JP4555522B2 - Zoom lens, camera and portable information terminal device - Google Patents

Zoom lens, camera and portable information terminal device Download PDF

Info

Publication number
JP4555522B2
JP4555522B2 JP2001303218A JP2001303218A JP4555522B2 JP 4555522 B2 JP4555522 B2 JP 4555522B2 JP 2001303218 A JP2001303218 A JP 2001303218A JP 2001303218 A JP2001303218 A JP 2001303218A JP 4555522 B2 JP4555522 B2 JP 4555522B2
Authority
JP
Japan
Prior art keywords
group
lens
zoom lens
focal length
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001303218A
Other languages
Japanese (ja)
Other versions
JP2003107352A (en
Inventor
和泰 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001303218A priority Critical patent/JP4555522B2/en
Priority to US10/201,262 priority patent/US6771433B2/en
Publication of JP2003107352A publication Critical patent/JP2003107352A/en
Priority to US10/866,830 priority patent/US7164542B2/en
Application granted granted Critical
Publication of JP4555522B2 publication Critical patent/JP4555522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、デジタルカメラ、ビデオカメラ等に用いるズーム撮影レンズ、該ズーム撮影レンズを備えたカメラ及び携帯情報端末装置に関し、銀塩カメラに用いるズーム撮影レンズとしても応用が可能なものである。
【0002】
【従来の技術】
デジタルカメラの市場は非常に大きなものとなっており、ユーザのデジタルカメラに対する要望も多岐にわたっている。中でも、高画質化と小型化は常にユーザの欲するところであり、ウエイトが大きい。よって、撮影レンズとして用いるズームレンズにも、高性能化と小型化の両立が求められる。
【0003】
ここで、小型化という面では、まず、レンズ全長(最も物体側のレンズ面から像面までの距離)を短縮することが必要である。さらに、いわゆる沈胴タイプのカメラに用いるズームレンズに対しては、複数段からなる鏡胴の大型化を避けるために、レンズ径(最大光線有効径)を小さくすることも重要である。
【0004】
デジタルカメラ用のズームレンズには多くの種類が考えられるが、小型化に適したタイプとして、物体側より順に、負の焦点距離を持つ第1群と、正の焦点距離を持つ第2群と、正の焦点距離を持つ第3群とを有し、第2群の物体側に第2群と一体に移動する絞りを有しており、短焦点端から長焦点端への変倍に際して、第2群は像側から物体側へと単調に移動し、第1群は変倍に伴う像面位置の変動を補正するように移動するものがある。例えば、特開平10−39214号や、特開平11−287953号、特開2000−89110号等に記載のものである。
【0005】
特開平10−39214号は上記のタイプとして最も早い出願であり、基本的な構成は全て開示されているが、小型化という面では十分な構成要件を有していない。これを改良し小型化を進めたものとして、特開平11−287953号や特開2000−89110号がある。
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来例では、第1群の各レンズおよび各面のパワー配置が第1群のレンズ径(最大光線有効径)を小さくするのに適しておらず、十分な小径化がなされていない。
【0007】
本発明は、以上の点に鑑みてなされたものであり、高性能でありながら十分に小型であり、特に第1群のレンズ径(最大光線有効径)が小さいズームレンズ、カメラ及び携帯情報端末装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明のような、負正正の3群で構成されるズームレンズは、一般に、短焦点端から長焦点端への変倍に際して、第2群が像側から物体側へと単調に移動し、第1群が変倍に伴う像面位置の変動を補正するように移動する。変倍機能の大半は第2群が負っており、第3群は主として像面から射出瞳を遠ざけるために設けられている。
【0009】
このようなズームレンズでは、短焦点端における軸外光束が第1群の最も物体側の面で最も光軸から離れる。よって、短焦点端における第1群の最も物体側の面の光線有効径で、ズームレンズ全体の最大外径が決まる。つまり、本タイプのズームレンズのレンズ径を小さくすることは、第1群の最も物体側の面における軸外光束の光線高さを小さくすることに他ならない。
【0010】
第1群の最も物体側の面における軸外光束の光線高さを小さくするためには、第1群の中で物体側に負の屈折力を、像側に正の屈折力を配置し、それぞれの屈折力を強めれば良い。しかし、無闇に屈折力を強めることは、収差補正を困難にし、結像性能の劣化を招いてしまう。
【0011】
そこで、本発明においては、第1群を物体側から順に、物体側に凸面を向けた負メニスカスレンズと、像側に曲率の大きな面を向けた負メニスカスレンズと、物体側に曲率の大きな面を向けた正レンズの3枚とし、第1群の負メニスカスレンズの像側面の少なくとも一面が非球面であって、かつ、以下の条件式を満足するように構成した。
−0.05<(Y’/R6)<0.05
ただし、R6は第1群の正レンズの像側の面の曲率半径、Y’は最大像高を表す。さらに、第1群をより小径化するために、以下の条件式を満足するように構成した。
−1.5<(f L3 /f G1 )<−1.0
ただし、f L3 は第1群の正レンズの焦点距離、f G1 は第1群の焦点距離を表す。
【0012】
( Y'/ R6 ) が0.05 以上になると、第1群の最も像側に比較的強い負の屈折力が存在することになり、第1群の最も物体側の面における軸外光束の光線高さを小さくすることが困難となる。従来例はことごとく ( Y'/ R6 ) が0.05を超えており、第1群の十分な小径化がなされていない。一方、( Y'/ R6 ) が-0.05以下になると、像面湾曲が発生しやすくなり、軸外性能の確保が困難となる。
【0013】
軸外光線の屈折角が大きな面を非球面とすることにより、特に短焦点端における歪曲収差を抑制することが可能となるし、長焦点端では光束も太くなるため、球面収差、コマ収差の補正にも効果がある。なお、非球面を2番目の負メニスカスレンズに設ければ、最も物体側の負メニスカスレンズに設ける場合に比べて、非球面レンズの外径が小さくなるため、加工およびコストの面で有利となる。つまり、第1群の最も像側の面を、正、負に係わらず弱い屈折力とするとともに、第1群の負メニスカスレンズの像側面の少なくとも一面を非球面とすることにより、第1群の十分な小径化と、収差の良好な補正を両立し得るのである。
【0014】
また、(f L3 /f G1 )を−1.5 より大きくすることにより、第1群の像側に十分に強い正の屈折力が配置されることになり、第1群の最も物体側の面における軸外光束の光線高さを小さくするのに有利となる。ただし、(f L3 /f G1 ) が−1.0以上となると、屈折力が強くなりすぎ、収差補正が困難となる。
【0015】
なお、実際のレンズ加工、測定を考慮した場合、第1群の正レンズの像側の面は平面であること、つまり、( Y'/ R6 ) = 0 であることが望ましい(請求項2)。片側が平面のいわゆる平凸レンズとすることにより、平面側の原器が不要となったり、リセス加工用の研磨皿に曲率を付ける必要がなくなったりするメリットがある。また、曲率半径のあまり大きな面は、一般的な干渉計のリファレンス光とのマッチングが悪く面精度の測定が困難であるが、平面とすることによりリファレンス光も平面波となるため、面精度の測定も容易となる。
【0017】
また、第1群の2番目の負メニスカスレンズの像側の面を非球面とする場合には、以下の条件式を満足することが望ましい(請求項)。
0.7<(fL1/fL2)<2.0
ただし、fL1は第1群の最も物体側の負メニスカスレンズの焦点距離、fL2は第1群の2番目の負レンズの焦点距離を表す。この条件式は、2枚の負レンズのパワーの比を表すものであるが、(fL1/fL2)が2.0 以上になると、非球面を有する2番目の負レンズのパワーが強くなり、非球面の製作誤差による結像性能への影響が大きくなる他、レンズの中心と周辺の肉厚差が大きくなって、このレンズを成型(モールド)により作成する場合の難度が高くなってしまう。一方、(fL1/fL2)が0.7以下になると、非球面を有する2番目の負レンズのパワーが弱くなり、像側の面における軸外光線の屈折角が小さくなるため、非球面の効果が薄れてしまう。なお、さらに望ましくは、以下の条件式を満足するのが良い。
0.7<(fL1/fL2)<1.5
【0018】
第1群の小径化を優先し、各レンズの屈折力がある程度強まると、鏡枠への組み付け時に発生するレンズ同士の光軸のずれによる結像性能の劣化が大きくなる傾向にある。このように偏心誤差感度が高い状態となった場合には、第1群中の負レンズと正レンズとの相対的な偏心を調整可能とすることが望ましい(請求項)。本発明では、正レンズの屈折力を強め、また、負レンズに非球面を設けることによって、負レンズと正レンズとの間の収差のやりとりが増加しており、特に負レンズと正レンズとの相対的な偏心の影響が大きくなるため、ここを調整するのが最も効果が大きい。特に、2番目の負メニスカスレンズの像側面が非球面である場合には、正レンズの物体側面との間にできる空気レンズに収差補正上の役割が大きいため、非球面軸の上に、正レンズの物体側面の球心が位置するように調整を行うのが良い。
【0019】
また、第1群中の負レンズと正レンズとの相対的な偏心の調整を簡単に行うためには、正レンズを固定とし、2枚の負レンズを光軸と直交する方向に可動とすることが望ましい(請求項)。また、2枚の負レンズを一体的に調整可能とすることが望ましい(請求項)。例えば、図25に示すように、正の第3レンズL3を固定枠21に組み付けておき、いずれも負の第1レンズL1と第2レンズL2とを一体的に組み付けた調整枠22を、固定枠21に対して可動とする構成が考えられる。このような構成とすることにより、可動部がズームレンズの最も物体側に位置することになるため、外部からこれを調整することや、調整後に接着等によって固定することが容易となる。なお、図25中、符号23は固定枠21と第3レンズL3との接着部分、符号22aはカシメ、符号24は調整後の接着部分である。上記ズームレンズをカメラや携帯情報端末装置の撮影用光学系として組み込むことにより、高画質で小型のカメラや携帯情報端末装置を得ることができる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
図1は本発明の数値実施例1のズームレンズの構成を示す断面図、図2は本発明の数値実施例2のズームレンズの構成を示す断面図、図3は本発明の数値実施例3のズームレンズの構成を示す断面図で、図4は本発明の数値実施例4のズームレンズの構成を示す断面図、図5は本発明の数値実施例5のズームレンズの構成を示す断面図で、図6は本発明の数値実施例6のズームレンズの構成を示す断面図である。
【0021】
本発明の数値実施例1から数値実施例6に係るズームレンズは、物体側より順に、負の焦点距離を持つ第1群G1と、正の焦点距離を持つ第2群G2と、正の焦点距離を持つ第3群G3とを有し、第2群G2の物体側に第2群G2と一体に移動する絞りSを有しており、短焦点端から長焦点端への変倍に際して、第2群G2は像側から物体側へと単調に移動し、第1群G1は変倍に伴う像面位置の変動を補正するように移動するズームレンズであって、さらに、それぞれ以下のような特徴を持つものである。
【0022】
数値実施例1から数値実施例6に係るズームレンズは、第1群G1が物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に曲率の大きな面を向けた正レンズL3の3枚からなり、第1群G1の負メニスカスレンズL2の像側の面が非球面であって、R6を第1群G1の正レンズL3の像側の面の曲率半径、Y'を最大像高とするとき、以下の条件式を満足することを特徴とする。
-0.05 < ( Y'/ R6 ) < 0.05
【0023】
この条件式において、数値実施例3、5、6の如く特に( Y'/ R6 )=0である場合、即ち第1群G1の正レンズL3の像側の面が平面である場合には、平面側の原器が不要となったり、リセス加工用の研磨皿に曲率を付ける必要がなくなったりするメリットがある。また、平面とすることにより一般的な干渉計のリファレンス光も平面波となるため、面精度の測定も容易となる。
【0024】
数値実施例1から数値実施例6のズームレンズは、fL3を第1群G1の正レンズL3の焦点距離、fG1を第1群G1の焦点距離とするとき、以下の条件式を満足することを特徴とする。
-1.5 < ( fL3 / fG1 ) < -1.0
【0025】
数値実施例1から数値実施例6のズームレンズは、第1群G1の2番目の負メニスカスレンズL2の像側の面が非球面であり、fL1 を第1群G1の最も物体側の負メニスカスレンズL1の焦点距離、fL2 を第1群G1の2番目の負レンズL2の焦点距離とするとき、以下の条件式を満足することを特徴とする。
0.7 < ( fL1 / fL2 ) < 2.0
【0026】
数値実施例1から数値実施例6のズームレンズは、第1群G1中の負レンズL1、L2と正レンズL3との相対的な偏心を調整可能としたことを特徴とする。また、第1群G1中の負レンズL1、L2と正レンズL3との相対的な偏心の調整は、正レンズL3を固定とし、2枚の負レンズL1、L2を光軸と直交する方向に可動とすることにより行われることを特徴とする。
【0027】
以下に本発明のズームレンズの具体的な数値実施例を示す。各実施例の収差は十分に補正されており、200万画素〜300万画素の受光素子に対応することが可能となっている。本発明のようにズームレンズを構成することで、十分な小型化を達成しながら非常に良好な結像性能を確保し得ることは、実施例より明らかである。
【0028】
実施例における記号の意味は以下の通りである。
f は全系の焦点距離、F はFナンバ、ωは半画角、R は曲率半径、D は面間隔、Ndは屈折率、νdはアッベ数、K は非球面の円錐定数、A4 は4次の非球面係数、A6 は6次の非球面係数、A8 は8次の非球面係数、A10は10次の非球面係数、A12は12次の非球面係数、A14は14次の非球面係数、A16は16次の非球面係数、A18は18次の非球面係数である。また、*は非球面を表している。
ただし、ここで用いられる非球面は、近軸曲率半径の逆数(近軸曲率)をC 、光軸からの高さをHとするとき、以下の式で定義される。
X={CH2/1+√(1-(1+K)C2H2)}+A4・H4+A6・H6+A8・H8+A10・H10+A12・H12+A14・H14+A16・H16+A18・H18
【0029】
(数値実施例1)
f = 4.33〜10.28、F = 2.73〜4.10、ω = 40.29〜18.97

Figure 0004555522
第4面の非球面係数;
K = 0.0、A4 = -1.37618×10-3、A6 = -5.03401×10-5、A8 = 1.57384×10-6、A10 = -2.30976×10-7、A12 = -3.26464×10-9、A14 = 4.00882×10-10、A16 = 1.97709×10-11、A18 = -1.97909×10-12
第8面の非球面係数;
K = 0.0、A4 = -3.10301×10-4、A6 = -9.60865×10-6、A8 = 1.38603×10-6、A10 = -1.17724×10-7
第12面の非球面係数;
K = 0.0、A4 = 4.87200×10-4、A6 = 4.48027×10-5、A8 = -1.67451×10-6、A10 = 4.32123×10-7
第13面の非球面係数;
K = 0.0、A4 = -2.44272×10-4、A6 = 2.13490×10-5、A8 = -1.60140×10-6、A10 = 5.24693×10-8
可変間隔
Figure 0004555522
条件式数値
( Y'/ R6 ) = 0.0
( fL3 / fG1 ) = -1.12
( fL1 / fL2 ) = 1.29
【0030】
(数値実施例2)
f = 4.33〜10.28、F = 2.67〜4.03、ω = 40.31〜18.96
Figure 0004555522
第4面の非球面係数;
K = 0.0、A4 = -1.52225×10-3、A6 = -4.90276×10-5、A8 = -3.89047×10-7、A10 = 1.40729×10-7、A12 = -3.52907×10-8、A14 = 1.18808×10-9、A16 = 5.42840×10-11、A18 = -3.71221×10-12
第8面の非球面係数;
K = 0.0、A4 = -2.57172×10-4、A6 = -1.36917×10-5、A8 = 2.21542×10-6、A10 = -1.81900×10-7
第13面の非球面係数;
K = 0.0、A4 = 8.29889×10-4、A6 = 4.54452×10-5、A8 = -2.92852×10-7、A10 = 3.36336×10-7
第14面の非球面係数;
K = 0.0、A4 = -2.39053×10-4、A6 = 2.27231×10-5、A8 = -1.86944×10-6、A10 = 6.13185×10-8
可変間隔
Figure 0004555522
条件式数値
( Y'/ R6 ) = -0.0283
( fL3 / fG1 ) = -1.09
( fL1 / fL2 ) = 1.29
【0031】
(数値実施例3)
f = 4.33〜10.30、F = 2.71〜4.04、ω = 40.29〜18.95
Figure 0004555522
第4面の非球面係数;
K = 0.0、A4 = -1.27929×10-3、A6 = -4.75375×10-5、A8 = 1.78640×10-6、A10 = -2.09707×10-7、A12 = -3.99557×10-9、A6 = 8.29203×10-10、A8 = -2.46067×10-11、A10 = -3.28212×10-13
第8面の非球面係数;
K = 0.0、A4 = -2.23927×10-4、A6 = -9.69866×10-6、A8 = 1.89347×10-6、A10 = -1.43145×10-7
第13面の非球面係数;
K = 0.0、A4 = 8.10959×10-4、A6 = 4.46654×10-5、A8 = -1.33415×10-6、A10 = 3.10407×10-7
第14面の非球面係数;
K = 0.0、A4 = -2.22347×10-4、A6 = 2.09486×10-5、A8 = -1.79477×10-6、A10 = 6.32978×10-8
可変間隔
Figure 0004555522
条件式数値
( Y'/ R6 ) = 0.0
( fL3 / fG1 ) = -1.21
( fL1 / fL2 ) = 1.29
【0032】
(数値実施例4)
f = 4.33〜10.28、F = 2.70〜4.03、ω = 40.29〜18.97
Figure 0004555522
第4面の非球面係数;
K = 0.0、A4 = -1.18340×10-3、A6 = -5.15513×10-5、A8 = 2.55275×10-6、A10 = -2.44284×10-7
A12 = -3.45686×10-9、A14 = 1.00396×10-9、A16 = -4.09624×10-11、A18 = 2.60442×10-13
第8面の非球面係数;
K = 0.0、A4 = -2.06641×10-4、A6 = -6.64406×10-6、A8 = 1.79604×10-6、A10 = -1.27500×10-7
第13面の非球面係数;
K = 0.0、A4 = 1.00672×10-3、A6 = 5.77600×10-5、A8 = -1.35110×10-6、A10 = 4.73799×10-7
第14面の非球面係数;
K = 0.0、A4 = -2.40787×10-4、A6 = 3.74236×10-5、A8 = -3.77197×10-6、A10 = 1.38975×10-7
可変間隔
Figure 0004555522
条件式数値
( Y'/ R6 ) = 0.0457
( fL3 / fG1 ) = -1.40
( fL1 / fL2 ) = 0.851
【0033】
(数値実施例5)
f = 4.33〜10.18、F = 2.73〜4.00、ω = 40.30〜19.19
Figure 0004555522
第4面の非球面係数;
K = 0.0、A4 = -1.29720×10-3、A6 = -5.09824×10-5、A8 = 1.81023×10-6、A10 = -2.10769×10-7
A12 = -4.76553×10-9、A14 = 8.28677×10-10、A16 = -2.46190×10-11、A18 = -4.19978×10-13
第8面の非球面係数;
K = 0.0、A4 = -1.98718×10-4、A6 = -9.47779×10-6、A8 = 2.05528×10-6、A10 = -1.77908×10-7
第15面の非球面係数;
K = 0.0、A4 = 5.86592×10-4、A6 = 3.85335×10-5、A8 = -2.22078×10-6、A10 = 1.73297×10-7
第16面の非球面係数;
K = 0.0、A4 = -1.97840×10-4、A6 = 1.55183×10-5、A8 = -1.27195×10-6、A10 = 4.39912×10-8
可変間隔
Figure 0004555522
条件式数値
( Y'/ R6 ) = 0.0
( fL3 / fG1 ) = -1.12
( fL1 / fL2 ) = 1.42
【0034】
(数値実施例6)
f = 4.33〜10.19、F = 2.67〜4.01、ω = 40.70〜19.11
Figure 0004555522
第4面の非球面係数;
K = 0.0、A4 = -1.78480×10-3、A6 = 2.57794×10-6、A8 = -1.85124×10-5、A10 = 2.70432×10-6
A12 = -2.20540×10-7、A14 = 4.63624×10-9、A16 = 3.18005×10-10、A18 = -1.58854×10-11
第8面の非球面係数;
K = 0.0、A4 = -2.95071×10-4、A6 = -3.13869×10-5、A8 = 5.35642×10-6、A10 = -4.09858×10-7
第15面の非球面係数;
K = 0.0、A4 = -3.31876×10-4、A6 = 2.64955×10-5、A8 = -1.99490×10-6、A10 = 5.74717×10-8
可変間隔
Figure 0004555522
条件式数値
( Y'/ R6 ) = 0.0
( fL3 / fG1 ) = -1.19
( fL1 / fL2 ) = 1.45
【0035】
図7〜図9に順次、数値実施例1に関する収差曲線図を示す。図7は短焦点端、図8は中間焦点距離、図9は長焦点端に関するものである。図10〜図12に順次、数値実施例2に関する収差曲線図を示す。図10は短焦点端、図11は中間焦点距離、図12は長焦点端に関するものである。図13〜図15に順次、数値実施例3に関する収差曲線図を示す。図13は短焦点端、図14は中間焦点距離、図15は長焦点端に関するものである。図16〜図18に順次、数値実施例4に関する収差曲線図を示す。図16は短焦点端、図17は中間焦点距離、図18は長焦点端に関するものである。図19〜図21に順次、数値実施例5に関する収差曲線図を示す。図19は短焦点端、図20は中間焦点距離、図21は長焦点端に関するものである。図22〜図24に順次、数値実施例6に関する収差曲線図を示す。図22は短焦点端、図23は中間焦点距離、図24は長焦点端に関するものである。なお、図7〜図24の収差曲線図の球面収差図中で破線は正弦条件を表す。また、図7〜図24の収差曲線図の非点収差図中で実線はサジタル、破線はメリディオナルを表す。
【0036】
最後に、図26および図27を参照して、携帯情報端末装置としてのデジタルカメラの一実施例を示す。
デジタルカメラは、撮影レンズ1と受光素子(エリアセンサ)2とを有し、撮影レンズ1によって形成される撮影対象物の像を受光素子2上によって読み取るように構成されている。この撮影レンズ1としては、上記数値実施例1〜6の何れかのズームレンズを用いることができる。
【0037】
受光素子2からの出力は中央演算装置3の制御を受ける信号処理装置5によって処理され、デジタル情報に変換される。信号処理装置5によってデジタル化された画像情報は、中央演算装置3の制御を受ける画像処理装置4において所定の画像処理を受けた後、半導体メモリ6に記録される。液晶モニタ7には撮影中の画像を表示することもできるし、半導体メモリ6に記録されている画像を表示することもできる。また、半導体メモリ6に記録した画像は通信カード8等を使用して外部へ送信することも可能である。
【0038】
撮影レンズ1はカメラの携帯時には図26(A)に示すように沈胴状態にあり、図26(C)に示すようにユーザが電源スイッチ11を操作して電源を入れると、図26(B)に示すように鏡胴が繰り出される。このとき、撮影レンズ1の鏡胴の内部で前記ズームレンズの各群は例えば短焦点端の配置となっており、ズームレバー12を操作することで各群の配置が変化し、長焦点端への変倍を行うことができる。このとき、ファインダ13も撮影レンズ1の画角の変化に連動して変倍する。
【0039】
シャッタボタン14の半押しによりフォーカシングがなされる。撮影レンズ1のズームレンズにおいて、フォーカシングは第1群G1または第3群G3の移動、もしくは、受光素子2の移動によって行うことができる。シャッタボタン14をさらに押し込むと撮影がなされ、その後は既述の処理がなされる。
【0040】
半導体メモリ6に記録した画像を液晶モニタ7に表示したり、通信カード8等を使用して外部へ送信する際は、操作ボタン9を使用して行う。半導体メモリ6および通信カード8等は、それぞれ専用または汎用のスロットに挿入して使用される。本実施例では、半導体メモリ6を挿入するメモリカードスロット6aと通信カード8を挿入する通信カードスロット8aとを備えている。なお、符号15はフラッシュである。
【0041】
以上に説明したようなカメラ(携帯情報端末装置)には、数値実施例1〜数値実施例6のズームレンズを撮影レンズとして使用することができる。よって、200万画素〜300万画素クラスの受光素子2を使用した高画質で小型のカメラ(携帯情報端末装置)を実現できる。
なお、本発明は上記実施例に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。
【0042】
【発明の効果】
以上説明したように、請求項1に記載の発明によれば、高性能でありながら十分に小型であり、特に第1群のレンズ径(最大光線有効径)が小さいズームレンズを提供することができるため、高画質で小型のカメラ(携帯情報端末装置)を実現するとともに、よりレンズ径(最大光線有効径)の小さいズームレンズを提供することができるため、より小型のカメラ(携帯情報端末装置)を実現することができる。
【0043】
請求項2に記載の発明によれば、請求項1に記載のズームレンズを構成するレンズ部品の加工、検査を簡単にすることができるため、製造コストが低減され、カメラ(携帯情報端末装置)の低価格化に寄与することができる。
【0045】
請求項に記載の発明によれば、加えて広画角化に適した高性能なズームレンズを提供することができるため、広い範囲を撮影することができる小型のカメラ(携帯情報端末装置)を実現することができる。
【0046】
請求項に記載の発明によれば、小型化を進めることで第1群内の偏心誤差感度が高まっても、安定した性能を得ることを可能とするための調整手段を有するズームレンズを提供することができるため、より高画質で小型のカメラ(携帯情報端末装置)を実現することができる。
【0047】
請求項に記載の発明によれば、第1群内の偏心誤差感度が高まっても安定した性能を得ることを可能とするとともに、ズームレンズの物体側から第1群の物体側レンズを調整することができより簡単な調整手段を提供することができるため、さらに小型で低コストのカメラ(携帯情報端末装置)を実現することができる。
【0048】
請求項に記載の発明によれば、第1群の負レンズを一体的に固定側の正レンズに対して調整できるので、調整を容易且つ高精度に行うことができる。
【0049】
請求項に記載の発明によれば、高性能でありながら十分に小型のズームレンズを撮影光学系として使用した、小型で高画質のカメラを提供することができるため、ユーザは携帯性に優れたカメラで高画質な画像を撮影することができる。
【0050】
請求項に記載の発明によれば、高性能でありながら十分に小型のズームレンズをカメラ機能部の撮影光学系として使用した、小型で高画質の携帯情報端末装置を提供することができるため、ユーザは携帯性に優れた携帯情報端末装置で高画質な画像を撮影し、その画像を外部へ送信したりすることができる。
【図面の簡単な説明】
【図1】図1は本発明の数値実施例1のズームレンズの構成を示す断面図である。
【図2】図2は本発明の数値実施例2のズームレンズの構成を示す断面図である。
【図3】図3は本発明の数値実施例3のズームレンズの構成を示す断面図である。
【図4】図4は本発明の数値実施例4のズームレンズの構成を示す断面図である。
【図5】図5は本発明の数値実施例5のズームレンズの構成を示す断面図である。
【図6】図6は本発明の数値実施例6のズームレンズの構成を示す断面図である。
【図7】図7は本発明の数値実施例1のズームレンズの短焦点端における収差曲線図である。
【図8】図8は本発明の数値実施例1のズームレンズの中間焦点距離における収差曲線図である。
【図9】図9は本発明の数値実施例1のズームレンズの長焦点端における収差曲線図である。
【図10】図10は本発明の数値実施例2のズームレンズの短焦点端における収差曲線図である。
【図11】図11は本発明の数値実施例2のズームレンズの中間焦点距離における収差曲線図である。
【図12】図12は本発明の数値実施例2のズームレンズの長焦点端における収差曲線図である。
【図13】図13は本発明の数値実施例3のズームレンズの短焦点端における収差曲線図である。
【図14】図14は本発明の数値実施例3のズームレンズの中間焦点距離における収差曲線図である。
【図15】図15は本発明の数値実施例3のズームレンズの長焦点端における収差曲線図である。
【図16】図16は本発明の数値実施例4のズームレンズの短焦点端における収差曲線図である。
【図17】図17は本発明の数値実施例4のズームレンズの中間焦点距離における収差曲線図である。
【図18】図18は本発明の数値実施例4のズームレンズの長焦点端における収差曲線図である。
【図19】図19は本発明の数値実施例5のズームレンズの短焦点端における収差曲線図である。
【図20】図20は本発明の数値実施例5のズームレンズの中間焦点距離における収差曲線図である。
【図21】図21は本発明の数値実施例5のズームレンズの長焦点端における収差曲線図である。
【図22】図22は本発明の数値実施例6のズームレンズの短焦点端における収差曲線図である。
【図23】図23は本発明の数値実施例6のズームレンズの中間焦点距離における収差曲線図である。
【図24】図24は本発明の数値実施例6のズームレンズの長焦点端における収差曲線図である。球面収差の図中の破線は正弦条件を表す。非点収差の図中の実線はサジタル、破線はメリディオナルを表す。
【図25】図25は本発明に係る、第1群の偏心調整機構の一実施形態を示す断面図である。
【図26】図26は本発明に係る、カメラ(携帯情報端末装置)としての一実施形態を示すデジタルカメラの外観図であり、(A)は携帯時の正面側の斜視図、(B)は鏡筒が繰り出された状態を示す図、(C)は裏面側の斜視図である。
【図27】図27は図26のデジタルカメラの回路構成を示すブロック図である。
【符号の説明】
G1 第1群
G2 第2群
G3 第3群
L1 第1レンズ(負メニスカスレンズ)
L2 第2レンズ(負メニスカスレンズ)
L3 第3レンズ(正レンズ)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a zoom photographing lens used for a digital camera, a video camera, etc., a camera equipped with the zoom photographing lens, and a portable information terminal device, and can also be applied as a zoom photographing lens used for a silver salt camera.
[0002]
[Prior art]
The market for digital cameras is very large, and the demands of users for digital cameras are diverse. In particular, high image quality and miniaturization are always desired by users, and the weight is large. Therefore, a zoom lens used as a photographing lens is also required to have both high performance and downsizing.
[0003]
Here, in terms of miniaturization, first, it is necessary to shorten the entire lens length (the distance from the lens surface closest to the object side to the image plane). Furthermore, for zoom lenses used in so-called retractable cameras, it is also important to reduce the lens diameter (maximum effective beam diameter) in order to avoid an increase in the size of the lens barrel having a plurality of stages.
[0004]
There are many types of zoom lenses for digital cameras, but as types suitable for miniaturization, in order from the object side, a first group having a negative focal length, and a second group having a positive focal length, A third lens unit having a positive focal length, and an aperture that moves integrally with the second lens unit on the object side of the second lens unit, and at the time of zooming from the short focal point to the long focal point, The second group moves monotonically from the image side to the object side, and the first group moves so as to correct fluctuations in the image plane position due to zooming. For example, those described in JP-A-10-39214, JP-A-11-287953, JP-A-2000-89110, and the like.
[0005]
Japanese Patent Application Laid-Open No. 10-39214 is the earliest application as the above-mentioned type, and all basic configurations are disclosed, but it does not have sufficient configuration requirements in terms of miniaturization. Japanese Patent Application Laid-Open Nos. 11-287953 and 2000-89110 are examples in which this has been improved and miniaturized.
[0006]
[Problems to be solved by the invention]
However, in the above-described conventional example, the power arrangement of each lens and each surface of the first group is not suitable for reducing the lens diameter (maximum effective beam diameter) of the first group, and the diameter is not sufficiently reduced. .
[0007]
The present invention has been made in view of the above points, and is a zoom lens, a camera, and a portable information terminal that have high performance and are sufficiently small and have a particularly small lens diameter (maximum effective beam diameter) of the first group. The object is to provide a device.
[0008]
[Means for Solving the Problems]
In a zoom lens composed of three negative and positive groups as in the present invention, the second group generally moves monotonically from the image side to the object side during zooming from the short focal end to the long focal end. The first group moves so as to correct the fluctuation of the image plane position accompanying the zooming. Most of the zooming function is borne by the second group, and the third group is provided mainly to keep the exit pupil away from the image plane.
[0009]
In such a zoom lens, the off-axis light beam at the short focal end is farthest from the optical axis on the most object side surface of the first group. Accordingly, the maximum outer diameter of the entire zoom lens is determined by the effective ray diameter of the surface closest to the object side of the first group at the short focal end. That is, reducing the lens diameter of this type of zoom lens is nothing but reducing the height of the off-axis light beam on the most object-side surface of the first group.
[0010]
In order to reduce the height of the off-axis light beam on the most object-side surface of the first group, a negative refractive power is disposed on the object side and a positive refractive power is disposed on the image side in the first group. What is necessary is just to strengthen each refractive power. However, increasing the refractive power without darkness makes it difficult to correct aberrations, leading to degradation of imaging performance.
[0011]
  Therefore, in the present invention, in order from the object side to the first group, the negative meniscus lens having a convex surface facing the object side, the negative meniscus lens having a large curvature surface facing the image side, and the surface having a large curvature facing the object side. The first lens group has a negative meniscus lens and at least one of the image side surfaces is aspherical, and satisfies the following conditional expression.
−0.05 <(Y ′ / R6) <0.05
  However, R6 represents the radius of curvature of the image-side surface of the positive lens in the first group, and Y 'represents the maximum image height.Furthermore, in order to reduce the diameter of the first group, the following conditional expression is satisfied.
−1.5 <(f L3 / F G1 <1.0
  Where f L3 Is the focal length of the first lens group positive lens, f G1 Represents the focal length of the first group.
[0012]
(Y '/ R6 ) Is 0.05 or more, a relatively strong negative refractive power exists on the most image side of the first group, and the ray height of the off-axis light beam on the most object side surface of the first group is reduced. It becomes difficult. All the conventional examples (Y '/ R6 ) Exceeds 0.05, and the first group has not been sufficiently reduced in diameter. On the other hand, (Y '/ R6 ) Becomes −0.05 or less, field curvature tends to occur, and it becomes difficult to ensure off-axis performance.
[0013]
  By making the surface with a large refraction angle of off-axis rays an aspherical surface, it becomes possible to suppress distortion, particularly at the short focal end, and the luminous flux becomes thick at the long focal end. The correction is also effective. If an aspherical surface is provided on the second negative meniscus lens, the outer diameter of the aspherical lens is smaller than that provided on the most negative meniscus lens, which is advantageous in terms of processing and cost. .In other words, the most image-side surface of the first group has a weak refractive power regardless of whether it is positive or negative, and at least one of the image side surfaces of the negative meniscus lens of the first group is an aspheric surface. Therefore, it is possible to achieve both a sufficiently small diameter and a good correction of aberration.
[0014]
  Also, (f L3 / F G1 ) Larger than −1.5, a sufficiently strong positive refractive power is arranged on the image side of the first group, and the ray height of the off-axis light beam on the most object side surface of the first group. It is advantageous to reduce the thickness. However, (f L3 / F G1 ) Becomes −1.0 or more, the refractive power becomes too strong, making it difficult to correct aberrations.
[0015]
When actual lens processing and measurement are taken into consideration, the image side surface of the first group of positive lenses is a plane, that is, (Y '/ R6 ) = 0 (claim 2). By using a so-called plano-convex lens having a flat surface on one side, there is an advantage that a flat plate is not necessary, or it is not necessary to provide a curvature in a polishing dish for recessing. In addition, it is difficult to measure the surface accuracy of a surface with a very large radius of curvature due to poor matching with the reference light of a general interferometer. Will also be easier.
[0017]
  In addition, when the image side surface of the second negative meniscus lens in the first group is an aspherical surface, it is desirable that the following conditional expression is satisfied.3).
0.7 <(fL1/ FL2<2.0
  Where fL1Is the focal length of the negative meniscus lens closest to the object in the first group, fL2Represents the focal length of the second negative lens of the first group. This conditional expression expresses the ratio of the power of two negative lenses.L1/ FL2) Becomes 2.0 or more, the power of the second negative lens having an aspheric surface becomes strong, and the influence on the imaging performance due to the manufacturing error of the aspheric surface becomes large, and the thickness difference between the center and the periphery of the lens Becomes large, and the degree of difficulty in producing this lens by molding becomes high. On the other hand, (fL1/ FL2) Is 0.7 or less, the power of the second negative lens having an aspheric surface becomes weak, and the refraction angle of off-axis rays on the image-side surface becomes small. More preferably, the following conditional expression should be satisfied.
0.7 <(fL1/ FL2<1.5
[0018]
  If priority is given to reducing the diameter of the first group and the refractive power of each lens is increased to some extent, the image forming performance tends to be greatly deteriorated due to the deviation of the optical axes of the lenses that occur during assembly into the lens frame. When the decentration error sensitivity becomes high in this way, it is desirable that the relative decentration of the negative lens and the positive lens in the first lens group can be adjusted.4). In the present invention, the exchange of aberration between the negative lens and the positive lens is increased by increasing the refractive power of the positive lens and providing the negative lens with an aspheric surface, and in particular, between the negative lens and the positive lens. Since the influence of relative eccentricity becomes large, it is most effective to adjust here. In particular, when the image side surface of the second negative meniscus lens is aspheric, the air lens formed between the positive lens and the object side has a large role in correcting aberrations. Adjustment is preferably performed so that the spherical center of the object side surface of the lens is located.
[0019]
  In order to easily adjust the relative decentration between the negative lens and the positive lens in the first lens group, the positive lens is fixed and the two negative lenses are movable in a direction perpendicular to the optical axis. (Claims)5). In addition, it is desirable that the two negative lenses can be adjusted integrally.6). For example, as shown in FIG. 25, the positive third lens L3 is assembled to the fixed frame 21, and the adjustment frame 22 in which the negative first lens L1 and the second lens L2 are assembled together is fixed. A configuration in which the frame 21 is movable is conceivable. By adopting such a configuration, the movable portion is positioned closest to the object side of the zoom lens, so that it is easy to adjust this from the outside, or to fix it by adhesion or the like after adjustment. In FIG. 25, reference numeral 23 denotes an adhesion portion between the fixed frame 21 and the third lens L3, reference numeral 22a denotes caulking, and reference numeral 24 denotes an adjusted adhesion portion. By incorporating the zoom lens as a photographing optical system for a camera or a portable information terminal device, a small camera or portable information terminal device with high image quality can be obtained.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 is a cross-sectional view showing the configuration of a zoom lens according to Numerical Example 1 of the present invention, FIG. 2 is a cross-sectional view illustrating the configuration of a zoom lens according to Numerical Example 2 of the present invention, and FIG. 3 is Numerical Example 3 according to the present invention. FIG. 4 is a cross-sectional view showing the structure of a zoom lens according to Numerical Example 4 of the present invention, and FIG. 5 is a cross-sectional view showing the structure of a zoom lens according to Numerical Example 5 of the present invention. FIG. 6 is a cross-sectional view showing a configuration of a zoom lens according to Numerical Example 6 of the present invention.
[0021]
The zoom lens according to Numerical Example 1 to Numerical Example 6 of the present invention includes, in order from the object side, a first group G1 having a negative focal length, a second group G2 having a positive focal length, and a positive focus. A third lens group G3 having a distance, and an aperture S that moves integrally with the second lens group G2 on the object side of the second lens group G2, and upon zooming from the short focal point to the long focal point, The second group G2 is a zoom lens that moves monotonically from the image side to the object side, and the first group G1 is a zoom lens that moves so as to correct fluctuations in the image plane position due to zooming. It has special characteristics.
[0022]
The zoom lens according to Numerical Example 1 to Numerical Example 6 includes a negative meniscus lens L1 in which the first lens unit G1 has a convex surface directed toward the object side in order from the object side, and a negative meniscus lens L2 with a convex surface directed toward the object side. The image side surface of the negative meniscus lens L2 of the first group G1 is an aspherical surface and is composed of three positive lenses L3 having a large curvature surface facing the object side.6Is the curvature radius of the image side surface of the positive lens L3 of the first lens unit G1, and Y ′ is the maximum image height, the following conditional expression is satisfied.
-0.05 <(Y '/ R6 ) <0.05
[0023]
In this conditional expression, in particular, as in numerical examples 3, 5, and 6 (Y '/ R6 ) = 0, that is, when the image side surface of the positive lens L3 of the first lens group G1 is a flat surface, the flat surface is not necessary, or the polishing dish for recessing is curved. There is an advantage that it is not necessary. In addition, since the reference light of a general interferometer becomes a plane wave by using a flat surface, it is easy to measure the surface accuracy.
[0024]
The zoom lenses of Numerical Example 1 to Numerical Example 6 are fL3Is the focal length of the positive lens L3 of the first lens unit G1, fG1Is the focal length of the first lens group G1, the following conditional expression is satisfied.
-1.5 <(fL3 / fG1 ) <-1.0
[0025]
In the zoom lenses according to Numerical Example 1 to Numerical Example 6, the image-side surface of the second negative meniscus lens L2 in the first group G1 is aspheric, and fL1 Is the focal length of the negative meniscus lens L1 closest to the object side in the first lens group G1, fL2 Is the focal length of the second negative lens L2 of the first lens group G1, the following conditional expression is satisfied.
0.7 <(fL1 / fL2 ) <2.0
[0026]
The zoom lens according to Numerical Example 1 to Numerical Example 6 is characterized in that the relative decentration between the negative lenses L1 and L2 and the positive lens L3 in the first group G1 can be adjusted. The relative decentration of the negative lenses L1, L2 and the positive lens L3 in the first group G1 is adjusted by fixing the positive lens L3 and moving the two negative lenses L1, L2 in a direction perpendicular to the optical axis. It is performed by making it movable.
[0027]
Specific numerical examples of the zoom lens of the present invention are shown below. The aberration in each example is sufficiently corrected, and can be applied to a light receiving element having 2 to 3 million pixels. It is clear from the embodiment that by configuring the zoom lens as in the present invention, a very good imaging performance can be secured while achieving a sufficiently small size.
[0028]
The meanings of the symbols in the examples are as follows.
f is the focal length of the entire system, F is the F number, ω is the half field angle, R is the radius of curvature, D is the surface separation, Nd is the refractive index, νd is the Abbe number, K is the aspherical conic constant, AFourIs the fourth-order aspheric coefficient, A6Is the 6th order aspheric coefficient, A8Is the 8th order aspheric coefficient, ATenIs the 10th-order aspheric coefficient, A12Is the 12th-order aspheric coefficient, A14Is the 14th-order aspheric coefficient, A16Is the 16th order aspheric coefficient, A18Is an 18th-order aspheric coefficient. * Represents an aspherical surface.
However, the aspheric surface used here is defined by the following equation, where C is the reciprocal of the paraxial radius of curvature (paraxial curvature) and H is the height from the optical axis.
X = {CH2/ 1 + √ (1- (1 + K) C2H2)} + AFour・ HFour+ A6・ H6+ A8・ H8+ ATen・ HTen+ A12・ H12+ A14・ H14+ A16・ H16+ A18・ H18
[0029]
(Numerical example 1)
f = 4.33 to 10.28, F = 2.73 to 4.10, ω = 40.29 to 18.97
Figure 0004555522
Aspherical coefficient of the fourth surface;
K = 0.0, AFour= -1.37618 × 10-3, A6= -5.03401 × 10-Five, A8= 1.57384 × 10-6, ATen= -2.30976 × 10-7, A12= -3.26464 × 10-9, A14= 4.00882 × 10-Ten, A16= 1.97709 × 10-11, A18= -1.97909 × 10-12
8th surface aspheric coefficient;
K = 0.0, AFour = -3.10301 × 10-Four, A6= -9.60865 × 10-6, A8= 1.38603 × 10-6, ATen= -1.17724 × 10-7
12th surface aspheric coefficient;
K = 0.0, AFour = 4.87200 × 10-Four, A6= 4.48027 × 10-Five, A8= -1.67451 × 10-6, ATen= 4.32123 × 10-7
Aspherical coefficient of the 13th surface;
K = 0.0, AFour= -2.44272 × 10-Four, A6= 2.13490 × 10-Five, A8= -1.60140 × 10-6, ATen= 5.24693 × 10-8
Variable interval
Figure 0004555522
Conditional expression numerical value
(Y '/ R6 ) = 0.0
(fL3 / fG1 ) = -1.12
(fL1 / fL2 ) = 1.29
[0030]
(Numerical example 2)
f = 4.33 to 10.28, F = 2.67 to 4.03, ω = 40.31 to 18.96
Figure 0004555522
Aspherical coefficient of the fourth surface;
K = 0.0, AFour = -1.52225 × 10-3, A6 = -4.90276 × 10-Five, A8 = -3.89047 × 10-7, ATen = 1.40729 × 10-7, A12 = -3.52907 × 10-8, A14 = 1.18808 × 10-9, A16 = 5.42840 × 10-11, A18 = -3.71221 × 10-12
8th surface aspheric coefficient;
K = 0.0, AFour = -2.57172 × 10-Four, A6 = -1.36917 × 10-Five, A8 = 2.21542 × 10-6, ATen = -1.81900 × 10-7
Aspherical coefficient of the 13th surface;
K = 0.0, AFour = 8.29889 × 10-Four, A6 = 4.54452 × 10-Five, A8 = -2.92852 × 10-7, ATen = 3.36336 × 10-7
14th surface aspheric coefficient;
K = 0.0, AFour = -2.39053 × 10-Four, A6 = 2.27231 × 10-Five, A8 = -1.86944 × 10-6, ATen = 6.13185 × 10-8
Variable interval
Figure 0004555522
Conditional expression numerical value
(Y '/ R6 ) = -0.0283
(fL3 / fG1 ) = -1.09
(fL1 / fL2 ) = 1.29
[0031]
(Numerical Example 3)
f = 4.33 to 10.30, F = 2.71 to 4.04, ω = 40.29 to 18.95
Figure 0004555522
Aspherical coefficient of the fourth surface;
K = 0.0, AFour = -1.27929 × 10-3, A6 = -4.75375 × 10-Five, A8 = 1.78640 × 10-6, ATen = -2.09707 × 10-7, A12 = -3.99557 × 10-9, A6 = 8.29203 × 10-Ten, A8 = -2.46067 × 10-11, ATen = -3.28212 × 10-13
8th surface aspheric coefficient;
K = 0.0, AFour = -2.23927 × 10-Four, A6 = -9.69866 × 10-6, A8 = 1.89347 × 10-6, ATen = -1.43145 × 10-7
Aspherical coefficient of the 13th surface;
K = 0.0, AFour = 8.10959 × 10-Four, A6 = 4.46654 × 10-Five, A8 = -1.33415 × 10-6, ATen = 3.10407 × 10-7
14th surface aspheric coefficient;
K = 0.0, AFour = -2.22347 × 10-Four, A6 = 2.09486 × 10-Five, A8 = -1.79477 × 10-6, ATen = 6.32978 × 10-8
Variable interval
Figure 0004555522
Conditional expression numerical value
(Y '/ R6 ) = 0.0
(fL3 / fG1 ) = -1.21
(fL1 / fL2 ) = 1.29
[0032]
(Numerical example 4)
f = 4.33 to 10.28, F = 2.70 to 4.03, ω = 40.29 to 18.97
Figure 0004555522
Aspherical coefficient of the fourth surface;
K = 0.0, AFour = -1.18340 × 10-3, A6 = -5.15513 × 10-Five, A8 = 2.55275 × 10-6, ATen = -2.44284 × 10-7
A12 = -3.45686 × 10-9, A14 = 1.00396 × 10-9, A16 = -4.09624 × 10-11, A18 = 2.60442 × 10-13
8th surface aspheric coefficient;
K = 0.0, AFour = -2.06641 × 10-Four, A6 = -6.64406 × 10-6, A8 = 1.79604 × 10-6, ATen = -1.27500 × 10-7
Aspherical coefficient of the 13th surface;
K = 0.0, AFour = 1.00672 × 10-3, A6 = 5.77600 × 10-Five, A8 = -1.35110 × 10-6, ATen = 4.73799 × 10-7
14th surface aspheric coefficient;
K = 0.0, AFour = -2.40787 × 10-Four, A6 = 3.74236 × 10-Five, A8 = -3.77197 × 10-6, ATen = 1.38975 × 10-7
Variable interval
Figure 0004555522
Conditional expression numerical value
(Y '/ R6 ) = 0.0457
(fL3 / fG1 ) = -1.40
(fL1 / fL2 ) = 0.851
[0033]
(Numerical example 5)
f = 4.33 to 10.18, F = 2.73 to 4.00, ω = 40.30 to 19.19
Figure 0004555522
Aspherical coefficient of the fourth surface;
K = 0.0, AFour = -1.29720 × 10-3, A6 = -5.09824 × 10-Five, A8 = 1.81023 × 10-6, ATen = -2.10769 × 10-7
A12 = -4.76553 × 10-9, A14 = 8.28677 × 10-Ten, A16 = -2.46190 × 10-11, A18 = -4.19978 × 10-13
8th surface aspheric coefficient;
K = 0.0, AFour = -1.98718 × 10-Four, A6 = -9.47779 × 10-6, A8 = 2.05528 × 10-6, ATen = -1.77908 × 10-7
15th surface aspheric coefficient;
K = 0.0, AFour = 5.86592 × 10-Four, A6 = 3.85335 × 10-Five, A8 = -2.22078 × 10-6, ATen = 1.73297 × 10-7
16th surface aspheric coefficient;
K = 0.0, AFour = -1.97840 × 10-Four, A6 = 1.55183 × 10-Five, A8 = -1.27195 × 10-6, ATen = 4.39912 × 10-8
Variable interval
Figure 0004555522
Conditional expression numerical value
(Y '/ R6 ) = 0.0
(fL3 / fG1 ) = -1.12
(fL1 / fL2 ) = 1.42
[0034]
(Numerical example 6)
f = 4.33 to 10.19, F = 2.67 to 4.01, ω = 40.70 to 19.11
Figure 0004555522
Aspherical coefficient of the fourth surface;
K = 0.0, AFour = -1.78480 × 10-3, A6 = 2.57794 × 10-6, A8 = -1.85124 × 10-Five, ATen = 2.70432 × 10-6
A12 = -2.20540 × 10-7, A14 = 4.63624 × 10-9, A16 = 3.18005 × 10-Ten, A18 = -1.58854 × 10-11
8th surface aspheric coefficient;
K = 0.0, AFour = -2.95071 × 10-Four, A6 = -3.13869 × 10-Five, A8 = 5.35642 × 10-6, ATen = -4.09858 × 10-7
15th surface aspheric coefficient;
K = 0.0, AFour = -3.31876 × 10-Four, A6 = 2.64955 × 10-Five, A8 = -1.99490 × 10-6, ATen = 5.74717 × 10-8
Variable interval
Figure 0004555522
Conditional expression numerical value
(Y '/ R6 ) = 0.0
(fL3 / fG1 ) = -1.19
(fL1 / fL2 ) = 1.45
[0035]
FIG. 7 to FIG. 9 sequentially show aberration curve diagrams regarding the numerical value example 1. FIG. 7 relates to the short focal end, FIG. 8 relates to the intermediate focal length, and FIG. 9 relates to the long focal end. 10 to 12 show aberration curve diagrams regarding the numerical value example 2 in order. 10 relates to the short focal end, FIG. 11 relates to the intermediate focal length, and FIG. 12 relates to the long focal end. FIG. 13 to FIG. 15 show aberration curve diagrams related to Numerical Example 3 in order. 13 relates to the short focal end, FIG. 14 relates to the intermediate focal length, and FIG. 15 relates to the long focal end. FIG. 16 to FIG. 18 sequentially show aberration curves related to Numerical Example 4. 16 relates to the short focal end, FIG. 17 relates to the intermediate focal length, and FIG. 18 relates to the long focal end. 19 to 21 show aberration curve diagrams regarding the numerical value example 5 in order. 19 relates to the short focal end, FIG. 20 relates to the intermediate focal length, and FIG. 21 relates to the long focal end. FIG. 22 to FIG. 24 sequentially show aberration curves related to Numerical Example 6. 22 relates to the short focal end, FIG. 23 relates to the intermediate focal length, and FIG. 24 relates to the long focal end. 7 to 24, the broken line represents the sine condition in the spherical aberration diagrams. Also, in the astigmatism diagrams of the aberration curve diagrams of FIGS. 7 to 24, the solid line represents sagittal and the broken line represents meridional.
[0036]
Finally, an embodiment of a digital camera as a portable information terminal device is shown with reference to FIGS.
The digital camera has a photographic lens 1 and a light receiving element (area sensor) 2, and is configured to read an image of a photographing object formed by the photographic lens 1 on the light receiving element 2. As the photographing lens 1, any of the zoom lenses of the numerical examples 1 to 6 can be used.
[0037]
The output from the light receiving element 2 is processed by a signal processing device 5 under the control of the central processing unit 3 and converted into digital information. The image information digitized by the signal processing device 5 is recorded in the semiconductor memory 6 after undergoing predetermined image processing in the image processing device 4 under the control of the central processing unit 3. An image being shot can be displayed on the liquid crystal monitor 7, and an image recorded in the semiconductor memory 6 can also be displayed. The image recorded in the semiconductor memory 6 can be transmitted to the outside using the communication card 8 or the like.
[0038]
When the camera is carried, the taking lens 1 is in a retracted state as shown in FIG. 26A. When the user operates the power switch 11 to turn on the power as shown in FIG. 26C, FIG. As shown in FIG. At this time, each group of the zoom lens in the lens barrel of the photographing lens 1 has, for example, a short focal end arrangement, and the arrangement of each group changes by operating the zoom lever 12 to the long focal end. Zooming can be performed. At this time, the viewfinder 13 also zooms in conjunction with the change in the angle of view of the taking lens 1.
[0039]
Focusing is performed by half-pressing the shutter button 14. In the zoom lens of the photographic lens 1, focusing can be performed by moving the first group G 1 or the third group G 3 or moving the light receiving element 2. When the shutter button 14 is further pressed, photographing is performed, and thereafter, the processing described above is performed.
[0040]
When an image recorded in the semiconductor memory 6 is displayed on the liquid crystal monitor 7 or transmitted to the outside using the communication card 8 or the like, the operation button 9 is used. The semiconductor memory 6 and the communication card 8 are used by being inserted into dedicated or general-purpose slots, respectively. In this embodiment, a memory card slot 6a for inserting the semiconductor memory 6 and a communication card slot 8a for inserting the communication card 8 are provided. Reference numeral 15 denotes a flash.
[0041]
In the cameras (portable information terminal devices) as described above, the zoom lenses of Numerical Example 1 to Numerical Example 6 can be used as photographing lenses. Therefore, a small camera (personal digital assistant device) with high image quality using the light receiving element 2 of 2 million pixels to 3 million pixels class can be realized.
In addition, this invention is not limited to the said Example. That is, various modifications can be made without departing from the scope of the present invention.
[0042]
【The invention's effect】
  As described above, according to the first aspect of the present invention, it is possible to provide a zoom lens that has high performance and is sufficiently small, and particularly has a small lens diameter (maximum effective beam diameter) of the first group. To achieve a high-quality, compact camera (personal digital assistant)In addition, since a zoom lens having a smaller lens diameter (maximum effective beam diameter) can be provided, a smaller camera (portable information terminal device) can be realized.
[0043]
According to the second aspect of the present invention, it is possible to simplify the processing and inspection of the lens components that constitute the zoom lens according to the first aspect, so that the manufacturing cost is reduced and the camera (portable information terminal device) is reduced. Can contribute to lower prices.
[0045]
  Claim3According to the invention described in (2), since a high-performance zoom lens suitable for widening the angle of view can be provided, a small camera (portable information terminal device) capable of photographing a wide range is realized. be able to.
[0046]
  Claim4According to the invention described in (4), it is possible to provide a zoom lens having an adjusting means for enabling stable performance even if the eccentric error sensitivity in the first lens group is increased by downsizing. Therefore, a smaller camera (personal digital assistant device) with higher image quality can be realized.
[0047]
  Claim5According to the invention described in the above, it is possible to obtain stable performance even when the eccentricity error sensitivity in the first group is increased, and to adjust the object-side lens of the first group from the object side of the zoom lens. Therefore, since it is possible to provide a simpler adjustment means, it is possible to realize an even smaller and low-cost camera (personal digital assistant device).
[0048]
  Claim6Since the negative lens of the first group can be integrally adjusted with respect to the positive lens on the fixed side, the adjustment can be performed easily and with high accuracy.
[0049]
  Claim7According to the invention described in (1), since it is possible to provide a small-sized and high-quality camera that uses a high-performance but sufficiently small zoom lens as a photographing optical system, the user can use a camera with excellent portability. High-quality images can be taken.
[0050]
  Claim8According to the invention described in the above, since a high-performance but sufficiently small zoom lens can be used as a photographing optical system of the camera function unit, a small and high-quality portable information terminal device can be provided. It is possible to take a high-quality image with a portable information terminal device excellent in portability and transmit the image to the outside.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a zoom lens according to Numerical Example 1 of the present invention.
FIG. 2 is a cross-sectional view showing a configuration of a zoom lens according to Numerical Example 2 of the present invention.
FIG. 3 is a cross-sectional view showing a configuration of a zoom lens according to Numerical Example 3 of the present invention.
FIG. 4 is a cross-sectional view showing a configuration of a zoom lens according to Numerical Example 4 of the present invention.
FIG. 5 is a sectional view showing the structure of a zoom lens according to Numerical Example 5 of the present invention.
FIG. 6 is a sectional view showing a configuration of a zoom lens according to Numerical Example 6 of the present invention.
FIG. 7 is an aberration curve diagram at the short focal point of the zoom lens according to Numerical Example 1 of the present invention.
FIG. 8 is an aberration curve diagram at an intermediate focal length of the zoom lens according to Numerical Example 1 of the present invention.
FIG. 9 is an aberration curve diagram at the long focal end of the zoom lens according to Numerical Example 1 of the present invention.
FIG. 10 is an aberration curve diagram at the short focal point of a zoom lens according to Numerical Example 2 of the present invention.
FIG. 11 is an aberration curve diagram at an intermediate focal length of the zoom lens according to Numerical Example 2 of the present invention.
FIG. 12 is an aberration curve diagram at the long focal end of the zoom lens according to Numerical Example 2 of the present invention.
FIG. 13 is an aberration curve diagram at the short focal point of a zoom lens according to Numerical Example 3 of the present invention.
FIG. 14 is an aberration curve diagram at an intermediate focal length of the zoom lens according to Numerical Example 3 of the present invention.
FIG. 15 is an aberration curve diagram at the long focal end of the zoom lens according to Numerical Example 3 of the present invention.
FIG. 16 is an aberration curve diagram at the short focal point of a zoom lens according to Numerical Example 4 of the present invention.
FIG. 17 is an aberration curve diagram at an intermediate focal length of the zoom lens according to Numerical Example 4 of the present invention.
FIG. 18 is an aberration curve diagram at the long focal end of the zoom lens according to Numerical Example 4 of the present invention.
FIG. 19 is an aberration curve diagram at the short focal point of a zoom lens according to Numerical Example 5 of the present invention.
FIG. 20 is an aberration curve diagram at an intermediate focal length of the zoom lens according to Numerical Example 5 of the present invention.
FIG. 21 is an aberration curve diagram at the long focal end of the zoom lens according to Numerical Example 5 of the present invention.
FIG. 22 is an aberration curve diagram at the short focal end of a zoom lens according to Numerical Example 6 of the present invention.
FIG. 23 is an aberration curve diagram at an intermediate focal length of the zoom lens according to Numerical Example 6 of the present invention.
FIG. 24 is an aberration curve diagram at a long focal end of a zoom lens according to Numerical Example 6 of the present invention. The broken line in the spherical aberration diagram represents the sine condition. In the figure of astigmatism, the solid line represents sagittal and the broken line represents meridional.
FIG. 25 is a cross-sectional view showing an embodiment of the first group eccentricity adjusting mechanism according to the present invention.
FIG. 26 is an external view of a digital camera showing an embodiment of a camera (portable information terminal device) according to the present invention, (A) is a perspective view of the front side when being carried, and (B). Is a diagram showing a state in which the lens barrel is extended, (C) is a perspective view of the back side.
27 is a block diagram showing a circuit configuration of the digital camera shown in FIG. 26. FIG.
[Explanation of symbols]
G1 first group
G2 second group
G3 Group 3
L1 1st lens (negative meniscus lens)
L2 Second lens (negative meniscus lens)
L3 Third lens (positive lens)

Claims (8)

物体側より順に、負の焦点距離を持つ第1群と、正の焦点距離を持つ第2群と、正の焦点距離を持つ第3群から構成され、第2群の物体側に第2群と一体に移動する絞りを有しており、短焦点端から長焦点端への変倍に際して、第2群は像側から物体側へと単調に移動し、第1群は変倍に伴う像面位置の変動を補正するように移動するズームレンズにおいて、第1群は物体側から順に、物体側に凸面を向けた負メニスカスレンズと、物体側に凸面を向けた負メニスカスレンズと、物体側に曲率の大きな面を向けた正レンズの3枚からなり、第1群の負メニスカスレンズの像側面の少なくとも一面が非球面であって、第1群の正レンズの像側の面の曲率半径をR6、最大像高をY’、第1群の正レンズの焦点距離をf L3 、第1群の焦点距離をf G1 としたとき、以下の条件式、
−0.05<(Y’/R6)<0.05
−1.5<(f L3 /f G1 )<−1.0
を満足することを特徴とするズームレンズ。
In order from the object side, a first group having a negative focal length, a second group having a positive focal length, and a third group having a positive focal length are arranged , and the second group is arranged on the object side of the second group. The second group moves monotonically from the image side to the object side during zooming from the short focus end to the long focus end, and the first group is an image accompanying zooming. In the zoom lens that moves so as to correct the fluctuation of the surface position, the first group includes, in order from the object side, a negative meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side, and the object side The first lens group negative meniscus lens has at least one aspherical image side surface, and the first group positive lens image side surface has a radius of curvature. R 6 , the maximum image height Y ′, the focal length of the first lens group positive lens f L3 , and the first lens group focal length f G When 1 , the following conditional expression:
−0.05 <(Y ′ / R 6 ) <0.05
−1.5 <(f L3 / f G1 ) <− 1.0
A zoom lens characterized by satisfying
請求項1に記載のズームレンズにおいて、第1群の正レンズの像側の面が平面であることを特徴とするズームレンズ。  2. The zoom lens according to claim 1, wherein the image-side surface of the first group of positive lenses is a flat surface. 請求項1に記載のズームレンズにおいて、第1群の2番目の負メニスカスレンズの像側の面が非球面であり、第1群の最も物体側の負メニスカスレンズの焦点距離をfL1 、第1群の2番目の負メニスカスレンズの焦点距離をfL2としたとき、以下の条件式、0.7<(fL1/fL2)<2.0を満足することを特徴とするズームレンズ。2. The zoom lens according to claim 1, wherein the image-side surface of the second negative meniscus lens of the first group is an aspheric surface, and the focal length of the negative meniscus lens closest to the object side of the first group is f L1 . A zoom lens characterized by satisfying the following conditional expression, 0.7 <(f L1 / f L2 ) <2.0, where f L2 is the focal length of the second negative meniscus lens in one group. 請求項1に記載のズームレンズにおいて、第1群中の負レンズと第1群中の正レンズとの相対的な偏心を調整可能としたことを特徴とするズームレンズ。  2. The zoom lens according to claim 1, wherein the relative decentration of the negative lens in the first group and the positive lens in the first group can be adjusted. 請求項に記載のズームレンズにおいて、第1群中の2枚の負レンズと第1群中の正レンズとの相対的な偏心の調整は、前記正レンズを固定側とし、前記負レンズを光軸と直交する方向に可動とすることにより行われることを特徴とするズームレンズ。5. The zoom lens according to claim 4 , wherein the relative decentration of the two negative lenses in the first group and the positive lens in the first group is adjusted by using the positive lens as a fixed side, A zoom lens characterized by being made movable in a direction orthogonal to the optical axis. 請求項に記載のズームレンズにおいて、前記2枚の負レンズを一体的に調整可能としたことを特徴とするズームレンズ。6. The zoom lens according to claim 5 , wherein the two negative lenses can be adjusted integrally. 請求項1〜の何れかに記載のズームレンズを、撮影用光学系として有することを特徴とするカメラ。The zoom lens according to any one of claims 1 to 6, a camera, characterized in that it comprises a photographic optical system. 請求項1〜の何れかに記載のズームレンズを、カメラ機能部の撮影用光学系として有することを特徴とする携帯情報端末装置。The zoom lens according to any one of claims 1 to 6, a portable information terminal device characterized by having a photographic optical system of a camera functional part.
JP2001303218A 2001-07-24 2001-09-28 Zoom lens, camera and portable information terminal device Expired - Fee Related JP4555522B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001303218A JP4555522B2 (en) 2001-09-28 2001-09-28 Zoom lens, camera and portable information terminal device
US10/201,262 US6771433B2 (en) 2001-07-24 2002-07-24 Zoom lens, variable magnification group, camera unit and portable information terminal unit
US10/866,830 US7164542B2 (en) 2001-07-24 2004-06-15 Zoom lens, variable magnification group, camera unit and portable information terminal unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001303218A JP4555522B2 (en) 2001-09-28 2001-09-28 Zoom lens, camera and portable information terminal device

Publications (2)

Publication Number Publication Date
JP2003107352A JP2003107352A (en) 2003-04-09
JP4555522B2 true JP4555522B2 (en) 2010-10-06

Family

ID=19123344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001303218A Expired - Fee Related JP4555522B2 (en) 2001-07-24 2001-09-28 Zoom lens, camera and portable information terminal device

Country Status (1)

Country Link
JP (1) JP4555522B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4346977B2 (en) 2003-07-03 2009-10-21 株式会社リコー Variable focal length lens, photographing lens unit, camera, and portable information terminal device
JP2005300619A (en) * 2004-04-06 2005-10-27 Canon Inc Zoom lens and image projection device having same
JP4705770B2 (en) * 2004-08-26 2011-06-22 オリンパス株式会社 Optical system provided with cemented lens and imaging device using the same
JP4892892B2 (en) 2004-09-15 2012-03-07 株式会社ニコン Wide angle zoom lens
JP4624776B2 (en) * 2004-12-28 2011-02-02 富士フイルム株式会社 3 group zoom lens
JP4916198B2 (en) 2006-03-20 2012-04-11 株式会社リコー Zoom lens, imaging device having zoom lens, camera device, and portable information terminal device
JP5084283B2 (en) * 2007-02-02 2012-11-28 オリンパス株式会社 Imaging optical system and electronic imaging apparatus having the same
JP5433958B2 (en) * 2008-03-03 2014-03-05 株式会社ニコン Zoom lens and optical apparatus provided with the same
JP2011075633A (en) * 2009-09-29 2011-04-14 Casio Computer Co Ltd Wide angle lens and projector device using the same
KR101925056B1 (en) 2011-09-02 2018-12-04 삼성전자주식회사 Zoom lens and photographing apparatus
JP2016212134A (en) * 2015-04-30 2016-12-15 富士フイルム株式会社 Imaging lens and imaging device
CN114509863B (en) * 2022-04-20 2022-09-09 江西联创电子有限公司 Wide-angle lens and imaging apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001100098A (en) * 1999-09-30 2001-04-13 Casio Comput Co Ltd Aspherical lens
JP2001141997A (en) * 1999-11-12 2001-05-25 Olympus Optical Co Ltd Zoom lens
JP2001201683A (en) * 2000-01-19 2001-07-27 Olympus Optical Co Ltd Zoom lens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160993A (en) * 1996-11-27 1998-06-19 Canon Inc Lens assembly adjusting method, lens adjusting mechanism, lens barrel and optical equipment
JPH10325920A (en) * 1997-05-23 1998-12-08 Nikon Corp Optical system having structure suitable for eccentricity adjustment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001100098A (en) * 1999-09-30 2001-04-13 Casio Comput Co Ltd Aspherical lens
JP2001141997A (en) * 1999-11-12 2001-05-25 Olympus Optical Co Ltd Zoom lens
JP2001201683A (en) * 2000-01-19 2001-07-27 Olympus Optical Co Ltd Zoom lens

Also Published As

Publication number Publication date
JP2003107352A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
US6829102B2 (en) Zoom lens, and camera and portable information terminal for utilizing zoom lens
US7450316B2 (en) Zoom lens system and image pickup apparatus using the same
US7777967B2 (en) Zoom lens, camera device and personal digital assistant
JP4844012B2 (en) Variable magnification optical system and imaging apparatus
JP2004037924A (en) Imaging apparatus
JP4907169B2 (en) Zoom lens, camera device, and portable information terminal device
US8130452B2 (en) Electronic image pickup apparatus
EP2365371A1 (en) Zoom lens, imaging device and information device
JP2007256325A (en) Photographing equipment having zoom lens, camera apparatus, and portable information terminal
JP2004102089A (en) Imaging apparatus
JP2004144947A (en) Zoom lens, camera and personal digital assistant device
US8638503B2 (en) Zoom lens and information device incorporating the same
JP2007108531A (en) Zoom lens, camera, and personal digital assistant
JP2006220715A (en) Zoom lens and imaging apparatus using the same
JP2006078979A (en) Zoom lens, camera, and personal digital terminal unit
JP2004037927A (en) Imaging apparatus
JP4555522B2 (en) Zoom lens, camera and portable information terminal device
JP4642883B2 (en) Zoom lens, camera, and portable information terminal device
JP4268773B2 (en) Zoom group, zoom lens, and imaging device for zoom lens
JP2004037926A (en) Imaging apparatus
JP2004013169A (en) Variable magnification group in zoom lens, zoom lens, and camera system
JP4321850B2 (en) Zoom lens, camera, and portable information terminal device
JP2004198855A (en) Zoom lens, camera and personal digital assistance device
JP2004037925A (en) Imaging apparatus
JP2004102090A (en) Imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees