JP4557197B2 - Photocatalyst composition and method for producing the same - Google Patents

Photocatalyst composition and method for producing the same Download PDF

Info

Publication number
JP4557197B2
JP4557197B2 JP2000334388A JP2000334388A JP4557197B2 JP 4557197 B2 JP4557197 B2 JP 4557197B2 JP 2000334388 A JP2000334388 A JP 2000334388A JP 2000334388 A JP2000334388 A JP 2000334388A JP 4557197 B2 JP4557197 B2 JP 4557197B2
Authority
JP
Japan
Prior art keywords
tio
titanium oxide
acid
zro
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000334388A
Other languages
Japanese (ja)
Other versions
JP2002136869A (en
Inventor
川畑京子
井筒裕之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Kasei Co Ltd
Original Assignee
Taki Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Kasei Co Ltd filed Critical Taki Kasei Co Ltd
Priority to JP2000334388A priority Critical patent/JP4557197B2/en
Publication of JP2002136869A publication Critical patent/JP2002136869A/en
Application granted granted Critical
Publication of JP4557197B2 publication Critical patent/JP4557197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光触媒組成物、特にオキシカルボン酸又はその塩を用いて、溶液中の酸化チタンコロイド及び炭酸ジルコニルアンモニウムを均一分散させると共に安定化し、これを、基材に塗布し、得られる塗膜が優れた光触媒能、耐アルカリ性能、耐基材接着能を発揮する光触媒組成物に関する。
【0002】
【従来の技術】
環境問題が厳しく問われるようになり、酸化チタン光触媒は、NOx、ホルムアルデヒド、メルカブタン、硫化水素等各種有害ガスの分解、殺菌、防汚などの作用を有するため、急速に脚光を浴び、多くの研究がなされている。酸化チタン光触媒(以下、酸化チタンと言う)を、金属、木材、セラミック、紙、布、プラスチック等各種基材に接着・担持する方法は、基材の種類、用途、所望機能などにより、多くの方法が行われている。例えば、(1)焼き付け法、(2)蒸着法、(3)バインダーによる固定方法、(4)上記併用法等である。
【0003】
焼き付け法や蒸着法で得られる塗膜の強度は強い。しかし、高温での焼成が必要であるため、一般にガラス、陶器等セラミック、金属などの耐熱基材への適用となり、使用できる基材が限定される。
【0004】
バインダーによる固定方法では、低温での被膜形成も可能であり、ガラス、陶器等セラミック、金属などの耐熱基材から、木材、紙、布、プラスチックなどの非耐熱基材まで、様々な基材に適用できる。酸化チタン粉末や酸化チタンゾルと基材との密着性を良くするため、使用されるバインダーには、コロイダルシリカ、ポリシロキサン、シリカ、チタン、アルミニウムなどの各種金属アルコキシド、アクリル樹脂、アクリル変性樹脂、ウレタン樹脂、塩化ビニール樹脂、アクリルシリコン樹脂、フッ素系樹脂、水ガラス、燐酸アルミニウム等が挙げられる。これらのバインダーの使用方法としては、予め基材に接着剤を塗布した後、酸化チタンを塗布する場合と、酸化チタンゾル中にコロイダルシリカ、各種金属アルコキシド等の接着剤を含有させておく場合とに大別される。
【0005】
予め基材に接着剤を塗布する方法では、酸化チタンのバインダーへの密着強度が乏しかったり、酸化チタン自体はあまり膜強度がないため、被膜表層に酸化チタンを塗布することは、あまり適用されない。
【0006】
比較的容易に塗膜強度が得られる酸化チタンゾル中に接着剤を含有させる方法は、塗布作業が簡便で安価であり、光触媒能も期待できるものである。しかし、樹脂系のバインダーでは、酸化チタンの光触媒効果により、バインダーである樹脂は次第に分解され、酸化チタンは、基材から剥離する。また、無機系のバインダーを使用する場合、酸化チタンによるバインダーの分解は生じず、例えば、シリコン、アルミニウムのアルコキシド及びそれらの加水分解生成物による担持方法から得られる酸化チタン塗膜は、乾燥程度でも十分な強度を示すものもあり、適用できる基材も多い。しかし、それらのバインダーは、シリカやアルミナなどの酸化物となって硬化する為、低温で焼成した場合は、必ずしも高強度で耐薬品性に優れた膜になる訳ではなく、例えばシリコンアルコキシドをバインダーとする場合は生成物であるシリカそれ自身が強アルカリで溶解してしまうため、高温で焼き付けを行わなければ耐アルカリ性に乏しい膜となってしまう。
【0007】
これらの理由から、現在、耐アルカリ性、光触媒能、塗膜強度、汎用性などの要望を十分に満たせるバインダーは得られていない。
【0008】
【発明が解決しようとする課題】
本発明は、酸化チタンゾル中に接着剤を安定に存在させ、耐アルカリ性、密着性に優れた光触媒組成物を提供することを目的とする。ジルコニウムを含有した表面処理剤として、例えば、特開平4−2204668号公報に記載の発明、特開平10−237429号公報に記載の発明があり、前者は基材に対し密着性に優れ、強度が高く、優れた可とう性を有するコーティング組成物を、後者は水濡れ性の高い表面処理剤を開示している。また、ジルコニウムを含有した光触媒組成物として、特開平10−337478号公報は、ポニビニルピロリドンとジルコニウム化合物とチタン化合物を含んだ酸化チタン光触媒用ゾルを開示し、特開平11−179211号公報は、酸化チタンおよび結晶質のチタン酸ジルコニウムを含んだ酸化チタン系光触媒を開示し、特開平11−209691号公報は、オルガノシランとジルコニア化合物とチタン化合物とを含有した常温硬化光触媒塗料を開示している。また、特開平11−188270号公報は、ジルコニウムとチタンからなる複合酸化チタン微粒子を用いた光触媒活性を有する塗布液を開示し、特開平11−229152号公報は、脂肪族モノカルボン酸Zrと光触媒たるTiO2薄膜前駆体を用いて無機質膜を形成する方法を開示している。更にまた、再公表特許WO98/15600号公報は、ジルコニウム化合物を含有した光触媒コーティング剤組成物を開示している。
【0009】
【課題を解決するための手段】
本発明は、オキシカルボン酸又はその塩と炭酸ジルコニルアンモニウムと酸化チタンコロイドとを含有してなる光触媒組成物に関する。
【0010】
【発明の実施の形態】
以下に本発明について詳記する。
【0011】
本発明に使用する炭酸ジルコニルアンモニウム(Ammonium zirconyl carbonate:AZC)は、一例を示せば、化学式(NH4)2ZrO(CO3)2で表され、日本軽金属株式会社より商品名「炭酸ジルコニウムアンモニウム、ベイコート20、ベイコートL」として、新日本金属化学株式会社より「炭酸ジルコニルアンモニウム溶液」として、また第一稀元素化学株式会社より商品名「ジルコゾールAC−7」として販売されているが、自製しても良い。
【0012】
また本発明で使用する酸化チタンコロイドは、公知の如何なる方法で製造したものであっても良く、例えば、オキシ塩化チタン溶液をアンモニア水などのアルカリ溶液で中和し、得られたチタンゲルにリンゴ酸、クエン酸、酒石酸、乳酸、グリコール酸などのオキシカルボン酸又はその塩を加え、水熱処理することで容易に製造することができる。この場合にあっては一挙に、酸化チタンコロイドとオキシカルボン酸を含んだ溶液、即ち、オキシカルボン酸含有酸化チタンコロイド溶液を得ることができる。また別法として、オキシカルボン酸含有酸化チタンコロイド溶液は、粉末酸化チタンにオキシカルボン酸又はその塩を加え、ボールミル等で湿式粉砕することによっても製造することができる。あるいはまた、酸化チタンコロイド溶液は、チタンアルコキシドを加水分解することによっても製造することができる。その他、市販のチタンゾル、例えば、塩酸安定化酸化チタンゾル、硝酸安定化酸化チタンゾル、有機酸安定化酸化チタンゾル、アルカリ安定化酸化チタンゾルを使用しても良い。
【0013】
本発明コロイド粒子の大きさについて言えば、平均粒子径が概ね1〜500nm、好ましくは、2〜100nmである。1nm以下にあっては、光触媒能即ち、光触媒活性が充分でなく、500nmを上廻ると液安定性は勿論、基材への密着性が著しく悪くなる。加えて、本発明光触媒組成物を基材に塗布し、被膜を形成した場合、耐アルカリ性が著しく悪くなる。
【0014】
次に本発明のオキシカルボン酸又はその塩について言えば、前記の通り、オキシカルボン酸としては、リンゴ酸、クエン酸、酒石酸、乳酸、グリコール酸、マンデル酸などを使用することができ、その塩としては、リチウム塩、ナトリウム塩、カリウム塩、カルシウム塩、アンモニウム塩、あるいは、オキシカルボン酸とアルカリ剤、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、炭酸ナトリウム、炭酸カリウム、炭酸カルシウムなどのアルカリ金属の水酸化物や炭酸塩、あるいは、アンモニア、アミン、アルカノールアミンなど、によって調製されたものなどを使用することができるが、とりわけ、脂肪族オキシカルボン酸又はその塩が好ましい。しかしこれらに限定されるものではない。次に、本発明光触媒組成物の製造方法について述べれば、前記のようにして製造したオキシカルボン酸含有酸化チタンコロイド溶液に炭酸ジルコニルアンモニウムを加えてもよいし、酸化チタンコロイド溶液と炭酸ジルコニルアンモニウムの混合物にオキシカルボン酸又はその塩を加えてもよい。あるいはまた、炭酸ジルコニルアンモニウムとオキシカルボン酸又はその塩の混合物に酸化チタンコロイド溶液を加えてもよい。あるいはまた、粉末酸化チタンに、オキシカルボン酸又はその塩、炭酸ジルコニルアンモニウムを加え、ボールミル等で湿式粉砕し、製造しても良い。しかしながら、本発明者らが最も推奨する方法は、オキシカルボン酸又はその塩で安定化した酸化チタンコロイド溶液に炭酸ジルコニルアンモニウムを加え、良く攪拌する方法である。この方法によるときは、最も各成分が均一に分散した液安定性の高い光触媒組成物を得ることができ、これを基材に適用したときは、光触媒活性が高く、密着性、耐アルカリ性の優れた被膜を得ることができる。次いで、本発明光触媒組成物の組成割合について言えば、酸化チタンコロイド(TiO2)含有量が1〜30重量%、更に好ましくは1〜10重量%である。1重量%以下では、製造費が高くなり、30重量%を上廻ると基材への密着性が悪くなり、耐アルカリ性も悪くなる。
【0015】
炭酸ジルコニルアンモニウム(ZrO2)/酸化チタンコロイド(TiO2)の重量比は95/5〜5/95である。好ましくは80/20〜30/70である。95/5を上廻ると、密着性は良好となるが、光触媒活性は極度に低下する。一方、5/95以下では、光触媒活性は良好であるが、基材に対する密着性、耐アルカリ性は著しく低下する。
【0016】
次いでオキシカルボン酸又はその塩/(炭酸ジルコニルアンモニウム(ZrO2)と酸化チタンコロイド(TiO2))とのモル比は0.01〜1.0、好ましくは0.05〜0.5である。0.01以下では、均質組成物が得られず、密着性が悪くなる。一方、1.0以上の組成では、均質組成物は得られるものの、塗膜中の多量のオキシカルボン酸の存在により強度の低下が生じるため、多量のオキシカルボン酸の添加は好ましくない。また、オキシカルボン酸又はその塩/(炭酸ジルコニルアンモニウム(ZrO2)と酸化チタンコロイド(TiO2))=0.5〜1.0(モル比)では、塗膜を100℃で乾燥させるよりも、200〜500℃で焼成し、使用することが望ましい。
【0017】
乾燥温度は、常温乾燥でも格別問題はないが、できれば50℃以上で乾燥することが好ましい。耐熱性基材であれば150℃以上、更に好ましくは200℃〜500℃で焼成すれば、更に密着性の高い強固な被膜を有する光触媒材料を得ることができる。本発明光触媒組成物は、以上詳記したような方法により、容易にこれを製造することができ、各種基材に対してすばらしい密着性を示すが、更に効果を高めるためにシリカのアルコキシド、シリカゾル、シリコン変性樹脂、シランカップリング剤などを添加することもできる。また、光触媒活性を高めるために、Pt、Rh、RhO2、Nb、Ni、Feなどの金属を添加することもできる。また、抗菌を目的としてCu、Agなどを含有させることができる。本発明光触媒組成物の使用方法について言えば、浸漬法、スピンナーコーティング法、ローラーコーティング法等任意の方法により、セラミックス、ガラス、プラスチック、ゴム、木材、紙、布、金属等各種基材に塗布し、乾燥することにより容易に光触媒活性が高く、密着性、耐アルカリ性の優れた被膜を有する光触媒材料を得ることができる。以下に、本発明の実施例を掲げて更に詳しく説明するが、本発明は、これら実施例に限定されるものではない。尚、特に断らない限り%は、全て重量%を示す。
【0018】
【実施例】
(実施例1)オキシ塩化チタン水溶液(TiO2=2%)2000gに、アンモニア水(NH3=2%)2212g(NH3/Cl当量比=1.3)を撹拌下で添加し、チタンゲルを生成させた。これをろ液中の塩素イオンがチタンゲル(TiO2)に対して100ppm以下になるまでろ過水洗し、TiO2=10%、NH3=0.30%のゲルを得た。
【0019】
このゲル(TiO2=10%、NH3=0.30%)400gに、乳酸/TiO2(モル比)=1.0となるように、乳酸45.1gとイオン交換水54.9gを添加し、これをオートクレーブに入れ、150℃で6時間の水熱処理を行い、オキシカルボン酸含有結晶性酸化チタンコロイド溶液(TiO2=8.0%)を得た。X線回折法により、アナターゼ型の酸化チタンのピークが見られ、その第1ピークを用いて、デバイ・シェーラーの式から求めた結晶子サイズは、6nmであった。得られたオキシカルボン酸含有結晶性酸化チタンコロイド溶液(TiO2=8%)100gに、炭酸ジルコニルアンモニウム(第一稀元素化学株式会社製、商品名:ジルコゾールAC−7(ZrO2=13%))41.0gを撹拌下で添加し、本発明の光触媒組成物(TiO2=5.7%、ZrO2=3.8%、乳酸/(ZrO2+TiO2)(モル比)=0.70、ZrO2/TiO2(重量比)=40/60)を得た。この光触媒組成物を透明ガラス板(20cm2)にスピナーコーティングし、100℃乾燥後、400℃30分の焼成処理を行い、本発明光触媒組成物1.2mg(乾燥重量)で被覆された光触媒材料を得た。
【0020】
(実施例2)実施例1と同様にして得た酸化チタンゲル(TiO2=10%、NH3=0.30%)400gに、乳酸/TiO2(モル比)=0.8となるように、乳酸36.1gとイオン交換水63.9gを添加し、これをオートクレーブに入れ、150℃で6時間の水熱処理を行い、オキシカルボン酸含有結晶性酸化チタンコロイド溶液(TiO2=8.0%)を得た。得られたオキシカルボン酸含有結晶性酸化チタンコロイド溶液(TiO2=8%)100gに、炭酸ジルコニルアンモニウム(第一稀元素化学株式会社製、商品名:ジルコゾールAC−7(ZrO2=13%))41.0gを撹拌下で添加し、本発明の光触媒組成物(TiO2=5.7%、ZrO2=3.8%、乳酸/(ZrO2+TiO2)(モル比)=0.56、ZrO2/TiO2(重量比)=40/60)を得た。実施例1と同様の方法により、この光触媒組成物を透明ガラス板(20cm2)にスピナーコーティングし、100℃乾燥後、300℃30分の焼成処理を行い、本発明光触媒組成物1.2mg(乾燥重量)で被覆された光触媒材料を得た。
【0021】
(実施例3)実施例1と同様にして得た酸化チタンゲル(TiO2=10%、NH30.30%)400gに、乳酸/TiO2(モル比)=0.5となるように、乳酸22.5gとイオン交換水77.5gを添加し、これをオートクレーブに入れ、150℃で6時間の水熱処理を行い、オキシカルボン酸含有結晶性酸化チタンコロイド溶液(TiO2=8.0%)を得た。得られたオキシカルボン酸含有結晶性酸化チタンコロイド溶液(TiO2=8%)100gに、炭酸ジルコニルアンモニウム(第一稀元素化学株式会社製、商品名:ジルコゾールAC−7(ZrO2=13%))41.0gを撹拌下で添加し、本発明の光触媒組成物(TiO2=5.7%、ZrO2=3.8%、乳酸/(ZrO2+TiO2)(モル比)=0.35、ZrO2/TiO2(重量比)=40/60)を得た。実施例1と同様の方法により、この光触媒組成物を透明ガラス板(20cm2)にスピナーコーティングし、100℃で10分間の乾燥処理を行い本発明光触媒組成物1.2mg(乾燥重量)で被覆された光触媒材料を得た。
【0022】
(実施例4)実施例3で得られたオキシカルボン酸含有結晶性酸化チタンコロイド溶液(TiO2=8.0%)に限外洗浄処理を施し、乳酸/TiO2(モル比)=0.2、TiO2=8.0%のオキシカルボン酸含有結晶性酸化チタンコロイド溶液を得た。なお、当該酸化チタンコロイド溶液中の乳酸量は、液体クロマトグラフィーを用いて、定量した。得られた当該酸化チタンコロイド溶液(TiO2=8%)100gに、炭酸ジルコニルアンモニウム(第一稀元素化学株式会社製、商品名:ジルコゾールAC−7(ZrO2=13%))41.0gを撹拌下で添加し、本発明の光触媒組成物(TiO2=5.7%、ZrO2=3.8%、乳酸/(ZrO2+TiO2)(モル比)=0.14、ZrO2/TiO2(重量比)=40/60)を得た。実施例1と同様の方法により、この光触媒組成物を透明ガラス板(20cm2)にスピナーコーティングし、100℃で10分間の乾燥処理を行い、本発明光触媒組成物1.2mg(乾燥重量)で被覆された光触媒材料を得た。
【0023】
(実施例5)実施例4と同様に、実施例3で得られたオキシカルボン酸含有結晶性酸化チタンコロイド溶液(TiO2=8.0%)に限外洗浄処理を施し、乳酸/TiO2(モル比)=0.05、TiO2=8.0%のオキシカルボン酸含有結晶性酸化チタンコロイド溶液を得た。なお、当該酸化チタンコロイド溶液中の乳酸量は、液体クロマトグラフィーを用いて、定量した。得られた当該酸化チタンコロイド溶液(TiO2=8%)100gに、炭酸ジルコニルアンモニウム(第一稀元素化学株式会社製、商品名:ジルコゾールAC−7(ZrO2=13%))41.0gを撹拌下で添加し、本発明の光触媒組成物(TiO2=5.7%、ZrO2=3.8%、乳酸/(ZrO2+TiO2)(モル比)=0.04、ZrO2/TiO2(重量比)=40/60)を得た。実施例1と同様の方法により、この光触媒組成物を透明ガラス板(20cm2)にスピナーコーティングし、100℃で10分間の乾燥処理を行い、本発明光触媒組成物1.2mg(乾燥重量)で被覆された光触媒材料を得た。
【0024】
(実施例6)アナターゼ型酸化チタン粉末(多木化学(株)製、商品名:タイノックA−100(TiO2=84%、粒子径1.4μm))100gに、乳酸/TiO2(モル比)=0.10となるように、乳酸9.5gとイオン交換水30.5g、炭酸ジルコニルアンモニウム(日本軽金属株式会社製、商品名:ベイコート20(ZrO2=20%))280gを添加、混合後、粉砕器により粉砕し、本発明の光触媒組成物(TiO2=20.0%、ZrO2=13.3%、乳酸/(ZrO2+TiO2)(モル比)=0.07、ZrO2/TiO2(重量比)=40/60、酸化チタン粒子径0.1μm)を得た。この光触媒組成物をTiO2=8%になるように、イオン交換水で希釈した後、実施例1と同様の方法により、透明ガラス板(20cm2)にスピナーコーティングし、100℃で10分間の乾燥処理を行い、本発明光触媒組成物2.5mg(乾燥重量)で被覆された光触媒材料を得た。
【0025】
(比較例1)実施例1と同様にして得た酸化チタンゲル(TiO2=10%、NH3=0.30%)400gに、イオン交換水=100gを添加し、これをオートクレーブに入れ、150℃で6時間の水熱処理を行い、結晶性酸化チタンコロイド溶液(TiO2=8.0%)を得た。得られた酸化チタンコロイド溶液(TiO2=8%)100gに、炭酸ジルコニルアンモニウム(第一稀元素化学株式会社製、商品名:ジルコゾールAC−7(ZrO2=13%))41.0gを撹拌下で添加し、光触媒組成物(TiO2=5.7%、ZrO2=3.8%、オキシカルボン酸/(ZrO2+TiO2)(モル比)=0、ZrO2/TiO2(重量比)=40/60)を得た。実施例1と同様の方法により、この光触媒組成物を透明ガラス板(20cm2)にスピナーコーティングし、100℃で10分間の乾燥処理を行い、ガラス板(面積=20cm2)に、光触媒組成物1.2mg(乾燥重量)で被覆された光触媒材料を得た。
【0026】
(比較例2)実施例3で得られたオキシカルボン酸含有酸化チタンコロイド溶液(TiO2=8%、乳酸/TiO2(モル比)=0.5)を用いて、実施例1と同様の方法により、透明ガラス板(20cm2)にスピナーコーティングし、100℃で10分間の乾燥処理、及び100℃乾燥後、500℃30分の焼成処理を行い、光触媒組成物1.0mg(乾燥重量)で被覆された光触媒材料を得た。
【0027】
表1に、実施例1〜6、比較例1、2の塗膜強度の比較を記す。膜強度の評価は、以下の塗料一般試験方法に基づいて、試験を行った。
塗料一般試験方法(JIS K5400)鉛筆硬度 :第8-4項 鉛筆引っかき値試験機法
【0028】
【表1】

Figure 0004557197
【0029】
*炭酸ジルコニルアンモニウムを含まず(実施例7)実施例1と同様にして得た酸化チタンゲル(TiO2=10%、NH3=0.30%)400gに、クエン酸/TiO2(モル比)=0.3となるように、クエン酸1水和物31.6gとイオン交換水68.4gを添加し、これをオートクレーブに入れ、150℃で6時間の水熱処理を行い、オキシカルボン酸含有結晶性酸化チタンコロイド溶液(TiO2=8.0%)を得た。X線回折法により、アナターゼ型の酸化チタンのピークが見られ、その第1ピークを用いて、デバイ・シェーラーの式から求めた結晶子サイズは、6nmであった。得られた当該酸化チタンコロイド溶液(TiO2=8%)100gに、炭酸ジルコニルアンモニウム(新日本金属化学株式会社製、炭酸ジルコニルアンモニウム溶液(ZrO2=13%))3.2gとイオン交換水2.1gを撹拌下で添加し、本発明の光触媒組成物(TiO2=7.6%、ZrO2=0.4%、クエン酸/(ZrO2+TiO2)(モル比)=0.29、ZrO2/TiO2(重量比)=5/95)を得た。実施例1と同様の方法により、この光触媒組成物を透明ガラス板(20cm2)にスピナーコーティングし、100℃で10分間乾燥後、更に500℃で30分の焼成処理を行い、本発明光触媒組成物1.2mg(乾燥重量)で被覆された光触媒材料を得た。
【0030】
(実施例8)実施例1と同様にして得た酸化チタンゲル(TiO2=10%、NH3=0.30%)400gに、酒石酸/TiO2(モル比)=0.6となるように、酒石酸45.1gとイオン交換水54.9gを添加し、これをオートクレーブに入れ、150℃で6時間の水熱処理を行い、オキシカルボン酸含有結晶性酸化チタンコロイド溶液(TiO2=8.0%)を得た。X線回折法により、アナターゼ型の酸化チタンのピークが見られ、その第1ピークを用いて、デバイ・シェーラーの式から求めた結晶子サイズは、6nmであった。得られた当該酸化チタンコロイド溶液(TiO2=8%)100gに、炭酸ジルコニルアンモニウム(新日本金属化学株式会社製、炭酸ジルコニルアンモニウム溶液(ZrO2=13%))15.4gとイオン交換水9.6gを撹拌下で添加し、本発明の光触媒組成物(TiO2=6.4%、ZrO2=1.6%、酒石酸/(ZrO2+TiO2)(モル比)=0.52、ZrO2/TiO2(重量比)=20/80)を得た。実施例1と同様の方法により、この光触媒組成物を透明ガラス板(20cm2)にスピナーコーティングし、100℃で10分間乾燥後、更に300℃で30分間の焼成処理を行い、本発明光触媒組成物1.2mg(乾燥重量)で被覆された光触媒材料を得た。
【0031】
(実施例9)実施例1と同様にして得た酸化チタンゲル(TiO2=10%、NH3=0.30%)400gに、グリコール酸/TiO2(モル比)=0.5となるように、グリコール酸(70%)27.2gとイオン交換水72.8gを添加し、これをオートクレーブに入れ、150℃で6時間の水熱処理を行い、オキシカルボン酸含有結晶性酸化チタンコロイド溶液(TiO2=8.0%)を得た。X線回折法により、アナターゼ型の酸化チタンのピークが見られ、その第1ピークを用いて、デバイ・シェーラーの式から求めた結晶子サイズは、6nmであった。得られた当該酸化チタンコロイド溶液(TiO2=8%)100gに、炭酸ジルコニルアンモニウム(新日本金属化学株式会社製、炭酸ジルコニルアンモニウム溶液(ZrO2=13%))26.4gとイオン交換水16.5gを撹拌下で添加し、本発明の光触媒組成物(TiO2=5.6%、ZrO2=2.4%、グリコール酸/(ZrO2+TiO2)(モル比)=0.39、ZrO2/TiO2(重量比)=30/70)を得た。実施例1と同様の方法により、この光触媒組成物を透明ガラス板(20cm2)にスピナーコーティングし、100℃で10分間乾燥後、更に200℃で30分間の焼成処理を行い、本発明光触媒組成物1.2mg(乾燥重量)で被覆された光触媒材料を得た。
【0032】
(実施例10)実施例1と同様にして得た酸化チタンゲル(TiO2=10%、NH3=0.30%)400gに、水酸化テトラメチルアンモニウム(TMAOH)/TiO2(モル比)=0.05となるように、水酸化テトラメチルアンモニウム水溶液(10%品)22.8gとイオン交換水77.2gを添加し、これをオートクレーブに入れ、150℃で6時間の水熱処理を行い、結晶性酸化チタンコロイド溶液(TiO2=8.0%)を得た。X線回折法により、アナターゼ型の酸化チタンのピークが見られ、その第1ピークを用いて、デバイ・シェーラーの式から求めた結晶子サイズは、12nmであった。得られた酸化チタンコロイド溶液(TiO2=8%)100gに、クエン酸2アンモニウム/TiO2(モル比)=0.1となるように、クエン酸2アンモニウム2.3gとイオン交換水36.2gを添加し、十分に混合した後、炭酸ジルコニルアンモニウム(新日本金属化学株式会社製、炭酸ジルコニルアンモニウム溶液(ZrO2=13%))61.5gを撹拌下で添加し、本発明の光触媒組成物(TiO2=4.0%、ZrO2=4.0%、クエン酸2アンモニウム/(ZrO2+TiO2)(モル比)=0.06、ZrO2/TiO2(重量比)=50/50)を得た。実施例1と同様の方法により、この光触媒組成物を透明ガラス板(20cm2)にスピナーコーティングし、100℃で10分間乾燥処理を行い、本発明光触媒組成物1.3mg(乾燥重量)で被覆された光触媒材料を得た。
【0033】
(実施例11)実施例1と同様にして得た酸化チタンゲル(TiO2=10%、NH3=0.30%)400gに、酒石酸ナトリウム/TiO2(モル比)=0.2となるように、酒石酸ナトリウム2水和物23.0gとイオン交換水77.0gを添加し、これをオートクレーブに入れ、150℃で6時間の水熱処理を行い、オキシカルボン酸含有結晶性酸化チタンコロイド溶液(TiO2=8.0%)を得た。X線回折法により、アナターゼ型の酸化チタンのピークが見られ、その第1ピークを用いて、デバイ・シェーラーの式から求めた結晶子サイズは、5nmであった。得られた当該酸化チタンコロイド溶液(TiO2=8%)100gに、炭酸ジルコニルアンモニウム(新日本金属化学株式会社製、炭酸ジルコニルアンモニウム溶液(ZrO2=13%))143.6gとイオン交換水89.7gを撹拌下で添加し、本発明の光触媒組成物(TiO2=2.4%、ZrO2=5.6%、酒石酸ナトリウム/(ZrO2+TiO2)(モル比)=0.08、ZrO2/TiO2(重量比)=70/30)を得た。実施例1と同様の方法により、この光触媒組成物を透明ガラス板(20cm2)にスピナーコーティングし、70℃で10分間乾燥処理を行い、本発明光触媒組成物1.2mg(乾燥重量)で被覆された光触媒材料を得た。
【0034】
(比較例3)実施例8で得られた酸化チタンコロイド溶液(TiO2=8.0%)100gに、シリカゾル(日産化学工業製、商品名:スノーテックスST−OL(SiO2=20.0%))10.0gとイオン交換水15.0gを添加、混合し、光触媒組成物(TiO2=6.4%、SiO2=1.6%、SiO2/TiO2(重量比)=20/80)を得た。
【0035】
実施例1と同様の方法により透明ガラス板(20cm2)にスピナーコーティングし、100℃で10分間乾燥後、更に500℃で30分間の焼成処理を行い、光触媒組成物1.0mg(乾燥重量)で被覆された光触媒材料を得た。
【0036】
(比較例4)実施例9で得られた酸化チタンコロイド溶液(TiO2=8.0%)100gに、シリカゾル(多摩化学株式会社製、商品名:シリケート40(SiO2=40.0%))20.0gとイオン交換水80.0gを添加、混合し、光触媒組成物(TiO2=4.0%、SiO2=4.0%、SiO2/TiO2(重量比)=50/50)を得た。
【0037】
実施例1と同様の方法により透明ガラス板(20cm2)にスピナーコーティングし、100℃で10分間乾燥後、更に300℃で30分間の焼成処理を行い、光触媒組成物1.0mg(乾燥重量)で被覆された光触媒材料を得た。
【0038】
表2に、実施例7〜11と比較例3〜4の耐アルカリ性試験の評価結果を記す。塗膜の耐アルカリ性の評価は、以下の塗料一般試験方法に基づいて、試験を行った。
塗料一般試験方法(JIS K5400)耐アルカリ性試験:第8-21項
Figure 0004557197
【0039】
【表2】
Figure 0004557197
【0040】
*炭酸ジルコニルアンモニウムを含まず(実施例12)実施例1と同様にして得た酸化チタンゲル(TiO2=10%、NH3=0.30%)400gに、リンゴ酸/TiO2(モル比)=0.3となるように、リンゴ酸20.1gとイオン交換水79.9gを添加し、これをオートクレーブに入れ、150℃で6時間の水熱処理を行い、オキシカルボン酸含有結晶性酸化チタンコロイド溶液(TiO2=8.0%)を得た。X線回折法により、アナターゼ型の酸化チタンのピークが見られ、その第1ピークを用いて、デバイ・シェーラーの式から求めた結晶子サイズは、6nmであった。得られた当該酸化チタンコロイド溶液(TiO2=8%)100gに、炭酸ジルコニルアンモニウム(日本軽金属株式会社製、商品名:ベイコート20(ZrO2=20%))10gとイオン交換水15gを撹拌下で添加し、本発明の光触媒組成物(TiO2=6.4%、ZrO2=1.6%、リンゴ酸/(ZrO2+TiO2)(モル比)=0.26、ZrO2/TiO2(重量比)=20/80)を得た。シリカ蒸着したPETフィルム(40cm2)に、上記の本発明光触媒組成物をスピンナーコーティングし、100℃で10分間の乾燥処理を行い、本発明光触媒組成物2.5mg(乾燥重量)で被覆された光触媒材料を得た。
【0041】
(実施例13)実施例12で得られたオキシカルボン酸含有結晶性酸化チタンコロイド溶液(TiO2=8%)100gに、炭酸ジルコニルアンモニウム(日本軽金属株式会社製、商品名:ベイコート20(ZrO2=20%))40gとイオン交換水60gを撹拌下で添加し、本発明の光触媒組成物(TiO2=4.0%、ZrO2=4.0%、リンゴ酸/(ZrO2+TiO2)(モル比)=0.18、ZrO2/TiO2(重量比)=50/50)を得た。シリカ蒸着したPETフィルム(40cm2)に、上記の本発明光触媒組成物をスピンナーコーティングし、100℃で10分間の乾燥処理を行い、本発明光触媒組成物2.6mg(乾燥重量)で被覆された光触媒材料を得た。
【0042】
(実施例14)実施例12で得られたオキシカルボン酸含有結晶性酸化チタンコロイド溶液(TiO2=8%)100gに、炭酸ジルコニルアンモニウム(日本軽金属株式会社製ベイコート20(ZrO2=20%))93.3gとイオン交換水140gを撹拌下で添加し、本発明の光触媒組成物(TiO2=2.4%、ZrO2=5.6%、リンゴ酸/(ZrO2+TiO2)(モル比)=0.12、ZrO2/TiO2(重量比)=70/30)を得た。シリカ蒸着したPETフィルム(40cm2)に、上記の光触媒組成物をスピンナーコーティングし、100℃で10分間の乾燥処理を行い、本発明光触媒組成物2.7mg(乾燥重量)で被覆された光触媒材料を得た。
【0043】
(実施例15)実施例12で得られたオキシカルボン酸含有結晶性酸化チタンコロイド溶液(TiO2=8%)20gに、炭酸ジルコニルアンモニウム(日本軽金属株式会社製、商品名:ベイコート20(ZrO2=20%))152gとイオン交換水228gを撹拌下で添加し、本発明の光触媒組成物(TiO2=0.4%、ZrO2=7.6%、リンゴ酸/(ZrO2+TiO2)(モル比)=0.02、ZrO2/TiO2(重量比)=95/5)を得た。シリカ蒸着したPETフィルム(40cm2)に、上記の光触媒組成物をスピンナーコーティングし、100℃で10分間の乾燥処理を行い、本発明光触媒組成物2.6mg(乾燥重量)で被覆された光触媒材料を得た。実施例12〜15で作製した塗膜を用いて、光触媒能の測定を行った。使用したガスは、アセトアルデヒドで、光触媒材料をいれた密閉容器に、100ppmのアセトアルデヒドガスを封入後、紫外線強度1.0mW/cm2のブラックライトを120分照射し、初期濃度とブラックライト120分照射後の濃度との差から、光触媒能の評価を行った。その結果を表3に示す。
【0044】
【表3】
Figure 0004557197
【0045】
【発明の効果】
本発明は光触媒組成物、特にオキシカルボン酸又はその塩を用いて、溶液中の酸化チタンコロイド及び炭酸ジルコニルアンモニウムを均一分散させると共に安定化し、これを、プラスチックなどの基材に塗布したときに優れた光触媒能、耐アルカリ性能、耐基材接着能を発揮する。[0001]
BACKGROUND OF THE INVENTION
The present invention uses a photocatalyst composition, in particular oxycarboxylic acid or a salt thereof, to uniformly disperse and stabilize titanium oxide colloid and zirconyl ammonium carbonate in a solution. The present invention relates to a photocatalyst composition that exhibits excellent photocatalytic ability, alkali resistance performance, and base material adhesion ability.
[0002]
[Prior art]
Environmental issues have been rigorously asked, and titanium oxide photocatalyst is NO x Since it has actions such as decomposition, sterilization, and antifouling of various harmful gases such as formaldehyde, mercabtan, hydrogen sulfide, etc., it has been spotlighted rapidly and many studies have been made. Titanium oxide photocatalyst (hereinafter referred to as titanium oxide) adheres to and supports various substrates such as metal, wood, ceramic, paper, cloth, plastic, etc., depending on the type of substrate, application, desired function, etc. The way is done. For example, (1) Baking method, (2) Evaporation method, (3) Fixing method with binder, (Four) The above combination method and the like.
[0003]
The strength of the coating film obtained by baking or vapor deposition is strong. However, since firing at a high temperature is necessary, it is generally applied to heat-resistant substrates such as glass, ceramics such as ceramics, and metals, and usable substrates are limited.
[0004]
The fixing method using a binder enables film formation at low temperatures, and can be applied to a variety of substrates, from heat-resistant substrates such as glass and ceramics such as ceramics and metals to non-heat-resistant substrates such as wood, paper, cloth, and plastic. Applicable. In order to improve the adhesion between the titanium oxide powder or titanium oxide sol and the base material, the binder used includes colloidal silica, polysiloxane, silica, titanium, various metal alkoxides such as aluminum, acrylic resin, acrylic modified resin, urethane Examples thereof include resins, vinyl chloride resins, acrylic silicon resins, fluorine resins, water glass, and aluminum phosphate. These binders can be used in the case where titanium oxide is applied after previously applying an adhesive to the base material, and in the case where an adhesive such as colloidal silica or various metal alkoxides is contained in the titanium oxide sol. Broadly divided.
[0005]
In the method of applying the adhesive to the substrate in advance, the adhesion strength of the titanium oxide to the binder is poor, or the titanium oxide itself does not have much film strength. Therefore, it is not very applicable to apply titanium oxide to the coating surface layer.
[0006]
A method of including an adhesive in a titanium oxide sol that can provide a coating film strength relatively easily is easy and inexpensive to apply, and can also be expected to have photocatalytic activity. However, in the resin-based binder, the resin as the binder is gradually decomposed due to the photocatalytic effect of titanium oxide, and the titanium oxide is peeled off from the substrate. In addition, when an inorganic binder is used, decomposition of the binder by titanium oxide does not occur. For example, a titanium oxide coating film obtained from a loading method using silicon, aluminum alkoxides, and their hydrolysis products can be dried. Some exhibit sufficient strength, and many substrates can be applied. However, since these binders are cured as oxides such as silica and alumina, they do not always become films with high strength and excellent chemical resistance when fired at a low temperature. For example, silicon alkoxide is used as a binder. In this case, since the product silica itself is dissolved by a strong alkali, a film having poor alkali resistance is obtained unless baking is performed at a high temperature.
[0007]
For these reasons, a binder that can sufficiently satisfy demands such as alkali resistance, photocatalytic ability, coating film strength, and versatility has not been obtained.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a photocatalyst composition having a stable presence of an adhesive in a titanium oxide sol and having excellent alkali resistance and adhesion. Examples of the surface treatment agent containing zirconium include, for example, the invention described in JP-A-4-2204668, the invention described in JP-A-10-237429, and the former has excellent adhesion to the substrate and has high strength. A coating composition having high and excellent flexibility is disclosed, and the latter discloses a surface treatment agent having high water wettability. Moreover, as a photocatalyst composition containing zirconium, JP-A-10-337478 discloses a sol for titanium oxide photocatalyst containing ponivinylpyrrolidone, a zirconium compound, and a titanium compound, and JP-A-11-179211 A titanium oxide photocatalyst containing titanium oxide and crystalline zirconium titanate is disclosed, and JP-A-11-209691 discloses a room temperature curing photocatalyst coating containing organosilane, a zirconia compound and a titanium compound. . JP-A-11-188270 discloses a coating solution having photocatalytic activity using composite titanium oxide fine particles comprising zirconium and titanium, and JP-A-11-229152 discloses an aliphatic monocarboxylic acid Zr and a photocatalyst. TiO 2 A method of forming an inorganic film using a thin film precursor is disclosed. Furthermore, the republished patent WO 98/15600 discloses a photocatalytic coating composition containing a zirconium compound.
[0009]
[Means for Solving the Problems]
The present invention relates to a photocatalytic composition comprising oxycarboxylic acid or a salt thereof, zirconyl ammonium carbonate, and a titanium oxide colloid.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0011]
An example of the ammonium zirconyl carbonate (AZC) used in the present invention is a chemical formula (NH Four ) 2 ZrO (CO Three ) 2 Product name from Nippon Light Metal Co., Ltd. as “Zirconium Ammonium Carbonate, Baycoat 20, Baycoat L”, from Nippon Steel Chemical Co., Ltd. as “Zirconyl Ammonium Carbonate Solution” and from Daiichi Rare Elemental Chemical Co., Ltd. Although it is sold as “Zircozol AC-7”, it may be made by itself.
[0012]
The titanium oxide colloid used in the present invention may be produced by any known method. For example, a titanium oxychloride solution is neutralized with an alkaline solution such as aqueous ammonia, and the resulting titanium gel is malic acid. It can be easily produced by adding an oxycarboxylic acid such as citric acid, tartaric acid, lactic acid or glycolic acid or a salt thereof and subjecting it to a hydrothermal treatment. In this case, a solution containing a titanium oxide colloid and an oxycarboxylic acid, that is, an oxycarboxylic acid-containing titanium oxide colloid solution can be obtained all at once. Alternatively, The oxycarboxylic acid-containing titanium oxide colloidal solution is It can also be produced by adding oxycarboxylic acid or a salt thereof to powdered titanium oxide and performing wet grinding with a ball mill or the like. Alternatively, Titanium oxide colloidal solution It can also be produced by hydrolyzing titanium alkoxide. In addition, commercially available titanium sols such as hydrochloric acid stabilized titanium oxide sol, nitric acid stabilized titanium oxide sol, organic acid stabilized titanium oxide sol, and alkali stabilized titanium oxide sol may be used.
[0013]
Speaking of the size of the colloidal particles of the present invention, the average particle size is generally 1 to 500 nm, preferably 2 to 100 nm. If it is less than 1 nm, the photocatalytic activity, that is, the photocatalytic activity is not sufficient, and if it exceeds 500 nm, not only the liquid stability but also the adhesion to the substrate is remarkably deteriorated. In addition, when the photocatalyst composition of the present invention is applied to a substrate to form a film, the alkali resistance is remarkably deteriorated.
[0014]
Next, regarding the oxycarboxylic acid or a salt thereof of the present invention, as described above, malic acid, citric acid, tartaric acid, lactic acid, glycolic acid, mandelic acid, and the like can be used as the oxycarboxylic acid, and the salt thereof. As lithium salt, sodium salt, potassium salt, calcium salt, ammonium salt, or oxycarboxylic acid and alkali agent, such as lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate , Alkali metal hydroxides and carbonates such as calcium carbonate, or those prepared with ammonia, amines, alkanolamines, etc. can be used. preferable. However, it is not limited to these. Next, the production method of the photocatalyst composition of the present invention will be described. Zirconyl ammonium carbonate may be added to the oxycarboxylic acid-containing titanium oxide colloid solution produced as described above, or the titanium oxide colloid solution and zirconyl ammonium carbonate may be added. Oxycarboxylic acid or a salt thereof may be added to the mixture. Alternatively, the titanium oxide colloidal solution may be added to a mixture of zirconyl ammonium carbonate and oxycarboxylic acid or a salt thereof. Alternatively, oxycarboxylic acid or a salt thereof and zirconyl ammonium carbonate may be added to powdered titanium oxide and wet pulverized with a ball mill or the like for production. However, the method most recommended by the present inventors is a method in which zirconyl ammonium carbonate is added to a titanium oxide colloidal solution stabilized with oxycarboxylic acid or a salt thereof and stirred well. When this method is used, a liquid-stable photocatalyst composition having the most uniformly dispersed components can be obtained. When this composition is applied to a substrate, the photocatalytic activity is high, and adhesion and alkali resistance are excellent. Can be obtained. Next, regarding the composition ratio of the photocatalyst composition of the present invention, titanium oxide colloid (TiO 2 ) The content is 1 to 30% by weight, more preferably 1 to 10% by weight. If it is 1% by weight or less, the production cost becomes high, and if it exceeds 30% by weight, the adhesion to the substrate is deteriorated and the alkali resistance is also deteriorated.
[0015]
Zirconyl ammonium carbonate (ZrO 2 ) / Titanium oxide colloid (TiO 2 ) Weight ratio is 95/5 to 5/95. Preferably it is 80 / 20-30 / 70. If it exceeds 95/5, the adhesion will be good, but the photocatalytic activity will be extremely reduced. On the other hand, at 5/95 or less, the photocatalytic activity is good, but the adhesion to the substrate and the alkali resistance are remarkably lowered.
[0016]
Then oxycarboxylic acid or its salt / (Zirconyl ammonium carbonate (ZrO 2 ) And titanium oxide colloid (TiO 2 )) Is 0.01 to 1.0, preferably 0.05 to 0.5. If it is 0.01 or less, a homogeneous composition cannot be obtained, and the adhesion is deteriorated. On the other hand, when the composition is 1.0 or more, a homogeneous composition can be obtained, but the strength is lowered due to the presence of a large amount of oxycarboxylic acid in the coating film, and therefore the addition of a large amount of oxycarboxylic acid is not preferable. Also, oxycarboxylic acid or its salt / (Zirconyl ammonium carbonate (ZrO 2 ) And titanium oxide colloid (TiO 2 )) = 0.5 to 1.0 (molar ratio), it is preferable to use the film after baking at 200 to 500 ° C. rather than drying the coating at 100 ° C.
[0017]
There is no particular problem with drying at room temperature, but it is preferable to dry at 50 ° C. or higher if possible. If it is a heat-resistant substrate, firing at 150 ° C. or higher, more preferably 200 ° C. to 500 ° C. will produce a strong coating with higher adhesion. Having photocatalytic material Obtainable. The photocatalyst composition of the present invention can be easily produced by the method described in detail above, and exhibits excellent adhesion to various substrates. However, in order to further enhance the effect, silica alkoxide, silica sol A silicon-modified resin, a silane coupling agent, or the like can also be added. In order to increase the photocatalytic activity, Pt, Rh, RhO 2 It is also possible to add metals such as Nb, Ni, and Fe. Moreover, Cu, Ag, etc. can be contained for the purpose of antimicrobial. As for the method of using the photocatalyst composition of the present invention, it can be applied to various substrates such as ceramics, glass, plastic, rubber, wood, paper, cloth, metal, etc. by any method such as dipping method, spinner coating method, roller coating method. By drying, a photocatalytic activity is high, and a film with excellent adhesion and alkali resistance is obtained. Having photocatalytic material Obtainable. Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Unless otherwise specified, all percentages are by weight.
[0018]
【Example】
(Example 1) Titanium oxychloride aqueous solution (TiO 2 = 2%) To 2000 g, ammonia water (NH Three = 2%) 2212 g (NH Three / Cl equivalent ratio = 1.3) was added with stirring to produce a titanium gel. Chlorine ions in the filtrate are converted into titanium gel (TiO 2 ) And filtered water until 100 ppm or less. 2 = 10%, NH Three = 0.30% gel was obtained.
[0019]
This gel (TiO 2 = 10%, NH Three = 0.30%) to 400 g, lactic acid / TiO 2 (Molar ratio) = 1.0 so that 45.1 g of lactic acid and 54.9 g of ion-exchanged water were added, put this in an autoclave, and hydrothermally treated at 150 ° C for 6 hours, Contains oxycarboxylic acid Crystalline titanium oxide colloidal solution (TiO 2 = 8.0%). The peak of anatase-type titanium oxide was observed by X-ray diffraction, and the crystallite size obtained from the Debye-Scherrer equation using the first peak was 6 nm. Obtained Contains oxycarboxylic acid Crystalline titanium oxide colloidal solution (TiO 2 = 8%) To 100 g, zirconyl ammonium carbonate (Daiichi Rare Element Chemical Co., Ltd., trade name: Zircosol AC-7 (ZrO 2 = 13%)) 41.0 g was added under stirring, and the photocatalytic composition of the present invention (TiO 2 = 5.7%, ZrO 2 = 3.8%, lactic acid / (ZrO 2 + TiO 2 ) (Molar ratio) = 0.70, ZrO 2 / TiO 2 (Weight ratio) = 40/60). This photocatalyst composition was added to a transparent glass plate 2 ) Was spinner coated, dried at 100 ° C., and then subjected to a baking treatment at 400 ° C. for 30 minutes to obtain a photocatalyst material coated with 1.2 mg (dry weight) of the photocatalyst composition of the present invention.
[0020]
Example 2 Titanium oxide gel (TiO 2) obtained in the same manner as Example 1. 2 = 10%, NH Three = 0.30%) to 400 g, lactic acid / TiO 2 (Molar ratio) = 0.8, lactic acid 36.1g and ion-exchanged water 63.9g was added, put in an autoclave, hydrothermally treated at 150 ° C for 6 hours, Contains oxycarboxylic acid Crystalline titanium oxide colloidal solution (TiO 2 = 8.0%). Obtained Oxycarboxylic acid-containing crystallinity Titanium oxide colloidal solution (TiO 2 = 8%) To 100 g, zirconyl ammonium carbonate (Daiichi Rare Element Chemical Co., Ltd., trade name: Zircosol AC-7 (ZrO 2 = 13%)) 41.0 g was added under stirring, and the photocatalytic composition of the present invention (TiO 2 = 5.7%, ZrO 2 = 3.8%, lactic acid / (ZrO 2 + TiO 2 ) (Molar ratio) = 0.56, ZrO 2 / TiO 2 (Weight ratio) = 40/60). In the same manner as in Example 1, this photocatalyst composition was added to a transparent glass plate (20 cm 2 ) Was spinner-coated, dried at 100 ° C., and then subjected to a baking treatment at 300 ° C. for 30 minutes to obtain a photocatalyst material coated with 1.2 mg (dry weight) of the photocatalyst composition of the present invention.
[0021]
Example 3 Titanium oxide gel (TiO 2) obtained in the same manner as in Example 1. 2 = 10%, NH Three 0.30%) 400g, lactic acid / TiO 2 (Molar ratio) = 0.5, 22.5 g of lactic acid and 77.5 g of ion-exchanged water were added, and this was placed in an autoclave and subjected to hydrothermal treatment at 150 ° C for 6 hours, Contains oxycarboxylic acid Crystalline titanium oxide colloidal solution (TiO 2 = 8.0%). Obtained Oxycarboxylic acid-containing crystallinity Titanium oxide colloidal solution (TiO 2 = 8%) To 100 g, zirconyl ammonium carbonate (Daiichi Rare Element Chemical Co., Ltd., trade name: Zircosol AC-7 (ZrO 2 = 13%)) 41.0 g was added under stirring, and the photocatalytic composition of the present invention (TiO 2 = 5.7%, ZrO 2 = 3.8%, lactic acid / (ZrO 2 + TiO 2 ) (Molar ratio) = 0.35, ZrO 2 / TiO 2 (Weight ratio) = 40/60). In the same manner as in Example 1, this photocatalyst composition was added to a transparent glass plate (20 cm 2 ) Was spinner coated and dried at 100 ° C. for 10 minutes to obtain a photocatalyst material coated with 1.2 mg (dry weight) of the photocatalyst composition of the present invention.
[0022]
(Example 4) Obtained in Example 3 Contains oxycarboxylic acid Crystalline titanium oxide colloidal solution (TiO 2 = 8.0%) is subjected to ultra-cleaning treatment, and lactic acid / TiO 2 (Molar ratio) = 0.2, TiO 2 = 8.0% Oxycarboxylic acid-containing crystallinity A titanium oxide colloidal solution was obtained. In addition, Concerned The amount of lactic acid in the titanium oxide colloid solution was quantified using liquid chromatography. Obtained Concerned Titanium oxide colloidal solution (TiO 2 = 8%) To 100 g, zirconyl ammonium carbonate (Daiichi Rare Element Chemical Co., Ltd., trade name: Zircosol AC-7 (ZrO 2 = 13%)) 41.0 g was added under stirring, and the photocatalytic composition of the present invention (TiO 2 = 5.7%, ZrO 2 = 3.8%, lactic acid / (ZrO 2 + TiO 2 ) (Molar ratio) = 0.14, ZrO 2 / TiO 2 (Weight ratio) = 40/60). In the same manner as in Example 1, this photocatalyst composition was added to a transparent glass plate (20 cm 2 ) Was spinner coated and dried at 100 ° C. for 10 minutes to obtain a photocatalyst material coated with 1.2 mg (dry weight) of the photocatalyst composition of the present invention.
[0023]
(Example 5) Similar to Example 4, obtained in Example 3 Contains oxycarboxylic acid Crystalline titanium oxide colloidal solution (TiO 2 = 8.0%) is subjected to ultra-cleaning treatment, and lactic acid / TiO 2 (Molar ratio) = 0.05, TiO 2 = 8.0% Oxycarboxylic acid-containing crystallinity A titanium oxide colloidal solution was obtained. In addition, Concerned The amount of lactic acid in the titanium oxide colloid solution was quantified using liquid chromatography. Obtained Concerned Titanium oxide colloidal solution (TiO 2 = 8%) To 100 g, zirconyl ammonium carbonate (Daiichi Rare Element Chemical Co., Ltd., trade name: Zircosol AC-7 (ZrO 2 = 13%)) 41.0 g was added under stirring, and the photocatalytic composition of the present invention (TiO 2 = 5.7%, ZrO 2 = 3.8%, lactic acid / (ZrO 2 + TiO 2 ) (Molar ratio) = 0.04, ZrO 2 / TiO 2 (Weight ratio) = 40/60). In the same manner as in Example 1, this photocatalyst composition was added to a transparent glass plate (20 cm 2 ) Was spinner coated and dried at 100 ° C. for 10 minutes to obtain a photocatalyst material coated with 1.2 mg (dry weight) of the photocatalyst composition of the present invention.
[0024]
(Example 6) Anatase-type titanium oxide powder (manufactured by Taki Chemical Co., Ltd., trade name: Tynoch A-100 (TiO 2 = 84%, particle size 1.4μm)) 100g, lactic acid / TiO 2 (Molar ratio) = 0.10 so that lactic acid 9.5g and ion-exchanged water 30.5g, zirconyl ammonium carbonate (manufactured by Nippon Light Metal Co., Ltd., trade name: Baycoat 20 (ZrO 2 = 20%))) 280 g was added, mixed, and then pulverized by a pulverizer to produce the photocatalyst composition (TiO 2) of the present invention. 2 = 20.0%, ZrO 2 = 13.3%, lactic acid / (ZrO 2 + TiO 2 ) (Molar ratio) = 0.07, ZrO 2 / TiO 2 (Weight ratio) = 40/60, titanium oxide particle diameter 0.1 μm). This photocatalytic composition was converted to TiO 2 = After diluting with ion-exchanged water so as to be 8%, a transparent glass plate (20 cm 2 ) Was subjected to a spinner coating at 100 ° C. for 10 minutes to obtain a photocatalyst material coated with 2.5 mg (dry weight) of the photocatalyst composition of the present invention.
[0025]
(Comparative Example 1) Titanium oxide gel (TiO2) obtained in the same manner as in Example 1. 2 = 10%, NH Three = 0.30%) Ion-exchanged water = 100 g was added to 400 g, and this was put in an autoclave, hydrothermally treated at 150 ° C for 6 hours, and a crystalline titanium oxide colloidal solution (TiO 2 = 8.0%). The resulting titanium oxide colloidal solution (TiO 2 = 8%) To 100 g, zirconyl ammonium carbonate (Daiichi Rare Element Chemical Co., Ltd., trade name: Zircosol AC-7 (ZrO 2 = 13%)) 41.0 g was added with stirring, and the photocatalytic composition (TiO 2 = 5.7%, ZrO 2 = 3.8%, oxycarboxylic acid / (ZrO 2 + TiO 2 ) (Molar ratio) = 0, ZrO 2 / TiO 2 (Weight ratio) = 40/60). In the same manner as in Example 1, this photocatalyst composition was added to a transparent glass plate (20 cm 2 ) Spinner coating, drying treatment at 100 ° C for 10 minutes, glass plate (area = 20cm) 2 ) To obtain a photocatalytic material coated with 1.2 mg (dry weight) of the photocatalytic composition.
[0026]
(Comparative Example 2) Obtained in Example 3 Contains oxycarboxylic acid Titanium oxide colloidal solution (TiO 2 = 8%, lactic acid / TiO 2 (Molar ratio) = 0.5) and a transparent glass plate (20 cm) in the same manner as in Example 1. 2 ) Was spinner coated, dried at 100 ° C. for 10 minutes, and dried at 100 ° C., followed by baking at 500 ° C. for 30 minutes to obtain a photocatalyst material coated with 1.0 mg (dry weight) of the photocatalyst composition.
[0027]
In Table 1, the comparison of the coating strength of Examples 1-6 and Comparative Examples 1 and 2 is described. The film strength was evaluated based on the following paint general test method.
Paint General Test Method (JIS K5400) Pencil Hardness: Section 8-4 Pencil Scratch Value Tester Method
[0028]
[Table 1]
Figure 0004557197
[0029]
* No zirconyl ammonium carbonate (Example 7) Titanium oxide gel (TiO2) obtained in the same manner as Example 1 2 = 10%, NH Three = 0.30%) to 400 g, citric acid / TiO 2 (Molar ratio) = 0.3 Add citric acid monohydrate 31.6g and ion-exchanged water 68.4g, put it in an autoclave, hydrothermally treated at 150 ° C for 6 hours, Contains oxycarboxylic acid Crystalline titanium oxide colloidal solution (TiO 2 = 8.0%). The peak of anatase-type titanium oxide was observed by X-ray diffraction, and the crystallite size obtained from the Debye-Scherrer equation using the first peak was 6 nm. Obtained Concerned Titanium oxide colloidal solution (TiO 2 = 8%) To 100 g, zirconyl ammonium carbonate (manufactured by Shin Nippon Metal Chemical Co., Ltd., zirconyl ammonium carbonate solution (ZrO 2 = 13%)) 3.2 g and ion-exchanged water 2.1 g were added with stirring, and the photocatalyst composition (TiO 2) of the present invention was added. 2 = 7.6%, ZrO 2 = 0.4%, citric acid / (ZrO 2 + TiO 2 ) (Molar ratio) = 0.29, ZrO 2 / TiO 2 (Weight ratio) = 5/95). In the same manner as in Example 1, this photocatalyst composition was added to a transparent glass plate (20 cm 2 ) Was spinner coated, dried at 100 ° C. for 10 minutes, and further subjected to a baking treatment at 500 ° C. for 30 minutes to obtain a photocatalyst material coated with 1.2 mg (dry weight) of the photocatalyst composition of the present invention.
[0030]
(Example 8) Titanium oxide gel (TiO2) obtained in the same manner as in Example 1. 2 = 10%, NH Three = 0.30%) to 400g, tartaric acid / TiO 2 (Molar ratio) = 0.6 so that tartaric acid 45.1g and ion-exchanged water 54.9g were added, put this in an autoclave, hydrothermally treated at 150 ° C for 6 hours, Contains oxycarboxylic acid Crystalline titanium oxide colloidal solution (TiO 2 = 8.0%). The peak of anatase-type titanium oxide was observed by X-ray diffraction, and the crystallite size obtained from the Debye-Scherrer equation using the first peak was 6 nm. Obtained Concerned Titanium oxide colloidal solution (TiO 2 = 8%) To 100 g, zirconyl ammonium carbonate (manufactured by Shin Nippon Metal Chemical Co., Ltd., zirconyl ammonium carbonate solution (ZrO 2 = 13%)) 15.4 g and 9.6 g of ion-exchanged water were added under stirring, and the photocatalyst composition (TiO 2) of the present invention was added. 2 = 6.4%, ZrO 2 = 1.6%, tartaric acid / (ZrO 2 + TiO 2 ) (Molar ratio) = 0.52, ZrO 2 / TiO 2 (Weight ratio) = 20/80). In the same manner as in Example 1, this photocatalyst composition was added to a transparent glass plate (20 cm 2 ) Was spinner coated, dried at 100 ° C. for 10 minutes, and further subjected to a calcination treatment at 300 ° C. for 30 minutes to obtain a photocatalyst material coated with 1.2 mg (dry weight) of the photocatalyst composition of the present invention.
[0031]
Example 9 Titanium oxide gel (TiO 2) obtained in the same manner as in Example 1. 2 = 10%, NH Three = 0.30%) to 400 g, glycolic acid / TiO 2 (Molar ratio) = 0.5, 27.2 g of glycolic acid (70%) and 72.8 g of ion-exchanged water were added, put in an autoclave, and hydrothermally treated at 150 ° C for 6 hours. Contains oxycarboxylic acid Crystalline titanium oxide colloidal solution (TiO 2 = 8.0%). The peak of anatase-type titanium oxide was observed by X-ray diffraction, and the crystallite size obtained from the Debye-Scherrer equation using the first peak was 6 nm. Obtained Concerned Titanium oxide colloidal solution (TiO 2 = 8%) To 100 g, zirconyl ammonium carbonate (manufactured by Shin Nippon Metal Chemical Co., Ltd., zirconyl ammonium carbonate solution (ZrO 2 = 13%)) 26.4 g and ion-exchanged water 16.5 g were added with stirring, and the photocatalyst composition (TiO 2) of the present invention was added. 2 = 5.6%, ZrO 2 = 2.4%, glycolic acid / (ZrO 2 + TiO 2 ) (Molar ratio) = 0.39, ZrO 2 / TiO 2 (Weight ratio) = 30/70). In the same manner as in Example 1, this photocatalyst composition was added to a transparent glass plate (20 cm 2 ) Was spinner coated, dried at 100 ° C. for 10 minutes, and further subjected to a calcination treatment at 200 ° C. for 30 minutes to obtain a photocatalyst material coated with 1.2 mg (dry weight) of the photocatalyst composition of the present invention.
[0032]
Example 10 Titanium oxide gel (TiO 2) obtained in the same manner as Example 1. 2 = 10%, NH Three = 0.30%) to 400 g, tetramethylammonium hydroxide (TMAOH) / TiO 2 (Molar ratio) = 0.05 Add 22.8 g of tetramethylammonium hydroxide aqueous solution (10% product) and 77.2 g of ion-exchanged water, put it in an autoclave, and perform hydrothermal treatment at 150 ° C for 6 hours. , Crystalline titanium oxide colloidal solution (TiO 2 = 8.0%). The peak of anatase-type titanium oxide was observed by X-ray diffraction, and the crystallite size obtained from the Debye-Scherrer equation using the first peak was 12 nm. The resulting titanium oxide colloidal solution (TiO 2 = 8%) To 100 g, diammonium citrate / TiO 2 (Molar ratio) = 0.1 After adding 2.3 g of diammonium citrate and 36.2 g of ion-exchanged water so as to be 0.1, zirconyl ammonium carbonate (manufactured by Nippon Steel Chemical Co., Ltd., zirconyl ammonium carbonate solution ( ZrO 2 = 13%)) 61.5 g was added with stirring, and the photocatalytic composition of the present invention (TiO 2 = 4.0%, ZrO 2 = 4.0%, diammonium citrate / (ZrO 2 + TiO 2 ) (Molar ratio) = 0.06, ZrO 2 / TiO 2 (Weight ratio) = 50/50). In the same manner as in Example 1, this photocatalyst composition was added to a transparent glass plate (20 cm 2 ) Was spinner coated and dried at 100 ° C. for 10 minutes to obtain a photocatalyst material coated with 1.3 mg (dry weight) of the photocatalyst composition of the present invention.
[0033]
Example 11 Titanium oxide gel (TiO 2) obtained in the same manner as in Example 1. 2 = 10%, NH Three = 0.30%) 400g, sodium tartrate / TiO 2 (Molar ratio) = 0.2 Add 23.0 g of sodium tartrate dihydrate and 77.0 g of ion-exchanged water, put this in an autoclave, and perform hydrothermal treatment at 150 ° C for 6 hours. Contains oxycarboxylic acid Crystalline titanium oxide colloidal solution (TiO 2 = 8.0%). By an X-ray diffraction method, a peak of anatase-type titanium oxide was observed, and the crystallite size obtained from the Debye-Scherrer equation using the first peak was 5 nm. Obtained Concerned Titanium oxide colloidal solution (TiO 2 = 8%) To 100 g, zirconyl ammonium carbonate (manufactured by Shin Nippon Metal Chemical Co., Ltd., zirconyl ammonium carbonate solution (ZrO 2 = 13%)) 143.6 g and ion-exchanged water 89.7 g were added with stirring, and the photocatalyst composition (TiO 2 = 2.4%, ZrO 2 = 5.6%, sodium tartrate / (ZrO 2 + TiO 2 ) (Molar ratio) = 0.08, ZrO 2 / TiO 2 (Weight ratio) = 70/30). In the same manner as in Example 1, this photocatalyst composition was added to a transparent glass plate (20 cm 2 ) Was spinner coated and dried at 70 ° C. for 10 minutes to obtain a photocatalyst material coated with 1.2 mg (dry weight) of the photocatalyst composition of the present invention.
[0034]
Comparative Example 3 Titanium oxide colloidal solution obtained in Example 8 (TiO 2 = 8.0%) To 100 g, silica sol (manufactured by Nissan Chemical Industries, trade name: Snowtex ST-OL (SiO 2 = 20.0%)) 10.0g and 15.0g of ion-exchanged water are added, mixed, and the photocatalytic composition (TiO 2 = 6.4%, SiO 2 = 1.6%, SiO 2 / TiO 2 (Weight ratio) = 20/80).
[0035]
A transparent glass plate (20 cm) by the same method as in Example 1. 2 ) Was spinner-coated, dried at 100 ° C. for 10 minutes, and further subjected to a baking treatment at 500 ° C. for 30 minutes to obtain a photocatalyst material coated with 1.0 mg (dry weight) of the photocatalyst composition.
[0036]
Comparative Example 4 Titanium oxide colloidal solution obtained in Example 9 (TiO 2 = 8.0%) To 100 g, silica sol (manufactured by Tama Chemical Co., Ltd., trade name: silicate 40 (SiO 2 = 40.0%)) 20.0g and ion-exchanged water 80.0g were added, mixed, and the photocatalyst composition (TiO 2 = 4.0%, SiO 2 = 4.0%, SiO 2 / TiO 2 (Weight ratio) = 50/50).
[0037]
A transparent glass plate (20 cm) by the same method as in Example 1. 2 ) Was spinner coated, dried at 100 ° C. for 10 minutes, and further subjected to a calcination treatment at 300 ° C. for 30 minutes to obtain a photocatalyst material coated with 1.0 mg (dry weight) of the photocatalyst composition.
[0038]
In Table 2, the evaluation result of the alkali resistance test of Examples 7-11 and Comparative Examples 3-4 is described. The alkali resistance of the coating film was evaluated based on the following general paint test method.
Paint General Test Method (JIS K5400) Alkali Resistance Test: Section 8-21
Figure 0004557197
[0039]
[Table 2]
Figure 0004557197
[0040]
* Zirconylammonium carbonate not included (Example 12) Titanium oxide gel (TiO2) obtained in the same manner as Example 1 2 = 10%, NH Three = 0.30%) to 400 g, malic acid / TiO 2 (Molar ratio) = 0.3 so that 20.1 g of malic acid and 79.9 g of ion-exchanged water were added, and this was put in an autoclave and subjected to hydrothermal treatment at 150 ° C. for 6 hours, Contains oxycarboxylic acid Crystalline titanium oxide colloidal solution (TiO 2 = 8.0%). The peak of anatase-type titanium oxide was observed by X-ray diffraction, and the crystallite size obtained from the Debye-Scherrer equation using the first peak was 6 nm. Obtained Concerned Titanium oxide colloidal solution (TiO 2 = 8%) To 100 g, zirconyl ammonium carbonate (Nippon Light Metal Co., Ltd., trade name: Baycoat 20 (ZrO 2 = 20%))) and 10 g of ion-exchanged water were added with stirring, and the photocatalytic composition (TiO 2) of the present invention was added. 2 = 6.4%, ZrO 2 = 1.6%, malic acid / (ZrO 2 + TiO 2 ) (Molar ratio) = 0.26, ZrO 2 / TiO 2 (Weight ratio) = 20/80). Silica-deposited PET film (40cm 2 The above photocatalyst composition of the present invention was spinner-coated and dried at 100 ° C. for 10 minutes to obtain a photocatalyst material coated with 2.5 mg (dry weight) of the photocatalyst composition of the present invention.
[0041]
(Example 13) Obtained in Example 12 Contains oxycarboxylic acid Crystalline titanium oxide colloidal solution (TiO 2 = 8%) To 100 g, zirconyl ammonium carbonate (Nippon Light Metal Co., Ltd., trade name: Baycoat 20 (ZrO 2 = 20%)) and 40 g of ion-exchanged water are added with stirring, and the photocatalytic composition (TiO 2) of the present invention is added. 2 = 4.0%, ZrO 2 = 4.0%, Malic acid / (ZrO 2 + TiO 2 ) (Molar ratio) = 0.18, ZrO 2 / TiO 2 (Weight ratio) = 50/50). Silica-deposited PET film (40cm 2 The above photocatalyst composition of the present invention was spinner-coated and dried at 100 ° C. for 10 minutes to obtain a photocatalyst material coated with 2.6 mg (dry weight) of the photocatalyst composition of the present invention.
[0042]
(Example 14) Obtained in Example 12 Contains oxycarboxylic acid Crystalline titanium oxide colloidal solution (TiO 2 = 8%) To 100 g, zirconyl ammonium carbonate (Nippon Light Metal Co., Ltd. Baycoat 20 (ZrO 2 = 20%)) 93.3 g and ion-exchanged water 140 g were added with stirring, and the photocatalyst composition (TiO 2) of the present invention was added. 2 = 2.4%, ZrO 2 = 5.6%, malic acid / (ZrO 2 + TiO 2 ) (Molar ratio) = 0.12, ZrO 2 / TiO 2 (Weight ratio) = 70/30). Silica-deposited PET film (40cm 2 The above photocatalyst composition was spinner-coated and dried at 100 ° C. for 10 minutes to obtain a photocatalyst material coated with 2.7 mg (dry weight) of the photocatalyst composition of the present invention.
[0043]
(Example 15) Obtained in Example 12 Contains oxycarboxylic acid Crystalline titanium oxide colloidal solution (TiO 2 = 8%) 20g, zirconyl ammonium carbonate (Nippon Light Metal Co., Ltd., trade name: Baycoat 20 (ZrO 2 = 20%)) 152 g and 228 g of ion-exchanged water were added under stirring, and the photocatalyst composition (TiO 2) of the present invention was added. 2 = 0.4%, ZrO 2 = 7.6%, Malic acid / (ZrO 2 + TiO 2 ) (Molar ratio) = 0.02, ZrO 2 / TiO 2 (Weight ratio) = 95/5). Silica-deposited PET film (40cm 2 The above photocatalyst composition was spinner coated and dried at 100 ° C. for 10 minutes to obtain a photocatalyst material coated with 2.6 mg (dry weight) of the photocatalyst composition of the present invention. The photocatalytic ability was measured using the coating films prepared in Examples 12-15. The gas used was acetaldehyde. After sealing 100 ppm of acetaldehyde gas into a sealed container containing photocatalytic material, the UV intensity was 1.0 mW / cm. 2 The black light was irradiated for 120 minutes, and the photocatalytic ability was evaluated from the difference between the initial concentration and the concentration after 120 minutes of black light irradiation. The results are shown in Table 3.
[0044]
[Table 3]
Figure 0004557197
[0045]
【The invention's effect】
The present invention uses a photocatalyst composition, particularly oxycarboxylic acid or a salt thereof, to uniformly disperse and stabilize titanium oxide colloid and zirconyl ammonium carbonate in a solution, which is excellent when applied to a substrate such as plastic. It exhibits high photocatalytic performance, alkali resistance, and substrate adhesion resistance.

Claims (7)

オキシカルボン酸又はその塩と炭酸ジルコニルアンモニウムと酸化チタンコロイドとを含有してなる下記組成の光触媒組成物。
(1)炭酸ジルコニルアンモニウム(ZrO2)/酸化チタンコロイド(TiO2)=5/95〜95/5(重量比)
(2) オキシカルボン酸又はその塩/炭酸ジルコニルアンモニウム(ZrO2)と酸化チタンコロイド(TiO2)(モル比)が0.01〜1.0
A photocatalyst composition having the following composition comprising oxycarboxylic acid or a salt thereof, zirconyl ammonium carbonate, and titanium oxide colloid.
(1) Zirconyl ammonium carbonate (ZrO 2 ) / Titanium oxide colloid (TiO 2 ) = 5/95 to 95/5 (weight ratio)
(2) Oxycarboxylic acid or its salt / zirconyl ammonium carbonate (ZrO 2 ) and titanium oxide colloid (TiO 2 ) (molar ratio) of 0.01 to 1.0
酸化チタンコロイド(TiO2)含有量が1〜30重量%である請求項1記載の光触媒組成物。The photocatalyst composition according to claim 1, wherein the content of titanium oxide colloid (TiO 2 ) is 1 to 30% by weight. オキシカルボン酸又はその塩が、りんご酸、酒石酸、くえん酸、乳酸、グリコール酸又はその塩からなる群から選ばれたものである請求項1又は2記載の光触媒組成物。The photocatalytic composition according to claim 1 or 2, wherein the oxycarboxylic acid or a salt thereof is selected from the group consisting of malic acid, tartaric acid, citric acid, lactic acid, glycolic acid or a salt thereof. 請求項1〜3のいずれか1項記載の光触媒組成物を基材に塗布し、乾燥処理又は乾燥後に焼成処理した光触媒材料。The photocatalyst material which apply | coated the photocatalyst composition of any one of Claims 1-3 to the base material, and baked it after drying processing or drying. 下記組成(1)のオキシカルボン酸又はその塩を含有した酸化チタンコロイド溶液に下記(2)の割合で炭酸ジルコニルアンモニウムを含有させることから成る光触媒組成物の製造方法。
(1) オキシカルボン酸又はその塩/酸化チタンコロイド(TiO2)/(モル比)が0.05〜1.5
(2) 炭酸ジルコニルアンモニウム(ZrO2)/酸化チタンコロイド(TiO2)(重量比)が5/95〜95/5
A method for producing a photocatalyst composition, comprising incorporating a zirconium oxide ammonium carbonate in a proportion of the following (2) in a titanium oxide colloidal solution containing an oxycarboxylic acid or a salt thereof having the following composition (1).
(1) a hydroxycarboxylic acid or salt thereof / titanium oxide colloid (TiO 2) / (molar ratio) is 0.05 to 1.5
(2) Zirconyl ammonium carbonate (ZrO 2 ) / Titanium oxide colloid (TiO 2 ) (weight ratio) is 5/95 to 95/5
光触媒組成物の酸化チタンコロイド(TiO2)含有量が1〜30重量%である請求項5記載の光触媒組成物の製造方法。Method for producing a titanium oxide colloid (TiO 2) photocatalyst composition according to claim 5, wherein the content of 1 to 30% by weight of the photocatalyst composition. オキシカルボン酸又はその塩が、りんご酸、酒石酸、くえん酸、乳酸、グリコール酸又はその塩からなる群から選ばれたものである請求項5又は6記載の光触媒組成物の製造方法。The method for producing a photocatalytic composition according to claim 5 or 6, wherein the oxycarboxylic acid or a salt thereof is selected from the group consisting of malic acid, tartaric acid, citric acid, lactic acid, glycolic acid or a salt thereof.
JP2000334388A 2000-11-01 2000-11-01 Photocatalyst composition and method for producing the same Expired - Fee Related JP4557197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000334388A JP4557197B2 (en) 2000-11-01 2000-11-01 Photocatalyst composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000334388A JP4557197B2 (en) 2000-11-01 2000-11-01 Photocatalyst composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002136869A JP2002136869A (en) 2002-05-14
JP4557197B2 true JP4557197B2 (en) 2010-10-06

Family

ID=18810313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000334388A Expired - Fee Related JP4557197B2 (en) 2000-11-01 2000-11-01 Photocatalyst composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP4557197B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154750A (en) * 2003-10-30 2005-06-16 Showa Denko Kk Transparent film-forming composition
JP5674083B2 (en) * 2009-09-02 2015-02-25 多木化学株式会社 Iron oxyhydroxide sol and method for producing the same
EP2599546A4 (en) 2010-07-29 2014-04-23 Toto Ltd Inorganic material comprising photocatalyst layer, method for producing same, and photocatalyst coating liquid for inorganic material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2155941T5 (en) * 1995-09-15 2012-04-30 Rhodia Chimie Substrate with photocatalytic coating based on titanium dioxide and organic dispersions based on titanium dioxide
JP3354428B2 (en) * 1997-03-19 2002-12-09 エスケー化研株式会社 Aqueous paint composition
CA2312788C (en) * 1997-12-02 2009-01-06 Showa Denko Kabushiki Kaisha Photocatalytic oxide composition, thin film, and composite
JP3080162B2 (en) * 1998-01-27 2000-08-21 日本パーカライジング株式会社 Titanium oxide sol and method for producing the same
JPH11323195A (en) * 1998-03-13 1999-11-26 Toto Ltd Photocatalytic coating composition

Also Published As

Publication number Publication date
JP2002136869A (en) 2002-05-14

Similar Documents

Publication Publication Date Title
EP0963789B1 (en) Photocatalyst-containing coating composition
JP4803180B2 (en) Titanium oxide photocatalyst, its production method and use
JP4335446B2 (en) Titanium oxide sol, thin film and method for producing them
JP3559892B2 (en) Photocatalytic film and method for forming the same
JP5711744B2 (en) INORGANIC MATERIAL HAVING PHOTOCATALYST LAYER, PROCESS FOR PRODUCING THE SAME, AND PHOTOCATALYST COATING LIQUID FOR INORGANIC MATERIAL
WO2009116181A1 (en) Visible light-responsive photocatalyst and method for producing the same
US6479141B1 (en) Photocatalytic coating composition and product having photocatalytic thin film
JP4846088B2 (en) Titanium oxide-containing photocatalyst coating liquid, production method thereof, and titanium oxide photocatalyst structure
JP4619601B2 (en) PHOTOCATALYTIC COATING COMPOSITION AND PRODUCT HAVING PHOTOCATALYTIC THIN FILM
JPH1112539A (en) Functional coating material composition and method for forming functional coating film
JP2001179091A (en) Photocatalyst filter for cleaning air
JP2012035151A (en) Method for manufacturing photocatalyst structure, and photocatalyst functional product
JPH11188270A (en) Coating solution for forming transparent coating film having photocatalytic activity and substrate with transparent coating film
JP4557197B2 (en) Photocatalyst composition and method for producing the same
JP3791067B2 (en) Photocatalyst composition and glass article
JP4171128B2 (en) Photocatalyst for surface coating, and surface coating agent and photocatalytic member using the same
JP3978636B2 (en) Coating composition for photocatalyst film formation
KR101048340B1 (en) Transparent film forming composition
JP5313051B2 (en) Zirconium oxalate sol
JP2001323188A (en) Coating material for forming transparent photocatalytic dispersion film and metallic plate coated with transparent photocatlytic dispersion film
JP3806998B2 (en) PHOTOCATALYST COMPOSITION, FORMING AGENT THEREOF, AND SUBSTRATE WITH PHOTOCATALYST COMPOSITION
JP2020033510A (en) Photocatalyst coating, method for producing photocatalyst coating, and method for producing photocatalyst body
JP4571793B2 (en) Aqueous photocatalyst coating solution
JP2001181535A (en) Photocatalytic coating material for environmental cleaning
JPH072522A (en) Production of titanium oxide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

R150 Certificate of patent or registration of utility model

Ref document number: 4557197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160730

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees