 is likely to be lower than that of the peripheral edge due to heat radiation from the ceiling unit 10. In this case, uniform heat treatment cannot be performed at the center and the periphery of the wafer. Further, in the CVD process, since the processing gas is supplied from the peripheral part of the boat, the processing gas concentration at the central part of the boat is lowered, and the film thickness at the central part of the wafer is further reduced compared to the peripheral part. It was.

このため、CVD処理では、処理ガス濃度の低下に伴う反応速度の低下を補うために、ウエハ中心部の温度を周縁部に比べて高くする要請があった。そして、この問題を解決するために、上記従来技術の如く反射体を固定的に設け、周部発熱体の熱線をボート中心部に集光させ、ウエハ中心部の加熱量を増やすことで、ウエハ面内の温度偏差を調整するという手法も考えられる。   For this reason, in the CVD process, there has been a demand to increase the temperature at the center of the wafer as compared with the peripheral part in order to compensate for the decrease in the reaction rate accompanying the decrease in the processing gas concentration. In order to solve this problem, the reflector is fixedly provided as in the above prior art, the heat rays of the peripheral heating element are concentrated on the center of the boat, and the amount of heating at the center of the wafer is increased. A method of adjusting the in-plane temperature deviation is also conceivable.

しかし、ヒータの昇温時と安定時ではヒータ出力が異なるため、単一の反射体角度では、ウエハ面内偏差を適切に制御できない。昇温時は安定時に比べて大きな出力を出すため、反射体の角度を安定時の状態で調整すると、昇温時には中央部が周部よりも高温となる。逆に、反射体の角度を昇温時の状態で調整すると、安定時(アニール処理、成膜処理)に中央部が周部よりも低温になる。   However, since the heater output differs between when the heater is warmed up and when it is stable, the wafer in-plane deviation cannot be controlled properly with a single reflector angle. When the temperature is raised, a larger output is obtained than when the temperature is stable. Therefore, when the angle of the reflector is adjusted in a stable state, the central portion becomes hotter than the peripheral portion when the temperature is raised. On the contrary, when the angle of the reflector is adjusted in the state of increasing the temperature, the central portion becomes cooler than the peripheral portion when stable (annealing process, film forming process).

また、プロセス・シーケンスによっては、プロセス時間の削減のため昇温終盤からウエハ処理を開始するものもある。従って、ウエハの面内偏差を随時コントロールする必要がある。   Some process sequences start wafer processing from the end of the temperature rise to reduce process time. Therefore, it is necessary to control the in-plane deviation of the wafer as needed.

図8,9に示すように、天井部10における本発明の反射装置90は、ウエハ面内温度に応じてこの反射体91を移動機構92により移動させることにより反射体91の角度を調整し、ウエハ面内偏差を低減させる。   As shown in FIGS. 8 and 9, the reflection device 90 of the present invention in the ceiling portion 10 adjusts the angle of the reflector 91 by moving the reflector 91 by the moving mechanism 92 according to the wafer surface temperature. Reduce in-wafer deviation.

天井ユニット10は加熱空間18の雰囲気を排出するための排気導路81を有する。天井ユニット10も下部12の構造と同様に、フランジと断熱クッション(断熱ブランケット)との組合せで、インナシェル50との絶縁性・気密性を確保すると同時に、インナシェル50の膨張収縮を吸収する構造としてある。   The ceiling unit 10 has an exhaust conduit 81 for exhausting the atmosphere of the heating space 18. Similarly to the structure of the lower part 12, the ceiling unit 10 also has a structure that absorbs expansion and contraction of the inner shell 50 while ensuring insulation and airtightness with the inner shell 50 by combining a flange and a heat insulating cushion (heat insulating blanket). It is as.

天井ユニット10の下部には発熱体20から輻射される熱線(光)を反射する反射装置90が設けられている。この反射装置90は、熱線を反射する複数の湾曲した板状の反射体(リフレクタ)91を移動機構92とアクチュエータ99により傾斜させ、反射方向を変更することで温度制御を行う。   A reflection device 90 that reflects heat rays (light) radiated from the heating element 20 is provided below the ceiling unit 10. The reflection device 90 performs temperature control by tilting a plurality of curved plate-like reflectors (reflectors) 91 that reflect heat rays by a moving mechanism 92 and an actuator 99 and changing the reflection direction.

反射体91は底面視で三角形を呈すると共に、側面視で略円弧状の形状をなし、図8及び9に示す如く、ウエハ305の中心部から周縁部を越える大きさで湾曲している。すなわち、反射体91は加熱空間18の中心部から加熱空間18の周縁部近傍までを覆うように設けられる。好ましくは、図8及び9に示す如く、ウエハ305の中心部から周縁部を越える大きさで天井壁体側に凸となるように湾曲しているとよい。これにより、反射体91の先端部と周縁部との間のほぼ全面で熱線の反射に利用することができ、熱線の反射効果を増大させ、熱線の集光状態を向上させることが可能となる。しかも、熱線の反射効果によって、天井部10の断熱効果をも向上させることができる。なお、好ましくは、反射体91をウエハ305の中心部から発熱体20が保持される円周位置に直交する鉛直方向位置まで延在されるとよい。このように構成することにより、反射面が増大し、より一層反射効果を増大させ、熱線の集光状態を向上させ、しかも天井部10の断熱効果をも向上させることができる。   The reflector 91 has a triangular shape when viewed from the bottom, has a substantially arc shape when viewed from the side, and is curved with a size exceeding the peripheral edge from the center of the wafer 305 as shown in FIGS. That is, the reflector 91 is provided so as to cover from the center of the heating space 18 to the vicinity of the peripheral edge of the heating space 18. Preferably, as shown in FIGS. 8 and 9, the wafer 305 may be curved so as to protrude toward the ceiling wall body with a size exceeding the peripheral edge from the center. Thereby, it can utilize for reflection of a heat ray in the substantially whole surface between the front-end | tip part and peripheral part of the reflector 91, it becomes possible to increase the reflective effect of a heat ray and to improve the condensing state of a heat ray. . And the heat insulation effect of the ceiling part 10 can also be improved according to the reflective effect of a heat ray. Preferably, the reflector 91 is extended from the central portion of the wafer 305 to a vertical position perpendicular to the circumferential position where the heating element 20 is held. By comprising in this way, a reflective surface increases, a reflection effect can be increased further, the condensing state of a heat ray can be improved, and also the heat insulation effect of the ceiling part 10 can be improved.

この複数の反射体91を隙間91aを隔てて環状に配置してある。上述の如く、反射体91は、三角形状(扇状)に形成してあるので、複数の反射体91を環状に容易に配置することができる。なお、好ましくは、複数の反射体91を同一形状で形成し、実質的に円周方向に均等配置するとよい。これにより、隙間91aにより、加熱空間18からの排気の流れを円周方向で均等に分けることができ、円周方向でのウエハ面内での温度差を減少させることが可能となる。なお、好ましくは、隙間91aの円周方向の幅も均等の大きさとするとより一層均等に排気の流れを円周方向で分けることができ、ウエハ面内の温度差を減少させることが可能となる。   The plurality of reflectors 91 are annularly arranged with a gap 91a therebetween. As described above, since the reflector 91 is formed in a triangular shape (fan shape), the plurality of reflectors 91 can be easily arranged in an annular shape. Preferably, the plurality of reflectors 91 are formed in the same shape and are substantially equally arranged in the circumferential direction. Thereby, the flow of the exhaust gas from the heating space 18 can be evenly divided in the circumferential direction by the gap 91a, and the temperature difference in the wafer surface in the circumferential direction can be reduced. Preferably, if the circumferential width of the gap 91a is also equal, the exhaust flow can be more evenly divided in the circumferential direction, and the temperature difference in the wafer surface can be reduced. .

移動機構92は、可動部としてのシャフト93で上下移動可能に支持されている中央板94に各反射体91の一端側となる頂点を支持し、各反射体91の他端側となる周部を支軸体としての二本のボルト95により支持してなる。これにより、シャフト93で環状に配置された複数の反射体91の角度を同時に調整することが可能となり、いずれの角度に調整しても加熱空間18の周方向で均一な反射状態とすることができる。しかも、角度調整はシャフト93を駆動させればよく、移動機構92の構造が簡素となる。また、シャフト93を中心にウエハ305に対し点対称に熱線の反射を行うことができ、ウエハ全体を均一に加熱することができる。   The moving mechanism 92 supports a vertex that is one end side of each reflector 91 on a central plate 94 that is supported by a shaft 93 as a movable portion so as to be vertically movable, and a peripheral portion that is the other end side of each reflector 91. Is supported by two bolts 95 as a support shaft body. This makes it possible to simultaneously adjust the angles of the plurality of reflectors 91 arranged in an annular shape by the shaft 93, and to make a uniform reflection state in the circumferential direction of the heating space 18 no matter which angle is adjusted. it can. In addition, the angle adjustment may be performed by driving the shaft 93, and the structure of the moving mechanism 92 is simplified. Further, the heat rays can be reflected point-symmetrically with respect to the wafer 305 around the shaft 93, and the entire wafer can be heated uniformly.

アクチュエータ99は反射制御部4cからの信号に基づきシャフト93を上下移動させ、シャフト93の位置で反射体91の角度を調整することにより、反射体91による反射状態を制御することができる。なお、好ましくは、複数の反射体91の一端が接続される中央板94は、最も下方に移動した際に、複数の反射体91の他端側が接続されるボルト95より鉛直方向下方に位置可能なように設けるとよい。これにより、天井部10が鉛直方向に大きくならずにすむため、加熱装置に基板処理装置の鉛直方向の大きさを増大させなくて済む。   The actuator 99 can control the reflection state by the reflector 91 by moving the shaft 93 up and down based on the signal from the reflection control unit 4 c and adjusting the angle of the reflector 91 at the position of the shaft 93. Preferably, the center plate 94 to which one end of the plurality of reflectors 91 is connected can be positioned vertically lower than the bolt 95 to which the other end side of the plurality of reflectors 91 is connected when moved downward. It is good to provide it. Thereby, since the ceiling part 10 does not need to be enlarged in the vertical direction, it is not necessary to increase the vertical size of the substrate processing apparatus in the heating apparatus.

加熱空間18内の雰囲気は、先の隙間91a又は反射体91の周縁を経て、ヒータの周辺に等配されている4つの第一の開口82から吸気される。そして、ヒータの中心軸線上にある第二の開口83で纏められた後、排気口81aから加熱装置3の外部に排出される。なお、好ましくは、隙間91aの幅は、第一の開口82における開口面の直径より小さく、すなわち隙間91の方が狭小とするとよい。これにより、第一の開口82は、図9に示すように、上述の複数の隙間91aの一部に対向して設けられている箇所であっても、隙間91aからの排気量を抑制することができ、加熱空間18からの排気の流れを円周方向で均等に分けることができる。   The atmosphere in the heating space 18 is sucked from the four first openings 82 that are equally distributed around the heater via the gap 91a or the periphery of the reflector 91. Then, after being gathered together by the second opening 83 on the central axis of the heater, it is discharged to the outside of the heating device 3 through the exhaust port 81a. Preferably, the width of the gap 91a is smaller than the diameter of the opening surface of the first opening 82, that is, the gap 91 is narrower. Thereby, as shown in FIG. 9, even if the 1st opening 82 is a location provided facing a part of above-mentioned several clearance gap 91a, it suppresses the exhaust_gas | exhaustion amount from the clearance gap 91a. The flow of exhaust from the heating space 18 can be evenly divided in the circumferential direction.

反応容器309には、SiCや石英材からなる均熱管315、SiCや石英材からなる反応容器としての反応管310が設置される。この反応管310内に基板保持具としてのボート300に載置された基板としてのウエーハ305が配置される。   The reaction vessel 309 is provided with a soaking tube 315 made of SiC or quartz material, and a reaction tube 310 as a reaction vessel made of SiC or quartz material. A wafer 305 serving as a substrate placed on a boat 300 serving as a substrate holder is disposed in the reaction tube 310.

反応管310内の周縁部には先の第二温度検出器TC2としての温度センサ330が設置され、温度検出体としての熱電対の接点が前記各ゾーンZ1〜Z5毎に設置される。また、反応管310内には、先端がL型に曲げられた先の第三温度検出器TC3としてのL型温度センサ320が設置される。L型温度センサ320は、反応管310内のボート300より上方でL型に屈曲されている。L型温度センサ320は、ウエハ(ボート天板)の中心に位置する部分に温度検出体としての熱電対接点321が配置され、周縁に位置する部分に温度検出体としての熱電対接点322が設けられ、ウエハ(ボート天板)の中心部と周縁部の温度を検出することができる。   A temperature sensor 330 as the second temperature detector TC2 is installed at the peripheral edge in the reaction tube 310, and a thermocouple contact as a temperature detector is installed for each of the zones Z1 to Z5. In the reaction tube 310, an L-type temperature sensor 320 is installed as the third temperature detector TC3 whose tip is bent into an L shape. The L-type temperature sensor 320 is bent in an L shape above the boat 300 in the reaction tube 310. In the L-type temperature sensor 320, a thermocouple contact 321 as a temperature detector is disposed at a portion located at the center of the wafer (boat top plate), and a thermocouple contact 322 as a temperature detector is provided at a portion located at the periphery. Thus, the temperature of the center portion and the peripheral portion of the wafer (boat top plate) can be detected.

温度センサ330により検知された温度に基づき、発熱体制御部4bが発熱体出力を各ゾーン毎に制御する。また、L型温度センサ320によって検知された中心部と周縁部の温度データは、温度モニタ部4aに送信される。反射制御部(制御装置)4cは、この中心部と周縁部の温度データから現在のウエハの面内偏差(温度偏差)を計算し、目標値の面内偏差との差に応じてアクチュエータ99に信号を送り、シャフト93を動作させて反射体91の角度を変更し、フィードバック制御を行う。なお、好ましくは、L型温度センサ320によって検知された中心部と周縁部の温度との偏差があらかじめ設定された面内偏差の許容範囲内より大きい場合に、面内偏差を小さくするようシャフト93を動作させて反射体91の角度を変更し、フィードバック制御を行うようにするとよい。これにより、ウエハの中心部への集光状態を自動で変化させることができ、ウエハの面内偏差を最適に制御することができる。   Based on the temperature detected by the temperature sensor 330, the heating element controller 4b controls the heating element output for each zone. Moreover, the temperature data of the center part and the peripheral part detected by the L-type temperature sensor 320 are transmitted to the temperature monitor unit 4a. The reflection control unit (control device) 4c calculates the current in-plane deviation (temperature deviation) of the wafer from the temperature data of the central part and the peripheral part, and causes the actuator 99 to respond to the difference from the in-plane deviation of the target value. A signal is sent, the shaft 93 is operated, the angle of the reflector 91 is changed, and feedback control is performed. Preferably, when the deviation between the temperature of the center portion and the peripheral portion detected by the L-type temperature sensor 320 is larger than the preset allowable range of the in-plane deviation, the shaft 93 is set so as to reduce the in-plane deviation. It is preferable to change the angle of the reflector 91 by operating and to perform feedback control. Thereby, the condensing state to the center part of the wafer can be automatically changed, and the in-plane deviation of the wafer can be optimally controlled.

次に、上記基板処理装置1の動作について説明する。
ウェーハ305の処理は、このウェーハ305が装填された前記ボート300がボートエレベータにより前記反応管310に装入され、前記加熱装置3の加熱により所定温度迄急速加熱される。この加熱装置3により前記ウェーハ305を所定温度に加熱した状態で前記反応ガス導入管5xより反応ガスが導入され、前記排気管6xを介して排気ガスが排出され、前記ウェーハ305に所要の熱処理がなされる。
Next, the operation of the substrate processing apparatus 1 will be described.
In the processing of the wafer 305, the boat 300 loaded with the wafer 305 is loaded into the reaction tube 310 by a boat elevator and rapidly heated to a predetermined temperature by the heating device 3. While the wafer 305 is heated to a predetermined temperature by the heating device 3, the reaction gas is introduced from the reaction gas introduction pipe 5 x, the exhaust gas is discharged through the exhaust pipe 6 x, and a necessary heat treatment is performed on the wafer 305. Made.

通常、前記ボート300の装入前は所要の温度、例えば550℃に保温しておき、このボート300が装入された後はウェーハ処理温度、例えば850℃迄昇温保持される。尚、装入前の温度、処理温度は基板処理装置での処理内容に応じて適切な温度が選択される。   Usually, the temperature of the boat 300 is kept at a required temperature, for example, 550 ° C. before the boat 300 is charged. After the boat 300 is charged, the temperature is raised to a wafer processing temperature, for example, 850 ° C. In addition, the temperature before loading and the processing temperature are appropriately selected according to the processing content in the substrate processing apparatus.

前記発熱体20の各段の発熱体20は温度モニタ部4aによって独立したゾーン毎に測定され、発熱体20及び反射装置90により温度制御される。各ゾーンの発熱体20は連続した1つの発熱体であるので、この発熱体20に異常があった場合、例えば断線があった場合も直ちに発見でき、各段の発熱体の劣化状態も容易に把握することができる。   The heating element 20 at each stage of the heating element 20 is measured for each independent zone by the temperature monitor unit 4a, and the temperature is controlled by the heating element 20 and the reflection device 90. Since the heating element 20 in each zone is one continuous heating element, if there is an abnormality in the heating element 20, for example, if there is a disconnection, it can be detected immediately, and the deterioration state of the heating element in each stage can be easily found. I can grasp it.

処理が完了すると、ウェーハ出炉温度、例えば550℃迄急速冷却される。このウェーハ305処理後の冷却は、前記流量制御器5a及びエアバルブ7aが開かれ、空気或は窒素ガス等不活性ガスが冷却ガスとして前記冷却ガス供給ライン5y、7より供給される。前記冷却ガス供給ラインから供給された冷却ガスは急冷パイプ40の貫通孔40aを通じて加熱空間18に流入し、発熱体20を外面、内面の両側から急速に冷却する。   When the process is complete, it is rapidly cooled to the wafer exit temperature, eg, 550 ° C. For the cooling after the processing of the wafer 305, the flow rate controller 5a and the air valve 7a are opened, and an inert gas such as air or nitrogen gas is supplied from the cooling gas supply lines 5y and 7 as a cooling gas. The cooling gas supplied from the cooling gas supply line flows into the heating space 18 through the through hole 40a of the quenching pipe 40, and cools the heating element 20 from both the outer surface and the inner surface.

このような冷却パイプ40を用いた構成では、ヒータの冷却速度、延いてはウェーハの冷却速度を向上させることができ、ウェーハ処理のスループットを向上させることができる。また、冷却パイプ40は発熱体押さえと冷却ガス供給管とを兼ねているため、別途ヒータ冷却用のガス管を設ける必要がなく、それ故、ヒータ内壁における発熱体面積を向上させることができる。さらに、冷却パイプ40の貫通孔40aの開口部は発熱体20よりも内側にて開口しているので、冷却ガスにより発熱体20が局所的に冷却されることを防止する。その結果、発熱体20の局所的な変形、捩れ、亀裂を抑制し、延いては、発熱体20の断線、反応管310との接触を防止できる。   In such a configuration using the cooling pipe 40, the cooling rate of the heater, and thus the cooling rate of the wafer can be improved, and the throughput of the wafer processing can be improved. Further, since the cooling pipe 40 serves as both a heating element presser and a cooling gas supply pipe, it is not necessary to provide a separate gas pipe for cooling the heater, so that the area of the heating element on the inner wall of the heater can be improved. Furthermore, since the opening part of the through-hole 40a of the cooling pipe 40 is opened inside the heat generating body 20, the heat generating body 20 is prevented from being locally cooled by the cooling gas. As a result, local deformation, twisting, and cracking of the heating element 20 can be suppressed, and further, disconnection of the heating element 20 and contact with the reaction tube 310 can be prevented.

円筒状の気道14に導入される冷却ガスは、容積の大きな冷却ガス導入ダクト7yを経て分散されることで、気道14に均一に冷却ガスが流入し、冷却むらの発生が防止される。その後、冷却ガスは、複数のパイプ61、気道14、複数の急冷パイプ40を介して加熱空間18に吹き込まれ、加熱空間18を上昇して排気導路81より排気される。インナシェル50内面は加熱空間18を上昇する冷却ガスにより冷却され、均熱管315及び反応管310は加熱空間18及び均熱管内空間317を上昇する冷却ガスにより急速に冷却される。これらにより反応管310内のウェーハ305は急速冷却される。発熱体20にFe−Cr−Alやカーボン、SiC等の発熱体を採用することで、急速加熱、高温加熱が可能となり、更に冷却ガスによる加熱装置3の冷却により急速冷却が可能となっている。   The cooling gas introduced into the cylindrical air passage 14 is dispersed through the cooling gas introduction duct 7y having a large volume, so that the cooling gas uniformly flows into the air passage 14 and the occurrence of uneven cooling is prevented. Thereafter, the cooling gas is blown into the heating space 18 through the plurality of pipes 61, the airway 14, and the plurality of quenching pipes 40, and rises in the heating space 18 and is exhausted from the exhaust conduit 81. The inner surface of the inner shell 50 is cooled by the cooling gas rising in the heating space 18, and the soaking tube 315 and the reaction tube 310 are rapidly cooled by the cooling gas rising in the heating space 18 and the soaking tube inner space 317. As a result, the wafer 305 in the reaction tube 310 is rapidly cooled. By adopting a heating element such as Fe—Cr—Al, carbon, or SiC as the heating element 20, rapid heating and high temperature heating are possible, and further rapid cooling is possible by cooling the heating device 3 with a cooling gas. .

冷却が完了すると、ボートエレベータによりボート300が降下され、このボート300から処理済のウェーハ305が払出される。尚、減圧処理の場合は、反応室を大気圧迄復帰させた後、ボート300が降下される。   When the cooling is completed, the boat 300 is lowered by the boat elevator, and the processed wafer 305 is discharged from the boat 300. In the case of the decompression process, the boat 300 is lowered after returning the reaction chamber to atmospheric pressure.

本明細書は以下の発明をも含むものとする。
1)前記制御装置は、前記反応容器内の基板の周縁部(周縁)の温度を検出する第1の温度検出体と前記反応容器内の基板の中心部(中心)の温度を検出する第2の温度検出体との検出結果に基づき前記基板の周縁部と中心部との温度偏差を求め、この求めた温度偏差に基づき前記移動機構を制御するものである基板処理装置。
This specification includes the following inventions.
1) The control device detects a temperature of a peripheral portion (periphery) of a substrate in the reaction vessel, and a second temperature detector detects a temperature of a central portion (center) of the substrate in the reaction vessel. A substrate processing apparatus for obtaining a temperature deviation between a peripheral portion and a central portion of the substrate based on a detection result of the temperature detecting body and controlling the moving mechanism based on the obtained temperature deviation.

2)前記反射体はこの加熱装置内の上部に設けられている前記基板処理装置。   2) The said substrate processing apparatus with which the said reflector is provided in the upper part in this heating apparatus.

3)反応容器内に基板を搬入する基板搬入工程と、この反応容器内を加熱装置により加熱して基板を処理する基板処理工程と、基板を前記反応容器内から搬出する基板搬出工程とを備え、前記基板処理工程において、前記基板の周縁部と中心部との面内偏差に基づき制御装置が移動機構を制御し前記反応容器内の熱線を反射する反射体を移動させて前記熱線の反射状態を変更する半導体装置の製造方法。   3) A substrate carrying-in step for carrying a substrate into the reaction vessel, a substrate processing step for treating the substrate by heating the inside of the reaction vessel with a heating device, and a substrate carrying-out step for carrying the substrate out of the reaction vessel. In the substrate processing step, the control device controls the moving mechanism based on the in-plane deviation between the peripheral edge portion and the central portion of the substrate, and moves the reflector that reflects the heat rays in the reaction vessel to reflect the heat rays. For manufacturing a semiconductor device.

4)前記基板処理工程において、前記制御装置は、前記反応容器内の基板の周縁部の温度を検出する第1の温度検出体と前記反応容器内の基板の中心部の温度を検出する第2の温度検出体との検出結果に基づき前記基板の周縁部と中心部との温度偏差を求め、この求めた温度偏差に基づき前記移動機構を制御する半導体装置の製造方法。   4) In the substrate processing step, the control device detects a temperature of a peripheral portion of the substrate in the reaction vessel and a temperature of a central portion of the substrate in the reaction vessel. A method of manufacturing a semiconductor device, wherein a temperature deviation between a peripheral portion and a center portion of the substrate is obtained based on a detection result of the temperature detector, and the moving mechanism is controlled based on the obtained temperature deviation.

5)筒状に形成された側壁と、複数の隙間を有する板状の発熱体とを備え、側壁の内面は熱線を反射可能に仕上げられ、前記側壁の筒状の内面に沿って発熱体を設け、発熱体の素線部表面は加熱空間に向かって熱線を輻射し、前記素線部裏面から輻射される熱線は前記内面により反射され前記隙間を通過して前記加熱空間に輻射される加熱装置、基板処理装置及び発熱体の保持構造。この構造では、素線部23の幅に比較して隙間24の幅を十分にとり、内面からの反射による熱線を有効活用できる幅としてある。この筒状の中心軸に沿って隙間を形成し、中心軸上側を前記保持部材により支持すると、輻射熱を尤も有効に活用すると共に発熱体の面密度を向上させることができるし、発熱体の線量を減少させて熱応答性を向上させることができる。また、筒状の内面を凹曲面とすることで、反射された熱線が隙間を通過して加熱空間内に輻射される効率を向上させることができ、この凹曲面は円弧面であることが望ましい。   5) A side wall formed in a cylindrical shape and a plate-like heating element having a plurality of gaps, the inner surface of the side wall being finished so as to be able to reflect heat rays, and the heating element is arranged along the cylindrical inner surface of the side wall The heating element surface of the heating element radiates heat rays toward the heating space, and the heat ray radiated from the back surface of the heating element part is reflected by the inner surface and passes through the gap to be radiated to the heating space. Apparatus, substrate processing apparatus, and heating element holding structure. In this structure, the width of the gap 24 is sufficiently larger than the width of the strand portion 23, so that the heat rays reflected from the inner surface can be effectively used. If a gap is formed along the cylindrical central axis and the upper side of the central axis is supported by the holding member, the radiant heat can be effectively used and the surface density of the heating element can be improved. It is possible to improve the thermal responsiveness. Further, by making the cylindrical inner surface a concave curved surface, it is possible to improve the efficiency with which the reflected heat rays are radiated into the heating space through the gap, and it is desirable that the concave curved surface is an arc surface. .

本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の改変が可能である。   The present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention.

上記実施形態において、反射体の制御は、L型温度センサ320によって検知された中心部と周縁部の温度データを用いて、ウエハの面内偏差を計算し、目標値の面内偏差との差に応じて反射体91の角度を変更するフィードバック制御を行っていた。しかし、反射体の制御は、フィードバック制御に限られるものではなく、プログラムにより制御することも可能である。   In the above embodiment, the reflector is controlled by calculating the in-plane deviation of the wafer using the temperature data of the center part and the peripheral part detected by the L-type temperature sensor 320, and the difference from the in-plane deviation of the target value. Accordingly, feedback control for changing the angle of the reflector 91 is performed. However, the control of the reflector is not limited to feedback control, and can be controlled by a program.

ウエハ処理(温度の昇降やガスの制御等)は、レシピと呼ばれるプログラムにより制御される。このレシピは、昇温、安定、降温等の複数のイベントよりなり、各イベントは「実行時間」「ヒータ温度」「バルブ開閉時間」「ガス流量」等のプロセス条件から構成されている。このプロセス条件に反射体の角度を調整する「反射体角度情報」を追加し、プログラム制御を行うようにしてもよい。例えば、「昇温イベント時には、リフレクタ角度をA状態」、「安定(処理、成膜)イベント時には、リフレクタ角度をB状態」となるように設定する。   Wafer processing (temperature increase / decrease, gas control, etc.) is controlled by a program called a recipe. This recipe includes a plurality of events such as temperature rise, stability, and temperature drop, and each event is composed of process conditions such as “execution time”, “heater temperature”, “valve opening / closing time”, and “gas flow rate”. “Reflector angle information” for adjusting the angle of the reflector may be added to the process conditions to perform program control. For example, the reflector angle is set to “A state during a temperature rising event” and the reflector angle is set to “B state” during a stable (processing, film formation) event.

上述したように、ヒータの昇温時と安定時ではヒータ出力が異なり、昇温時はウエハ全体を均一に素早く加熱するために安定時に比べて大きな出力が必要となる。安定時は、昇温時に比べて小さい出力となるため、天井部10の排気導路81によりウエハ中央部の温度がウエハ周部より低温となりやすく、ウエハの面内偏差が生じやすい。そこで、昇温イベント時には、図10に示すように、シャフト93をウエハ全体を素早く加熱する角度に設定し、ウエハ全体を均一に加熱する。一方、安定イベント時は、図11に示すように、ウエハ中央部に熱線を集中する角度に設定する。昇温時は熱輻射量が多いので、輻射熱を分散させたとしても、ウエハ中央部の面内偏差は生じにくくなりウエハ全体を加熱することにより加熱速度を促進させる。一方、安定時は熱輻射量が少ないので、輻射熱をウエハ中央部に集光させ、面内偏差を生じにくくさせる。このように、イベントに応じた反射体角度を設定することで、面内偏差を低減することができる。   As described above, the heater output is different between when the temperature of the heater is raised and when it is stable, and when the temperature is raised, a larger output is required than when it is stable in order to heat the entire wafer uniformly and quickly. When the temperature is stable, the output is smaller than when the temperature is raised, and the temperature of the wafer central portion is likely to be lower than the peripheral portion of the wafer due to the exhaust duct 81 of the ceiling portion 10, and in-plane deviation of the wafer is likely to occur. Therefore, at the temperature rising event, as shown in FIG. 10, the shaft 93 is set to an angle at which the entire wafer is heated quickly, and the entire wafer is heated uniformly. On the other hand, at a stable event, as shown in FIG. 11, the angle is set so that the heat rays are concentrated at the center of the wafer. Since the amount of heat radiation is large at the time of temperature rise, even if the radiant heat is dispersed, an in-plane deviation at the center of the wafer is less likely to occur, and the heating rate is accelerated by heating the entire wafer. On the other hand, since the amount of heat radiation is small when stable, the radiant heat is concentrated on the center of the wafer to make in-plane deviation difficult to occur. Thus, the in-plane deviation can be reduced by setting the reflector angle according to the event.

また、イベントにおいて、反射体角度は1の状態に限られず、複数の状態となるように設定することも可能である。例えば、昇温イベントの前半時は、図10に示すように、ウエハ全体を広く均一に素早く加熱するように輻射熱を分散させる角度に設定する。また、後半時は、図11に示すように、ウエハ中央近傍に集光するように角度に設定する。このように、より緻密な角度調整も可能である。   In addition, in the event, the reflector angle is not limited to the state of 1, but can be set to have a plurality of states. For example, in the first half of the temperature rising event, as shown in FIG. 10, the angle is set to disperse the radiant heat so as to heat the entire wafer widely and uniformly. In the latter half, as shown in FIG. 11, the angle is set so that light is condensed near the center of the wafer. Thus, more precise angle adjustment is possible.

このような角度の条件設定は、製品ウエハを処理する前の基板処理装置の稼動初期段階(立ち上げ時)や基板処理装置のメンテナンス後(直後)にL型温度センサ320を用いて行ってもよい。また、試験用ウエハで成膜(アニール)テストを行い、成膜具合(アニール具合)を基に、角度条件を設定しても構わない。なお、昇温イベントを例に説明したが、安定時や降温時等のイベントにおいても、各イベントに応じて上述の如く設定すればよい。   Such angle condition setting may be performed using the L-type temperature sensor 320 at the initial stage of operation of the substrate processing apparatus (when starting up) before processing the product wafer or after maintenance (immediately after) of the substrate processing apparatus. Good. Alternatively, a film forming (annealing) test may be performed on the test wafer, and the angle condition may be set based on the film forming condition (annealing condition). Although the temperature rising event has been described as an example, the event may be set as described above according to each event even when the temperature is stable or when the temperature falls.

上記実施形態では、ウエハ面内偏差を計算するために、2つの温度検出体としての熱電対接点(接点321と接点322)を用いたが、温度検出体は種々の改変が可能である。例えば、温度センサ330のゾーンZ1の温度検出体とL型温度センサ320(例えば、接点321等を含む)とを用いてもよい。また、3点以上の温度検出体を用いてウエハ面内偏差を算出しても良い。   In the above embodiment, the thermocouple contact (contact 321 and contact 322) as two temperature detectors is used to calculate the wafer in-plane deviation, but the temperature detector can be variously modified. For example, a temperature detection body in the zone Z1 of the temperature sensor 330 and an L-type temperature sensor 320 (for example, including the contact 321) may be used. Further, the wafer in-plane deviation may be calculated using three or more temperature detectors.

また、上記実施形態では、ボート300の上にウエハ面内を測定するための熱電対接点を設けたが、その位置も種々の改変が可能である。例えば、ボート300の天板に熱電対接点を貼り付けても良いし、天板内に埋め込んでも良い。さらに、ボート300とウエハ305の間に熱電対接点を設けても良いし、ウエハに熱電対接点を貼り付けても良い。   Further, in the above embodiment, the thermocouple contact for measuring the wafer surface is provided on the boat 300, but the position thereof can be variously modified. For example, a thermocouple contact may be attached to the top plate of the boat 300 or may be embedded in the top plate. Further, a thermocouple contact may be provided between the boat 300 and the wafer 305, or a thermocouple contact may be attached to the wafer.

例えば、制御装置が、あらかじめウエハ面内における中心部と周縁部との膜厚偏差を求めた結果を記憶し、この膜厚偏差に基づき、反射体を移動させて発熱体の熱線の反射具合を調整し、膜厚偏差を無くすように移動機構を制御してもよい。なお、好ましくは、予めウエハに成膜した結果、ウエハ面内における中心部と周縁部との膜厚の偏差を計算し、予め設定された面内偏差の許容範囲内より大きい場合に内面偏差を小さくするようにシャフト93を動作させると良い。   For example, the control device stores in advance the result of obtaining the film thickness deviation between the central part and the peripheral part in the wafer surface, and based on this film thickness deviation, the reflector is moved to adjust the heat ray reflection of the heating element. The moving mechanism may be controlled so as to adjust and eliminate the film thickness deviation. Preferably, as a result of film formation on the wafer in advance, the deviation of the film thickness between the central portion and the peripheral portion in the wafer surface is calculated, and if the deviation is larger than the preset allowable tolerance of the in-plane deviation, the inner surface deviation is calculated. It is preferable to operate the shaft 93 so as to make it smaller.

上記実施形態では、第二、第三温度検出器TC2,TC3として温度センサ320,330を設けた。しかし、これらの第二、第三温度検出器TC2,TC3としては、温度検出体としての各熱電対接点が独立の温度センサを用いても構わない。   In the above embodiment, the temperature sensors 320 and 330 are provided as the second and third temperature detectors TC2 and TC3. However, as the second and third temperature detectors TC2 and TC3, temperature sensors having independent thermocouple contacts as temperature detectors may be used.

温度検出体は熱電対の接点のみならず、放射温度計などでもよく、温度を検出できるものであればその形式や構成は問わない。   The temperature detector may be not only a thermocouple contact but also a radiation thermometer, and any type or configuration can be used as long as it can detect the temperature.

反射体91の形状や移動機構92は種々の改変が可能である。例えば、反射体91の周縁側を上下させたり、反射体91の水平位置を変更することにより、反射体91による反射状態を変更することが可能である。但し、反射体91の中央を中間部11の軸心に沿って移動させる上記実施形態は、機構が簡素となる点、周縁部の発熱体20からの熱線をウエハ中央部に集光させるための反射体91先端部と周縁部との間を反射に利用することができる点、反射をシャフト93を中心とする点対称的に行える点で優れている。   The shape of the reflector 91 and the moving mechanism 92 can be variously modified. For example, the state of reflection by the reflector 91 can be changed by moving the peripheral side of the reflector 91 up and down or changing the horizontal position of the reflector 91. However, the above-described embodiment in which the center of the reflector 91 is moved along the axis of the intermediate portion 11 is simple in the mechanism, and is used for condensing the heat rays from the heating element 20 at the peripheral portion on the central portion of the wafer. It is excellent in that it can be used for reflection between the distal end portion and the peripheral portion of the reflector 91 and that reflection can be performed point-symmetrically around the shaft 93.

反射体の形状は、例えば図12に示すように、反射体91’は平坦面を形成すると共に屈曲させて一部に斜面を形成してある。また、屈曲は一カ所に限られず複数箇所設けても構わない。なお、反射体の一端側を保持する中央板の形状等も反射体の形状等に合わせて改変可能である。   As for the shape of the reflector, for example, as shown in FIG. 12, the reflector 91 'forms a flat surface and is bent to form a slope in part. Further, the bending is not limited to one place, and a plurality of bendings may be provided. It should be noted that the shape of the central plate that holds one end of the reflector can be modified in accordance with the shape of the reflector.

反射装置90は、筒状に配置された発熱体20の筒状端部に配置すれば良く、加熱装置3の上部のみならず下部に設けてもよい。但し、下部はボートを移動させるために開口することが必要であり、また、上部には排気口が設けられて温度が低下し易いことから、上部に設けることが望ましい。   The reflection device 90 may be provided at the cylindrical end of the heating element 20 arranged in a cylindrical shape, and may be provided at the lower portion as well as the upper portion of the heating device 3. However, the lower part needs to be opened in order to move the boat, and the upper part is provided with an exhaust port and the temperature is likely to decrease.

反応容器は、均熱管及び反応管の双方を備えるように説明したが、均熱管を備えずに反応管のみであってもよい。その他、2重管のみならず、1管や3重管以上の管数に構成されていてもよい。   Although the reaction vessel has been described as including both the soaking tube and the reaction tube, the reaction vessel may include only the reaction tube without including the soaking tube. In addition, you may be comprised not only in a double pipe but in the number of pipes of 1 pipe or a triple pipe or more.

上記熱処理は酸化処理や拡散処理及び拡散だけでなくイオン打ち込み後のキャリア活性化や平坦化のためのリフローおよびアニール処理等に限らず、成膜処理等の熱処理であってもよい。基板はウエハに限らず、ホトマスクやプリント配線基板、液晶パネル、光ディスクおよび磁気ディスク等であってもよい。バッチ式熱処理装置および枚葉式熱処理装置に限らず、ヒータユニットを備えた半導体製造装置全般に適用することができる。上記インナシェル50及び反射体91の鏡面仕上げ部は、ステンレス鋼の研磨により鏡面とする他、金、白金等の貴金属によるメッキを施しても構わない。   The heat treatment is not limited to oxidation treatment, diffusion treatment, and diffusion, but is not limited to reflow and annealing treatment for carrier activation and planarization after ion implantation, and may be heat treatment such as film formation treatment. The substrate is not limited to a wafer, but may be a photomask, a printed wiring board, a liquid crystal panel, an optical disk, a magnetic disk, or the like. The present invention is not limited to batch-type heat treatment apparatuses and single-wafer-type heat treatment apparatuses, and can be applied to all semiconductor manufacturing apparatuses provided with a heater unit. The inner shell 50 and the mirror finish portion of the reflector 91 may be mirror-finished by polishing stainless steel, or may be plated with a noble metal such as gold or platinum.

本発明の実施形態は上記の如く構成されるが、さらに包括的には次に列挙するような構成を備えてもよい。
本発明に係る加熱装置は、加熱空間を囲う壁体と、該壁体内部で筒状に配置された発熱体と、前記発熱体の筒状端部で、前記加熱空間の中心部から前記加熱空間の周縁部までを覆うように配置され、該発熱体からの熱線を反射する複数の反射体と、該複数の反射体それぞれの前記中心部に位置する一端側に接続され該複数の反射体を可動させる可動部と、少なくとも前記複数の反射体それぞれの他端側に接続され、前記可動部が動作する際に前記反射体の動きを支軸として規制する複数の支軸体とを備える。係る場合、前記複数の反射体は環状に配置されており、前記可動部は前記環状の中央で前記複数の反射体に接続され、前記可動部の動作により、前記支軸体を支軸として前記複数の反射体の可動を調整可能に構成するとよい。前記発熱体の前記筒状端部の一つが前記壁体の一つである天井壁体側に位置し、前記複数の反射体は、前記天井壁体側に配置されても構わない。
また、前記複数の反射体間には隙間を形成するとよい。前記反射体は、前記環状の中央を基部とした三角形状に形成しても構わない。前記複数の反射体は実質的に円周方向に均等配置されている。前記複数の反射体は、前記天井壁体側に凸となるように湾曲しているとよい。
前記壁体は筒状の側壁体と該側壁体の上端側に配置される天井壁体とで少なくとも形成されており、前記発熱体は前記側壁体に保持され、前記可動部は前記天井壁体に保持しても構わない。係る場合、前記天井壁体には、前記加熱空間内を排気する排気口に連通する開口が設けられており、前記複数の反射体間に形成されている隙間のうちの少なくとも一つは前記開口における開口面の直径より狭小であるとよい。前記壁体には、前記加熱空間内を排気する排気口が設けられており、この排気口は前記可動部を中心として円周方向に配置された複数の開口と連通してあり、前記反射体は三角形状に形成されており、該三角形状の基部を中央として前記複数の反射体が環状に隙間を形成して配置されており、該隙間のうちの少なくとも一つは前記開口における開口面の直径より狭小である。前記可動部の動作により前記支軸体を支軸として前記発熱体に対する前記複数の反射体における反射面の角度を変化させることで前記熱線の反射状態を変化させる移動機構を具備するとよい。前記反射体は前記加熱空間の中心部から前記加熱空間の周縁部近傍までを覆う大きさで湾曲して形成されているとよい。
また、前記複数の反射体は、前記側壁体の軸心位置から前記発熱体が保持される円周位置に直交する鉛直方向位置までそれぞれ延在させても構わない。前記反射体は、前記天井壁体側が凸となるように湾曲させるとよい。
本発明の基板処理装置は、上記態様の前記加熱装置の内部の加熱空間に内部で基板を処理する反応容器を設けてある。係る場合、前記基板の周縁部と中心部との温度もしくは膜厚の偏差が所定の偏差より大きい場合に前記可動部を動作させる制御部をさらに備えてもよく、前記反応容器内の基板の周縁部の温度を検出する第1の温度検出体と前記反応容器内の基板の中心部の温度を検出する第2の温度検出体との検出結果に基づき、前記基板の周縁部と中心部の温度偏差を求め、この求めた温度偏差が所定の偏差より大きい場合に前記可動部を動作させる制御部をさらに備えても構わない。また、前記反射体は前記基板の中心部から前記基板の周縁部を越える大きさで湾曲して形成することが望ましい。本発明の基板処理装置の他の態様は、基板を処理する反応容器と、この反応容器の外周に配置され前記反応容器内の前記基板を加熱する加熱装置とを備え、この加熱装置は、前記反応容器を取り囲むように筒状に配置された発熱体、及び前記反応容器内の基板の中心部から前記反応容器の周縁部を超える大きさで、前記発熱体の筒状端部に配置され、該発熱体の熱線を反射する複数の反射体とを有し、この複数の反射体を移動させて前記熱線の反射状態を変更させるための移動機構と、前記基板の周縁部と中心部との面内偏差に基づきこの移動機構を制御する制御装置とを備え、前記移動機構は、該複数の反射体それぞれの前記中心部に位置する一端側に接続され該複数の反射体を可動させる可動部、及び、少なくとも前記複数の反射体それぞれの他端側に接続され、前記可動部が動作する際に前記反射体の動きを支軸として規制する複数の支軸体とを有することにある。
本発明に係る半導体装置の製造方法は、内部の加熱空間に反応容器を設け、前記反応容器を取り囲むように筒状に配置された発熱体の筒状端部で前記反応容器内の基板の中心部から前記反応容器の周縁部を超える大きさで複数の反射体を設け、該複数の反射体それぞれの前記中心部に位置する一端側に接続され該複数の反射体を可動させる可動部、及び、少なくとも前記複数の反射体それぞれの他端側に接続され、前記可動部が動作する際に前記反射体の動きを支軸として規制する複数の支軸体を有する移動機構を設けた加熱装置において、前記反応容器内に基板を搬入する工程と、前記移動機構により前記基板の周縁部と中心部との面内偏差に基づき移動し、前記基板の周縁部と中心部との面内偏差を低減させるように前記発熱体からの熱線の反射状態が変更される工程と、前記発熱体と前記複数の反射体から反射される熱線とで前記反応容器内を加熱し前記基板を処理する工程とを有する。
The embodiment of the present invention is configured as described above, but may be more comprehensively configured as described below.
The heating device according to the present invention includes a wall body that surrounds the heating space, a heating element that is arranged in a cylindrical shape inside the wall body, and a cylindrical end portion of the heating element that is heated from the center of the heating space. A plurality of reflectors arranged so as to cover the peripheral edge of the space and reflecting the heat rays from the heating elements, and the plurality of reflectors connected to one end located at the central portion of each of the plurality of reflectors And a plurality of support shaft bodies that are connected to at least the other end sides of the plurality of reflectors and restrict the movement of the reflectors as support shafts when the movable portion operates. In this case, the plurality of reflectors are arranged in an annular shape, and the movable portion is connected to the plurality of reflectors at the annular center, and the operation of the movable portion causes the support shaft body to serve as the support shaft. It is preferable that the plurality of reflectors be movable. One of the cylindrical end portions of the heating element may be located on a ceiling wall body side which is one of the wall bodies, and the plurality of reflectors may be arranged on the ceiling wall body side.
Further, a gap may be formed between the plurality of reflectors. The reflector may be formed in a triangular shape based on the annular center. The plurality of reflectors are substantially equally arranged in the circumferential direction. The plurality of reflectors may be curved so as to protrude toward the ceiling wall body.
The wall body is formed at least by a cylindrical side wall body and a ceiling wall body disposed on the upper end side of the side wall body, the heating element is held by the side wall body, and the movable portion is the ceiling wall body You may hold it. In this case, the ceiling wall body is provided with an opening communicating with the exhaust port for exhausting the inside of the heating space, and at least one of the gaps formed between the plurality of reflectors is the opening. It is good that it is narrower than the diameter of the opening surface. The wall body is provided with an exhaust port for exhausting the inside of the heating space, and the exhaust port communicates with a plurality of openings arranged in a circumferential direction around the movable portion, and the reflector Is formed in a triangular shape, and the plurality of reflectors are arranged annularly with the triangular base at the center, and at least one of the gaps is an opening surface of the opening. It is narrower than the diameter. It is preferable to provide a moving mechanism that changes the reflection state of the heat rays by changing the angles of the reflecting surfaces of the plurality of reflectors with respect to the heating element, with the supporting shaft body as a supporting shaft by the operation of the movable portion. The reflector may be formed to be curved with a size that covers from the center of the heating space to the vicinity of the peripheral edge of the heating space.
The plurality of reflectors may extend from the axial center position of the side wall body to a vertical position perpendicular to a circumferential position where the heating element is held. The reflector may be curved so that the ceiling wall side is convex.
In the substrate processing apparatus of the present invention, a reaction vessel for processing a substrate inside is provided in a heating space inside the heating apparatus of the above aspect. In this case, it may further comprise a control unit that operates the movable unit when a temperature or film thickness deviation between the peripheral part and the central part of the substrate is larger than a predetermined deviation, and the peripheral part of the substrate in the reaction vessel Based on the detection results of the first temperature detector that detects the temperature of the substrate and the second temperature detector that detects the temperature of the center of the substrate in the reaction vessel, the temperature of the peripheral edge and the center of the substrate A controller may be further provided that calculates a deviation and operates the movable part when the calculated temperature deviation is larger than a predetermined deviation. Further, it is desirable that the reflector is curved so as to have a size exceeding the peripheral portion of the substrate from the central portion of the substrate. Another aspect of the substrate processing apparatus of the present invention includes a reaction vessel that processes a substrate, and a heating device that is disposed on an outer periphery of the reaction vessel and heats the substrate in the reaction vessel. A heating element arranged in a cylindrical shape so as to surround the reaction vessel, and a size exceeding the peripheral edge of the reaction vessel from the center of the substrate in the reaction vessel, arranged at the cylindrical end of the heating element, A plurality of reflectors for reflecting the heat rays of the heating element, and a movement mechanism for moving the plurality of reflectors to change the reflection state of the heat rays, and a peripheral portion and a center portion of the substrate. A control unit that controls the moving mechanism based on an in-plane deviation, and the moving mechanism is connected to one end side of each of the plurality of reflectors and is movable to move the plurality of reflectors. And at least the plurality of reflectors that Is connected to the other end of the record is to have a plurality of support shafts member for restricting the movement of said reflector when said movable portion is operated as a support shaft.
The semiconductor device manufacturing method according to the present invention includes a reaction vessel provided in an internal heating space, and a center of a substrate in the reaction vessel at a cylindrical end portion of a heating element arranged in a cylindrical shape so as to surround the reaction vessel. A plurality of reflectors having a size exceeding the peripheral edge of the reaction vessel from a portion, a movable part connected to one end located at the center of each of the plurality of reflectors and moving the plurality of reflectors; and A heating device provided with a moving mechanism having a plurality of support shafts that are connected to at least the other end sides of the plurality of reflectors and restrict the movement of the reflectors as support shafts when the movable part operates. The step of carrying the substrate into the reaction vessel and the movement mechanism move based on the in-plane deviation between the peripheral portion and the central portion of the substrate, thereby reducing the in-plane deviation between the peripheral portion and the central portion of the substrate. To let the heat from the heating element With the a step of reflecting the state is changed, and a step of heating the reaction vessel by the heat rays reflected from the plurality of reflectors and the heating element to process the substrate.

本発明は、例えば、半導体集積回路装置(半導体デバイス)が作り込まれる半導体ウエハに酸化処理や拡散処理、イオン打ち込み後のキャリア活性化や平坦化のためのリフローやアニール及び熱CVD反応による成膜処理などに使用される基板処理装置に利用することができる。本発明は、このような基板処理装置のうち、特に低温領域でプロセスに対して有効なものである。   The present invention is, for example, film formation by oxidation treatment, diffusion treatment, carrier activation after ion implantation or planarization, annealing, and thermal CVD reaction on a semiconductor wafer on which a semiconductor integrated circuit device (semiconductor device) is formed. It can utilize for the substrate processing apparatus used for a process etc. The present invention is effective for a process in such a substrate processing apparatus particularly in a low temperature region.

従来の加熱装置を用いた処理炉の概略断面図である。It is a schematic sectional drawing of the processing furnace using the conventional heating apparatus. 本発明における基板処理装置の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the substrate processing apparatus in this invention. 図2の天井部近傍における横断面図である。FIG. 3 is a cross-sectional view in the vicinity of the ceiling portion of FIG. 図2におけるA部拡大図である。It is the A section enlarged view in FIG. 図3におけるB部拡大図である。It is the B section enlarged view in FIG. 図2におけるC部拡大図である。It is the C section enlarged view in FIG. 図2におけるD部拡大図である。It is the D section enlarged view in FIG. 図2における天井部の拡大図である。It is an enlarged view of the ceiling part in FIG. 図8におけるE−E断面図である。It is EE sectional drawing in FIG. 昇温開始当初の反射体の状態の一例を示す図2におけるD部拡大図である。It is the D section enlarged view in Drawing 2 showing an example of the state of the reflector at the beginning of temperature rising. 昇温完了直前の反射体の状態の一例を示す図2におけるD部拡大図である。It is the D section enlarged view in FIG. 2 which shows an example of the state of the reflector just before completion of temperature rising. 本発明に係る他の実施形態の反射体形状を示す図8におけるE−E断面図である。It is EE sectional drawing in FIG. 8 which shows the reflector shape of other embodiment which concerns on this invention.

符号の説明Explanation of symbols

1:基板処理装置,3:加熱装置,4:主制御装置,4a:温度モニタ部,4b:加熱制御部,4c:反射制御部,4d:第一流量制御部,4e:圧力制御部,4f:第二流量制御部,4g:排気制御部,4h:駆動制御部,5a:流量制御器,5b:流量制御器,5x:反応ガス導入管,5y:冷却ガス供給ライン,6a:圧力制御器,6x:反応ガス排気管,7:冷却ガス供給ライン,7a:開閉バルブ,7b:急冷パイプ,7x:吸気アタッチメント,7y:冷却ガス導入ダクト,8:強制排気ライン,8a:排気ブロア,10:天井部,11:中間部,12:下部,13:端子ケース,14:気道(冷却媒体流通通路),18:加熱空間,20:発熱体,20a:折曲部,21:上折返部,22:下折返部,23:素線部,24:隙間,30:吊り碍子,31:上碍子,32:下碍子,33:上金具,34:下金具,34a:隙間,35:ピン,36:ボルト,40:急冷パイプ,40a:貫通孔,40b:鍔,40c:鍔,40d:貫通部,42:急冷パイプ,50:インナシェル(側壁内層),50s:隙間,50t:第一フランジ,50u:断熱ブランケット,50x:第二フランジ,50y:断熱ブランケット,51:接続碍子,52:第一のボルト,53:カラー,54:第二のボルト,55a:開口(第一の開口),55b:箱(隔壁体),55c:鍔,55x:ねじ,59:水冷管,60:アウタシェル(側壁中層),60x:第三フランジ,60y:断熱ブランケット,61:パイプ,61a:開口,62:柱,62a:リベット,65:開口(第二の開口),65a:隙間,70:化粧パネル(側壁外層),71:ネジ,72a:底蓋,72b:コイルウケ,81:排気導路,81a:排気口,82:第一の開口,83:第二の開口,90:反射装置,91:反射体,91a:隙間,92:移動機構,93:シャフト,94:中央板,95:ボルト,99:アクチュエーター,100:取付構造,101:温度センサ(温度検出器),102:熱電対接点(温度検出体),103:保護管,103x:隙間,103y:隙間,104:碍子管,105:内鍔,106:外鍔,107:碍子,108:端子,109a:金属管,109b:止めねじ,111:第一パッキン,111a:孔,112:第二パッキン,112a:孔,120a〜c:ねじ,121:温度センサ(温度検出器),125:内鍔,126:外鍔,127:内箱,128:外箱,129:パッキン,131:温度センサ(温度検出器),132:温度センサ(温度検出器),133:保護管,135a〜c:鍔,300:ボート,305:ウエハ,308:処理室,309:反応容器,310:反応管,315:均熱管,317:均熱管内空間,320:L型温度センサ(温度検出器),321:接点(温度検出体),322:接点(温度検出体),330:温度センサ(温度検出器),Z1〜Z5:ゾーン,H1〜H3:貫通孔,R:円弧方向,V:貫通方向    1: substrate processing device, 3: heating device, 4: main control device, 4a: temperature monitoring unit, 4b: heating control unit, 4c: reflection control unit, 4d: first flow rate control unit, 4e: pressure control unit, 4f : Second flow controller, 4g: Exhaust controller, 4h: Drive controller, 5a: Flow controller, 5b: Flow controller, 5x: Reaction gas introduction pipe, 5y: Cooling gas supply line, 6a: Pressure controller , 6x: reaction gas exhaust pipe, 7: cooling gas supply line, 7a: open / close valve, 7b: quenching pipe, 7x: intake attachment, 7y: cooling gas introduction duct, 8: forced exhaust line, 8a: exhaust blower, 10: Ceiling part, 11: Intermediate part, 12: Lower part, 13: Terminal case, 14: Airway (cooling medium flow passage), 18: Heating space, 20: Heating element, 20a: Bending part, 21: Upper turning part, 22 : Lower folding part, 23: Wire part, 24: Clearance, 30: Hanging insulator, 31: Upper insulator, 32: Lower insulator, 33: Upper bracket, 34: Lower bracket, 34a: Clearance, 35: Pin, 36: Bo 40: quenching pipe, 40a: through hole, 40b: trough, 40d: penetration, 42: quenching pipe, 50: inner shell (side wall inner layer), 50s: gap, 50t: first flange, 50u : Insulation blanket, 50x: Second flange, 50y: Insulation blanket, 51: Connection insulator, 52: First bolt, 53: Collar, 54: Second bolt, 55a: Opening (first opening), 55b: Box (partition body), 55c: 鍔, 55x: Screw, 59: Water-cooled pipe, 60: Outer shell (side wall middle layer), 60x: Third flange, 60y: Thermal insulation blanket, 61: Pipe, 61a: Opening, 62: Column, 62a: rivet, 65: opening (second opening), 65a: gap, 70: decorative panel (side wall outer layer), 71: screw, 72a: bottom lid, 72b: coil wall, 81: exhaust conduit, 81a: exhaust port , 82: first aperture, 83: second aperture, 90: reflector, 91: reflector, 91a: gap, 92: moving mechanism, 93: shaft, 94: center plate, 95: Bolt, 99: Actuator, 100: Mounting structure, 101: Temperature sensor (temperature detector), 102: Thermocouple contact (temperature detector), 103: Protection tube, 103x: Clearance, 103y: Clearance, 104: Insulator tube, 105: inner cage, 106: outer cage, 107: insulator, 108: terminal, 109a: metal tube, 109b: set screw, 111: first packing, 111a: hole, 112: second packing, 112a: hole, 120a ~ c: Screw, 121: Temperature sensor (temperature detector), 125: Inner cage, 126: Outer cage, 127: Inner box, 128: Outer box, 129: Packing, 131: Temperature sensor (temperature detector), 132: Temperature sensor (temperature detector), 133: protection tube, 135a to c: dredging, 300: boat, 305: wafer, 308: processing chamber, 309: reaction vessel, 310: reaction tube, 315: heat equalizing tube, 317: soaking Heat pipe space, 320: L-type temperature sensor (temperature detector), 321: Contact (temperature detector), 322: Contact (temperature detector), 330: Temperature sensor (temperature detector), Z1 to Z5: Zone , H1 to H3: through hole, R: arc direction, V: penetration direction

Claims (5)

加熱空間を囲う壁体と、
該壁体内部で筒状に配置された発熱体と、
前記発熱体の筒状端部で、前記加熱空間の中心部から前記加熱空間の周縁部までを覆うように配置され、該発熱体からの熱線を反射する複数の反射体と、
該複数の反射体それぞれの前記中心部に位置する一端側に接続され該複数の反射体を可動させる可動部と、
少なくとも前記複数の反射体それぞれの他端側に接続され、前記可動部が動作する際に前記反射体の動きを支軸として規制する複数の支軸体と
を備える加熱装置。
A wall surrounding the heating space;
A heating element arranged in a cylindrical shape inside the wall,
A plurality of reflectors arranged to cover from the center of the heating space to the peripheral edge of the heating space at the cylindrical end of the heating element, and reflecting the heat rays from the heating element;
A movable part connected to one end located in the central part of each of the plurality of reflectors and moving the plurality of reflectors;
A heating device comprising: a plurality of support shafts that are connected to at least the other end sides of the plurality of reflectors and restrict movement of the reflectors as support shafts when the movable portion operates.
前記発熱体の前記筒状端部の一つが前記壁体の一つである天井壁体側に位置し、前記複数の反射体は、前記天井壁体側に配置される請求項1記載の加熱装置。 2. The heating device according to claim 1, wherein one of the cylindrical end portions of the heating element is located on a ceiling wall body side that is one of the wall bodies, and the plurality of reflectors are disposed on the ceiling wall body side. 前記複数の反射体は、前記天井壁体側に凸となるように湾曲している請求項2記載の加熱装置。 The heating device according to claim 2, wherein the plurality of reflectors are curved so as to protrude toward the ceiling wall body. 基板を処理する反応容器と、
この反応容器の外周に配置され前記反応容器内の前記基板を加熱する加熱装置とを備え、
この加熱装置は、前記反応容器を取り囲むように筒状に配置された発熱体、及び前記反応容器内の基板の中心部から前記反応容器の周縁部を超える大きさで、前記発熱体の筒状端部に配置され、該発熱体の熱線を反射する複数の反射体を有し、
この複数の反射体を移動させて前記熱線の反射状態を変更させるための移動機構と、
前記基板の周縁部と中心部との面内偏差に基づきこの移動機構を制御する制御装置とを備え、
前記移動機構は、該複数の反射体それぞれの前記中心部に位置する一端側に接続され該複数の反射体を可動させる可動部、及び、少なくとも前記複数の反射体それぞれの他端側に接続され、前記可動部が動作する際に前記反射体の動きを支軸として規制する複数の支軸体とを有する基板処理装置。
A reaction vessel for processing the substrate;
A heating device disposed on the outer periphery of the reaction vessel and heating the substrate in the reaction vessel;
The heating device includes a heating element arranged in a cylindrical shape so as to surround the reaction container, and a cylindrical shape of the heating element having a size exceeding the peripheral part of the reaction container from the center of the substrate in the reaction container. A plurality of reflectors arranged at the ends and reflecting the heat rays of the heating element;
A moving mechanism for moving the plurality of reflectors to change the reflection state of the heat rays;
A controller for controlling the moving mechanism based on an in-plane deviation between the peripheral edge and the center of the substrate;
The moving mechanism is connected to one end side located at the central portion of each of the plurality of reflectors and is movable to move the plurality of reflectors, and at least connected to the other end side of each of the plurality of reflectors. A substrate processing apparatus comprising: a plurality of support shaft bodies that regulate movement of the reflector as support shafts when the movable portion operates.
内部の加熱空間に反応容器を設け、
前記反応容器を取り囲むように筒状に配置された発熱体の筒状端部で前記反応容器内の基板の中心部から前記反応容器の周縁部を超える大きさで複数の反射体を設け、
該複数の反射体それぞれの前記中心部に位置する一端側に接続され該複数の反射体を可動させる可動部、及び、少なくとも前記複数の反射体それぞれの他端側に接続され、前記可動部が動作する際に前記反射体の動きを支軸として規制する複数の支軸体を有する移動機構を設けた加熱装置において、
前記反応容器内に基板を搬入する工程と、
前記移動機構により前記基板の周縁部と中心部との面内偏差に基づき移動し、前記基板の周縁部と中心部との面内偏差を低減させるように前記発熱体からの熱線の反射状態が変更される工程と、
前記発熱体と前記複数の反射体から反射される熱線とで前記反応容器内を加熱し前記基板を処理する工程とを有する半導体装置の製造方法。
A reaction vessel is installed in the internal heating space,
A plurality of reflectors having a size exceeding the peripheral edge of the reaction vessel from the center of the substrate in the reaction vessel at the cylindrical end of the heating element arranged in a cylindrical shape so as to surround the reaction vessel,
A movable part connected to one end side of each of the plurality of reflectors, the movable part being movable, and connected to at least the other end side of each of the plurality of reflectors, the movable part being In a heating device provided with a moving mechanism having a plurality of support shafts that regulate the movement of the reflector as a support shaft when operating,
Carrying the substrate into the reaction vessel;
The movement mechanism moves based on the in-plane deviation between the peripheral portion and the central portion of the substrate, and the state of reflection of the heat rays from the heating element is reduced so as to reduce the in-plane deviation between the peripheral portion and the central portion of the substrate. The process to be changed,
A method for manufacturing a semiconductor device, comprising: heating the inside of the reaction vessel with the heating element and a heat ray reflected from the plurality of reflectors to process the substrate.
JP2008154369A 2007-06-25 2008-06-12 Heating apparatus, substrate processing apparatus, and semiconductor device manufacturing method Active JP4564081B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008154369A JP4564081B2 (en) 2007-06-25 2008-06-12 Heating apparatus, substrate processing apparatus, and semiconductor device manufacturing method
KR1020080059568A KR101001331B1 (en) 2007-06-25 2008-06-24 Heating apparatus, substrate processing apparatus and method of manufacturing semiconductor devices
US12/213,823 US8116618B2 (en) 2007-06-25 2008-06-25 Heating apparatus, substrate processing apparatus, and method of manufacturing semiconductor devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007166998 2007-06-25
JP2008154369A JP4564081B2 (en) 2007-06-25 2008-06-12 Heating apparatus, substrate processing apparatus, and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2009033116A JP2009033116A (en) 2009-02-12
JP4564081B2 true JP4564081B2 (en) 2010-10-20

Family

ID=40403250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008154369A Active JP4564081B2 (en) 2007-06-25 2008-06-12 Heating apparatus, substrate processing apparatus, and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP4564081B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116043195A (en) * 2023-03-01 2023-05-02 无锡邑文电子科技有限公司 Heating device and ALD equipment
CN117305791B (en) * 2023-10-09 2024-04-09 艾姆西艾(宿迁)电池技术有限公司 Constant temperature heating device for magnetron sputtering coating machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121391A (en) * 1997-10-13 1999-04-30 Toshiba Corp Heat treatment device for semiconductor wafer and method of heat treating semiconductor wafer
JP2002050583A (en) * 2000-08-03 2002-02-15 Sony Corp Substrate-heating method and substrate-heating device
JP2003139468A (en) * 2001-11-05 2003-05-14 Sukegawa Electric Co Ltd Heating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121391A (en) * 1997-10-13 1999-04-30 Toshiba Corp Heat treatment device for semiconductor wafer and method of heat treating semiconductor wafer
JP2002050583A (en) * 2000-08-03 2002-02-15 Sony Corp Substrate-heating method and substrate-heating device
JP2003139468A (en) * 2001-11-05 2003-05-14 Sukegawa Electric Co Ltd Heating device

Also Published As

Publication number Publication date
JP2009033116A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP5043776B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP4365017B2 (en) Method for controlling temperature drop rate of heat treatment apparatus and heat treatment apparatus
KR101012082B1 (en) Heating apparatus, substrate processing apparatus employing the same, method of manufacturing semiconductor devices, and insulator
US20110089166A1 (en) Temperature measurement and control of wafer support in thermal processing chamber
US20110223552A1 (en) Vertical heat treatment apparatus and method for cooling the apparatus
US20110220089A1 (en) Vertical heat treatment apparatus and assembly of pressure detection system and temperature sensor
KR101001331B1 (en) Heating apparatus, substrate processing apparatus and method of manufacturing semiconductor devices
JP5139734B2 (en) Substrate processing apparatus and heating apparatus used therefor
JP5568387B2 (en) Heating apparatus, substrate processing method, and substrate processing apparatus
JP4564081B2 (en) Heating apparatus, substrate processing apparatus, and semiconductor device manufacturing method
KR100969696B1 (en) Heating apparatus, substrate processing apparatus employing the same, method of manufacturing semiconductor devices, and extending member
JP4490492B2 (en) Heating apparatus, substrate processing apparatus using the same, semiconductor device manufacturing method, and insulator
JP4472007B2 (en) Heating apparatus, substrate processing apparatus using the same, semiconductor device manufacturing method, and penetrating member
JP2011023514A (en) Substrate processing apparatus and method of manufacturing semiconductor device
JP4669465B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, heating apparatus, and heat insulating material
JP2010093108A (en) Substrate processing apparatus, and method of manufacturing semiconductor device
JP4495717B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2011187561A (en) Heating device, and method of manufacturing heating device
JP5584461B2 (en) Heating apparatus, substrate processing apparatus, and semiconductor device manufacturing method
KR102654476B1 (en) Temperature sensoer, heater unit, substrate processing apparatus, method of manufacturing semiconductor device, and program
JP5543196B2 (en) Heating apparatus, substrate processing apparatus, and semiconductor device manufacturing method
JP2011103469A (en) Substrate processing apparatus, method of manufacturing semiconductor device, heating device, and heat insulating material
JP2011187781A (en) Heating device and fixture of cooling pipe used for the same
JP2006173157A (en) Substrate processing apparatus
JP3641193B2 (en) Vertical heat treatment apparatus, heat treatment method, and heat insulation unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4564081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250