JP4560200B2 - Method of welding quartz glass members - Google Patents

Method of welding quartz glass members Download PDF

Info

Publication number
JP4560200B2
JP4560200B2 JP2000328343A JP2000328343A JP4560200B2 JP 4560200 B2 JP4560200 B2 JP 4560200B2 JP 2000328343 A JP2000328343 A JP 2000328343A JP 2000328343 A JP2000328343 A JP 2000328343A JP 4560200 B2 JP4560200 B2 JP 4560200B2
Authority
JP
Japan
Prior art keywords
rod
welding
quartz glass
plate
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000328343A
Other languages
Japanese (ja)
Other versions
JP2002137928A (en
Inventor
孝治 中川
浩二 関
真樹 松坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Quartz Corp
Original Assignee
Tosoh Quartz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Quartz Corp filed Critical Tosoh Quartz Corp
Priority to JP2000328343A priority Critical patent/JP4560200B2/en
Publication of JP2002137928A publication Critical patent/JP2002137928A/en
Application granted granted Critical
Publication of JP4560200B2 publication Critical patent/JP4560200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウエーハの熱処理時にウエーハの保持用として使用される石英ガラス製のウエーハボートや、ウエーハの移動、乾燥、洗浄時などにウエーハ保持用、移送用として用いられる石英ガラス製容器や洗浄治具などの石英ガラス製品を製作する方法に関し、こうした製品を組立製作する際の石英ガラス部材の溶接方法に関するものである。
【0002】
【従来の技術】
半導体装置の製造工程では、高温においても安定しており、半導体に不純物を混入させることのない高純度の材料である石英ガラスが治具として用いられている。半導体製造用として用いられる石英ガラス製治具のうち、ウエーハボートや石英ガラス製洗浄用治具は、図2に示すような溝を設けた棒状部材に天板及び底板を溶接して組み立てられている。
【0003】
従来は、板状石英ガラス部材表面に棒状の石英ガラス部材の端面を当て、手に持ったバーナーで溶接箇所の周囲を2〜3mmφの石英ガラス製の溶接棒を酸水素火炎で溶融接合する方法が一般的である。また、特開平4−182322号のように溶接する二つの石英ガラス部材の溶接端部間に溶接棒を配置した後、レーザを用いて溶接する方法がある。
【0004】
従来法は、いずれも溶接する部材同士を溶接棒を介して接合して組み立てる方法である。従って溶接棒で肉盛りした箇所が溶かし方が悪いと加熱不良で部分的に溶接不良となり、泡が発生したり、或いは、接合強度不足となる場合があり、また、加熱し過ぎによる溶接棒自体の変形や溶接面の窪みなど、組立精度上、外観上問題が生じることがあった。
このため、溶接棒を使用した接合は、十分火をかけて接合強度を増す作業には適しているが、表面変形が大きいため手直しやカーボンこてなどで接合面を再度成形し直す必要があり、精度を要するものや、連続的な組立作業をおこなうものには不向きである。
【0005】
図2に示すような縦型ウエーハボートを製作する場合、従来の方法では、通常、石英ガラス棒状部材をダイヤモンドホイールで切削してウエーハ載置用の溝を設け(ボートに組み上げた後に溝を設ける場合もある)、図3に示すように複数(この図では4本)の溝棒をカーボン治具を用いてそれぞれが所定の位置となるように配置し、同じくカーボン治具を用いて所定の間隔で左右平行に位置させた天板と底板に溝棒を順番に仮溶接してウエーハボートを仮組立し、カーボン治具から仮溶接した組立品を取出し、仕様にあっているかを3次元測定器などでチェックし、修正を要する場合は仮溶接をやり直し、所定の寸法公差内にあることを確認した後に、本溶接をおこない組み立てていた。
【0006】
この従来の方法では、ウエーハボートの様々な規格、仕様に合わせていくつものカーボン治具を用意しなければならず、カーボン治具の摩耗の問題を含め、規定寸法となるようにカーボン治具内に天板や溝棒などの石英ガラス部材を配置するための微調整作業に多くの時間と労力を費やしていた。
また、溝棒のセットの微調整がうまくいったとしても溝棒自体の径の大きさにバラツキがあった場合には、セットした溝棒の径の中心から他の溝棒の径の中心までの距離が異なってくるため、完成した製品は、仕様と違った寸法公差で組み立てられるといった問題を生じていた。
いずれにしても各作業は手作業によるため、作業者の熟練度にも左右され、また、仮溶接工程という余分な工程を採らざるを得ないという問題点があった。
【0007】
【発明が解決しようとする課題】
本発明は、こうした従来技術が抱えていた問題点を解決するものであり、溶接棒を介しての接合の場合に生じる表面変形を防止し、接合面を再度成形し直す必要のない石英ガラス部材の溶接方法を提供すると共に、カーボン治具を使用する組立工程を不要とすると同時に、この時の手作業による仮溶接工程をも省略しようとするもので、高寸法精度で再現性に優れた連続的な組立作業工程に適したウエーハボートの溶接方法及びその装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
板状の石英ガラス部材表面に棒状石英ガラス部材端面を溶接するに際し、接合面を加熱軟化させ垂直方向から圧力を加えて圧着接合すれば良いことを見い出し、さらに、この棒状部材の溶接する側の端面を凸型形状とし、バーナーの火炎で加熱しながら接合面に垂直な方向から圧力を加えて圧着接合することにより、前記課題を解決した。
【0009】
そして棒状石英ガラス部材と板状部材を、どちらか一方を固定して他方を移動させ、もしくは双方を移動可能として、接合面方向に相対移動させ圧力を加えることによって圧着することが効果的であり、複数の棒状石英ガラス部材をワーク保持部に支持し、ワーク保持部と板状部材を、接合面方向に相対的に移動させ圧力を加えることによって複数の棒状部材を同時に圧着できるようにした。
【0010】
さらに、棒状石英ガラス部材の接合する端面の凸型形状を、棒状端面の中心から対称となるように楔型もしくは円錐型形状とした。
棒状部材端面の凸状形状の中心点又は中心面頂点から周面までの傾斜角度を圧着による棒状石英ガラス部材の潰し量により適宜選択することにより、圧着が適切におこなわれるようにした。
楔型もしくは円錐型形状の棒状部材端面の中心点から対称となる少なくとも2方向から火炎を送り、溶接箇所を対向加熱することにより、圧着を確実なものとした。さらに、溶接する板状部材面に対して5〜45度の火炎角度で対向加熱することが好ましいことを見出した。
【0011】
石英ガラス製の二股バーナー、もしくは、ラインバーナーが溶接部の加熱に好ましく、さらに、ラインバーナーの先端部がUターンさせてあり、供給管に接続してあるものが、燃焼ガスの均一供給に好ましい。
また、加熱開始時における板状部材表面と棒状部材端面の凸部頂点との距離を1〜3mmとすることが有効である。
【0012】
縦型ウエーハボートの溶接組立方法として、底板となる上フランジ及び天板となる側板へ、溝棒もしくは棒状部材を溶接して組み立てる場合、天板の板状部材をクランプチャックで位置決めし、板状部材の溶接面に対し5〜45度の火炎角度を設け、少なくとも2方向から火炎を送るようにバーナーを対向配置し、棒状石英ガラス部材をスライド可能なワーク保持部に支持し、バーナーで加熱しながら接合面に垂直に押しつけるようにワーク保持部または天板もしくは双方を相対移動させて圧着接合し、続いて天板チャックのクランプを解除した後、クランプチャックで位置決めした底板に棒状部材の他方の端面を圧着接合することが多数の棒状部材を板材に同時溶接して製造でき縦型ウエーハボートを効率よく生産することができる。
【0013】
そして、基台上に間隔をおいて設けた石英ガラス製天板、底板を支持、回転及び移動させるための支持・回転・移動手段と、バーナーの支持・回転・移動制御手段と、バーナーのガス流量制御手段と、石英ガラス棒状部材を支持及び軸方向に移動させる支持・移動手段と、天板、底板及び石英ガラス棒状部材を相対移動させて、接合面に垂直方向から圧力を加える圧力付与手段とを備えた縦型ウエーハボート組立装置を用いることにより、精度、及び再現性良くウエーハボートを製造することができる。
【0014】
本発明を適用して組み立てる石英ガラス製品としては、半導体熱処理工程で使用されるCVDボートや拡散ボートといった縦型の石英ガラス製ウエーハボートや、半導体ウエーハの搬送用容器や洗浄用治具などが挙げられる。
【0015】
本発明の石英ガラス部材の溶接方法は、ウエーハボートの天板などのように平面状の石英ガラス部材に、溝棒などの棒状石英ガラス部材の端面を溶接接合して組み立てる際に特に有効である。
棒状部材は、先に丸棒に溝加工した後にボートに組み上げる先切り方式の場合は溝棒を使用するが、ボートに組み上げた後に丸棒に溝加工を施す後切り方式として、丸棒をそのまま使用してボートに組み上げても構わない。
一例として上記製品を挙げたが、種々の製品にも適用が可能である。
板状部材に接合する棒状部材の形状は丸棒でも角棒でも多角形状、その他の異型形状であっても適用可能である。
【0016】
【発明の実施の形態】
図1に示すように、φ20mmの石英ガラス棒(棒状部材)2の端面を傾斜角5.7度のV字型の楔形状に形成し、石英ガラスの板状部材1の面から3mm離して垂直に位置させた。丸棒2の両側に酸水素火炎バーナー3を対向配置し、板状部材に対して20度の角度で15mm離して位置させ、水素30リットル/分、酸素10リットル/分で火炎を接合面に供給し、加熱して軟化させ、丸棒2を先端から2mm潰れるまで板状部材1に押しつけて圧着した。
通常の溶接は加熱して被溶接物同士を十分に良く溶かして、その溶融流動で接合するものであるが、本願は加熱は部材面を予め軟化させておくためのものであり、加圧によって圧着接合するものである。
【0017】
従って、従来のようにバーナーで棒材の周囲を加熱しながらその場所をカーボンローラーなどで加圧整形する場合のように、接合面を溶かして溶融流動させて溶融強度を増すためにおこなっている常用の加圧手段とは本質的に異なるものである。
【0018】
圧着は、棒状部材2の軸が板状部材面に対して垂直になるようにして圧力を加える。棒状部材と板状部材を相対的に近接するように移動させるが、移動させる部材は棒状部材と板状部材のどちらでも良く、両部材を同時に移動させても良い。
相対的に移動させることで、溶接面に対して垂直方向からの押圧力が生じることとなり、この移動をシリンダー装置により移動速度・移動距離を設定してコントロールし、押圧力を制御する。
【0019】
適切な押圧力を加えることで、均一で再現性の良い接合が可能となり、また、接合面を溶融状態まで加熱することなく石英ガラスの軟化点近傍までの加熱でよいため、接合面の変形を防止することが可能となる。
押圧力は、流体圧シリンダーによるものや、電気モータの回転トルクをワークの支持台等に伝達して移動させることによる方法があるが、電気モータは細かい移動制御が可能であり、一定の押圧力を得やすいので好ましい。
また、押圧力は、部材の形状や接合面の軟化の状態に応じて適宜選択するが、0.1〜100g/mm2の範囲が好ましい。
【0020】
棒状部材の接合端面は凸状に加工しておく。凸状とすることにより加熱の際、端面中心部が先に軟化され、さらに、圧力を加えることにより端面中心部から外周部方向へ順次圧着されていくため、溶接面に泡が発生しにくく、発生しても外方向へ逃がされるため残りにくい。また中心から順次外側に向かって溶接されるので少ない加熱量でも溶接強度を高められる。このため、従来方法のようにバーナーで溶接面のみならずその周囲をも加熱し、その熱容量だけで溶接する必要がないので、熱量を最小限に絞ることができ、溶接面の変形が防止できる。
凸状の棒状部材端面形状は、軟化の面分布を均一にするため端面の中心から対称となる形状が好ましく、具体的には楔型もしくは円錐型が効果的である。
【0021】
棒状部材2の端面の凸状形状の中心点又は中心面頂点から周面までの傾斜角度を、圧着による石英ガラス棒状部材2の潰し量により適宜選択する。例えば、円錐の傾斜角を一定とすると棒状部材2の直径によって円錐の高さが異なるため潰される棒状部材の長さが異なってくる。棒状部材の断面形状、凸状の傾斜角度が定まると、溶接時に潰される凸状体の体積が求まるので、予め対照表を作成しておくことにより、棒状部材の潰し量が予測でき高精度の溶接が可能となる。最適範囲としては、楔または円錐の傾斜角は2度〜20度の範囲であり、潰し量は0.5〜8mmである。
棒状部材の径が20mmφの場合、潰し量で2mm、円錐型の傾斜角は6度程度が好ましい。
【0022】
組立装置に棒状部材の径、潰し量、凸状の傾斜角の対照関係を記憶させておき、部材の相対移動量を自動的に制御することにより表面性状に優れた溶接接合を再現性良く連続的におこなうことができる。
【0023】
バーナー3による加熱は、楔型もしくは円錐型形状の棒状部材端面の中心点から対称となる少なくとも2方向から、火炎を送り溶接箇所を対向加熱する。バーナー火口から棒状部材の外周面までの距離はバーナー3のノズル径にもよるが10〜30mmの間の一定距離とする。また、バーナーの火炎角度は、溶接する板状部材面に対して5〜45度の火炎角度で対向加熱することが望ましい。
【0024】
溶接面を変形させることなく均一に軟化させることが重要で、部材からの輻射熱や煽り火の影響を極力避ける上で上述した方法が効果的である。バーナーの火炎角度が5度より小さいと棒状部材の凸部頂点部の軟化が他の溶接箇所に比べて早すぎてバランスが悪く、全体的な溶接強度が低くなり好ましくない。また45度より大きいと逆に凸状部材の外周面が他の溶接箇所に比べて早すぎて溶接後の外周形状が外側に膨らんだ形の変形が生じると同時に板状部材表面層にも凹みが生じるため好ましくなく、10〜30度の火炎角度とすることがより好ましい。
【0025】
バーナー3による加熱開始時における板状部材表面と棒状部材端面の凸部頂点との距離を1〜3mmとすることが効果的である。
板状部材と棒状部材端面とを接触させた状態としておくと、ガラスを軟化状態にするための時間が必要なため、その間に火炎が板状部材から反射される輻射熱と共に反射流として交錯し、結果的には輻射熱で棒状部材2端面周囲壁面が溶かされ、反射流で外周面が膨らんだ形状に変形し、好ましくない。また、板状部材と棒状部材端面との距離を1mm未満とすると、バーナー3からの火炎流は部材間で滞留しやすく、ガスの流れが悪いため同様な変形を生じやすい。また、3mmを超えると加熱効率が悪くなり、強い火炎流が必要となる。従って部材間の当初の間隔としては1〜3mmに設定しておくことが好ましい。
【0026】
バーナー3は、石英ガラス製の二股バーナーもしくはラインバーナーを使用するのが好ましい。小さい熱量で軟化させるためには加熱領域に供給する熱量のバランスが大切である。このため供給するガス量を均一に供給する上で、棒状部材2端面の凸型形状が楔型の場合には二股バーナーが、円錐型の場合にはラインバーナーが適している。
【0027】
ラインバーナーは、ノズル径が1〜3mmφから針穴に至るものまであり、溶接部材に会わせて適宜選択する。火炎同士の干渉を防ぎ、安定した溶融状態を得るように最適なノズルの径、個数、及びピッチを選択する。
【0028】
ラインバーナーのノズル31を例えば7個一列に配置して火炎を放射した場合、供給管のガス供給側から最も離れた位置のノズルのガス流量が最も多く、供給管の一番手前のノズルから放出されるガス量が最も少ないため、熱量の供給量がノズルの位置で異なることとなりバランスが崩れるのでノズル径を配置された順に変えてバランスを取っていた。また、ノズル径を同じにして供給管から突き出すノズルの長さを配置順に変えることでバランスを取っていた。
しかし、この方法ではバーナーの加工に手間がかかり、また、ガス圧やガス供給量の変化には対応しきれないという問題があった。
【0029】
図4に示すような、ノズル先端をループ30に形成したラインバーナーは、ノズル31の位置によらず各ノズルからの火炎流が均一に放射され熱量が均一に供給されるので本発明方法のバーナーとして適している。
先端をループ30に形成し、ループ部分にノズル31をライン状に形成した構造とすることで、供給された酸水素ガスの混合ガスはガス管路中を周回することとなるためノズル31の位置による供給管路中のガスの流れの偏りが解消され、ラインバーナーの各ノズルを同一形状とすることができると共に均一なガス流の供給が可能になり、均一な火炎を供給することができる。
【0030】
縦型ウエーハボートの組立装置
本発明の溶接方法を使用した縦型ウエーハボートの組立装置について説明する。
図5に示すように、基台4上に天板チャック51と底板チャック52が間隔をおいて設けてある。両チャック51、52は、天板11及び底板12をクランプする真空吸着装置が設けてあり、回転可能であり、また、軸方向に移動可能である。移動は、シリンダー装置で移動速度・移動距離を設定、コントロールして、溶接面に付与する押圧力を制御する。
両チャック51、52の側には軸方向及び上下方向に移動可能な加熱用のラインバーナー3が2個1組を対向配置したものが、溶接する溝棒2に対応する個数が設けてある。天板11及び底板12に対する火炎放射角度を調整するため、ラインバーナー3は回転可能に保持されている。
【0031】
さらに、棒状部材2を板状部材1に圧着溶接した後、溶接部分の線取り処理するためのバーナー32が6軸多関節ロボットのアーム6に取り付けてある。
また、ラインバーナー3への水素及び酸素ガスの供給を一定に制御するマスフローメーターが4系統設けてある。
【0032】
天板チャック51と底板チャック52の間には、4本の溝棒2を所定の位置に保持し、基台4の上を軸方向に移動することによって溶接時に押圧力を加えて溝棒2と天板11及び底板12を圧着するスライド装置7が設けてある。
スライド装置7の溝棒2を保持固定するクランプ71は、溝棒2の中心が設定の中心となる構造としてあるので溝棒2の径に変更があっても、溶接位置がずれることがないようにしてある。なお、棒状部材が溝棒の場合には溝形状に合わせて作製したくし型の受け台に溝棒を嵌めこんで固定保持することにより、精度維持、再現性がより高められる。
【0033】
天板11及び底板12を真空チャック51、52で固定し、端面を円錐形状とした4本の溝棒2を、スライド装置7のクランプ71で所定の位置に固定する。
【0034】
天板11の溶接面に対しラインバーナー3を回転して25度の角度にセットし、各溝棒2に対して2方向から火炎を送られるようにラインバーナー3を対向配置する。スライド装置7を天板11側に移動させ、溝棒2の円錐先端と天板11の間の距離を2mmにする。4箇所にセットしたラインバーナー3で天板11と溝棒4本を同時に加熱し、軟化したところで加熱した状態のままスライド装置7を天板11側に移動させて溝棒2の端部が2mm押しつぶされるまで天板11に押しつけ、4本に溝棒2を同時に圧着する。
圧着後、天板チャック51による天板の保持を解除し、ラインバーナー3を上下方向へそれぞれ移動退避させ、6軸多関節ロボットのアーム6に取り付けた線取りバーナー32で圧着部4個所の線取りをおこなう。
【0035】
続いてスライド装置7を底板12側の溶融位置に移動させ、溝棒2の端面と底板12間の距離を同様に2mmとする。ラインバーナー3で底板12と4本の溝棒2を同時に加熱し、軟化したところでスライド装置7を底板12側に移動させて底板12と4本の溝棒2を同時に圧着する。圧着部は、6軸多関節ロボットに取り付けた線取りバーナー32で圧着部4個所の線取りをおこなう。底板12と溝棒2との溶接完了後、底板チャック52のクランプを解除し、スライド装置7を両チャックの中央に戻して停止させる。溝棒2のクランプ71の固定を解除して、組み立てられた縦型ウエーハボートを取出す。
【0036】
こうして得られた縦型ウエーハボートを検査した結果、溝棒を天板及び底板へ圧着接合した箇所は、8箇所とも膨らみやへこみなどの変形は認められず、また、溝棒の溝形状が崩れることもなく、ウエーハボートの基準面から第1溝までの規格公差は±0.1mmの範囲内にあり、高精度仕様を満足するものであった。
【0037】
ウエーハボート組立装置の他の実施例として、棒状部材の溝棒2を固定しておき、板状部材1を棒状部材2の端面に向かって移動させて圧着する例について説明する。
【0038】
実施例1と同様に、天板11の溶接面に対し25度の火炎角度を設けて、2方向から火炎を送るようにラインバーナー3を対向配置する。天板チャック51を溶融位置に移動させ、天板溶接面と溝棒端面間を2mmの距離に保持する。ラインバーナー3で天板11と4本の溝棒2を同時に加熱し、軟化したところで天板チャック51を溝棒2側へスライドさせ、溝棒2を接合面に垂直に押しつけて加圧し、天板11と4本の溝棒2を同時に圧着する。6軸多関節ロボットアームに取り付けたバーナー32で圧着部4個所の線取りをおこなう。天板11と溝棒2の溶接完了後、天板チャック51を解除する。
【0039】
続いて底板12のチャック52を溝棒2に向かって移動させ、溝棒2の他方の端面と底板12の間を2mmの距離に保持する。ラインバーナー3で底板12と4本の溝棒2を同時に加熱して軟化させ、底板チャック52を溝棒端面方向へ移動させ、底板12と4本の溝棒2を同時に圧着し、同様に圧着部の線取りをおこなう。
底板12のチャックを解除し、次に溝棒2のクランプを解除して組み立てられた縦型ウエーハボートを装置から取出す。
【0040】
得られた製品を検査した結果、溝棒を天板及び底板へ接合した箇所は、8箇所とも膨らみやへこみといった変形は認められず、また、フランジから10mmの位置にある溝棒の第1溝の溝形状が崩れることもなく、ウエーハボートの基準面から第1溝までの規格公差も±0.1mmの範囲内にあり、高精度仕様を満足するものであった。
【0041】
【発明の効果】
棒状部材の端面を凸型形状とし、バーナーの火炎により加熱しながら接合面に垂直方向から圧力を加えて圧着接合するため、従来石英ガラス部材の溶接に必要とされた溶接棒が不要となり、接合面の表面変形を防止することができ、接合面を再成形する必要がなくなった。
また、ウエーハボートの組立工程において、カーボン治具の使用を不要とし、同時に、手作業でおこなっていた仮溶接工程をも省略できる。
【0042】
さらに、棒状部材の径にバラツキがあっても、棒状部材をクランプで常に径の中心位置で保持するため、高精度で再現性良く組み立てることができ、 溶接部の手直しの必要がなく、効率よく接合組立ができる。
高寸法精度で再現性に優れた石英ガラス部材の溶接方法によって、複数の棒状部材を板状体に同時に溶接接合することができ、ウエーハボートを効率的に製造することが可能になった。
【図面の簡単な説明】
【図1】溶接状態の説明図。
【図2】縦型ウエーハボートの斜視図。
【図3】カーボン治具の説明図。
【図4】ループを有するラインバーナーの平面図。
【図5】ウエーハボート組立装置の正面図。
【符号の説明】
1 板状部材
2 棒状部材
3 バーナー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a quartz glass wafer boat used for holding a wafer during heat treatment of a semiconductor wafer, a quartz glass container used for holding or transferring a wafer during wafer transfer, drying, washing, etc. The present invention relates to a method of manufacturing a quartz glass product such as a jig, and relates to a method of welding a quartz glass member when assembling and manufacturing such a product.
[0002]
[Prior art]
In the manufacturing process of a semiconductor device, quartz glass, which is a high-purity material that is stable even at high temperatures and does not mix impurities in the semiconductor, is used as a jig. Among quartz glass jigs used for semiconductor manufacturing, wafer boats and quartz glass cleaning jigs are assembled by welding a top plate and a bottom plate to a rod-like member having grooves as shown in FIG. Yes.
[0003]
Conventionally, the end surface of a rod-like quartz glass member is applied to the surface of a plate-like quartz glass member, and a welding rod made of quartz glass having a diameter of 2 to 3 mmφ is melt-bonded with an oxyhydrogen flame around the welded place with a hand-held burner Is common. In addition, there is a method of welding using a laser after disposing a welding rod between the welded ends of two quartz glass members to be welded as disclosed in JP-A-4-182322.
[0004]
The conventional methods are methods in which members to be welded are joined and assembled via welding rods. Therefore, if the welded portion of the welding rod is poorly melted, it may cause poor welding due to poor heating, foaming may occur, or the bonding strength may be insufficient. There are cases where appearance problems such as deformation of the surface and depression of the welding surface occur in terms of assembly accuracy.
For this reason, joining using a welding rod is suitable for work that increases the strength of the joint by applying sufficient fire, but since the surface deformation is large, it is necessary to reshape the joint surface by reworking or carbon trowel. It is unsuitable for those requiring accuracy and those that perform continuous assembly work.
[0005]
When a vertical wafer boat as shown in FIG. 2 is manufactured, in the conventional method, a quartz glass rod-shaped member is usually cut with a diamond wheel to provide a groove for placing the wafer (the groove is provided after being assembled on the boat). 3), as shown in FIG. 3, a plurality of (four in this figure) groove rods are arranged so as to be in predetermined positions using a carbon jig, Temporarily welded the grooved boat to the top and bottom plates, which are positioned parallel to the left and right at intervals, to temporarily assemble the wafer boat, take out the temporarily welded assembly from the carbon jig, and measure it to meet specifications. After checking with a tool, etc., and making corrections, temporary welding was redone, and after confirming that it was within a predetermined dimensional tolerance, the main welding was performed and assembled.
[0006]
In this conventional method, a number of carbon jigs must be prepared according to the various standards and specifications of the wafer boat, and the carbon jigs must have the specified dimensions including the problem of wear of the carbon jigs. A lot of time and labor were spent on fine-tuning work for placing quartz glass members such as top plates and groove bars on the surface.
Also, even if fine adjustment of the groove rod set is successful, if there is variation in the diameter of the groove rod itself, from the center of the diameter of the set groove rod to the center of the diameter of the other groove rod Since the distances of the products differ, the finished product has a problem of being assembled with dimensional tolerances different from the specifications.
In any case, since each operation is a manual operation, it depends on the skill level of the operator, and there is a problem that an extra process called a temporary welding process must be taken.
[0007]
[Problems to be solved by the invention]
The present invention solves such problems of the prior art, prevents the surface deformation that occurs in the case of joining via a welding rod, and eliminates the need to re-form the joining surface. In addition to eliminating the need for an assembly process that uses a carbon jig, it is also possible to eliminate the manual welding process at this time, with high dimensional accuracy and excellent reproducibility. It is an object of the present invention to provide a wafer boat welding method and apparatus suitable for a typical assembly operation process.
[0008]
[Means for Solving the Problems]
When welding the end surface of the rod-shaped quartz glass member to the surface of the plate-shaped quartz glass member, it has been found that the bonding surface may be heat-softened and pressure-bonded by applying pressure from the vertical direction. The above-mentioned problems have been solved by forming the end face into a convex shape and applying pressure from a direction perpendicular to the joining surface while heating with a burner flame.
[0009]
Then, it is effective to fix the rod-like quartz glass member and the plate-like member by fixing one of them and moving the other, or allowing both to move and relatively moving them in the joining surface direction and applying pressure. The plurality of rod-like quartz glass members are supported by the work holding portion, and the plurality of rod-like members can be simultaneously pressed by moving the work holding portion and the plate-like member relatively in the joining surface direction and applying pressure.
[0010]
Furthermore, the convex shape of the end surface to which the rod-shaped quartz glass member is joined is a wedge shape or a cone shape so as to be symmetrical from the center of the rod-shaped end surface.
By appropriately selecting the central point of the convex shape of the end surface of the rod-shaped member or the inclination angle from the vertex of the center surface to the peripheral surface according to the amount of crushing of the rod-shaped quartz glass member by the pressure bonding, the pressure bonding is appropriately performed.
Crimping was ensured by sending a flame from at least two directions symmetrical from the center point of the wedge-shaped or conical-shaped end surface of the rod-shaped member and opposingly heating the welded portions. Furthermore, it discovered that it was preferable to counter-heat at the flame angle of 5-45 degree | times with respect to the plate-shaped member surface to weld.
[0011]
A quartz glass bifurcated burner or a line burner is preferable for heating the welded portion, and the tip of the line burner is U-turned and connected to a supply pipe is preferable for uniform supply of combustion gas. .
In addition, it is effective to set the distance between the surface of the plate-like member at the start of heating and the convex vertex of the end face of the rod-like member to 1 to 3 mm.
[0012]
When welding and assembling a vertical wafer boat by welding a groove rod or rod-like member to the upper flange as the bottom plate and the side plate as the top plate, position the plate member of the top plate with the clamp chuck, A flame angle of 5 to 45 degrees is provided with respect to the welding surface of the member, the burner is arranged so as to send the flame from at least two directions, the rod-shaped quartz glass member is supported by the slidable work holding part, and heated by the burner. The workpiece holder or the top plate or both are moved relative to each other so that they are pressed perpendicularly to the joining surface, and then joined by pressure bonding.Then, after the top plate chuck clamp is released, the other plate-shaped member is placed on the bottom plate positioned by the clamp chuck. The end surfaces can be joined by pressure bonding, and a large number of rod-shaped members can be manufactured by simultaneous welding to a plate material, and a vertical wafer boat can be efficiently produced.
[0013]
And a support / rotation / movement means for supporting, rotating and moving the quartz glass top plate and the bottom plate provided on the base at intervals, a support / rotation / movement control means for the burner, and a gas for the burner Flow rate control means, support / moving means for supporting and moving the quartz glass rod-shaped member in the axial direction, and pressure applying means for moving the top plate, bottom plate and quartz glass rod-shaped member relative to each other and applying pressure from the vertical direction to the joint surface The wafer boat can be manufactured with high accuracy and reproducibility.
[0014]
Examples of quartz glass products to be assembled by applying the present invention include vertical quartz glass wafer boats such as CVD boats and diffusion boats used in semiconductor heat treatment processes, semiconductor wafer transport containers, and cleaning jigs. It is done.
[0015]
The method for welding a quartz glass member of the present invention is particularly effective when assembling the end surface of a rod-like quartz glass member such as a groove rod by welding to a flat quartz glass member such as a top plate of a wafer boat. .
The rod-shaped member uses a groove rod in the case of the front cutting method that is first grooved into a round bar and then assembled into a boat. You can use it and assemble it into a boat.
Although the above-mentioned product is given as an example, it can be applied to various products.
The shape of the rod-shaped member to be joined to the plate-shaped member is applicable to a round bar, a square bar, a polygonal shape, or other irregular shapes.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, the end surface of a quartz glass rod (rod-shaped member) 2 having a diameter of 20 mm is formed in a V-shaped wedge shape with an inclination angle of 5.7 degrees, and is separated from the surface of the quartz glass plate-shaped member 1 by 3 mm. Positioned vertically. An oxyhydrogen flame burner 3 is placed opposite to both sides of the round bar 2 and is positioned 15 mm away from the plate member at an angle of 20 degrees, and a flame is applied to the joint surface at 30 liters / minute of hydrogen and 10 liters / minute of oxygen. The sample was supplied, heated and softened, and the round bar 2 was pressed against the plate member 1 until it was crushed by 2 mm from the tip, and was crimped.
In normal welding, the objects to be welded are melted sufficiently well by heating and are joined by the melt flow, but this application is for pre-softening the member surface, It is to be bonded by pressure bonding.
[0017]
Therefore, as in the conventional case where the periphery of the bar is heated with a burner and the place is pressure-shaped with a carbon roller or the like, the joining surface is melted and melted and flowed to increase the melt strength. This is essentially different from conventional pressurizing means.
[0018]
In the pressure bonding, pressure is applied so that the axis of the rod-shaped member 2 is perpendicular to the plate-shaped member surface. The rod-like member and the plate-like member are moved so as to be relatively close to each other, but the member to be moved may be either the rod-like member or the plate-like member, or both members may be moved simultaneously.
By relatively moving, a pressing force from a direction perpendicular to the welding surface is generated, and this movement is controlled by setting a moving speed and a moving distance by a cylinder device, thereby controlling the pressing force.
[0019]
By applying an appropriate pressing force, uniform and reproducible joining is possible, and heating to the vicinity of the softening point of quartz glass is possible without heating the joining surface to the molten state, so deformation of the joining surface is possible. It becomes possible to prevent.
The pressing force is based on a fluid pressure cylinder or by transferring the rotational torque of the electric motor to the work support, etc. It is preferable because it is easy to obtain.
The pressing force is appropriately selected according to the shape of the member and the softened state of the joint surface, but is preferably in the range of 0.1 to 100 g / mm 2 .
[0020]
The joining end face of the rod-shaped member is processed into a convex shape. When heated by the convex shape, the center part of the end face is first softened, and further, pressure is applied to the outer peripheral part in order from the center part of the end face. Even if it occurs, it is difficult to remain because it escapes outward. Further, since welding is sequentially performed from the center toward the outside, the welding strength can be increased even with a small heating amount. For this reason, it is not necessary to heat not only the welding surface but also its surroundings with a burner as in the conventional method, and welding only with its heat capacity, so that the amount of heat can be reduced to the minimum, and deformation of the welding surface can be prevented. .
The end face shape of the convex bar-like member is preferably a symmetrical shape from the center of the end face in order to make the surface distribution of softening uniform. Specifically, a wedge shape or a cone shape is effective.
[0021]
The inclination angle from the center point of the convex shape of the end surface of the rod-shaped member 2 or the vertex of the center surface to the peripheral surface is appropriately selected according to the amount of crushing of the quartz glass rod-shaped member 2 by pressure bonding. For example, if the inclination angle of the cone is constant, the length of the rod-shaped member to be crushed varies depending on the diameter of the rod-shaped member 2 and thus the height of the cone is different. Once the cross-sectional shape of the bar-shaped member and the convex inclination angle are determined, the volume of the convex body that is crushed during welding can be obtained, so by creating a comparison table in advance, the amount of crushing of the bar-shaped member can be predicted with high accuracy Welding is possible. As an optimum range, the inclination angle of the wedge or cone is in the range of 2 to 20 degrees, and the crushing amount is 0.5 to 8 mm.
When the diameter of the rod-shaped member is 20 mmφ, the crushing amount is preferably 2 mm, and the conical inclination angle is preferably about 6 degrees.
[0022]
The assembly device stores the contrast between the diameter of the rod-shaped member, the amount of crushing, and the convex inclination angle, and automatically controls the relative movement of the member to continuously perform welding joints with excellent surface properties with high reproducibility. Can be done manually.
[0023]
The heating by the burner 3 sends a flame from at least two directions which are symmetrical from the center point of the end surface of the wedge-shaped or conical rod-shaped member, and heats the welded portions facing each other. The distance from the burner crater to the outer peripheral surface of the rod-shaped member is a constant distance of 10 to 30 mm, although it depends on the nozzle diameter of the burner 3. Moreover, it is desirable that the flame angle of the burner is oppositely heated at a flame angle of 5 to 45 degrees with respect to the plate-like member surface to be welded.
[0024]
It is important to uniformly soften the welding surface without deforming it, and the above-described method is effective in avoiding the influence of radiant heat and bonfire from the member as much as possible. If the flame angle of the burner is less than 5 degrees, softening of the convex portion apex portion of the rod-shaped member is too early as compared with other welding locations and the balance is poor, and the overall welding strength is lowered, which is not preferable. On the other hand, if the angle is greater than 45 degrees, the outer peripheral surface of the convex member is too early compared to other welding locations, and the outer peripheral shape after welding bulges outward, and at the same time, the plate member surface layer is also recessed. Is not preferable, and a flame angle of 10 to 30 degrees is more preferable.
[0025]
It is effective to set the distance between the surface of the plate-like member at the start of heating by the burner 3 and the convex vertex of the end face of the rod-like member to 1 to 3 mm.
When the plate-like member and the end face of the rod-like member are kept in contact with each other, since it takes time to make the glass softened, the flame interlaces with the radiant heat reflected from the plate-like member as a reflected flow, As a result, the wall surface around the end surface of the rod-shaped member 2 is melted by radiant heat, and the outer peripheral surface is deformed by the reflected flow, which is not preferable. Further, if the distance between the plate-like member and the end face of the rod-like member is less than 1 mm, the flame flow from the burner 3 tends to stay between the members and the gas flow is poor, so that the same deformation is likely to occur. Moreover, if it exceeds 3 mm, heating efficiency will worsen and a strong flame flow will be needed. Therefore, it is preferable to set the initial interval between the members to 1 to 3 mm.
[0026]
The burner 3 is preferably a quartz glass bifurcated burner or a line burner. In order to soften with a small amount of heat, it is important to balance the amount of heat supplied to the heating region. Therefore, in order to supply the gas amount to be supplied uniformly, a bifurcated burner is suitable when the convex shape of the end face of the rod-shaped member 2 is a wedge shape, and a line burner is suitable when the convex shape is a conical shape.
[0027]
The line burner has a nozzle diameter ranging from 1 to 3 mmφ to a needle hole, and is appropriately selected according to the welding member. The optimum nozzle diameter, number and pitch are selected so as to prevent interference between flames and obtain a stable molten state.
[0028]
When, for example, seven line burner nozzles 31 are arranged in a row and a flame is emitted, the gas flow rate of the nozzle farthest from the gas supply side of the supply pipe is the highest, and the gas is discharged from the nozzle nearest to the supply pipe. Since the amount of gas to be produced is the smallest, the supply amount of heat differs depending on the position of the nozzle, and the balance is lost. In addition, the nozzle diameter is made the same, and the length of the nozzle protruding from the supply pipe is changed in the order of arrangement to achieve a balance.
However, this method has a problem that it takes time to process the burner and cannot cope with changes in gas pressure and gas supply amount.
[0029]
The line burner having the nozzle tip formed in the loop 30 as shown in FIG. 4 irradiates the flame flow from each nozzle uniformly regardless of the position of the nozzle 31 and supplies the amount of heat uniformly. Suitable as
Since the tip is formed in the loop 30 and the nozzle 31 is formed in a line shape in the loop portion, the mixed gas of the supplied oxyhydrogen gas circulates in the gas pipe, so the position of the nozzle 31 This eliminates the uneven gas flow in the supply pipe, allows the nozzles of the line burner to have the same shape, enables a uniform gas flow to be supplied, and provides a uniform flame.
[0030]
Vertical Wafer Boat Assembling Apparatus A vertical wafer boat assembling apparatus using the welding method of the present invention will be described.
As shown in FIG. 5, a top plate chuck 51 and a bottom plate chuck 52 are provided on the base 4 at an interval. Both chucks 51 and 52 are provided with a vacuum suction device for clamping the top plate 11 and the bottom plate 12, can be rotated, and can be moved in the axial direction. The movement is controlled by setting and controlling the moving speed and moving distance with the cylinder device to control the pressing force applied to the welding surface.
On both sides of the chucks 51 and 52, two heating line burners 3 that are movable in the axial direction and the vertical direction are arranged so as to face each other, and the number corresponding to the groove rod 2 to be welded is provided. In order to adjust the flame radiation angle with respect to the top plate 11 and the bottom plate 12, the line burner 3 is rotatably held.
[0031]
Furthermore, after the rod-like member 2 is pressure welded to the plate-like member 1, a burner 32 is attached to the arm 6 of the 6-axis multi-joint robot for performing a line drawing process of the welded portion.
In addition, four systems of mass flow meters are provided that control the supply of hydrogen and oxygen gas to the line burner 3 at a constant level.
[0032]
Between the top plate chuck 51 and the bottom plate chuck 52, the four groove rods 2 are held at predetermined positions, and are moved on the base 4 in the axial direction to apply a pressing force at the time of welding so that the groove rod 2 And a slide device 7 for crimping the top plate 11 and the bottom plate 12 are provided.
The clamp 71 for holding and fixing the groove rod 2 of the slide device 7 has a structure in which the center of the groove rod 2 is the center of setting, so that the welding position does not shift even if the diameter of the groove rod 2 is changed. It is. When the rod-shaped member is a groove rod, the accuracy is maintained and the reproducibility is further improved by fitting and holding the groove rod in a comb-shaped cradle manufactured in accordance with the groove shape.
[0033]
The top plate 11 and the bottom plate 12 are fixed by the vacuum chucks 51 and 52, and the four groove rods 2 whose end surfaces are conical are fixed at predetermined positions by the clamps 71 of the slide device 7.
[0034]
The line burner 3 is rotated with respect to the welding surface of the top plate 11 and set at an angle of 25 degrees, and the line burner 3 is arranged so as to face each groove rod 2 so that a flame can be sent from two directions. The slide device 7 is moved to the top plate 11 side, and the distance between the conical tip of the groove bar 2 and the top plate 11 is set to 2 mm. The top plate 11 and the four groove rods are heated at the same time with the line burner 3 set at four locations, and when the softened state is heated, the slide device 7 is moved to the top plate 11 side, and the end of the groove rod 2 is 2 mm. It is pressed against the top plate 11 until it is crushed, and the groove rods 2 are simultaneously crimped to the four.
After the crimping, the holding of the top plate by the top plate chuck 51 is released, the line burner 3 is moved up and down in the vertical direction, and the wire at the four crimping parts is lined by the wire burner 32 attached to the arm 6 of the 6-axis articulated robot. Take it.
[0035]
Subsequently, the slide device 7 is moved to the melting position on the bottom plate 12 side, and the distance between the end surface of the groove rod 2 and the bottom plate 12 is similarly set to 2 mm. The bottom plate 12 and the four groove rods 2 are simultaneously heated by the line burner 3, and when the softening is performed, the slide device 7 is moved to the bottom plate 12 side to simultaneously press the bottom plate 12 and the four groove rods 2 together. The crimping part performs line drawing at four crimping parts by a line burner 32 attached to a 6-axis articulated robot. After the welding of the bottom plate 12 and the groove rod 2 is completed, the clamp of the bottom plate chuck 52 is released, and the slide device 7 is returned to the center of both chucks and stopped. The clamp 71 of the groove rod 2 is released, and the assembled vertical wafer boat is taken out.
[0036]
As a result of inspecting the vertical wafer boat obtained in this way, no deformation such as bulge or dent was observed in any of the 8 places where the groove rod was crimped and joined to the top plate and the bottom plate, and the groove shape of the groove rod collapsed. In fact, the standard tolerance from the reference plane of the wafer boat to the first groove was within a range of ± 0.1 mm, and the high-precision specification was satisfied.
[0037]
As another embodiment of the wafer boat assembling apparatus, an example will be described in which the grooved rod 2 of the rod-shaped member is fixed and the plate-shaped member 1 is moved toward the end surface of the rod-shaped member 2 for pressure bonding.
[0038]
Similar to the first embodiment, a flame angle of 25 degrees is provided with respect to the welding surface of the top plate 11, and the line burner 3 is disposed so as to face the flame from two directions. The top plate chuck 51 is moved to the melting position, and the distance between the top plate welding surface and the end face of the groove rod is maintained at a distance of 2 mm. When the top plate 11 and the four groove rods 2 are simultaneously heated and softened by the line burner 3, the top plate chuck 51 is slid to the groove rod 2 side, and the groove rod 2 is pressed perpendicularly to the joining surface to be pressurized. The plate 11 and the four groove rods 2 are simultaneously crimped. The burner 32 attached to the 6-axis articulated robot arm is used to wire the four crimping parts. After the top plate 11 and the groove rod 2 are completely welded, the top plate chuck 51 is released.
[0039]
Subsequently, the chuck 52 of the bottom plate 12 is moved toward the groove rod 2, and the distance between the other end surface of the groove rod 2 and the bottom plate 12 is maintained at a distance of 2 mm. The bottom plate 12 and the four groove rods 2 are simultaneously heated and softened by the line burner 3, the bottom plate chuck 52 is moved in the direction of the groove rod end surface, and the bottom plate 12 and the four groove rods 2 are simultaneously crimped. Make a line drawing.
The chuck of the bottom plate 12 is released, and then the clamp of the groove rod 2 is released, and the assembled vertical wafer boat is taken out from the apparatus.
[0040]
As a result of inspection of the obtained product, no deformation such as swelling or dent was observed in any of the 8 places where the groove rod was joined to the top plate and the bottom plate, and the first groove of the groove rod located 10 mm from the flange. The groove shape was not collapsed, and the standard tolerance from the reference plane of the wafer boat to the first groove was also within a range of ± 0.1 mm, satisfying the high precision specification.
[0041]
【The invention's effect】
The end face of the rod-shaped member has a convex shape and is heated by the flame of the burner to apply pressure from the vertical direction to the joint surface for pressure bonding, eliminating the need for the conventional welding rod required for quartz glass member welding. Surface deformation of the surfaces can be prevented, and there is no need to reshape the joint surfaces.
Further, in the wafer boat assembly process, it is not necessary to use a carbon jig, and at the same time, the temporary welding process that has been performed manually can be omitted.
[0042]
In addition, even if there are variations in the diameter of the rod-shaped member, the rod-shaped member is always held at the center of the diameter by the clamp, so it can be assembled with high accuracy and good reproducibility. Can be joined and assembled.
With a method for welding quartz glass members having high dimensional accuracy and excellent reproducibility, a plurality of rod-like members can be welded and joined to a plate-like body at the same time, making it possible to manufacture a wafer boat efficiently.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a welding state.
FIG. 2 is a perspective view of a vertical wafer boat.
FIG. 3 is an explanatory diagram of a carbon jig.
FIG. 4 is a plan view of a line burner having a loop.
FIG. 5 is a front view of the wafer boat assembling apparatus.
[Explanation of symbols]
1 Plate member 2 Bar member 3 Burner

Claims (11)

端面を凸型形状とした棒状部材の凸型端面と板状部材との接合面を加熱軟化させ、棒状部材及び/又は板状部材を接合面に垂直に押圧して圧着接合する石英ガラス部材の溶接方法。A quartz glass member that heats and softens the joint surface between the convex end surface of the rod-shaped member having a convex end surface and the plate-like member, and presses the rod-like member and / or plate-like member perpendicularly to the joint surface to perform pressure bonding. Welding method. 請求項1において、棒状石英ガラス部材と板状部材を相対移動させることによって押圧し、圧着する石英ガラス部材の溶接方法。The method for welding a quartz glass member according to claim 1, wherein the rod-like quartz glass member and the plate-like member are pressed and pressure-bonded by relative movement. 請求項1〜2のいずれかにおいて、複数の棒状部材をワーク保持部に支持し、ワーク保持部と板状部材とを相対移動させることによって複数の棒状部材を同時に圧着する石英ガラス部材の溶接方法。3. The method for welding a quartz glass member according to claim 1, wherein the plurality of rod-shaped members are supported by the workpiece holding portion, and the plurality of rod-shaped members are simultaneously pressure-bonded by relatively moving the workpiece holding portion and the plate-like member. . 請求項1〜3のいずれかにおいて、棒状部材の接合端面の凸型形状が、端面の中心に対して対称である楔型もしくは円錐型形状である石英ガラス部材の溶接方法。4. The method for welding a quartz glass member according to claim 1, wherein the convex shape of the joining end face of the rod-like member is a wedge-shaped or conical shape that is symmetrical with respect to the center of the end face. 請求項4において、楔又は円錐の傾斜角が2度〜20度である石英ガラス部材の溶接方法。5. The method for welding a quartz glass member according to claim 4, wherein the inclination angle of the wedge or the cone is 2 degrees to 20 degrees. 請求項4又は5において、楔型もしくは円錐型形状の中心点から対称に少なくとも2方向から火炎を送り、溶接箇所を対向加熱する石英ガラス部材の溶接方法。6. The method for welding a quartz glass member according to claim 4, wherein flames are sent from at least two directions symmetrically from the center point of the wedge-shaped or conical shape, and the welding locations are oppositely heated. 請求項6において、板状部材面に対するバーナーの火炎角度が、5〜45度である石英ガラス部材の溶接方法。7. The method for welding a quartz glass member according to claim 6, wherein the flame angle of the burner with respect to the plate-like member surface is 5 to 45 degrees. 請求項1〜7のいずれかにおいて、加熱手段が石英ガラス製の二股バーナーもしくはラインバーナーである石英ガラス部材の溶接方法。The method for welding quartz glass members according to any one of claims 1 to 7, wherein the heating means is a quartz glass bifurcated burner or a line burner. 請求項8において、ラインバーナーの先端がループに形成してあり、先端部分に複数ノズルをライン状に形成した構造である石英ガラス部材の溶接方法。9. The method for welding a quartz glass member according to claim 8, wherein the tip of the line burner is formed in a loop, and a plurality of nozzles are formed in a line shape at the tip. 請求項1〜9のいずれかにおいて、加熱開始時における板状部材表面と棒状部材端面の凸部頂点との距離を1〜3mmとする石英ガラス部材の溶接方法。The method for welding a quartz glass member according to any one of claims 1 to 9, wherein a distance between the surface of the plate-like member and the convex vertex of the end face of the rod-like member at the start of heating is 1 to 3 mm. 天板を位置決め固定し、端面を凸型形状とした複数の溝棒もしくは溝棒用棒状部材を天板に対して垂直に保持し、天板と溝棒もしくは溝棒用棒状部材との溶接部に対し少なくとも2方向から5〜45度の火炎角度で火炎を送り、加熱しながら接合面に垂直方向から押圧力を加えて複数の溝棒もしくは溝棒用棒状部材を同時に天板に圧着接合し、同様に底板と溝棒もしくは溝棒用棒状部材を圧着接合する縦型ウエーハボートの組立方法。The top plate is positioned and fixed, and a plurality of groove rods or groove rod rod-shaped members whose end surfaces are convex are held perpendicular to the top plate, and the welded portion between the top plate and the groove rod or groove rod rod-shaped member The flame is sent at a flame angle of 5 to 45 degrees from at least two directions, and a pressing force is applied from the vertical direction to the joining surface while heating, and a plurality of groove rods or rod members for groove rods are simultaneously bonded to the top plate by pressure bonding. Similarly, a method for assembling a vertical wafer boat in which a bottom plate and a groove rod or a rod-shaped member for a groove rod are joined by pressure bonding.
JP2000328343A 2000-10-27 2000-10-27 Method of welding quartz glass members Expired - Fee Related JP4560200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000328343A JP4560200B2 (en) 2000-10-27 2000-10-27 Method of welding quartz glass members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000328343A JP4560200B2 (en) 2000-10-27 2000-10-27 Method of welding quartz glass members

Publications (2)

Publication Number Publication Date
JP2002137928A JP2002137928A (en) 2002-05-14
JP4560200B2 true JP4560200B2 (en) 2010-10-13

Family

ID=18805210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000328343A Expired - Fee Related JP4560200B2 (en) 2000-10-27 2000-10-27 Method of welding quartz glass members

Country Status (1)

Country Link
JP (1) JP4560200B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204028A (en) * 2013-03-04 2013-07-17 郑述银 Production method of glass handicraft with special-shaped glass tube welded inside

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116441841B (en) * 2023-06-19 2023-08-29 辽宁拓邦鸿基半导体材料有限公司 Adjustable groove bar welding positioning mechanism

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222030A (en) * 1987-03-09 1988-09-14 Seiko Instr & Electronics Ltd Production of quartz part by hot press bonding
JPH08102446A (en) * 1994-09-30 1996-04-16 Toshiba Ceramics Co Ltd Wafer boat

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222030A (en) * 1987-03-09 1988-09-14 Seiko Instr & Electronics Ltd Production of quartz part by hot press bonding
JPH08102446A (en) * 1994-09-30 1996-04-16 Toshiba Ceramics Co Ltd Wafer boat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204028A (en) * 2013-03-04 2013-07-17 郑述银 Production method of glass handicraft with special-shaped glass tube welded inside
CN103204028B (en) * 2013-03-04 2016-05-18 郑述银 A kind of Glass Craft production method of interior welds profiled glass tubes

Also Published As

Publication number Publication date
JP2002137928A (en) 2002-05-14

Similar Documents

Publication Publication Date Title
JP3398618B2 (en) Friction stir welding equipment
KR101668628B1 (en) Method for producing rolling roll, rolling roll, and device for producing rolling roll
JP2003026433A (en) Method of joining quartz glass member and joining equipment used for this method
US5322539A (en) Quartz tank member and method of production thereof
JP3793592B2 (en) Manufacturing method for spherical tanks for liquefied natural gas
KR101100845B1 (en) Welding method and welder of quartz glass member
WO2014020420A2 (en) Method and system of hot wire joint design for out-of-position welding
CN114761160A (en) Distortion mitigation in directed energy deposition
CN113060931A (en) Method and device for high-temperature butt-extrusion welding of quartz glass component
JP4560200B2 (en) Method of welding quartz glass members
WO2005049514A1 (en) Method and device for connecting optical fiber matrix and optical fiber
CN108526691B (en) Laser welding method
US20210276096A1 (en) Distortion mitigation in directed energy deposition
US4899030A (en) High-power-density beam welding method in combination with upset welding and apparatus therefor
WO2019039529A1 (en) Hybrid welding method and hybrid welding apparatus
JP4438517B2 (en) Method and apparatus for welding quartz glass tube member
CN113084197B (en) Inching repair method for thin-wall structural part based on laser additive manufacturing
US20060027541A1 (en) Programmable non-contact fusion welding apparatus and method
JP4023700B2 (en) Quartz glass member welding machine
CN117902817A (en) Welding method for avoiding bubble gas line
CN215855777U (en) Device for high-temperature butt-extrusion welding of quartz glass component
JPH1081529A (en) Processing for optical fiber preform and processing apparatus therefor
CN218016410U (en) Laser wire filling welding equipment for narrow gap of shaft base
CN112705858B (en) Method for processing cambered surface glass
JP2012240223A (en) Tool for welding resin or the like, and method for welding resin or the like using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100422

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

R150 Certificate of patent or registration of utility model

Ref document number: 4560200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees