JP4555946B2 - Insulating material with copper foil and multilayer printed wiring board using the same - Google Patents

Insulating material with copper foil and multilayer printed wiring board using the same Download PDF

Info

Publication number
JP4555946B2
JP4555946B2 JP2007033874A JP2007033874A JP4555946B2 JP 4555946 B2 JP4555946 B2 JP 4555946B2 JP 2007033874 A JP2007033874 A JP 2007033874A JP 2007033874 A JP2007033874 A JP 2007033874A JP 4555946 B2 JP4555946 B2 JP 4555946B2
Authority
JP
Japan
Prior art keywords
resin
copper foil
insulating material
insulating
whiskers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007033874A
Other languages
Japanese (ja)
Other versions
JP2007180571A (en
Inventor
恭 神代
和仁 小林
敦之 高橋
高示 森田
貴弘 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007033874A priority Critical patent/JP4555946B2/en
Publication of JP2007180571A publication Critical patent/JP2007180571A/en
Application granted granted Critical
Publication of JP4555946B2 publication Critical patent/JP4555946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、電子部品を実装するプリント配線板の薄型化及び高密度化への要求に対応できるプリント配線板用の絶縁材料に適用する銅箔付き絶縁材料及びこれを用いた多層プリント配線板に関するものである。   The present invention relates to an insulating material with copper foil applied to an insulating material for a printed wiring board that can meet the demands for thinning and high density of a printed wiring board on which electronic components are mounted, and a multilayer printed wiring board using the same. Is.

プリント配線板は、通常、銅箔とプリプレグを積層、熱圧成形して得た銅張積層板に回路加工して得られる。また、多層プリント配線板は、これらのプリント配線板同士をプリプレグを介して熱圧成形するか又は、これらのプリント配線板と銅箔とをプリプレグを介して熱圧成形して一体化して得た内層回路入り多層銅張積層板の表面に回路を形成して得られる。   The printed wiring board is usually obtained by processing a circuit on a copper-clad laminate obtained by laminating a copper foil and a prepreg and hot pressing. Moreover, the multilayer printed wiring board was obtained by hot-pressing these printed wiring boards through prepregs, or by integrating these printed wiring boards and copper foil by hot-pressing through prepregs. It is obtained by forming a circuit on the surface of a multilayer copper clad laminate containing an inner layer circuit.

プリント配線板用のプリプレグには、従来、ガラスクロスに樹脂を含浸、乾燥し、樹脂を半硬化状態にしたガラスクロスプリプレグが使用され、多層プリント配線板には、該ガラスクロスプリプレグの他にガラスクロスを用いないプリプレグであるフィルム形成能を有する樹脂を半硬化状態にした接着フィルム(特許文献1及び特許文献2参照)や該接着フィルムを銅箔の片面に形成した銅箔付き接着フィルム(特許文献3参照)が使用されている。なお、ここでいうフィルム形成能とは、プリプレグの搬送、切断及び積層等の工程中において、樹脂の割れや欠落等のトラブルを生じにくく、その後の熱圧成形時に層間絶縁層が内層回路存在部等で異常に薄くなったり、層間絶縁抵抗低下やショートというトラブルを生じにくい性能を意味する。   Conventionally, glass cloth prepregs in which a glass cloth is impregnated with resin and dried to make the resin semi-cured are used as prepregs for printed wiring boards. For multilayer printed wiring boards, glass cloth prepregs are used in addition to glass cloth prepregs. An adhesive film (see Patent Document 1 and Patent Document 2) in which a resin having film-forming ability, which is a prepreg not using cloth, is in a semi-cured state, and an adhesive film with a copper foil formed on one surface of the copper foil (Patent) Reference 3) is used. In addition, the film forming ability here is less likely to cause trouble such as cracking or missing of the resin during the process of transporting, cutting, and laminating the prepreg, and the interlayer insulating layer is the inner layer circuit existing portion at the subsequent hot press molding. It means the performance that is less likely to cause trouble such as abnormally thinning due to, for example, a decrease in interlayer insulation resistance or a short circuit.

特開平6−200216号公報Japanese Patent Laid-Open No. 6-200216 特開平6−242465号公報JP-A-6-242465 特開平6−196862号公報JP-A-6-196862

近年、電子機器の小型軽量化、高性能化、低コスト化が進行し、プリント配線板には高密度化、薄型化、高信頼性化、低コスト化が要求されている。高密度化のためには、微細配線が必要であり、そのためには表面の平坦性が良好でかつ、寸法安定性が良好でなくてはならない。   In recent years, electronic devices have been reduced in size, weight, performance, and cost, and printed wiring boards are required to have higher density, thinner thickness, higher reliability, and lower cost. In order to increase the density, fine wiring is necessary. For this purpose, the surface must have good flatness and good dimensional stability.

さらに微細なスルーホールやインタースティシャルバイアホール(IVH)が必要であり、ドリル穴加工性、レーザ穴加工性が良好であることが要求されている。表面の平坦性を良好にするためには、多層化積層成形時の樹脂の流動性を高くする必要があり、これにはエポキシ樹脂等の熱硬化性樹脂の適用が望ましい。   Furthermore, fine through holes and interstitial via holes (IVH) are required, and drill hole workability and laser hole workability are required to be good. In order to improve the flatness of the surface, it is necessary to increase the fluidity of the resin at the time of multilayer lamination molding, and it is desirable to apply a thermosetting resin such as an epoxy resin.

ところが、エポキシ樹脂は、成形前の段階では分子量が低いために高い流動性を示すが脆いため、シート状の絶縁材料を形成する性質を有していない。そこで、従来はガラスクロス等の補強基材に絶縁樹脂を含浸させたプリプレグを予め作製し、これを絶縁層に用いてきた。   However, the epoxy resin exhibits high fluidity because of its low molecular weight in the stage before molding, but is brittle, and therefore does not have the property of forming a sheet-like insulating material. Therefore, conventionally, a prepreg obtained by impregnating a reinforcing substrate such as a glass cloth with an insulating resin has been prepared in advance and used for the insulating layer.

しかし、従来のプリプレグでは、・表面平坦性に劣る、・薄型のプリプレグの作製が困難である、・異なる回路層間の導通をとるための微細なスルーホールやインタースティシャルバイアホール(IVH)の作製が困難である等の理由により、上記の要求への対応が困難になってきた。現状のガラスクロス基材のプリプレグを使用しては、高まる多層プリント配線板の高密度化、薄型化の要求に対応出来ない状況にある。   However, with conventional prepregs, it is inferior in surface flatness, it is difficult to produce thin prepregs, and minute through holes and interstitial via holes (IVH) are formed for electrical connection between different circuit layers. It has become difficult to respond to the above-mentioned demands for reasons such as being difficult. The current glass cloth base prepreg cannot meet the increasing demand for higher density and thinner multilayer printed wiring boards.

一方、ガラスクロスのないプリプレグである接着フィルムや銅箔付き接着フィルムは、厚さをより薄くでき、小径ドリル加工性、レーザ穴加工性及び表面平坦性に優れる。しかしながら、これらのプリプレグで作製した多層プリント配線板は、外層絶縁層にガラスクロス基材がないため、剛性が極めて低い。この剛性の低さは、高温下において極めて顕著であり、部品実装工程においてたわみが生じやすく、ワイヤーボンディング性も極めて悪い。また、外層絶縁層にガラスクロス基材がなく熱膨張率が大きいため、実装部品との熱膨張の差が大きく、実装部品との接続信頼性が低く、加熱冷却の熱膨張収縮によるはんだ接続部にクラックや破断が起こり易い等、多くの問題を抱える。したがって、現状のガラスクロスのないプリプレグである接着フィルムや銅箔付き接着フィルムを使用しては、高まる多層プリント配線板の高密度化、薄型化の要求に対応出来ない状況にある。   On the other hand, the adhesive film which is a prepreg without a glass cloth and the adhesive film with copper foil can be made thinner, and is excellent in small diameter drilling workability, laser hole workability and surface flatness. However, since the multilayer printed wiring board produced with these prepregs has no glass cloth substrate in the outer insulating layer, the rigidity is extremely low. This low rigidity is extremely remarkable at high temperatures, and is likely to bend in the component mounting process, and the wire bonding property is extremely poor. In addition, since the outer insulating layer has no glass cloth base and has a large coefficient of thermal expansion, the difference in thermal expansion from the mounted component is large, the connection reliability with the mounted component is low, and the solder connection part due to thermal expansion and contraction of heating and cooling Have many problems such as easy cracking and breakage. Therefore, the use of an adhesive film that is a prepreg without a glass cloth or an adhesive film with copper foil cannot meet the increasing demand for higher density and thinner multilayer printed wiring boards.

そこで、従来のプリプレグでは解決できない多層プリント配線板に対する高密度化、薄型化、高信頼性化、低コスト化という課題を解決するための新規絶縁材料として、ガラスクロス等の基材を含まず、形状保持のための電気絶縁性充填剤を絶縁樹脂中に分散させることにより得られるワニスを、キャリア基材に流延して得られるシート状の絶縁材料が有効であることを見出してきた。   Therefore, as a new insulating material to solve the problems of high density, thinning, high reliability, and low cost for multilayer printed wiring boards that cannot be solved by conventional prepreg, it does not include a substrate such as glass cloth, It has been found that a sheet-like insulating material obtained by casting a varnish obtained by dispersing an electrically insulating filler for shape retention in an insulating resin onto a carrier substrate is effective.

しかし、このような絶縁材料を多層プリント配線板に用いた場合に、絶縁不良を起こすことが多いという課題があった。   However, when such an insulating material is used for a multilayer printed wiring board, there is a problem that insulation failure often occurs.

本発明は、絶縁信頼性に優れた低熱膨張率の銅箔付き絶縁材料とこれを用いた多層プリント配線板を提供するものである。   The present invention provides a low thermal expansion coefficient insulating material with copper foil having excellent insulation reliability and a multilayer printed wiring board using the same.

本発明の銅箔付き絶縁材料は、絶縁ワニスと銅箔とから得られ、かつガラスクロスを含まない銅箔付き絶縁材料であって、当該絶縁ワニスが電気絶縁性ウィスカーと樹脂成分からなり、当該ウィスカーの平均直径が0.3〜3.0μmの範囲であり、平均長さが平均直径の10倍以上、かつ平均長さが3〜50μmの範囲であって、当該ウィスカーが市販の電気絶縁性ウィスカーから金属の異物を除去したものであり、当該ウィスカーに残留する金属異物が70ppm以下であることを特徴とする。   The insulating material with a copper foil of the present invention is an insulating material with a copper foil obtained from an insulating varnish and a copper foil and does not contain glass cloth, the insulating varnish comprising an electrically insulating whisker and a resin component, The average diameter of the whisker is in the range of 0.3 to 3.0 μm, the average length is 10 times or more of the average diameter, and the average length is in the range of 3 to 50 μm. Metallic foreign matter is removed from the whisker, and the metallic foreign matter remaining on the whisker is 70 ppm or less.

充填剤は、通常は、電気絶縁性を重視せず、剛性を必要とする用途、例えば、強化プラスチックによる成型品などに多用されており、その電気特性は特に必要とされていない。したがって、製造過程において混入する異物については、十分に注意が払われていない。本発明者らは、このような充填剤を、プリント配線板の用途に適合させるために、鋭意検討の結果、電気絶縁性充填剤と樹脂成分からなる絶縁ワニスを用いた時に発生する絶縁信頼性の低下の原因が、その電気絶縁性充填剤の製造・梱包過程において混入する異物、特に導電性の異物、それも金属製の異物によって引き起こされることをつきとめ、この知見によって本発明をなすことができた。   Normally, the filler does not place importance on electrical insulation, and is often used for applications that require rigidity, for example, molded products made of reinforced plastics, and its electrical characteristics are not particularly required. Therefore, sufficient attention has not been paid to foreign matters mixed in during the manufacturing process. In order to adapt such a filler to the use of a printed wiring board, the present inventors have conducted intensive studies, and as a result, insulation reliability generated when an insulating varnish composed of an electrically insulating filler and a resin component is used. It has been found that the cause of the deterioration is caused by foreign matters mixed in the manufacturing and packaging process of the electrically insulating filler, particularly conductive foreign matters, which are also metallic foreign matters. did it.

本発明によって、絶縁信頼性に優れた低熱膨張率の銅箔付き絶縁材料とそれを用いた多層プリント配線板を提供することができる。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a low thermal expansion coefficient insulating material with a copper foil excellent in insulation reliability and a multilayer printed wiring board using the same.

(電気絶縁性充填剤)
本発明に用いる充填剤としては、針状、棒状及び繊維状等形状は問わない。また、充填剤の大きさは、0.1〜50μm程度が好ましい。0.1μm未満では作製したフィルムの取扱性が悪く、50μmを越えると、ある一つの導体回路と接触した充填剤が、他の導体回路と接触する確率が高くなり、充填剤と絶縁樹脂との界面に沿って移動する傾向にある銅イオンのマイグレーションによる回路間短絡事故を起こす可能性があるという問題がある。
(Electrically insulating filler)
The filler used in the present invention may be in any shape such as needle shape, rod shape, and fiber shape. Further, the size of the filler is preferably about 0.1 to 50 μm. If the thickness is less than 0.1 μm, the handleability of the produced film is poor. If the thickness exceeds 50 μm, the probability that a filler that has contacted one conductor circuit will be in contact with another conductor circuit increases. There is a problem that a short circuit accident between circuits may occur due to migration of copper ions that tend to move along the interface.

また、材質は電気絶縁性を有する、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、アルミナ粉末、窒化アルミニウム粉末、窒化ホウ素粉末、結晶性シリカ、非晶性シリカ、ほう酸アルミニウム等を用いることができる。   In addition, the material is electrically insulating, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina powder, aluminum nitride powder, boron nitride powder, crystal Silica, amorphous silica, aluminum borate and the like can be used.

充填剤の中でもウィスカー類は、フィルム状の絶縁材料を作製する際のフィルム形成能、取扱性に優れる。ウィスカーの平均直径は、0.3μm未満であると樹脂ワニスへの混合が難しくなると共に塗工作業性が低下し、3μmを越えると表面の平坦性に悪影響が出ると共にウィスカーの微視的な均一分散性が損なわれる。したがって、ウィスカーの平均直径は0.3μm〜3μmの範囲が好ましい。さらに同様の理由と塗工性が良い(平滑に塗りやすい)ことから平均直径は0.5μm〜1μmの範囲がより好ましい。このような直径のウィスカーを選択することにより、従来のガラスクロスを基材としたプリプレグを使用するよりも表面平坦性に優れたプリント配線板を得ることができる。   Among the fillers, whiskers are excellent in film forming ability and handleability when producing a film-like insulating material. If the average diameter of the whisker is less than 0.3 μm, mixing with the resin varnish becomes difficult and the coating workability decreases. If the average diameter exceeds 3 μm, the flatness of the surface is adversely affected and the whisker is microscopically uniform. Dispersibility is impaired. Therefore, the average diameter of the whisker is preferably in the range of 0.3 μm to 3 μm. Furthermore, the average diameter is more preferably in the range of 0.5 μm to 1 μm because of the same reason and good coatability (easy to apply smoothly). By selecting whiskers having such a diameter, it is possible to obtain a printed wiring board having a surface flatness superior to that of using a prepreg based on a conventional glass cloth.

また、ウィスカーの平均長さは、平均直径の10倍以上であることが好ましい。10倍未満であると、繊維としての補強効果が僅かになると同時に、ウィスカーの樹脂層中での2次元配向が困難になるため、配線板にしたときに十分な剛性が得られない。しかし、ウィスカーが長すぎる場合は、ワニス中への均一分散が難しくなり、塗工性が低下する。また、ある一つの導体回路と接触したウィスカーが他の導体回路と接触する確率が高くなり、繊維に沿って移動する傾向にある銅イオンのマイグレーションによる回路間短絡事故を起こす可能性があるという問題がある。したがって、ウィスカーの平均長さは50μm以下が好ましい。   Moreover, it is preferable that the average length of a whisker is 10 times or more of an average diameter. If it is less than 10 times, the reinforcing effect as a fiber becomes small, and at the same time, the two-dimensional orientation in the resin layer of the whisker becomes difficult, so that sufficient rigidity cannot be obtained when the wiring board is formed. However, if the whisker is too long, uniform dispersion in the varnish becomes difficult, and coatability is lowered. In addition, there is a high probability that a whisker in contact with one conductor circuit will come into contact with another conductor circuit, which may cause a short circuit between circuits due to migration of copper ions that tend to move along the fiber. There is. Therefore, the average length of whiskers is preferably 50 μm or less.

本発明に用いるウィスカーとしては、電気絶縁性のセラミックウィスカーであり、ウィスカーの種類としては、例えば、ほう酸アルミニウム、ウォラストナイト、チタン酸カリウム、塩基性硫酸マグネシウム、窒化けい素、α−アルミナの中から選ばれた1以上のものを用いることができる。その中でも、ほう酸アルミニウムウィスカーは、弾性率が高く、熱膨張率も小さく、しかも比較的安価である。このほう酸アルミニウムウィスカーを用いた本発明のプリプレグを使用して作製したプリント配線板は、従来のガラスクロスを用いたプリント配線板よりも、常温及び高温下における剛性が高く、ワイヤーボンディング性に優れ、電気信号の伝達特性に優れ、熱膨張率が小さく、寸法安定性に優れる。   The whisker used in the present invention is an electrically insulating ceramic whisker. Examples of whiskers include aluminum borate, wollastonite, potassium titanate, basic magnesium sulfate, silicon nitride, and α-alumina. One or more selected from can be used. Among these, aluminum borate whiskers have a high elastic modulus, a low coefficient of thermal expansion, and are relatively inexpensive. The printed wiring board produced using the prepreg of the present invention using this aluminum borate whisker has higher rigidity at room temperature and high temperature than the conventional printed wiring board using glass cloth, and has excellent wire bonding properties. Excellent electrical signal transmission characteristics, low coefficient of thermal expansion, and excellent dimensional stability.

(異物の除去方法)
本発明では、充填剤からの目的材料以外の異物の除去方法として、目的材料と異なる物質を分離できる方法なら何でもよく、メッシュ状のシートや遠心分離機等を用いたふるい分けや、磁石等を用いた異物の吸着除去や、目的材料以外を溶解する溶液を用いた溶解除去等を行うことができる。特に、電気絶縁性に大きな影響を与える鉄を含む異物については、磁石による吸着除去、塩酸等の酸溶液を使用した溶解除去、またこれらの併用等が有効な手段となる。
(Foreign matter removal method)
In the present invention, as a method for removing foreign substances other than the target material from the filler, any method can be used as long as it can separate a substance different from the target material, such as sieving using a mesh-like sheet or a centrifuge, or a magnet. For example, it is possible to perform adsorption removal of foreign substances, dissolution removal using a solution that dissolves materials other than the target material, and the like. In particular, for foreign matters including iron that have a great influence on electrical insulation, adsorption removal with a magnet, dissolution removal using an acid solution such as hydrochloric acid, and a combination thereof are effective means.

(充填剤の表面処理)
本発明では、絶縁樹脂と充填剤との界面の密着力を向上するため、充填剤の処理液としてカップリング剤を用いることができる。そのようなカップリング剤としては、シラン系カップリング剤やチタネート系カップリング剤等があり、シラン系カップリング剤としては、一般にエポキシシラン系、アミノシラン系、カチオニックシラン系、ビニルシラン系、アクリルシラン系、メルカプトシラン系及びこれらの複合系がある。添加剤は何種類を併用してもよく、表面処理は絶縁ワニス中への分散前、分散時及び分散後何れでもよく、その配合量も特に制限はない。
(Surface treatment of filler)
In the present invention, a coupling agent can be used as a treatment liquid for the filler in order to improve the adhesion at the interface between the insulating resin and the filler. Examples of such coupling agents include silane coupling agents and titanate coupling agents. Generally, silane coupling agents include epoxy silane, amino silane, cationic silane, vinyl silane, and acrylic silane. Systems, mercaptosilane systems, and composite systems thereof. Any number of additives may be used in combination, and the surface treatment may be performed before, during or after dispersion in the insulating varnish, and the amount of the additive is not particularly limited.

(樹脂)
本発明で使用する樹脂は、従来のガラスクロスを基材としたプリプレグに使用されている樹脂及びガラスクロス基材を含まない接着フィルム、あるいは銅箔付き接着フィルムに使用されている熱硬化性樹脂を使用することが出来る。ここでいう樹脂とは、樹脂、硬化剤、硬化促進剤、また必要に応じて、カップリング剤や希釈剤を含むものを意味する。
(resin)
The resin used in the present invention is a resin used for a prepreg based on a conventional glass cloth and an adhesive film not containing a glass cloth base, or a thermosetting resin used for an adhesive film with a copper foil. Can be used. The resin here means a resin, a curing agent, a curing accelerator, and a resin containing a coupling agent or a diluent as necessary.

従来のガラスクロスを基材としたプリプレグに使用されている樹脂は、それ単独では、フィルム形成能がないため、銅箔の片面に塗工により接着剤層として形成し、加熱により溶剤除去し樹脂を半硬化した場合、搬送、切断及び積層等の工程中において、樹脂の割れや欠落等のトラブルを生じやすい又は、その後の熱圧成形時に層間絶縁層が内層回路存在部等で異常に薄くなり、層間絶縁抵抗低下やショートというトラブルを生じやすかったため、従来、銅箔付き接着フィルム用途に使用することが困難であった。しかし、本発明では、樹脂中には充填剤が分散され、該樹脂は充填剤により補強されているため、本発明の樹脂と充填剤からなるプリプレグ層にはフィルム形成能が発現し、搬送、切断及び積層等の工程中において、樹脂の割れや欠落等のトラブルを生じにくく、また充填剤が存在するため熱圧成形時の層間絶縁層が、異常に薄くなる現象の発生も防止できる。また、従来接着フィルムや銅箔付き接着フィルムに使用されている樹脂を用いることも効果的である。これらの樹脂は、高分子量成分等を含むことにより、樹脂単独でもフィルム形成能があるが、充填剤をその樹脂中に分散することにより、いっそうフィルム形成能が高められ取扱性が向上し、さらに絶縁信頼性もより高めることが可能となる。また、充填剤の分散によりフィルム形成能を高めた分だけ高分子量成分の添加量を減らすことも可能であり、それによって樹脂の耐熱性や接着性等を改善できる場合もある。   Since the resin used for the prepreg based on the conventional glass cloth is not capable of forming a film by itself, it is formed as an adhesive layer on one side of the copper foil by coating, and the solvent is removed by heating to remove the resin. When the resin is semi-cured, problems such as resin cracking and chipping are likely to occur during processes such as transport, cutting, and lamination, or the interlayer insulation layer becomes abnormally thin at the inner layer circuit existing part during subsequent hot pressing. Since it was easy to cause troubles such as a decrease in interlayer insulation resistance and a short circuit, it was conventionally difficult to use it for adhesive films with copper foil. However, in the present invention, since the filler is dispersed in the resin and the resin is reinforced by the filler, the prepreg layer composed of the resin and the filler of the present invention exhibits a film forming ability, During the processes such as cutting and laminating, troubles such as cracking or missing of the resin are unlikely to occur, and the presence of the filler can prevent the phenomenon that the interlayer insulating layer during hot pressing is abnormally thinned. It is also effective to use a resin conventionally used for an adhesive film or an adhesive film with a copper foil. These resins contain a high molecular weight component, etc., so that the resin alone has a film-forming ability, but by dispersing the filler in the resin, the film-forming ability is further improved and the handling property is improved. Insulation reliability can be further increased. Further, it is possible to reduce the amount of the high molecular weight component added by increasing the film-forming ability by dispersing the filler, which may improve the heat resistance and adhesiveness of the resin.

樹脂の種類としては、例えばエポキシ樹脂、ビスマレイミドトリアジン樹脂、ポリイミド樹脂、フェノール樹脂、メラミン樹脂、けい素樹脂、不飽和ポリエステル樹脂、シアン酸エステル樹脂、イソシアネート樹脂、ポリイミド樹脂またはこれらの種々の変性樹脂類が好適である。この中で、プリント配線板特性上、特にビスマレイミドトリアジン樹脂、エポキシ樹脂が好適である。そのエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、サリチルアルデヒドノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、脂肪族環状エポキシ樹脂及びそれらのハロゲン化物、水素添加物、及び前記樹脂の混合物が好適である。中でも、ビスフェノールAノボラック型エポキシ樹脂またはサリチルアルデヒドノボラック型エポキシ樹脂は、耐熱性に優れ好ましい。   Examples of the resin include epoxy resin, bismaleimide triazine resin, polyimide resin, phenol resin, melamine resin, silicon resin, unsaturated polyester resin, cyanate ester resin, isocyanate resin, polyimide resin or various modified resins thereof. Are preferred. Among these, bismaleimide triazine resin and epoxy resin are particularly preferable in terms of printed wiring board characteristics. As the epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, salicylaldehyde novolak type epoxy resin, Bisphenol F novolac type epoxy resin, alicyclic epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, hydantoin type epoxy resin, isocyanurate type epoxy resin, aliphatic cyclic epoxy resin and their halides, hydrogenated products , And mixtures of the resins are preferred. Among them, bisphenol A novolac type epoxy resins or salicylaldehyde novolac type epoxy resins are preferable because of excellent heat resistance.

(硬化剤)
このような樹脂の硬化剤としては、従来使用しているものが使用でき、樹脂がエポキシ樹脂の場合、例えばジシアンジアミド、ビスフェノールA、ビスフェノールF、ポリビニルフェノール、フェノールノボラック樹脂、ビスフェノールAノボラック樹脂及びこれらのフェノール樹脂のハロゲン化物、水素化物等を使用できる。中でも、ビスフェノールAノボラック樹脂は耐熱性に優れ好ましい。この硬化剤の前記樹脂に対する割合は、従来使用している割合でよく、樹脂100重量部に対して、2〜100重量部の範囲が好ましく、さらには、ジシアンジアミドでは、2〜5重量部、それ以外の硬化剤では、30〜80重量部の範囲が好ましい。硬化剤の量が、2重量部未満であると、硬化不足を生じやすく、100重量部を超えると、未反応硬化剤が可塑剤成分として作用し、いずれも特性を低下させる。
(Curing agent)
As the curing agent for such a resin, those conventionally used can be used. When the resin is an epoxy resin, for example, dicyandiamide, bisphenol A, bisphenol F, polyvinylphenol, phenol novolac resin, bisphenol A novolac resin, and these Phenolic halides and hydrides can be used. Among them, bisphenol A novolac resin is preferable because of its excellent heat resistance. The ratio of the curing agent to the resin may be a ratio conventionally used, and is preferably in the range of 2 to 100 parts by weight with respect to 100 parts by weight of the resin, and further 2 to 5 parts by weight of dicyandiamide. For other curing agents, the range of 30 to 80 parts by weight is preferred. If the amount of the curing agent is less than 2 parts by weight, insufficient curing tends to occur, and if it exceeds 100 parts by weight, the unreacted curing agent acts as a plasticizer component, and all of them deteriorate characteristics.

(硬化促進剤)
硬化促進剤としては、樹脂がエポキシ樹脂の場合、イミダゾール化合物、有機リン化合物、第3級アミン、第4級アンモニウム塩等を使用する。この硬化促進剤の前記樹脂に対する割合は、従来使用している割合でよく、樹脂100重量部に対して、0.01〜20重量部の範囲が好ましく、0.1〜1.0重量部の範囲がより好ましい。硬化促進剤の量が、0.01重量部未満であると、硬化不足を生じやすく、20重量部を超えると、作成したワニスのポットライフの低下や、コストの上昇を引き起こすため望ましくない。
(Curing accelerator)
As the curing accelerator, when the resin is an epoxy resin, an imidazole compound, an organic phosphorus compound, a tertiary amine, a quaternary ammonium salt, or the like is used. The ratio of the curing accelerator to the resin may be a ratio conventionally used, and is preferably in the range of 0.01 to 20 parts by weight with respect to 100 parts by weight of the resin, and 0.1 to 1.0 parts by weight. A range is more preferred. If the amount of the curing accelerator is less than 0.01 parts by weight, curing is likely to be insufficient, and if it exceeds 20 parts by weight, the pot life of the prepared varnish is reduced and the cost is increased.

(希釈剤)
本発明で用いる熱硬化性樹脂は、溶剤にて希釈して樹脂ワニスとして使用することもできる。溶剤には、アセトン、メチルエチルケトン、トルエン、キシレン、メチルイソブチルケトン、酢酸エチル、エチレングリコールモノメチルエーテル、メタノール、エタノール、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等を使用できる。この希釈剤の前記樹脂に対する割合は、従来使用している割合でよく、樹脂100重量部に対して1〜200重量部の範囲が好ましく、30〜100重量部の範囲がさらに好ましい。希釈剤の量が、1重量部未満であると、ワニスの取扱性に劣り、200重量部を越えると、作業性に劣るため望ましくない。
(Diluent)
The thermosetting resin used in the present invention can be diluted with a solvent and used as a resin varnish. As the solvent, acetone, methyl ethyl ketone, toluene, xylene, methyl isobutyl ketone, ethyl acetate, ethylene glycol monomethyl ether, methanol, ethanol, N, N-dimethylformamide, N, N-dimethylacetamide and the like can be used. The ratio of the diluent to the resin may be a ratio conventionally used, preferably 1 to 200 parts by weight, more preferably 30 to 100 parts by weight with respect to 100 parts by weight of the resin. When the amount of the diluent is less than 1 part by weight, the handleability of the varnish is inferior, and when it exceeds 200 parts by weight, the workability is inferior.

(その他の配合剤)
さらに本発明においては、上記した各成分の他に、必要に応じて従来より公知のカップリング剤、イオン補足剤、高分子量樹脂等を樹脂中に適宜配合してもよい。
(Other ingredients)
Furthermore, in the present invention, in addition to the above-described components, conventionally known coupling agents, ion scavengers, high molecular weight resins and the like may be appropriately blended in the resin as necessary.

(樹脂と充填剤の割合)
樹脂への充填剤の配合量は、樹脂固形分100重量部に対し5重量部未満であると、このプリプレグは切断時に樹脂が細かく砕けて飛散しやすくなる等の取扱性が悪くなると共に、配線板にしたときに十分な剛性が得られない。一方、充填剤の配合量が500重量部を越えると、熱圧成形時の内層回路の穴埋め性や回路間への樹脂充填性が損なわれ、熱圧成形後の充填剤複合樹脂層中に、ボイドやかすれが発生しやすくなり、配線板特性を損なう恐れがある。したがって、充填剤の配合量は、樹脂固形分100重量部に対し5〜500重量部が好ましい。
(Ratio of resin and filler)
When the amount of the filler added to the resin is less than 5 parts by weight based on 100 parts by weight of the resin solid content, this prepreg has poor handling properties such as the resin being finely crushed and easily scattered during cutting, and wiring. When it is made into a plate, sufficient rigidity cannot be obtained. On the other hand, if the blending amount of the filler exceeds 500 parts by weight, the hole filling property of the inner layer circuit at the time of hot pressing and the resin filling property between the circuits are impaired, and in the filler composite resin layer after the hot pressing, Voids and blurring are likely to occur, and the wiring board characteristics may be impaired. Therefore, the blending amount of the filler is preferably 5 to 500 parts by weight with respect to 100 parts by weight of the resin solid content.

(混練方法)
電気絶縁性樹脂の分散性を向上させるために、絶縁ワニスを作製した後、らいかい機、3本ロールミルまたはビーズミル等での混練を組み合わせて行うことができる。混練後、減圧下での攪拌脱泡等によりワニス中の気泡を除去することが望ましい。
(Kneading method)
In order to improve the dispersibility of the electrically insulating resin, after the insulating varnish is produced, kneading with a raking machine, a three-roll mill or a bead mill can be performed in combination. After kneading, it is desirable to remove bubbles in the varnish by stirring and defoaming under reduced pressure.

(キャリアフィルム)
本発明において絶縁層である充填剤複合樹脂層(Bステージ状態)をその片面に形成する対象であるキャリアフィルムとしては、銅箔、アルミ箔等の金属箔、ポリエステルフィルム、ポリイミドフィルム、あるいは前記金属箔及びフィルムの表面を離型剤により処理したものを使用する。
(Carrier film)
In the present invention, as a carrier film which is a target for forming a filler composite resin layer (B stage state) which is an insulating layer on one side thereof, a metal foil such as copper foil or aluminum foil, a polyester film, a polyimide film, or the metal What processed the surface of foil and the film with the mold release agent is used.

(絶縁フィルムの形成)
塗工方法は、各成分を溶剤に溶解・分散してワニスとし、キャリアフィルム上に塗布し、加熱して溶剤を除去し、半硬化状態にして接着フィルムとして使用する。
(Formation of insulation film)
In the coating method, each component is dissolved and dispersed in a solvent to form a varnish, which is coated on a carrier film, heated to remove the solvent, and then used as an adhesive film in a semi-cured state.

特に、電気絶縁性ウィスカーを使用する場合、Bステージ状態の樹脂と電気絶縁性ウィスカーから構成される絶縁材料の中のウィスカーは、2次元配向に近い状態(ウィスカーの軸方向が絶縁材料層の形成する面と平行に近い状態)にさせることが好ましい。上記のようにウィスカーを配向させるには、前述した好ましい範囲の繊維長のウィスカーを使用すると同時に、銅箔にウィスカーを配合した樹脂ワニスを塗工する際に、ブレードコータ、ロッドコータ、ナイフコータ、スクイズコータ、リバースロールコータ、トランスファーロールコータ等の銅箔と平行な面方向にせん断力を負荷できるかあるいは、銅箔の面に垂直な方向に圧縮力を負荷できる塗工方式を採用すればよい。   In particular, when an electrically insulating whisker is used, the whisker in the insulating material composed of the B-stage resin and the electrically insulating whisker is in a state close to two-dimensional orientation (the whisker axial direction is the formation of the insulating material layer). It is preferable to make the surface close to parallel to the surface to be processed. In order to orient the whiskers as described above, whisker having a fiber length in the preferred range described above is used, and at the same time, when coating a resin varnish containing whiskers on a copper foil, a blade coater, a rod coater, a knife coater, a squeeze A coating method that can apply a shearing force in a plane direction parallel to the copper foil, such as a coater, a reverse roll coater, a transfer roll coater, or a compression force in a direction perpendicular to the surface of the copper foil may be employed.

以上で述べた本発明によれば、異物を除去した充填剤を使用することにより、本方法で作製した充填剤を複合させた絶縁材料を多層プリント配線板用の材料に用いた場合の高絶縁信頼性及び低熱膨張率化をはかることができる。また、本発明の絶縁材料を使用して作製した絶縁層は、基材がガラスクロスよりレーザに対し被加工性が良好でしかも微細な充填剤であるため、従来のガラスクロスプリプレグを使用した絶縁層では、困難であったレーザ穴明けが容易にできる。そのため、直径100μm以下の小径のインタースティシャルバイアホール(IVH)が容易に作製可能となり、プリント配線板の回路を微細化でき、電子機器の高密度化、高性能化に大きく貢献できる。以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。   According to the present invention described above, by using the filler from which foreign substances have been removed, high insulation is obtained when an insulating material combined with the filler produced by this method is used as a material for a multilayer printed wiring board. Reliability and low thermal expansion can be achieved. In addition, since the insulating layer produced using the insulating material of the present invention is a fine filler with a base material having better processability to laser than glass cloth, insulation using conventional glass cloth prepreg In the layer, laser drilling, which was difficult, can be easily performed. Therefore, a small-diameter interstitial via hole (IVH) having a diameter of 100 μm or less can be easily manufactured, the circuit of the printed wiring board can be miniaturized, and the electronic device can greatly contribute to higher density and higher performance. EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to this.

実施例1
平均直径0.8μm、平均繊維長20μmのほう酸アルミニウムウィスカーの10wt%水懸濁溶液を作製し、この懸濁溶液をナイロンメッシュ(ふるいめ開き74μm)でろ過し、ろ過後懸濁溶液を得た。この懸濁溶液を、格子状に配列した10,000ガウスの磁石を通過させ異物を吸着した。この懸濁溶液を乾燥し、ほう酸アルミニウムの粉体を得た。このウィスカーを15wt%の塩酸溶液で抽出し、鉄濃度を測定したところ、鉄の混在濃度は65ppmであった。ビスフェノールAノボラック型エポキシ樹脂(エポキシ当量210)100重量部にビスフェノールAノボラック樹脂40重量部、4臭素化ビスフェノールA40重量部、イミダゾール系硬化促進剤0.4重量部からなる組成物にメチルエチルケトンを加え60wt%のワニスを調整した。得られたワニスに、ほう酸アルミニウムウィスカー160重量部を混合し、ビーズミルを用いて混練した後、真空脱気した。
Example 1
A 10 wt% aqueous suspension of aluminum borate whiskers having an average diameter of 0.8 μm and an average fiber length of 20 μm was prepared, and this suspension was filtered through a nylon mesh (74 μm sieve opening) to obtain a suspension after filtration. . The suspended solution was passed through a 10,000 Gauss magnet arranged in a lattice pattern to adsorb foreign matter. This suspension solution was dried to obtain aluminum borate powder. When this whisker was extracted with a 15 wt% hydrochloric acid solution and the iron concentration was measured, the iron concentration was 65 ppm. 60 wt% of methylbisketone added to a composition comprising 40 parts by weight of bisphenol A novolac resin, 40 parts by weight of bisphenol A novolak resin and 0.4 parts by weight of imidazole curing accelerator, to 100 parts by weight of bisphenol A novolac type epoxy resin (epoxy equivalent 210) % Varnish was adjusted. The obtained varnish was mixed with 160 parts by weight of an aluminum borate whisker, kneaded using a bead mill, and then vacuum degassed.

実施例2
平均直径0.8μm、平均繊維長20μmのほう酸アルミニウムウィスカーの10wt%水懸濁溶液を作製し、この懸濁溶液をナイロンメッシュ(ふるいめ開き74μm)でろ過し、ろ過後懸濁溶液を得た。この懸濁溶液に、濃度3Nになるように塩酸を投入し、液温80℃で3時間攪拌した。その後純水で洗浄し、洗浄液に塩化銀を滴下して白濁しないのを確認した。この懸濁溶液を乾燥し、ほう酸アルミニウムの粉体を得た。このウィスカーを15wt%の塩酸溶液で抽出し、鉄濃度を測定したところ、鉄の混在濃度は35ppmであった。臭素化ビスフェノールA型エポキシ樹脂(エポキシ当量530)100重量部にジシアンジアミド4部、イミダゾール系硬化促進剤0.5重量部からなる組成物にメチルエチルケトンを加え60wt%のワニスを調整した。得られたワニスに、ほう酸アルミニウムウィスカー90重量部を混合し、ビーズミルを用いて混練した後、真空脱気した。
Example 2
A 10 wt% aqueous suspension of aluminum borate whiskers having an average diameter of 0.8 μm and an average fiber length of 20 μm was prepared, and this suspension was filtered through a nylon mesh (74 μm sieve opening) to obtain a suspension after filtration. . Hydrochloric acid was added to the suspension so as to have a concentration of 3N, and the mixture was stirred at a liquid temperature of 80 ° C. for 3 hours. Thereafter, it was washed with pure water, and silver chloride was dropped into the washing solution to confirm that it did not become cloudy. This suspension solution was dried to obtain aluminum borate powder. When this whisker was extracted with a 15 wt% hydrochloric acid solution and the iron concentration was measured, the iron concentration was 35 ppm. Methyl ethyl ketone was added to a composition comprising 4 parts of dicyandiamide and 100 parts by weight of dicyandiamide and 100 parts by weight of brominated bisphenol A epoxy resin (epoxy equivalent 530) to prepare a 60 wt% varnish. The obtained varnish was mixed with 90 parts by weight of aluminum borate whisker, kneaded using a bead mill, and then vacuum degassed.

実施例3
平均直径0.8μm、平均繊維長20μmのほう酸アルミニウムウィスカーの10wt%水懸濁溶液を作製し、この懸濁溶液をナイロンメッシュ(ふるいめ開き74μm)でろ過し、ろ過後懸濁溶液を得た。この懸濁溶液を、格子状に配列した10,000ガウスの磁石を通過させ異物を吸着した。この懸濁溶液に、濃度3Nになるように塩酸を投入し、液温80℃で3時間攪拌した。その後純水で洗浄し、洗浄液に塩化銀を滴下して白濁しないのを確認した。この懸濁溶液を乾燥し、ほう酸アルミニウムの粉体を得た。このウィスカーを15wt%の塩酸溶液で抽出し、鉄濃度を測定したところ、鉄の混在濃度は1ppm以下であった。ビスフェノールAノボラック型エポキシ樹脂(エポキシ当量210)100重量部にビスフェノールAノボラック樹脂35重量部、4臭素化ビスフェノールA45重量部、イミダゾール系硬化促進剤0.4重量部からなる組成物にメチルエチルケトンを加え60wt%のワニスを調整した。得られたワニスに、ほう酸アルミニウムウィスカー160重量部を混合し、ビーズミルを用いて混練した後、真空脱気した。
Example 3
A 10 wt% aqueous suspension of aluminum borate whiskers having an average diameter of 0.8 μm and an average fiber length of 20 μm was prepared, and this suspension was filtered through a nylon mesh (74 μm sieve opening) to obtain a suspension after filtration. . The suspended solution was passed through a 10,000 Gauss magnet arranged in a lattice pattern to adsorb foreign matter. Hydrochloric acid was added to the suspension so as to have a concentration of 3N, and the mixture was stirred at a liquid temperature of 80 ° C. for 3 hours. Thereafter, it was washed with pure water, and silver chloride was dropped into the washing solution to confirm that it did not become cloudy. This suspension solution was dried to obtain aluminum borate powder. When this whisker was extracted with a 15 wt% hydrochloric acid solution and the iron concentration was measured, the iron concentration was 1 ppm or less. 60 wt% of methyl bisketone added to a composition consisting of 35 parts by weight of bisphenol A novolac resin, 45 parts by weight of bisphenol A novolac resin and 0.4 parts by weight of imidazole curing accelerator, to 100 parts by weight of bisphenol A novolac type epoxy resin (epoxy equivalent 210) % Varnish was adjusted. The obtained varnish was mixed with 160 parts by weight of an aluminum borate whisker, kneaded using a bead mill, and then vacuum degassed.

比較例1
購入した平均直径0.8μm、平均繊維長20μmのほう酸アルミニウムウィスカーを15wt%の塩酸溶液で抽出し、鉄濃度を測定したところ、鉄の混在濃度は100ppmであった。このウィスカーを用いた以外は、実施例1と同様にしてワニスを作製した。
Comparative Example 1
The purchased aluminum borate whiskers having an average diameter of 0.8 μm and an average fiber length of 20 μm were extracted with a 15 wt% hydrochloric acid solution, and the iron concentration was measured. As a result, the mixed iron concentration was 100 ppm. A varnish was prepared in the same manner as in Example 1 except that this whisker was used.

比較例2
平均直径0.8μm、平均繊維長20μmのほう酸アルミニウムウィスカーの10wt%水懸濁溶液を作製し、この懸濁溶液をナイロンメッシュ(ふるいめ開き2mm)でろ過し、ろ過後懸濁溶液を乾燥し、ほう酸アルミニウムの粉体を得た。このウィスカーを15wt%の塩酸溶液で抽出し、鉄濃度を測定したところ、鉄の混在濃度は100ppmであった。上記の操作で得たウィスカーを用いた以外は、実施例1と同様にしてワニスを作製した。
Comparative Example 2
A 10 wt% aqueous suspension of aluminum borate whiskers having an average diameter of 0.8 μm and an average fiber length of 20 μm is prepared. The suspension is filtered through a nylon mesh (2 mm sieve opening), and the suspension is dried after filtration. An aluminum borate powder was obtained. When this whisker was extracted with a 15 wt% hydrochloric acid solution and the iron concentration was measured, the iron concentration was 100 ppm. A varnish was produced in the same manner as in Example 1 except that the whisker obtained by the above operation was used.

比較例3
平均直径0.8μm、平均繊維長20μmのほう酸アルミニウムウィスカーの10wt%水懸濁溶液を作製し、この懸濁溶液をナイロンメッシュ(ふるいめ開き75μm)でろ過し、ろ過後懸濁溶液を乾燥し、ほう酸アルミニウムの粉体を得た。このウィスカーを15wt%の塩酸溶液で抽出し、鉄濃度を測定したところ、鉄の混在濃度は95ppmであった。上記の操作で得たウィスカーを用いた以外は、実施例1と同様にしてワニスを作製した。
Comparative Example 3
A 10 wt% aqueous suspension of aluminum borate whiskers with an average diameter of 0.8 μm and an average fiber length of 20 μm is prepared. The suspension is filtered through a nylon mesh (75 μm sieve opening), and the suspension is dried after filtration. An aluminum borate powder was obtained. When this whisker was extracted with a 15 wt% hydrochloric acid solution and the iron concentration was measured, the iron concentration was 95 ppm. A varnish was produced in the same manner as in Example 1 except that the whisker obtained by the above operation was used.

比較例4
平均直径0.8μm、平均繊維長20μmのほう酸アルミニウムウィスカーの10wt%水懸濁溶液を作製し、この懸濁溶液をナイロンメッシュ(ふるいめ開き43μm)でろ過を試みたが、目詰まりを起こし、ろ過後懸濁溶液を得ることができなかった。
Comparative Example 4
A 10 wt% aqueous suspension of aluminum borate whiskers having an average diameter of 0.8 μm and an average fiber length of 20 μm was prepared, and the suspension was filtered with a nylon mesh (a sieve opening of 43 μm), but clogging occurred. A suspension solution could not be obtained after filtration.

(絶縁材料の作製)
実施例1〜3、比較例1〜3で得られたワニスを厚さ18μmの銅箔及び厚さ50μmのポリエチレンテレフタレート(PET)フィルムにナイフコータにて塗工し、温度150℃で10min間加熱乾燥して、溶剤を除去すると共に、樹脂を半硬化して、ウィスカー体積分率が30%でウィスカーと半硬化状態にあるエポキシ樹脂からなる絶縁層の厚さが50μmと100μmの銅箔付き絶縁材料及びPETを剥離により除去して、半硬化状態のエポキシ樹脂からなる厚さが50μmの絶縁材料を作製した。
(Preparation of insulating material)
The varnishes obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were applied to a copper foil having a thickness of 18 μm and a polyethylene terephthalate (PET) film having a thickness of 50 μm with a knife coater, and dried by heating at 150 ° C. for 10 minutes. Then, while removing the solvent and semi-curing the resin, the insulating material with copper foil having a whisker volume fraction of 30% and an insulating layer made of epoxy resin in a semi-cured state with the whisker is 50 μm and 100 μm And PET was removed by peeling, and the insulating material which consists of a semi-hardened epoxy resin and whose thickness was 50 micrometers was produced.

(鉄濃度の測定)
鉄濃度の測定は、原子吸光測定装置を用いて行った。
(Measurement of iron concentration)
The iron concentration was measured using an atomic absorption measuring device.

作製した絶縁材料に関して、以下の項目について評価を行った。
(Bステージフィルム取扱性)
取扱性はカッターナイフ及びシャーにより切断したときに、樹脂の飛散がなく切断端部に割れが発生せずに切断でき、絶縁材料同士のブロッキングが発生しなかったものを○、それ以外を×とした。
(硬化物特性)
上記で作製した絶縁層の厚さ50μmの銅箔付き絶縁材料を絶縁層が向かい合うように重ねて積層し、熱圧成形した。成形後銅箔部分をエッチングにより取り除き、樹脂板を得た。この樹脂板について弾性率、熱膨張率を測定した。弾性率はTMAの引張りモードにて、熱膨張率はTMAの引張りモードにて測定した。
(耐電食性試験)
厚さ0.8mmのガラスエポキシ両面銅張積層板に、電食試験の内層面の電極となるパターンをエッチングにより作製し、この上下に上記で作製した絶縁層の厚さ50μmの銅箔付き絶縁材料を絶縁材料が電食試験の内層面の電極となるパターンと接するように重ね合わせて積層し、熱圧成形した。得られた積層板の、内層の電極となる電食試験パターンの位置に合わせて、外層の電極となるパターンをエッチングで作製し、電食試験片を得た。この内層と外層の電極間に50Vの電圧を印加し、85℃、85%RHの雰囲気下で1000時間経過後の絶縁抵抗値を測定した。1000時間経過後の絶縁抵抗値を測定した結果、109Ω以上の良好な値を示したものを○、それ以外を×とした。以上の結果をまとめて表1に示す。
Regarding the manufactured insulating material, the following items were evaluated.
(B stage film handling)
When handling is performed with a cutter knife or shear, the resin is not scattered and the cutting edge can be cut without cracking, and the insulating material does not block. did.
(Cured product properties)
The insulating material with a copper foil having a thickness of 50 μm, which was produced as described above, was laminated so that the insulating layers face each other, and hot-pressed. After molding, the copper foil portion was removed by etching to obtain a resin plate. The elastic modulus and thermal expansion coefficient of this resin plate were measured. The elastic modulus was measured in the TMA tensile mode, and the thermal expansion coefficient was measured in the TMA tensile mode.
(Electrolytic corrosion resistance test)
On the glass epoxy double-sided copper-clad laminate with a thickness of 0.8 mm, a pattern to be an electrode on the inner layer surface of the electrolytic corrosion test was produced by etching, and above and below the insulation layer produced above was an insulation with a copper foil with a thickness of 50 μm. The materials were laminated and laminated so that the insulating material was in contact with the pattern that would be the electrode on the inner layer surface of the electrolytic corrosion test, and hot pressing was performed. In accordance with the position of the electrolytic corrosion test pattern serving as the inner layer electrode of the obtained laminate, a pattern serving as the outer layer electrode was produced by etching to obtain an electrolytic corrosion test piece. A voltage of 50 V was applied between the inner layer and outer layer electrodes, and the insulation resistance value after 1000 hours was measured in an atmosphere of 85 ° C. and 85% RH. As a result of measuring the insulation resistance value after the elapse of 1000 hours, a sample showing a good value of 10 9 Ω or more was marked with ◯, and the others were marked with ×. The above results are summarized in Table 1.

Figure 0004555946
Figure 0004555946

以上の結果から、次のことが分かる。実施例1〜3は、異物の除去を行わない場合と比較して、絶縁材料が有する特性を下げることなく高耐電食性化を達成する。   From the above results, the following can be understood. Examples 1 to 3 achieve higher electrical corrosion resistance without lowering the characteristics of the insulating material as compared to the case where foreign matter is not removed.

本発明の銅箔付き絶縁材料は、電気絶縁性充填剤に混在する異物を除去した該電気絶縁性充填剤を使用することで、絶縁材料の高信頼性を達成できる。特に電気絶縁性ウィスカーを複合化させた絶縁材料を用いた多層プリント配線板では、低熱膨張率化、高絶縁信頼性を達成できる。本発明にしたがって製造した絶縁ワニスを用いて得られた絶縁材料は、電気絶縁性充填剤、特に電気絶縁性ウィスカーの添加によりエポキシ樹脂をシート状に形成することができたもので、これを使用したプリント配線板は、表面が平坦で回路加工性が良く、剛性が高いため実装信頼性が高く、熱膨張率が小さいため寸法安定性が良くなる。したがって、多層プリント配線板の高密度化、薄型化、高信頼性化、低コスト化に多大の貢献をする。   The insulating material with a copper foil of the present invention can achieve high reliability of the insulating material by using the electrically insulating filler from which foreign matters mixed in the electrically insulating filler are removed. In particular, a multilayer printed wiring board using an insulating material in which electrically insulating whiskers are combined can achieve a low thermal expansion coefficient and high insulation reliability. The insulating material obtained using the insulating varnish produced in accordance with the present invention was able to form an epoxy resin in the form of a sheet by adding an electrically insulating filler, particularly an electrically insulating whisker. The printed wiring board has a flat surface, good circuit processability, high rigidity, high mounting reliability, and low coefficient of thermal expansion, thus improving dimensional stability. Therefore, the multilayer printed wiring board is greatly contributed to high density, thinning, high reliability, and low cost.

Claims (5)

絶縁ワニスと銅箔とから得られ、かつガラスクロスを含まない銅箔付き絶縁材料であって、当該絶縁ワニスが電気絶縁性ウィスカーと樹脂成分からなり、当該ウィスカーの平均直径が0.3〜3.0μmの範囲であり、平均長さが平均直径の10倍以上、かつ平均長さが3〜50μmの範囲であって、当該ウィスカーが電気絶縁性ウィスカーから金属の異物を除去したものであり、当該ウィスカーに残留する金属異物が70ppm以下であり、電気絶縁性ウィスカーが、電気絶縁性ウィスカーから、少なくとも磁石による吸着除去処理を含む方法により、金属の異物を除去したものであることを特徴とする銅箔付き絶縁材料。 An insulating material with a copper foil obtained from an insulating varnish and a copper foil and containing no glass cloth, the insulating varnish comprising an electrically insulating whisker and a resin component, and the whisker having an average diameter of 0.3 to 3 The average length is 10 times or more of the average diameter and the average length is in the range of 3 to 50 μm, and the whiskers are obtained by removing metallic foreign matters from the electrically insulating whiskers; metallic foreign matter remaining in the whisker Ri der less 70 ppm, electrically insulating whiskers, characterized by electrically insulating whiskers, by a process comprising adsorption and removal treatment with at least a magnet, an der Rukoto obtained by removing the metal foreign matter Insulating material with copper foil. 電気絶縁性ウィスカーに残留する金属異物が、40ppm以下であることを特徴とする請求項1に記載の銅箔付き絶縁材料。   2. The insulating material with copper foil according to claim 1, wherein the metal foreign matter remaining on the electrically insulating whiskers is 40 ppm or less. 電気絶縁性ウィスカーに残留する金属異物が、1ppm以下であることを特徴とする請求項1又は2に記載の銅箔付き絶縁材料。   The insulating material with copper foil according to claim 1 or 2, wherein the metal foreign matter remaining on the electrically insulating whiskers is 1 ppm or less. 電気絶縁性ウィスカーが、電気絶縁性ウィスカーから、少なくとも磁石による吸着除去処理、及び酸溶液を使用した除去処理を含む方法により、金属の異物を除去したものである請求項1〜のいずれかに記載の銅箔付き絶縁材料。 Electrically insulating whiskers, the electrically insulating whiskers, adsorption removal treatment with at least a magnet, and by a method comprising the removal process using an acid solution, to any one of claims 1 to 3, in which the removal of the metal foreign matter The insulating material with copper foil as described. 請求項1〜のいずれかに記載の銅箔付き絶縁材料と、内層回路板とからなり、内層回路と外層回路とが電気的に接続されていることを特徴とする多層プリント配線板。 And the copper foil with an insulating material according to any one of claims 1-4, consists an inner layer circuit board, a multilayer printed wiring board and the inner circuit and the outer circuit is characterized in that it is electrically connected.
JP2007033874A 2007-02-14 2007-02-14 Insulating material with copper foil and multilayer printed wiring board using the same Expired - Fee Related JP4555946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007033874A JP4555946B2 (en) 2007-02-14 2007-02-14 Insulating material with copper foil and multilayer printed wiring board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007033874A JP4555946B2 (en) 2007-02-14 2007-02-14 Insulating material with copper foil and multilayer printed wiring board using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33339997A Division JP3972433B2 (en) 1997-12-04 1997-12-04 Insulating varnish and multilayer printed wiring board using the same

Publications (2)

Publication Number Publication Date
JP2007180571A JP2007180571A (en) 2007-07-12
JP4555946B2 true JP4555946B2 (en) 2010-10-06

Family

ID=38305359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007033874A Expired - Fee Related JP4555946B2 (en) 2007-02-14 2007-02-14 Insulating material with copper foil and multilayer printed wiring board using the same

Country Status (1)

Country Link
JP (1) JP4555946B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308898A (en) * 1988-06-06 1989-12-13 Mitsubishi Gas Chem Co Inc Production of aluminum nitride whisker
JPH02160699A (en) * 1988-12-13 1990-06-20 Mitsubishi Mining & Cement Co Ltd Purification of magnesia whisker
JPH0474546A (en) * 1990-07-17 1992-03-09 Mitsubishi Gas Chem Co Inc Permanent magnet type roll separater
JPH05337396A (en) * 1992-06-04 1993-12-21 Hitachi Chem Co Ltd Metal powder removing device
JPH06122600A (en) * 1992-10-13 1994-05-06 Shikoku Chem Corp Production of aluminum borate whisker
JPH07231162A (en) * 1994-02-15 1995-08-29 Sumitomo Electric Ind Ltd Printed wiring board resistant to ion migration
JPH09202834A (en) * 1996-01-26 1997-08-05 Hitachi Chem Co Ltd Prepreg for printed circuit board and its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308898A (en) * 1988-06-06 1989-12-13 Mitsubishi Gas Chem Co Inc Production of aluminum nitride whisker
JPH02160699A (en) * 1988-12-13 1990-06-20 Mitsubishi Mining & Cement Co Ltd Purification of magnesia whisker
JPH0474546A (en) * 1990-07-17 1992-03-09 Mitsubishi Gas Chem Co Inc Permanent magnet type roll separater
JPH05337396A (en) * 1992-06-04 1993-12-21 Hitachi Chem Co Ltd Metal powder removing device
JPH06122600A (en) * 1992-10-13 1994-05-06 Shikoku Chem Corp Production of aluminum borate whisker
JPH07231162A (en) * 1994-02-15 1995-08-29 Sumitomo Electric Ind Ltd Printed wiring board resistant to ion migration
JPH09202834A (en) * 1996-01-26 1997-08-05 Hitachi Chem Co Ltd Prepreg for printed circuit board and its production

Also Published As

Publication number Publication date
JP2007180571A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
US9779880B2 (en) Resin composition and dielectric layer and capacitor produced therefrom
JP5206600B2 (en) Epoxy resin composition, prepreg, laminate, resin sheet, multilayer printed wiring board, and semiconductor device
JPWO2011114665A1 (en) Heat-resistant adhesive
US7700185B2 (en) Insulation material, film, circuit board and method of producing them
JP6931542B2 (en) Cured resin composition, resin composition and multilayer substrate
JP3972433B2 (en) Insulating varnish and multilayer printed wiring board using the same
JP3838389B2 (en) Insulating material and multilayer printed wiring board using the same
JP4555946B2 (en) Insulating material with copper foil and multilayer printed wiring board using the same
KR20130018717A (en) Metal support flexible board, metal support carrier tape for tape automated bonding using same, metal support flexible circuit board for mounting led, and copper foil-laminated metal support flexible circuit board for forming circuit
JP2005209489A (en) Insulation sheet
JP4706468B2 (en) Resin composition, prepreg, and laminate and printed wiring board using the same
JP5821845B2 (en) Resin composition used for formation of resin layer constituting metal base substrate, metal base substrate, and method of manufacturing metal base substrate
CN109757023B (en) Printed circuit board and manufacturing method thereof
JP2017183376A (en) Flexible substrate, flexible circuit board, and method of manufacturing support-less flexible circuit board
JP2003011269A (en) Manufacturing method of insulating material with copper leaf
JP3932635B2 (en) Insulating varnish and multilayer printed wiring board using the same
JP3804812B2 (en) Method for producing insulating varnish
JP3343330B2 (en) Method for producing insulating varnish, insulating varnish obtained by this method, and multilayer printed wiring board using this insulating varnish
JP3390306B2 (en) Prepreg with carrier film for printed wiring boards
JP3838390B2 (en) Method for manufacturing insulating varnish and multilayer printed wiring board using the insulating varnish
JP4366785B2 (en) Adhesive sheet, production method thereof, multilayer printed wiring board using the adhesive sheet, and production method thereof
JP3911739B2 (en) Insulation material for wiring boards
EP4160669A1 (en) Thermally conductive sheet with metal plate and method for poducing thermally conductive sheet
JPH10287834A (en) Production of insulating varnish and multi-layered printed wiring board using the insulating varnish
JP2000345103A (en) Insulation varnish and multilayered printed circuit board using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees