JP4556962B2 - Method for reducing residual stress of blank material, method for manufacturing blank material and glass substrate for information recording medium - Google Patents

Method for reducing residual stress of blank material, method for manufacturing blank material and glass substrate for information recording medium Download PDF

Info

Publication number
JP4556962B2
JP4556962B2 JP2007064728A JP2007064728A JP4556962B2 JP 4556962 B2 JP4556962 B2 JP 4556962B2 JP 2007064728 A JP2007064728 A JP 2007064728A JP 2007064728 A JP2007064728 A JP 2007064728A JP 4556962 B2 JP4556962 B2 JP 4556962B2
Authority
JP
Japan
Prior art keywords
glass substrate
blank material
glass
molded body
information recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007064728A
Other languages
Japanese (ja)
Other versions
JP2008226377A (en
Inventor
秀樹 河合
章 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2007064728A priority Critical patent/JP4556962B2/en
Publication of JP2008226377A publication Critical patent/JP2008226377A/en
Application granted granted Critical
Publication of JP4556962B2 publication Critical patent/JP4556962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ブランク材の残留応力を低減する方法ブランク材及び情報記録媒体用ガラス基板の製造方法に関する。 The present invention relates to a method for reducing a residual stress of a blank material , a method for manufacturing a blank material, and a glass substrate for an information recording medium .

磁気、光、光磁気等の性質を利用した記録層を有する情報記録媒体のなかで、代表的なものとして磁気ディスクがある。磁気ディスク用基板として、従来アルミニウム基板が広く用いられていた。しかし、近年、記録密度向上のための磁気ヘッド浮上量の低減の要請に伴い、ガラス基板を磁気ディスク用基板として用いる割合が増えてきている。ガラス基板を用いる割合が増えている理由として、ガラス基板が、アルミニウム基板よりも表面の平滑性に優れ、しかも表面欠陥が少ないことから磁気ヘッド浮上量の低減を図ることができるからである。   Among information recording media having a recording layer utilizing properties such as magnetism, light, and magnetomagnetism, a typical example is a magnetic disk. Conventionally, aluminum substrates have been widely used as magnetic disk substrates. However, in recent years, with the demand for reducing the flying height of the magnetic head for improving the recording density, the proportion of using a glass substrate as a magnetic disk substrate has increased. The reason for the increased use of glass substrates is that the glass substrate has better surface smoothness than the aluminum substrate and has fewer surface defects, so that the flying height of the magnetic head can be reduced.

このような磁気ディスク用等のガラス基板は、ガラス基板前駆体であるブランク材に研磨加工等を施すことによって製造される。ブランク材となるガラス板は、プレス成形によって製造する方法や、フロート法等によって製造されたガラス板を切断して製造する方法等が知られている。これらの方法のうち、溶融ガラスを直接プレス成形することによってガラス板を製造する方法は、特に高い生産性が期待できることから注目されている。   Such a glass substrate for a magnetic disk or the like is manufactured by subjecting a blank material, which is a glass substrate precursor, to polishing. As a glass plate used as a blank material, a method of manufacturing by press molding, a method of manufacturing by cutting a glass plate manufactured by a float method or the like is known. Among these methods, a method of producing a glass plate by directly press-molding molten glass is attracting attention because it can be expected to have particularly high productivity.

例えば、2.5インチ径の磁気ディスク用ガラス基板を製造する場合、プレス成形にて1.2mmから1.5mm程度の厚みの円板形状のガラス板を製造し、この後、ガラス板を熱処理してガラス板が有する残留応力を緩和させてブランク材としている。一般にガラス製品を製造する際には、引っ張り応力や圧縮応力がガラス内部に存在している残留応力を除くために熱処理を行う。残留応力がガラス内部に存在したままでは、研磨時に変形を生じたり、また、破壊強度が著しく低下し、ガラス強度を支配する表面のキズが自然に成長して破壊に至ることもあるため、ガラス製品の機械的信頼性が著しく損なわれることになる(非特許文献1参照)。   For example, when manufacturing a glass substrate for a 2.5-inch magnetic disk, a disk-shaped glass plate having a thickness of about 1.2 mm to 1.5 mm is manufactured by press molding, and then the glass plate is heat treated. And the residual stress which a glass plate has is eased, and it is set as the blank material. In general, when a glass product is manufactured, heat treatment is performed in order to remove residual stress in which tensile stress or compressive stress exists in the glass. If the residual stress remains inside the glass, it will be deformed during polishing, or the fracture strength will be significantly reduced, and scratches on the surface governing the glass strength may grow spontaneously, leading to the destruction. The mechanical reliability of the product is significantly impaired (see Non-Patent Document 1).

この残留応力を緩和させたブランク材の中央に穴を開けたり、両平面の研削加工や研磨加工等を行って、ブランク材を、例えば厚みが0.635mmの情報記録媒体用ガラス基板に仕上げる。   A hole is made in the center of the blank material in which the residual stress is relieved, or both surfaces are ground and polished to finish the blank material into a glass substrate for information recording media having a thickness of 0.635 mm, for example.

ブランク材から情報記録媒体用ガラス基板に仕上げるためには、上記の様に厚みの約半分を研削加工や研磨加工により除去している。このため上記の熱処理によりブランク材に反りが生じた状態があっても、反りを取り除くことが十分な研削加工や研磨加工による加工代を取ることができるため所望の平面度を得ることができる。   In order to finish from a blank material to a glass substrate for an information recording medium, about half of the thickness is removed by grinding or polishing as described above. For this reason, even if there is a state in which the blank material is warped by the heat treatment, a desired flatness can be obtained because a processing allowance by grinding or polishing sufficient to remove the warp can be taken.

一方で、これら研削加工や研磨加工には多大な時間が費やしているため、こうした加工を効率良く行うためには、薄いブランク材を製造することが考えられる。しかし、薄いブランク材では、従来の厚さのブランク材に比較して反りが大きく、また反りを修正するための加工代の厚みを十分に確保できず、平面度の良好な情報記録媒体用ガラス基板を得ることができなくなってしまう問題があった。   On the other hand, since a great amount of time is spent on these grinding and polishing processes, it is conceivable to produce a thin blank material in order to perform such processes efficiently. However, the thin blank material has a large warp compared to the blank material of the conventional thickness, and the thickness of the processing allowance for correcting the warp cannot be sufficiently secured, and the glass for the information recording medium having a good flatness. There was a problem that the substrate could not be obtained.

上記の問題に対して、ブランク材となるガラス板を平坦面を有する2枚の板で挟んで加熱することによりガラス板の反りを修正してブランク材を得る方法がある。(例えば、特許文献1、特許文献2参照)
「ガラス光学ハンドブック」 初版 (株)朝倉書店 1999年7月5日発行 379頁 特開平9−102125号公報 特開2002−87835号公報
In order to solve the above problem, there is a method of obtaining a blank material by correcting the warpage of the glass plate by sandwiching and heating a glass plate as a blank material between two flat plates. (For example, see Patent Document 1 and Patent Document 2)
"Glass Optics Handbook" First Edition, Asakura Shoten, issued July 5, 1999, page 379 JP-A-9-102125 JP 2002-87835 A

特許文献1、2で情報記録媒体用ガラス基板を製造する際、研削加工や研磨加工等に提供されるブランク材は結晶化ガラスである。すなわち、プレス成形等によって得た非晶質のガラス板を板で挟んで熱処理することにより、反りを修正すると伴に非晶質ガラスを結晶化ガラスにしている。この結晶化ガラスに研削加工や研磨加工等を施すことによって情報記録媒体用ガラス基板を得ている。 When manufacturing the glass substrate for information recording media in Patent Documents 1 and 2, the blank material provided for grinding or polishing is crystallized glass. In other words, the amorphous glass plate obtained by press molding or the like is sandwiched between the plates and heat-treated to correct the warp, and the amorphous glass is made into crystallized glass. A glass substrate for an information recording medium is obtained by subjecting the crystallized glass to grinding or polishing.

一方、本発明者らが製造の対象とする情報記録媒体用ガラス基板は、結晶化ガラスではなく、非晶質ガラスに化学強化を施したガラス基板である。   On the other hand, the glass substrate for information recording media to be manufactured by the present inventors is not a crystallized glass but a glass substrate obtained by chemically strengthening amorphous glass.

発明者らがプレス成形して得た厚みが1mmのガラス板を例にすると、反りを修正するために板に挟んで熱処理を行って得たブランク材においては、反りが修正されているにもかかわらず残留応力が十分に低減されていない場合があった。この残留応力が低減されていない状態のブランク材を用いて、情報記録媒体用ガラス基板の製造を行うと新たに反り等の変形や破壊が生じてしまい情報記録媒体用ガラス基板を効率よく製造できない場合が生じてしまうという問題があった。発明者らは、この問題が生じる要因は、ブランク材が結晶化ガラスであるか、又は非晶質ガラスであるかの違いによるものと推測している。   Taking a glass plate with a thickness of 1 mm obtained by the inventors as an example, in a blank material obtained by heat treatment sandwiched between plates to correct the warp, the warp is also corrected. Regardless, there were cases where the residual stress was not sufficiently reduced. When a glass substrate for an information recording medium is manufactured using a blank material in which the residual stress is not reduced, the information recording medium glass substrate cannot be efficiently manufactured due to new deformation or destruction such as warpage. There was a problem that a case would occur. The inventors speculate that the cause of this problem is due to the difference between the blank material being crystallized glass or amorphous glass.

本発明は、上記の問題を鑑みてなされたものであって、その目的とするところは、情報記録媒体用ガラス基板の製造工程で残留応力による変形や破壊が生じない情報記録媒体用ガラス基板の製造に提供されるブランク材の残留応力を低減する方法及びブランク材を提供することである。   The present invention has been made in view of the above problems, and the object of the present invention is to provide a glass substrate for an information recording medium that is not deformed or broken by residual stress in the manufacturing process of the glass substrate for an information recording medium. It is to provide a method and a blank material for reducing the residual stress of a blank material provided for manufacturing.

上記の課題は、以下の構成により解決される。   Said subject is solved by the following structures.

1.プレス成形された非晶質ガラスの成形体を、当該成形体の主表面全域に平坦面を対向させた状態の板の間に1枚づつ挟み、接合せずに積み重ねた積層体を結晶化若しくは軟化しない温度範囲で熱処理することにより当該ガラス基板の反りを修正する熱処理工程を有する情報記録媒体用ガラス基板となるブランク材の残留応力を低減する方法において、
前記板をなす材料の熱膨張係数Asと前記成形体をなす材料の熱膨張係数Abとは、以下の条件式を満足することを特徴とするブランク材の残留応力を低減する方法。
0.80 ≦ As/Ab ≦ 1.20
2.前記1に記載のブランク材の残留応力を低減する方法により残留応力が低減されたブランク材であって、前記ブランク材における厚み方向のリターデーションが、50nm/10mm以下であることを特徴とするブランク材。
3.前記熱処理工程において、前記成形体をなすガラス材料のガラス転移点と降伏点との間の温度に前記成形体を加熱することを特徴とする前記1に記載のブランク材の残留応力を低減する方法。
4.プレス成形された非晶質ガラスの成形体を、当該成形体の主表面全域に平坦面を対向させた状態の板の間に1枚づつ挟み、接合せずに積み重ねた積層体を結晶化若しくは軟化しない温度範囲で熱処理することにより当該ガラス基板の反りを修正する熱処理工程を有し、
該熱処理工程で得られたブランク材に加工を施して情報記録媒体用ガラス基板を製造する製造方法において、
前記板をなす材料の熱膨張係数Asと前記成形体をなす材料の熱膨張係数Abとは、以下の条件式を満足することを特徴とする情報記録媒体用ガラス基板の製造方法。
0.80≦As/Ab≦1.20
5.前記成形体および前記板は、ともに円板状であり、前記板の直径が前記成形体の直径の1.01倍から1.2倍であることを特徴とする前記4に記載の情報記録媒体用ガラス基板の製造方法。
6.前記板の厚みは前記成形体の厚みの0.5倍から3.5倍であることを特徴とする前記4または5に記載の情報記録媒体用ガラス基板の製造方法。
7.前記熱処理工程において、前記成形体をなすガラス材料のガラス転移点と降伏点との間の温度に前記成形体を加熱することを特徴とする前記4から6のいずれか1項に記載の情報記録媒体用ガラス基板の製造方法。
1. The molded article of amorphous glass is press-molded, viewed one by one clamping between the plates of the state of being opposed to the flat surface on the main surface the whole area of the molded product, crystallization or soften the laminate stacked without bonding In the method of reducing the residual stress of the blank material to be a glass substrate for information recording medium having a heat treatment step of correcting the warp of the glass substrate by heat treatment in a temperature range that does not,
The method for reducing residual stress of a blank material, wherein the thermal expansion coefficient As of the material forming the plate and the thermal expansion coefficient Ab of the material forming the molded body satisfy the following conditional expression:
0.80 ≦ As / Ab ≦ 1.20
2. A blank material in which residual stress is reduced by the method for reducing residual stress of the blank material according to 1 above , wherein a retardation in the thickness direction of the blank material is 50 nm / 10 mm or less. Wood.
3. 2. The method for reducing residual stress of a blank material according to 1 above, wherein, in the heat treatment step, the molded body is heated to a temperature between a glass transition point and a yield point of the glass material forming the molded body. .
4). Press molded amorphous glass compacts are sandwiched one by one between plates with a flat surface facing the entire main surface of the compact, and the stacked stack without bonding is not crystallized or softened. Having a heat treatment step of correcting warpage of the glass substrate by heat treatment in a temperature range;
In the manufacturing method of manufacturing the glass substrate for information recording medium by processing the blank material obtained in the heat treatment step,
The method for producing a glass substrate for an information recording medium, wherein the thermal expansion coefficient As of the material forming the plate and the thermal expansion coefficient Ab of the material forming the molded body satisfy the following conditional expression.
0.80 ≦ As / Ab ≦ 1.20
5. 5. The information recording medium according to 4, wherein the molded body and the plate are both disk-shaped, and the diameter of the plate is 1.01 to 1.2 times the diameter of the molded body. Method for manufacturing glass substrate.
6). 6. The method for producing a glass substrate for an information recording medium according to 4 or 5, wherein the thickness of the plate is 0.5 to 3.5 times the thickness of the molded body.
7). 7. The information recording according to any one of 4 to 6, wherein, in the heat treatment step, the molded body is heated to a temperature between a glass transition point and a yield point of the glass material forming the molded body. A method for producing a glass substrate for a medium.

本発明によれば、非晶質ガラスの成形体を平坦な板で挟んだ積層体で結晶化若しくは軟化しない温度範囲で熱処理する工程で、成形体を挟む板の熱膨張係数の範囲を、成形体の熱膨張係数の0.8倍以上1.2倍以下に定めている。よって、熱処理する成形体と板との間での熱膨張係数の差による成形体に生じる応力が抑えられ、熱処理後の残留応力を低減することができたブランク材を得ることができる。   According to the present invention, in the step of heat treatment in a temperature range in which a molded body of amorphous glass is sandwiched between flat plates and not crystallized or softened, the range of thermal expansion coefficient of the plates sandwiching the molded body is molded. It is set to 0.8 to 1.2 times the thermal expansion coefficient of the body. Therefore, the stress which arises in the molded object by the difference of the thermal expansion coefficient between the molded object and board which are heat-processed is suppressed, and the blank material which could reduce the residual stress after heat processing can be obtained.

従って、情報記録媒体用ガラス基板の製造工程で残留応力による変形や破壊が生じない情報記録媒体用ガラス基板の製造に提供されるブランク材の残留応力を低減する方法ブランク材及び情報記録媒体用ガラス基板の製造方法を提供することができる。 Accordingly, a method for reducing residual stress of a blank material provided for manufacturing a glass substrate for information recording medium that does not cause deformation or breakage due to residual stress in the manufacturing process of the glass substrate for information recording medium , the blank material, and the information recording medium A method for producing a glass substrate can be provided.

本発明を図示の実施の形態に基づいて説明するが、本発明は該実施の形態に限らない。   Although the present invention will be described based on the illustrated embodiment, the present invention is not limited to the embodiment.

本発明は、研削加工や研磨加工等が施されて最終製品である情報記録媒体用ガラス基板となるブランク材の残留応力を低減する方法に関するものである。   The present invention relates to a method for reducing the residual stress of a blank material that is subjected to grinding or polishing and becomes a glass substrate for an information recording medium, which is a final product.

ブランク材を製造するフローを図4に示す。まず、ブランク材の母材となる溶融状態のガラスを準備し(ガラス溶融工程)、プレス成形法によって目的形状に近い円板形状に成形する(プレス成形工程)。この円板形状にプレス成形した非晶質ガラスの板を以降、成形体と呼ぶ。この成形体を結晶化若しくは軟化しない温度範囲で熱処理(熱処理工程)してブランク材を得る。   A flow for manufacturing the blank is shown in FIG. First, glass in a molten state as a base material for a blank material is prepared (glass melting step), and is formed into a disk shape close to a target shape by a press molding method (press molding step). Hereinafter, the amorphous glass plate press-molded into a disk shape is referred to as a molded body. The blank is obtained by heat-treating this molded body in a temperature range that does not crystallize or soften (heat treatment step).

より具体的には以下のようにする。ガラスを構成するために必要な材料(硝材)を混合し、1500℃程度の高温に加熱して溶融させ溶融ガラスを得る(ガラス溶融工程)。次に、平坦な成形面を有している下型と上型を準備し、下型及び上型を所定の温度に加熱した後、ブランク材を製造するに適量な溶融ガラスを下型に供給する。この後、下型に供給された溶融ガラスを下型との間に挟むように上型で加圧することで溶融ガラスをプレス成形して成形体を得る(プレス成形工程)。   More specifically, as follows. A material (glass material) necessary for constituting glass is mixed, heated to a high temperature of about 1500 ° C. and melted to obtain a molten glass (glass melting step). Next, a lower mold and an upper mold having a flat molding surface are prepared. After the lower mold and the upper mold are heated to a predetermined temperature, an appropriate amount of molten glass for supplying a blank material is supplied to the lower mold. To do. Thereafter, the molten glass supplied to the lower mold is pressed with the upper mold so as to be sandwiched between the lower mold and the molten glass is press-molded to obtain a molded body (press molding process).

成形体の厚みは、情報記録媒体用ガラス基板を得るための研削加工や研磨加工等の手間を抑えるため、例えば2.5インチ径の磁気ディスク用ガラス基板で厚みが0.635mmであれば、0.7mmから1mm程度とするのが好ましい。成形体には、残留応力が有り、また反りが生じている状態であってもよい。成形体の外観の様子を図1に示す。図1において、1は成形体、3は主表面を示している。尚、主表面3は、表裏があるが区別する必要はない。   The thickness of the molded body is, for example, a 2.5 inch diameter magnetic disk glass substrate with a thickness of 0.635 mm in order to reduce the labor of grinding and polishing to obtain a glass substrate for information recording media. It is preferable that the thickness is about 0.7 mm to 1 mm. The molded body has a residual stress and may be warped. The appearance of the molded body is shown in FIG. In FIG. 1, 1 is a molded body and 3 is a main surface. The main surface 3 is front and back, but need not be distinguished.

次に成形体を熱処理することで成形体の残留応力を低減し反りの修正を行う(熱処理工程)。このようにして、情報記録媒体用ガラス基板の製造に対して良好なブランク材を得ることができる。成形体1に熱処理を施して得たブランク材には、この後、その中央に穴を設け、その主表面3に研削・研磨加工を施して主表面を平坦化・平滑化する等で情報記録媒体用ガラス基板とすることができる。情報記録媒体用ガラス基板の様子を図2に示す。24は穴、26は内周端面、28は外周端面、22は研磨加工されて鏡面状態の主表面を示している。さらに、図3に示すように情報記録媒体用ガラス基板20の一方の主表面22に記録層30を直接又は間接的に設けることで、情報記録媒体用ガラス基板20と記録層30を備えた情報記録媒体Dを得ることができる。記録層30は、情報記録媒体用ガラス基板20の両面に設けても良い。 Next, the molded body is heat treated to reduce the residual stress of the molded body and correct the warp (heat treatment step). Thus, a favorable blank material can be obtained for the production of a glass substrate for an information recording medium. The blank material obtained by subjecting the molded body 1 to heat treatment is then provided with a hole in the center, and the main surface 3 is ground and polished so that the main surface is flattened and smoothed. It can be set as the glass substrate for media. The state of the glass substrate for information recording media is shown in FIG. Reference numeral 24 denotes a hole, 26 denotes an inner peripheral end face, 28 denotes an outer peripheral end face, and 22 denotes a main surface in a mirror state after being polished. Further, as shown in FIG. 3, by providing a recording layer 30 directly or indirectly on one main surface 22 of the information recording medium glass substrate 20, information provided with the information recording medium glass substrate 20 and the recording layer 30 is provided. The recording medium D can be obtained. The recording layer 30 may be provided on both surfaces of the information recording medium glass substrate 20.

本発明に係わるブランク材においては、予め最終製品に近似する形状のプレス成形による成形体を用意し、この成形体を熱処理して反りの修正と伴に残留応力の低減を行う。本発明は情報記録媒体用ガラス基板の製造に提供されるブランク材を効率良く生産するためのものなので、複数枚の成形体に対して反りの修正と残留応力の低減のための熱処理を一度に行うのが好ましい。 In the blank material according to the present invention, a molded body by press molding having a shape approximate to the final product is prepared in advance, and the molded body is heat-treated to reduce the residual stress along with the correction of the warp. Since the present invention is for efficiently producing a blank material provided for the production of a glass substrate for an information recording medium, heat treatment for correcting warpage and reducing residual stress is performed on a plurality of molded bodies at once. Preferably it is done.

成形体は、平坦な板であるスペーサの間に1枚づつ挟み込まれ、成形体とスペーサとが交互に積み重なっている状態の積層体を構成し、この積層体を熱処理する。この積層体の様子を図5(a)、積層体の構成を説明するために成形体とスペーサを分離した状態を図5(b)に示す。1は成形体(熱処理後はブランク材となる。)、Sはスペーサを示す。スペーサSの材料は、熱処理で晒される温度において、十分な耐熱性を有し、変形せず、成形体1と融着しないものが好ましい。   The compacts are sandwiched one by one between spacers that are flat plates to form a laminate in which the compacts and the spacers are alternately stacked, and this laminate is heat treated. FIG. 5A shows the state of this laminated body, and FIG. 5B shows a state in which the molded body and the spacer are separated in order to explain the structure of the laminated body. Reference numeral 1 denotes a molded body (a blank material after heat treatment), and S denotes a spacer. The material of the spacer S is preferably a material that has sufficient heat resistance at the temperature exposed by heat treatment, does not deform, and does not fuse with the molded body 1.

図1に示すように成形体1は、プレス成形により概ね円板状となる。図5に示すスペーサSは、成形体1の形状に合わせて円板状であることが好ましく、またスペーサSの直径は、成形体1の直径の1.01倍から1.2倍の範囲が好ましい。スペーサSの直径を上記の範囲とすることで、成形体1の主表面3全域にスペーサSの平坦面S1を対向させることができるため、成形体1の主表面3全域に渉って反りを修正ことができる。またスペーサSが成形体1に対して必要以上に大きくないため、加熱、冷却時の熱効率を良くすることができ、更に積層体Bを加熱処理のために、例えば電気炉内に配置する際に必要な空間を小さくすることができるので好ましい。 As shown in FIG. 1, the molded body 1 is substantially disk-shaped by press molding. The spacer S shown in FIG. 5 is preferably disk-shaped in accordance with the shape of the molded body 1, and the diameter of the spacer S is in the range of 1.01 to 1.2 times the diameter of the molded body 1. preferable. By setting the diameter of the spacer S in the above range, the flat surface S1 of the spacer S can be opposed to the entire main surface 3 of the molded body 1, so that warpage occurs over the entire main surface 3 of the molded body 1. Can be corrected. Further, since the spacer S is not larger than necessary with respect to the molded body 1, it is possible to improve the thermal efficiency during heating and cooling, and further when the laminated body B is placed in an electric furnace for heat treatment, for example. This is preferable because the necessary space can be reduced.

スペーサSは、熱処理する成形体1の数n(nは1以上の整数である)に対して、n+1個を用意する。これにより、スペーサSを一番底に置き、次に成形体1、次にスペーサSと交互に順次積層し、最上部をスペーサSとする積層体Bを形成することができる。従って、積層体Bを構成するすべての成形体1の両主表面3に対してスペーサSの平坦面S1を対向させることができるため、成形体1の主表面3の反りを修正することができる。 As for the spacers S, n + 1 are prepared for the number n (n is an integer of 1 or more) of the molded bodies 1 to be heat-treated. As a result, the spacer S can be placed on the bottom, and then the molded body 1 and then the spacer S can be alternately stacked one after another to form a stacked body B with the top as the spacer S. Accordingly, since the flat surfaces S1 of the spacers S can be opposed to both the main surfaces 3 of all the molded bodies 1 constituting the laminate B, the warpage of the main surface 3 of the molded body 1 can be corrected. .

成形体1を熱処理する際は、積層体Bの加熱を行う空間内の温度分布を均一にすることが好ましい。温度分布が均一な空間にできるだけ多くのスペーサSと成形体1とで構成される積層体Bを置くためには、スペーサSの厚みは薄いほうが好ましい。しかし、スペーサSが薄すぎると、成形体1の反り等の変形を十分に修正することができなくなってしまう。一方で厚すぎると、積層体Bと加熱のための熱源との配置にもよるが、例えば、熱源が積層物の上下とすると積層体Bの中央部分に十分に熱が伝導しなくなり上下の部分と中央部分とで温度勾配が生じてしまって、中央部分で十分な熱処理ができなくなってしまう。   When the molded body 1 is heat-treated, it is preferable to make the temperature distribution in the space where the laminate B is heated uniform. In order to place the laminated body B composed of as many spacers S and molded bodies 1 as possible in a space having a uniform temperature distribution, it is preferable that the spacers S have a small thickness. However, if the spacer S is too thin, deformation such as warpage of the molded body 1 cannot be sufficiently corrected. On the other hand, if it is too thick, depending on the arrangement of the laminate B and the heat source for heating, for example, if the heat source is located above and below the laminate, the heat does not sufficiently conduct to the central portion of the laminate B and the upper and lower portions. As a result, a temperature gradient occurs in the central portion, and sufficient heat treatment cannot be performed in the central portion.

従って、スペーサSの厚みは、成形体1の厚みの0.5倍から3.5倍の範囲とすることが好ましい。スペーサSの厚みを上記の範囲とすることで、積層体Bを構成する成形体1を十分に熱処理することで残留応力を低減することができ、また変形を十分に修正することができる。スペーサSを成す材料は、積層体Bの中央部分に十分に熱を伝導することができるように熱伝導率が大きいことが好ましい。これに関しては、後で説明する。   Therefore, the thickness of the spacer S is preferably in the range of 0.5 to 3.5 times the thickness of the molded body 1. By setting the thickness of the spacer S in the above range, the residual stress can be reduced and the deformation can be corrected sufficiently by sufficiently heat-treating the molded body 1 constituting the laminated body B. It is preferable that the material forming the spacer S has a high thermal conductivity so that heat can be sufficiently conducted to the central portion of the stacked body B. This will be described later.

スペーサSを成す材料は、その熱膨張係数As、成形体1をなすガラス材料の熱膨張係数をAbとすると、以下の条件式(1)を満たしている。
0.80 ≦ As/Ab ≦ 1.20 (1)
積層体Bを構成しているスペーサSと成形体1には反りの修正を行うために、0.005g/mm2から0.5g/mm2の範囲の荷重を加えている。0.005g/mm2未満では反りの修正を十分に行うことができなくなり、0.5g/mm2を超える場合は反りの修正に対して過剰となりスペーサや成形体に割れ等が生じることが懸念される。この荷重により、スペーサSと成形体1の接触面には摩擦が生じ、スペーサSと成形体1は、接触面に平行な方向に対して相対的に動き難くなっている。熱処理が進むと、反りが修正されることで、スペーサSと成形体1との接触面積はより大きくなり摩擦も大きくなる。
The material forming the spacer S satisfies the following conditional expression (1), where Ab is the thermal expansion coefficient As of the glass material forming the molded body 1.
0.80 ≦ As / Ab ≦ 1.20 (1)
To correct the warpage in the molded body 1 and a spacer S constituting the laminate B, and applying a load in the range from 0.005 g / mm 2 of 0.5 g / mm 2. If it is less than 0.005 g / mm 2 , the warp cannot be sufficiently corrected, and if it exceeds 0.5 g / mm 2 , there is a concern that the warp may be excessive and the spacer or the molded body may be cracked. Is done. This load, the contact surface between the spacer S formed body 1 caused friction, the spacer S and the molded body 1 is not easily move relative to a direction parallel to the contact surface. As the heat treatment proceeds, the warpage is corrected, so that the contact area between the spacer S and the molded body 1 becomes larger and the friction becomes larger.

熱処理を行うと、その加熱・冷却過程において、成形体1の外周部分と中心部分とでは温度差が生じる。特に冷却過程においては、スペーサSと成形体1との熱膨張係数の差が大きい場合、両者の収縮量の違いにより成形体1に大きな応力が生じ、熱処理後にこの応力が残ったままとなってしまう。よって、条件式(1)を満足する熱膨張係数を有する材料からなるスペーサSを選択して、成形体1とスペーサSとの熱膨張係数の差を制限することで熱処理後に成形体1に存在する残留応力を抑えることができる。 When heat treatment is performed, a temperature difference occurs between the outer peripheral portion and the central portion of the molded body 1 during the heating / cooling process. In particular, in the cooling process, when the difference in the coefficient of thermal expansion between the spacer S and the molded body 1 is large, a large stress is generated in the molded body 1 due to the difference in shrinkage between the two, and this stress remains after the heat treatment. End up. Therefore, the spacer S made of a material having a thermal expansion coefficient that satisfies the conditional expression (1) is selected, and the difference in the thermal expansion coefficient between the molded body 1 and the spacer S is limited, thereby existing in the molded body 1 after the heat treatment. Residual stress can be suppressed.

成形体1を成すガラス材料がアルミノシリケートガラスの場合、その熱膨張係数は3.4×10-6/Kである。アルミノシリケートガラスに対して、条件式(1)を満足するスペーサの材料としては、例えば窒化珪素(3.4×10-6/K)、炭化珪素(4.0×10-6/K)が挙げられる。また、ガラス材料がMEL3(コニカミノルタオプト(株)製)の場合、その熱膨張係数は7.5×10-6/Kであり、条件式(1)を満足するスペーサの材料としては、アルミナ(熱膨張係数:6〜7×10-6/K)、ステアタイト(熱膨張係数:7.4×10-6/K)が挙げられる。尚、上記で挙げた及び以降で示す熱膨張係数の値は、製造会社等から提示される資料等に記載されている常温〜400℃での値である。 When the glass material forming the formed body 1 is aluminosilicate glass, the thermal expansion coefficient is 3.4 × 10 −6 / K. For the aluminosilicate glass, examples of the spacer material satisfying the conditional expression (1) include silicon nitride (3.4 × 10 −6 / K) and silicon carbide (4.0 × 10 −6 / K). Can be mentioned. When the glass material is MEL3 (manufactured by Konica Minolta Opto Co., Ltd.), the coefficient of thermal expansion is 7.5 × 10 −6 / K, and the spacer material satisfying the conditional expression (1) is alumina. (Thermal expansion coefficient: 6 to 7 × 10 −6 / K) and steatite (thermal expansion coefficient: 7.4 × 10 −6 / K). In addition, the value of the thermal expansion coefficient mentioned above and shown below is a value at normal temperature to 400 ° C. described in a document presented by a manufacturing company or the like.

このように成形体1を熱処理して残留応力を低減したブランク材を情報記録媒体用ガラス基板の製造工程に供給すると、その製造工程において変形や破壊が生じたり、破壊強度の低下がない製品、すなわち情報記録媒体用ガラス基板やこのガラス基板を使用した磁気記録媒体の信頼性が損なわれることがない。このような好ましいブランク材における残留応力は、偏光顕微鏡を用いて複屈折による互いに直交する偏光成分の光路差であるリターデーション(Retardation)を測定することによって評価することができる。この残留応力は、試料であるブランク材の厚みを10mmに換算した場合のリターデーションが50nm/10mm以下であることが好ましい。リターデーションが50nm/10mm以下とすることで、残留応力を十分に低減したブランク材を情報記録媒体用ガラス基板を製造する工程に供給することができ、効率よく情報記録媒体用ガラス基板を製造することができる。   When a blank material whose residual stress is reduced by heat-treating the molded body 1 in this way is supplied to the manufacturing process of the glass substrate for information recording media, a product that does not deform or break in the manufacturing process, or does not have a decrease in breaking strength, That is, the reliability of the glass substrate for information recording media and the magnetic recording media using this glass substrate are not impaired. The residual stress in such a preferable blank material can be evaluated by measuring a retardation, which is an optical path difference between polarized components orthogonal to each other due to birefringence, using a polarizing microscope. This residual stress preferably has a retardation of 50 nm / 10 mm or less when the thickness of the blank material as a sample is converted to 10 mm. By setting the retardation to 50 nm / 10 mm or less, a blank material with sufficiently reduced residual stress can be supplied to the step of manufacturing the glass substrate for information recording medium, and the glass substrate for information recording medium is efficiently manufactured. be able to.

さらにスペーサSは、積層体Bを構成する成形体1に熱を十分に伝えることができるように成形体1よりも大きい熱伝導率を有することが好ましい。成形体1を成すガラスの室温における熱伝導率は、例えば、アルミノシリケートガラスは1.2W/(m・K)、MEL3は1.11W/(m・K)である。上記で挙げたスペーサの材料の熱膨張係数は、窒化珪素(90W/(m・K))、炭化珪素(100〜300W/(m・K))、アルミナ(Al23:15〜40W/(m・K))、ステアタイト(MgO・SiO2:2W/(m・K))である。尚、上記に挙げた熱伝導率は、代表値である。 Furthermore, the spacer S preferably has a thermal conductivity larger than that of the molded body 1 so that heat can be sufficiently transferred to the molded body 1 constituting the laminated body B. The thermal conductivity at room temperature of the glass forming the molded body 1 is, for example, 1.2 W / (m · K) for aluminosilicate glass and 1.11 W / (m · K) for MEL3. The spacer materials mentioned above have a thermal expansion coefficient of silicon nitride (90 W / (m · K)), silicon carbide (100 to 300 W / (m · K)), alumina (Al 2 O 3 : 15 to 40 W /). (M · K)) and steatite (MgO · SiO 2 : 2 W / (m · K)). Note that the thermal conductivity listed above is a representative value.

スペーサSの平坦面S1は、互いに平行で、平坦面S1の平面度は10μm以下、面粗さRmax(最大高さ)が0.01μmから5μmの範囲とするのが好ましい。スペーサの平坦面S1が互いに平行であることで、成形体1とで積み重ねて形成する積層体Bを安定させることができる。また、平面度を10μm以下とすることで、ブランク材1の反りを情報記録媒体用ガラス基板の製造工程で十分に除去できる範囲内に収めることができる。更に、面粗さRmaxを0.01μmから5μmの範囲とすることで熱処理された成形体1がスペーサSに固着することがなく容易に取り出すことができ、また後の研削工程での研削加工を効率よく行うことができる。   The flat surfaces S1 of the spacers S are preferably parallel to each other, the flatness of the flat surface S1 is 10 μm or less, and the surface roughness Rmax (maximum height) is preferably in the range of 0.01 μm to 5 μm. Since the flat surfaces S1 of the spacers are parallel to each other, the stacked body B formed by stacking with the molded body 1 can be stabilized. Further, by setting the flatness to 10 μm or less, it is possible to keep the warp of the blank material 1 within a range that can be sufficiently removed in the manufacturing process of the glass substrate for information recording medium. Furthermore, by setting the surface roughness Rmax in the range of 0.01 μm to 5 μm, the heat-treated molded body 1 can be easily taken out without being fixed to the spacer S, and grinding processing in the subsequent grinding process can be performed. It can be done efficiently.

スペーサSと成形体1で構成する積層体Bの高さは、積層体Bの下段における成形体1への荷重が過多とならず、積層体Bが崩れることなく安定性を維持することができ、加熱炉等の加熱空間の高さによって適宜決めればよい。加熱炉の大きさにもよるが、生産効率や積層体Bの積層状態の安定性、積層体Bにおける熱の均一性の観点から積層段数は10〜30段(スペーサ1枚と成形体1枚の組み合わせを1段と数える)の範囲が好ましい。   The height of the laminated body B composed of the spacer S and the molded body 1 is such that the load on the molded body 1 at the lower stage of the laminated body B is not excessive, and stability can be maintained without the laminated body B collapsing. What is necessary is just to determine suitably by the height of heating spaces, such as a heating furnace. Although it depends on the size of the heating furnace, the number of stacking stages is 10 to 30 (one spacer and one molded body) from the viewpoint of production efficiency, stability of the stacked state of the stacked body B, and heat uniformity in the stacked body B. The range of 1) is preferred.

ブランク材の製造方法では、スペーサSと成形体1とからなる積層体Bを1セットとして熱処理する。複数の積層体Bを順次、所定の温度に設定された加熱炉内をベルトやローラで移動させて連続して熱処理を行うのが製造効率の観点から好ましい。また連続して熱処理するためにベルトやローラ等で積層体を移動させる際、積層体Bの安定性(特に移送中の振動等による崩れ)を向上させるための治具を用いても良い。但し、熱量の大きな過剰な治具を使用すると、治具に熱を奪われてしまい、成形体1に対して本来の熱処理を十分に行うことができなくなってしまう。   In the manufacturing method of a blank material, the laminated body B which consists of the spacer S and the molded object 1 is heat-processed as 1 set. It is preferable from the viewpoint of manufacturing efficiency that the plurality of laminated bodies B are sequentially heat-treated by moving them in a heating furnace set at a predetermined temperature with a belt or a roller. Moreover, when moving a laminated body with a belt, a roller, etc. in order to heat-process continuously, you may use the jig | tool for improving the stability of the laminated body B (especially collapse by the vibration etc. during a transfer). However, if an excessive jig having a large amount of heat is used, heat is taken away by the jig, and the original heat treatment cannot be sufficiently performed on the molded body 1.

熱処理工程で積層体Bを加熱する温度範囲は、結晶化若しくは軟化しない温度範囲とする。更に、積層体Bを構成する成形体1を成すガラス材料のガラス転移点Tgと降伏点Atとの間が好ましく、ガラス転移点Tg+10℃以上+30℃以下がより好ましい。この温度範囲で一定時間保持することで成形体1の反りを修正するために適度に柔らかい状態で且つ成形体の形状の崩れが問題とならない範囲内に抑えることができ、残留応力を効率よく低減することができる。温度の保持状態は、先の温度範囲内で一定としても良いし、時間の経過と伴に上昇又は下降する傾斜があっても良い。また、熱処理時に上記の温度範囲を保持する時間は、残留応力の低減状態や成形体1の反りの修正状態によって適宜決めれば良いが、概ね2時間から3時間程度とすればよい。また、加熱・冷却時の温度勾配は1℃/分以上20℃/分以下の範囲とするのが好ましい。この範囲とすることで、熱衝撃による成形体1やスペーサSに破損が生じることなく、また加熱・冷却を効率良く行うことができ、ブランク材の残留応力の低減を効率良く行うことができる。   The temperature range in which the laminated body B is heated in the heat treatment step is set to a temperature range in which crystallization or softening does not occur. Furthermore, it is preferably between the glass transition point Tg and the yield point At of the glass material forming the molded body 1 constituting the laminate B, and more preferably glass transition point Tg + 10 ° C. + 30 ° C. By maintaining the temperature within this temperature range for a certain period of time, the warping of the molded body 1 can be corrected in a moderately soft state and within a range where the shape of the molded body does not break down, and the residual stress can be efficiently reduced. can do. The temperature holding state may be constant within the previous temperature range, or may have a slope that rises or falls over time. Further, the time for maintaining the above temperature range during the heat treatment may be appropriately determined depending on the state of residual stress reduction or the state of correction of the warp of the molded body 1, but may be about 2 to 3 hours. The temperature gradient during heating / cooling is preferably in the range of 1 ° C./min to 20 ° C./min. By setting it within this range, the molded body 1 and the spacer S due to thermal shock are not damaged, heating and cooling can be performed efficiently, and the residual stress of the blank can be efficiently reduced.

(情報記録媒体用ガラス基板の製造工程)
情報記録媒体用ガラス基板の製造方法について図6のフロー図を用いて説明する。上記で説明した熱処理を経たブランク材において、必要によりコアドリル等で中心部に穴を開ける(コアリング工程)。コアリング工程では、ブランク材を積層した状態で行うのが製造効率の観点から好ましい。上記の熱処理によりブランク材の反りを修正しているため、安定した状態でブランク材を積層し固定することができ、コアドリルによる穴開け加工を効率良く行うことができる。以降、加工が進むブランク材をガラス基板と呼ぶ。
(Manufacturing process of glass substrate for information recording medium)
The manufacturing method of the glass substrate for information recording media is demonstrated using the flowchart of FIG. In the blank material that has undergone the heat treatment described above, if necessary, a hole is made in the center with a core drill or the like (coring step). In the coring step, it is preferable from the viewpoint of manufacturing efficiency that the blank material is laminated. Since the warpage of the blank material is corrected by the above heat treatment, the blank material can be stacked and fixed in a stable state, and the drilling process by the core drill can be performed efficiently. Henceforth, the blank material which a process advances is called a glass substrate.

次に、ガラス基板の両表面が研磨加工され、ガラス基板の全体形状、すなわちガラス基板の平行度、平面度および厚みを予備調整する(第1ラッピング工程)。次に、ガラス基板の外周端面および内周端面を研削し面取りして、ガラス基板の外径寸法および真円度、穴の内径寸法、並びにガラス基板と穴との同心度を微調整した後(内・外径加工工程)、ガラス基板の内周端面を研磨して微細なキズ等を除去する(内周端面加工工程)。   Next, both surfaces of the glass substrate are polished to preliminarily adjust the overall shape of the glass substrate, that is, the parallelism, flatness, and thickness of the glass substrate (first lapping step). Next, after grinding and chamfering the outer peripheral end surface and inner peripheral end surface of the glass substrate, and finely adjusting the outer diameter and roundness of the glass substrate, the inner diameter of the hole, and the concentricity between the glass substrate and the hole ( Inner / outer diameter processing step), and polishing the inner peripheral end surface of the glass substrate to remove fine scratches (inner peripheral end surface processing step).

次に、ガラス基板の両表面を再び研磨加工されて、ガラス基板の平行度、平坦度および厚みを微調整する(第2ラッピング工程)。そして、ガラス基板の外周端面が研磨されて微細なキズ等が除去される(外周端面加工工程)。   Next, both surfaces of the glass substrate are polished again to finely adjust the parallelism, flatness and thickness of the glass substrate (second lapping step). And the outer periphery end surface of a glass substrate is grind | polished and a fine crack etc. are removed (outer periphery end surface processing process).

次に、ガラス基板を洗浄した後、化学強化液にガラス基板を浸漬してガラス基板に化学強化層を形成する(化学強化工程)。化学強化工程における化学強化方法は、従来より公知の化学強化法であれば特に制限されないが、例えば、ガラス転移点Tgの観点からガラス転移点Tgを超えない温度領域でイオン交換を行う低温型化学強化が好ましい。化学強化に用いるアルカリ溶融塩としては、硝酸カリウム、硝酸ナトリウム、あるいは、それらを混合した硝酸塩などが挙げられる。この後、ガラス基板の表面を精密に仕上げる研磨加工を行う(ポリッシング工程)。そして洗浄工程及び検査工程を経て、製品としての図2に示す情報記録媒体用ガラス基板20を得る。   Next, after washing the glass substrate, the glass substrate is immersed in a chemical strengthening solution to form a chemically strengthened layer on the glass substrate (chemical strengthening step). The chemical strengthening method in the chemical strengthening step is not particularly limited as long as it is a conventionally known chemical strengthening method. For example, low-temperature type chemistry in which ion exchange is performed in a temperature range not exceeding the glass transition point Tg from the viewpoint of the glass transition point Tg. Strengthening is preferred. Examples of the alkali molten salt used for chemical strengthening include potassium nitrate, sodium nitrate, and nitrates obtained by mixing them. Thereafter, polishing is performed to precisely finish the surface of the glass substrate (polishing process). And the glass substrate 20 for information recording media shown in FIG. 2 as a product is obtained through a washing | cleaning process and an inspection process.

上記の情報記録媒体用ガラス基板の製造工程において、2.5インチ径の情報記録媒体用ガラス基板を得るために、ブランク材の厚みを1mmとすると、第2ラッピング工程終了時で約0.7mm程度、ポリッシング工程終了時で所定の0.635mmとなる。熱処理して残留応力を低減しているブランク材をこの製造工程に投入することで、ラッピング工程やポリッシング工程においてガラス基板に反り等の変形が生じることなく、また、化学強化工程における加熱においても破損することがない。よって、効率よく良好な情報記録媒体用ガラス基板を製造することができる。   In the manufacturing process of the information recording medium glass substrate, in order to obtain a 2.5 inch diameter information recording medium glass substrate, assuming that the thickness of the blank is 1 mm, about 0.7 mm at the end of the second lapping process. It becomes a predetermined 0.635 mm at the end of the polishing process. By introducing a blank material that has undergone a heat treatment to reduce residual stress into this manufacturing process, the glass substrate will not be warped or deformed in the lapping process or polishing process, and will also be damaged during heating in the chemical strengthening process. There is nothing to do. Therefore, a good glass substrate for information recording media can be produced efficiently.

(実施例1)
溶融したMEL3をプレス成形にて円形状の成形体を準備した。成形体は、直径が約67mm、厚み約0.9mmとした。
Example 1
A circular shaped body was prepared by press molding the melted MEL3. The molded body had a diameter of about 67 mm and a thickness of about 0.9 mm.

MEL3の熱膨張係数は7.5×10-6/K、熱伝導率は1.1W/(m・K)であった。 The thermal expansion coefficient of MEL3 was 7.5 × 10 −6 / K, and the thermal conductivity was 1.1 W / (m · K).

上記の成形体を熱処理するために挟むスペーサを用意した。スペーサの材料は、アルミナAP960(熱膨張係数:7.3×10-6/K、熱伝導係数:25W/(m・K))を使用した。スペーサの大きさは、直径70mm、厚み1mmとした。スペーサの平坦度は10μm以下で、面粗さRmax(最大高さ)は、0.5μmから1.2μmの範囲であった。尚、平坦度、面粗さの測定は、サーフコーダSEF3500((株)小坂研究所製)を使用した。 Spacers were prepared for sandwiching the molded body to heat-treat. As the spacer material, alumina AP960 (thermal expansion coefficient: 7.3 × 10 −6 / K, thermal conductivity coefficient: 25 W / (m · K)) was used. The size of the spacer was 70 mm in diameter and 1 mm in thickness. The flatness of the spacer was 10 μm or less, and the surface roughness Rmax (maximum height) was in the range of 0.5 μm to 1.2 μm. In addition, the surf coder SEF3500 (made by Kosaka Laboratory) was used for the measurement of flatness and surface roughness.

上記で準備した成形体とスペーサとを図5で示すように最下部にスペーサS、次に成形体1とし、これを順次20回繰り返してスペーサ1枚と成形体1枚の組み合わせを1段として20段とする積層体Bを6セット用意した。尚、最上部にはスペーサSを置いた。また、成形体1に加わる荷重が0.005g/mm2から0.5g/mm2の範囲となるように調整した。 As shown in FIG. 5, the molded body and the spacer prepared above are the spacer S at the bottom, and then the molded body 1, and this is repeated 20 times in order to make the combination of one spacer and one molded body one stage. Six sets of 20 layers of laminates B were prepared. A spacer S was placed on the top. Further, the load applied to the molded body 1 was adjusted to the range of 0.005 g / mm 2 of 0.5 g / mm 2.

この後、昇温速度を5℃/分でMEL3のガラス転移点Tgである500℃まで昇温し、その後500℃を3時間保持した後、5℃/分で冷却した。   Then, it heated up to 500 degreeC which is the glass transition point Tg of MEL3 at a temperature increase rate of 5 degree-C / min, and then hold | maintained 500 degreeC for 3 hours, Then, it cooled at 5 degree-C / min.

室温まで冷却した後、積層体Bからブランク材1を取りだした。この時、スペーサSとブランク材1とが固着していることはなく、容易にブランク材1を取り出すことができた。   After cooling to room temperature, the blank material 1 was taken out from the laminated body B. At this time, the spacer S and the blank material 1 were not fixed, and the blank material 1 could be easily taken out.

偏光顕微鏡を用いてブランク材のリターデーションを測定した結果、全てのブランク材が23nm/10mmから32nm/10mmの範囲であった。また、成形体の平坦度(反り)が20μmを超えていたが、熱処理後のブランク材では10μm以下であった。従って残留応力が十分に低減され、反りが修正されたブランク材を得ることができることが確認できた。   As a result of measuring the retardation of the blank using a polarizing microscope, all the blanks were in the range of 23 nm / 10 mm to 32 nm / 10 mm. Moreover, although the flatness (warpage) of the molded body exceeded 20 μm, it was 10 μm or less in the blank material after the heat treatment. Therefore, it was confirmed that a blank material in which the residual stress was sufficiently reduced and the warpage was corrected could be obtained.

(実施例2)
スペーサの材料に、アルミナAP90T(熱膨張係数:6.2×10-6/K、熱伝導率:15W/(m・K))を使用した以外は実施例1と同じとしてMEL3からなる成形体を熱処理した。
(Example 2)
A molded body made of MEL3 as in Example 1 except that alumina AP90T (thermal expansion coefficient: 6.2 × 10 −6 / K, thermal conductivity: 15 W / (m · K)) was used as the spacer material. Was heat treated.

偏光顕微鏡を用いてブランク材のリターデーションを測定した結果、全てのブランク材が31nm/10mmから44nm/10mmの範囲であった。また、成形体の平坦度(反り)が20μmを超えていたが、熱処理後のブランク材では10μm以下であった。従って残留応力が十分に低減され、反りが修正されたブランク材を得ることができることが確認できた。   As a result of measuring the retardation of the blank using a polarizing microscope, all the blanks were in the range of 31 nm / 10 mm to 44 nm / 10 mm. Moreover, although the flatness (warpage) of the molded body exceeded 20 μm, it was 10 μm or less in the blank material after the heat treatment. Therefore, it was confirmed that a blank material in which the residual stress was sufficiently reduced and the warpage was corrected could be obtained.

(比較例1)
スペーサの材料に、窒化アルミ(熱膨張係数:4.5×10-6/K、熱伝導率:170W/(m・K))を使用した以外は実施例1と同じとしてMEL3からなる成形体を熱処理した。
(Comparative Example 1)
A molded body made of MEL3 as in Example 1 except that aluminum nitride (thermal expansion coefficient: 4.5 × 10 −6 / K, thermal conductivity: 170 W / (m · K)) is used as the spacer material. Was heat treated.

室温まで冷却した後、偏光顕微鏡を用いてリターデーションを測定した結果、全てのブランク材が59nm/10mmから72nm/10mmの範囲であり、50nm/10mm以下とならなかった。熱処理前の平坦度(反り)は20μmを超えていたが、熱処理後は10μm以下であった。従って反りが修正されているが残留応力を十分に低減することができなかった。   After cooling to room temperature, the retardation was measured using a polarizing microscope. As a result, all blank materials were in the range of 59 nm / 10 mm to 72 nm / 10 mm, and did not become 50 nm / 10 mm or less. The flatness (warpage) before heat treatment exceeded 20 μm, but after heat treatment was 10 μm or less. Therefore, although the warp has been corrected, the residual stress could not be reduced sufficiently.

(比較例2)
スペーサの材料に、フォルステライト(熱膨張係数:9.5×10-6/K、熱伝導率:3W/(m・K))を使用した以外は実施例1と同じとしてMEL3からなる成形体を熱処理した。
(Comparative Example 2)
A molded body made of MEL3 as in Example 1 except that forsterite (thermal expansion coefficient: 9.5 × 10 −6 / K, thermal conductivity: 3 W / (m · K)) is used as the spacer material. Was heat treated.

室温まで冷却した後、偏光顕微鏡を用いてリターデーションを測定した結果、全てのブランク材が56nm/10mmから67nm/10mmの範囲であり、50nm/10mm以下とならなかった。熱処理前の平坦度(反り)は20μmを超えていたが、熱処理後は10μm以下であった。従って反りが修正されているが残留応力を少なくすることができなかった。   After cooling to room temperature, the retardation was measured using a polarizing microscope. As a result, all blank materials were in the range of 56 nm / 10 mm to 67 nm / 10 mm, and did not become 50 nm / 10 mm or less. The flatness (warpage) before heat treatment exceeded 20 μm, but after heat treatment was 10 μm or less. Accordingly, although the warpage is corrected, the residual stress cannot be reduced.

(実施例3)
ガラス材料にME−X02(コニカミノルタオプト(株)製 熱膨張係数:6.1×10-6/K、熱伝導率:1.14W/(m・K))、スペーサの材料に、アルミナAP960(熱膨張係数:7.3×10-6/K、熱伝導係数:25W/(m・K))を使用した以外は実施例1と同じとしてME−X02からなる成形体を熱処理した。
(Example 3)
ME-X02 (manufactured by Konica Minolta Opto Co., Ltd., thermal expansion coefficient: 6.1 × 10 −6 / K, thermal conductivity: 1.14 W / (m · K)) as a glass material, and alumina AP960 as a spacer material Except for using (thermal expansion coefficient: 7.3 × 10 −6 / K, thermal conductivity coefficient: 25 W / (m · K)), the molded body made of ME-X02 was heat-treated in the same manner as in Example 1.

室温まで冷却した後、偏光顕微鏡を用いてリターデーションを測定した結果、全てのブランク材が37nm/10mmから43nm/10mmの範囲であり、50nm/10mm以下となった。熱処理前の平坦度(反り)は20μmを超えていたが、熱処理後は10μm以下であった。従って残留応力が十分に低減され、反りが修正されたブランク材を得ることができることが確認できた。   After cooling to room temperature, the retardation was measured using a polarizing microscope. As a result, all blank materials were in the range of 37 nm / 10 mm to 43 nm / 10 mm, and became 50 nm / 10 mm or less. The flatness (warpage) before heat treatment exceeded 20 μm, but after heat treatment was 10 μm or less. Therefore, it was confirmed that a blank material in which the residual stress was sufficiently reduced and the warpage was corrected could be obtained.

(比較例3)
ガラス材料にME−X02(コニカミノルタオプト(株)製 熱膨張係数:6.1×10-6/K、熱伝導率:1.14W/(m・K))、スペーサの材料に、窒化アルミ(熱膨張係数:4.5×10-6/K、熱伝導率:170W/(m・K))を使用した以外は実施例1と同じとしてME−X02からなる成形体を熱処理した。
(Comparative Example 3)
ME-X02 (manufactured by Konica Minolta Opto Co., Ltd., thermal expansion coefficient: 6.1 × 10 −6 / K, thermal conductivity: 1.14 W / (m · K)) for glass material, aluminum nitride for spacer material A molded body made of ME-X02 was heat-treated in the same manner as in Example 1 except that (thermal expansion coefficient: 4.5 × 10 −6 / K, thermal conductivity: 170 W / (m · K)) was used.

室温まで冷却した後、偏光顕微鏡を用いてリターデーションを測定した結果、全てのブランク材が55nm/10mmから59nm/10mmの範囲であり、50nm/10mm以下とならなかった。熱処理前の平坦度(反り)は20μmを超えていたが、熱処理後は10μm以下であった。従って反りが修正されているが残留応力を少なくすることができなかった。   After cooling to room temperature, the retardation was measured using a polarizing microscope. As a result, all blank materials were in the range of 55 nm / 10 mm to 59 nm / 10 mm, and did not become 50 nm / 10 mm or less. The flatness (warpage) before heat treatment exceeded 20 μm, but after heat treatment was 10 μm or less. Accordingly, although the warpage is corrected, the residual stress cannot be reduced.

実施例1から3、比較例1から3の成形体材料、スペーサ材料、条件式(1)の値、リターデーションをまとめて表1に示す。   Table 1 shows the molded body materials, spacer materials, values of conditional expression (1), and retardations of Examples 1 to 3 and Comparative Examples 1 to 3.

Figure 0004556962
Figure 0004556962

成形体を示す図である。It is a figure which shows a molded object. 情報記録媒体用ガラスを示す図である。It is a figure which shows the glass for information recording media. 情報記録媒体用ガラス基板の主表面の上に磁性層を備えている磁気記録媒体の一例を示す図である。It is a figure which shows an example of the magnetic recording medium provided with the magnetic layer on the main surface of the glass substrate for information recording media. ブランク材の製造工程の例をフロー図で示す図である。It is a figure which shows the example of the manufacturing process of a blank material with a flowchart. 積層体を説明する図である。It is a figure explaining a laminated body. ブランク材を用いた記録媒体用ガラス基板の製造工程の例をフロー図で示す図である。It is a figure which shows the example of the manufacturing process of the glass substrate for recording media using a blank material with a flowchart.

符号の説明Explanation of symbols

1 成形体
3、22 主表面
20 情報記録媒体用ガラス基板
30 記録層
B 積層体
D 磁気記録媒体
S スペーサ
S1 平坦面
DESCRIPTION OF SYMBOLS 1 Molded body 3, 22 Main surface 20 Glass substrate for information recording medium 30 Recording layer B Laminated body D Magnetic recording medium S Spacer S1 Flat surface

Claims (7)

プレス成形された非晶質ガラスの成形体を、当該成形体の主表面全域に平坦面を対向させた状態の板の間に1枚づつ挟み、接合せずに積み重ねた積層体を結晶化若しくは軟化しない温度範囲で熱処理することにより当該ガラス基板の反りを修正する熱処理工程を有する情報記録媒体用ガラス基板となるブランク材の残留応力を低減する方法において、
前記板をなす材料の熱膨張係数Asと前記成形体をなす材料の熱膨張係数Abとは、以下の条件式を満足することを特徴とするブランク材の残留応力を低減する方法。
0.80 ≦ As/Ab ≦ 1.20
The molded article of amorphous glass is press-molded, viewed one by one clamping between the plates of the state of being opposed to the flat surface on the main surface the whole area of the molded product, crystallization or soften the laminate stacked without bonding In the method of reducing the residual stress of the blank material to be a glass substrate for information recording medium having a heat treatment step of correcting the warp of the glass substrate by heat treatment in a temperature range that does not,
The method for reducing residual stress of a blank material, wherein the thermal expansion coefficient As of the material forming the plate and the thermal expansion coefficient Ab of the material forming the molded body satisfy the following conditional expression:
0.80 ≦ As / Ab ≦ 1.20
請求項1に記載のブランク材の残留応力を低減する方法により残留応力が低減されたブランク材であって、前記ブランク材における厚み方向のリターデーションが、50nm/10mm以下であることを特徴とするブランク材。   It is the blank material by which the residual stress was reduced by the method of reducing the residual stress of the blank material of Claim 1, Comprising: The retardation of the thickness direction in the said blank material is 50 nm / 10mm or less, It is characterized by the above-mentioned. Blank material. 前記熱処理工程において、前記成形体をなすガラス材料のガラス転移点と降伏点との間の温度に前記成形体を加熱することを特徴とする請求項1に記載のブランク材の残留応力を低減する方法。2. The residual stress of the blank material according to claim 1, wherein in the heat treatment step, the formed body is heated to a temperature between a glass transition point and a yield point of the glass material forming the formed body. Method. プレス成形された非晶質ガラスの成形体を、当該成形体の主表面全域に平坦面を対向させた状態の板の間に1枚づつ挟み、接合せずに積み重ねた積層体を結晶化若しくは軟化しない温度範囲で熱処理することにより当該ガラス基板の反りを修正する熱処理工程を有し、Press molded amorphous glass compacts are sandwiched one by one between plates with a flat surface facing the entire main surface of the compact, and the stacked stack without bonding is not crystallized or softened. Having a heat treatment step of correcting warpage of the glass substrate by heat treatment in a temperature range;
該熱処理工程で得られたブランク材に加工を施して情報記録媒体用ガラス基板を製造する製造方法において、  In the manufacturing method of manufacturing the glass substrate for information recording medium by processing the blank material obtained in the heat treatment step,
前記板をなす材料の熱膨張係数Asと前記成形体をなす材料の熱膨張係数Abとは、以下の条件式を満足することを特徴とする情報記録媒体用ガラス基板の製造方法。  The method for producing a glass substrate for an information recording medium, wherein the thermal expansion coefficient As of the material forming the plate and the thermal expansion coefficient Ab of the material forming the molded body satisfy the following conditional expression.
0.80≦As/Ab≦1.20    0.80 ≦ As / Ab ≦ 1.20
前記成形体および前記板は、ともに円板状であり、前記板の直径が前記成形体の直径の1.01倍から1.2倍であることを特徴とする請求項4に記載の情報記録媒体用ガラス基板の製造方法。5. The information recording according to claim 4, wherein the molded body and the plate are both disk-shaped, and the diameter of the plate is 1.01 to 1.2 times the diameter of the molded body. A method for producing a glass substrate for a medium. 前記板の厚みは前記成形体の厚みの0.5倍から3.5倍であることを特徴とする請求項4または5に記載の情報記録媒体用ガラス基板の製造方法。6. The method for producing a glass substrate for an information recording medium according to claim 4, wherein the thickness of the plate is 0.5 to 3.5 times the thickness of the molded body. 前記熱処理工程において、前記成形体をなすガラス材料のガラス転移点と降伏点との間の温度に前記成形体を加熱することを特徴とする請求項4から6のいずれか1項に記載の情報記録媒体用ガラス基板の製造方法。The information according to any one of claims 4 to 6, wherein in the heat treatment step, the formed body is heated to a temperature between a glass transition point and a yield point of the glass material forming the formed body. A method for producing a glass substrate for a recording medium.
JP2007064728A 2007-03-14 2007-03-14 Method for reducing residual stress of blank material, method for manufacturing blank material and glass substrate for information recording medium Active JP4556962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007064728A JP4556962B2 (en) 2007-03-14 2007-03-14 Method for reducing residual stress of blank material, method for manufacturing blank material and glass substrate for information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007064728A JP4556962B2 (en) 2007-03-14 2007-03-14 Method for reducing residual stress of blank material, method for manufacturing blank material and glass substrate for information recording medium

Publications (2)

Publication Number Publication Date
JP2008226377A JP2008226377A (en) 2008-09-25
JP4556962B2 true JP4556962B2 (en) 2010-10-06

Family

ID=39844802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007064728A Active JP4556962B2 (en) 2007-03-14 2007-03-14 Method for reducing residual stress of blank material, method for manufacturing blank material and glass substrate for information recording medium

Country Status (1)

Country Link
JP (1) JP4556962B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261203B2 (en) * 2009-01-09 2013-08-14 株式会社神戸製鋼所 Aluminum alloy spacer and manufacturing method thereof
JP5267436B2 (en) * 2009-11-20 2013-08-21 旭硝子株式会社 Glass substrate for information recording medium and magnetic disk
US8826693B2 (en) * 2010-08-30 2014-09-09 Corning Incorporated Apparatus and method for heat treating a glass substrate
WO2012160818A1 (en) * 2011-05-23 2012-11-29 Hoya株式会社 Method of manufacturing glass substrate for magnetic disk
JPWO2013001722A1 (en) * 2011-06-30 2015-02-23 Hoya株式会社 Manufacturing method of glass substrate for HDD
JPWO2013001723A1 (en) * 2011-06-30 2015-02-23 Hoya株式会社 Manufacturing method of glass substrate for HDD
WO2013046584A1 (en) * 2011-09-26 2013-04-04 コニカミノルタアドバンストレイヤー株式会社 Hard disk drive (hdd) glass blank, method for manufacturing hdd glass blanks, hdd glass substrate, and method for manufacturing hdd glass substrates
WO2013046585A1 (en) * 2011-09-28 2013-04-04 コニカミノルタアドバンストレイヤー株式会社 Method of manufacturing glass substrates for hard disk drives
WO2013145503A1 (en) * 2012-03-29 2013-10-03 コニカミノルタ株式会社 Method for producing hdd glass substrate
JP6238282B2 (en) * 2013-09-29 2017-11-29 Hoya株式会社 Method for manufacturing glass blank for magnetic disk and method for manufacturing glass substrate for magnetic disk
JP6379678B2 (en) * 2014-05-29 2018-08-29 日本電気硝子株式会社 Manufacturing method of glass substrate
US10483101B2 (en) * 2016-06-30 2019-11-19 Corning Incorporated Glass-based article with engineered stress distribution and method of making same
JP6860831B2 (en) * 2016-07-04 2021-04-21 日本電気硝子株式会社 Disc-shaped glass and its manufacturing method
JP2019001698A (en) * 2017-06-13 2019-01-10 日本電気硝子株式会社 Method for manufacturing support glass substrate
CN111886649B (en) * 2018-03-30 2022-08-05 Hoya株式会社 Plate material for annealing treatment, method for producing plate material for annealing treatment, and method for producing substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03260910A (en) * 1990-03-09 1991-11-20 Fujitsu Ltd Glass substrate medium type magnetic disk device
JPH07220923A (en) * 1993-12-06 1995-08-18 Matsushita Electric Ind Co Ltd Compound magnetic substrate and its manufacture
JP2003063831A (en) * 2001-08-29 2003-03-05 Minolta Co Ltd Glass substrate for hard disk and method for manufacturing the same
JP2005032582A (en) * 2003-07-07 2005-02-03 Sony Corp Display device and its manufacturing method
WO2005093720A1 (en) * 2004-03-25 2005-10-06 Hoya Corporation Glass substrate for magnetic disk

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03260910A (en) * 1990-03-09 1991-11-20 Fujitsu Ltd Glass substrate medium type magnetic disk device
JPH07220923A (en) * 1993-12-06 1995-08-18 Matsushita Electric Ind Co Ltd Compound magnetic substrate and its manufacture
JP2003063831A (en) * 2001-08-29 2003-03-05 Minolta Co Ltd Glass substrate for hard disk and method for manufacturing the same
JP2005032582A (en) * 2003-07-07 2005-02-03 Sony Corp Display device and its manufacturing method
WO2005093720A1 (en) * 2004-03-25 2005-10-06 Hoya Corporation Glass substrate for magnetic disk

Also Published As

Publication number Publication date
JP2008226377A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP4556962B2 (en) Method for reducing residual stress of blank material, method for manufacturing blank material and glass substrate for information recording medium
JP4380379B2 (en) Manufacturing method of glass substrate for information recording medium
EP1577275B1 (en) Crystallized glass for information recording medium, crystallized glass substrate, and information recording medium using the crystallized glass
US20040194508A1 (en) Press molding method for glass and manufacturing method for glass substrate using this method
JP6238282B2 (en) Method for manufacturing glass blank for magnetic disk and method for manufacturing glass substrate for magnetic disk
US9242888B2 (en) Manufacturing method of glass blank for magnetic disk, manufacturing method of glass substrate for magnetic disk, glass blank for magnetic disk, glass substrate for magnetic disk, and magnetic disk
US5788731A (en) Process for manufacturing a crystallized glass substrate for magnetic discs
JP2002338283A (en) Method for manufacturing glass substrate and glass substrate manufactured by the manufacturing method
JP2003054965A (en) Method for press-molding glass and method for manufacturing glass substrate for hard disk using the same method
WO2013046585A1 (en) Method of manufacturing glass substrates for hard disk drives
JP3148641B2 (en) Blank material of crystallized glass substrate for magnetic disk and method of manufacturing the same
CN109153594B (en) Disk-shaped glass and method for producing same
JP2014235760A (en) Manufacturing method of glass substrate
JP4134925B2 (en) Manufacturing method of glass substrate for information recording medium
JP6198780B2 (en) Glass blank for magnetic disk and method for producing glass blank for magnetic disk
JP2015011738A (en) Manufacturing method for glass substrates for magnetic disk use
JP5024487B1 (en) Manufacturing method of glass substrate for magnetic disk
JP2002308631A (en) Method for manufacturing glass molding, method for manufacturing substrate and method for manufacturing information recording medium
JP4227382B2 (en) Glass blank, information recording medium substrate, and information recording medium manufacturing method
JP4186443B2 (en) Manufacturing method of glass substrate for hard disk with central hole
JP7439654B2 (en) Jig for holding plate-shaped member, heat treatment method for plate-shaped member, plate-shaped article and manufacturing method thereof
JP2015069670A (en) Production method of magnetic disk glass substrate
WO2023282262A1 (en) Glass plate, disk-shaped glass, magnetic disk glass substrate, and method for manufacturing glass plate
JP6274802B2 (en) Method for manufacturing glass blank for magnetic disk, method for manufacturing glass substrate for magnetic disk, and glass blank mold
WO2022114060A1 (en) Method for manufacturing glass plate, method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and annular glass plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Ref document number: 4556962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250