JP2006078979A - Zoom lens, camera, and personal digital terminal unit - Google Patents

Zoom lens, camera, and personal digital terminal unit Download PDF

Info

Publication number
JP2006078979A
JP2006078979A JP2004265651A JP2004265651A JP2006078979A JP 2006078979 A JP2006078979 A JP 2006078979A JP 2004265651 A JP2004265651 A JP 2004265651A JP 2004265651 A JP2004265651 A JP 2004265651A JP 2006078979 A JP2006078979 A JP 2006078979A
Authority
JP
Japan
Prior art keywords
lens
lens group
object side
zoom lens
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004265651A
Other languages
Japanese (ja)
Inventor
Kazuyasu Ohashi
和泰 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004265651A priority Critical patent/JP2006078979A/en
Publication of JP2006078979A publication Critical patent/JP2006078979A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact zoom lens having a variable power ratio of 4.5 times or larger, while the half angle of view at the edge of a sufficiently wide angle is 35° or larger, and capable of obtaining the resolving power, coping an imaging device of 3 to 5 million pixels. <P>SOLUTION: The zoom lens satisfies 0.70<Y' max/fw<1.00, where fw is a focal length of all systems at the edge of a wide angle, and Y' max is the maximum image height. A second lens group I is composed of a negative lens L1 whose surface having the larger curvature faces the image side, a positive lens L2 whose surface having the larger curvature faces the image side, and a negative lens L3 whose surface having the larger curvature faces the object side, which are arranged successively from the object side with air space in between. The surface of the negative lens L6 of the closest second lens group II to the image is of aspheric shape, in which the negative refractive power becomes weaker as going farther away from the optical axis. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、デジタルカメラ,ビデオカメラ、銀塩カメラなど、各種カメラに用いることができるズームレンズ、このズームレンズを用いたカメラおよび携帯情報端末装置に関するものである。   The present invention relates to a zoom lens that can be used for various cameras such as a digital camera, a video camera, and a silver salt camera, a camera using the zoom lens, and a portable information terminal device.

近年、デジタルカメラの市場は非常に大きなものとなっており,ユーザのデジタルカメラに対する要望も多岐にわたっている。中でも,高画質化と小型化は常にユーザの欲するところであり,ウエイトが大きい。よって,撮影レンズとして用いるズームレンズにも,高性能化と小型化の両立が求められる。   In recent years, the market for digital cameras has become very large, and the demands of users for digital cameras are also diverse. Above all, high image quality and miniaturization are always what users want, and the weight is large. Therefore, a zoom lens used as a photographing lens is required to have both high performance and small size.

ここで,小型化という面では,まず,使用時のレンズ全長、すなわち、最も物体側のレンズ面から像面までの距離を短縮することが必要であり,また,各レンズ群の厚みを短縮して,収納時の全長を抑えることも重要である。さらに,高性能化という面では,少なくとも,300万〜500万画素の撮像素子に対応した解像力を全ズーム域にわたって有することが必要である。   Here, in terms of miniaturization, first, it is necessary to shorten the total lens length in use, that is, the distance from the lens surface closest to the object side to the image plane, and to reduce the thickness of each lens group. It is also important to reduce the overall length during storage. Furthermore, in terms of high performance, it is necessary to have a resolution corresponding to an image sensor with 3 to 5 million pixels at all zoom ranges.

特にコンパクトデジタルカメラにおいては,撮像素子の対角寸法が6〜9mm程度と小さく,300〜500万画素を実現するためには、画素ピッチが3μm以下となるため,一層,高度な収差補正が要求される。例えば、画素ピッチが2。5μmの場合,ナイキスト周波数は200本/mmとなり,回折限界も問題となるため,銀塩カメラ用撮影レンズに比べて,許容できる収差量は相対的にも非常に小さい。   Especially in compact digital cameras, the diagonal size of the image sensor is as small as 6-9 mm, and in order to realize 3-5 million pixels, the pixel pitch is 3 μm or less, and so advanced aberration correction is required. Is done. For example, when the pixel pitch is 2.5 μm, the Nyquist frequency is 200 lines / mm, and the diffraction limit is also a problem. Therefore, the allowable amount of aberration is relatively small compared to the photographing lens for a silver salt camera. .

また,撮影レンズの広画角化を望むユーザも多く,ズームレンズの広角端の半画角は少なくとも35度以上,できれば38度以上であることが望ましい。半画角38度は,35mm銀塩カメラ(いわゆるライカ版)に換算すると焦点距離で28mmに相当する。このような広画角化に際しては,歪曲収差や倍率色収差等の軸外収差の発生が大きくなり,撮像素子の画素ピッチが小さいことと相まって,レンズの設計は非常に難しいものとなる。   In addition, there are many users who wish to widen the angle of view of the taking lens, and it is desirable that the half angle of view at the wide angle end of the zoom lens is at least 35 degrees or more, preferably 38 degrees or more. A half angle of view of 38 degrees corresponds to a focal length of 28 mm when converted to a 35 mm silver salt camera (so-called Leica version). In such a wide angle of view, the occurrence of off-axis aberrations such as distortion and lateral chromatic aberration increases, and coupled with the fact that the pixel pitch of the image sensor is small, the lens design becomes very difficult.

さらに,変倍比についてもなるべく大きな変倍比のズームレンズが望まれている。35mm銀塩カメラに換算して、焦点距離を28〜135mmに相当する範囲で変換できる(ズーム比約4.8倍)ズームレンズであれば,一般的な撮影のほとんどをこなすことが可能と考えられる。   Furthermore, a zoom lens having a zoom ratio as large as possible is desired. In terms of a 35mm silver salt camera, a zoom lens that can convert the focal length in a range corresponding to 28 to 135mm (zoom ratio is about 4.8 times) is considered to be able to handle most of general photography. It is done.

デジタルカメラ用のズームレンズには多くの種類が考えられるが,その中でも上述のような要求の全てを満足できる可能性があるものは限られている。3倍程度のズームレンズでは、最も一般的なタイプとして,物体側より順に,負の屈折力を有する第1レンズ群,正の屈折力を有する第2レンズ群,正の屈折力を有する第3レンズ群を有し,第2レンズ群の物体側に第2群と一体に移動する開口絞りを有しており,短焦点端から長焦点端への変倍に際して,第2レンズ群が像側から物体側へと単調に移動し,第1レンズ群が変倍に伴う像面位置の変動を補正するように移動するものがある。しかし,4倍を超えるような高変倍化には適さない。   Many types of zoom lenses for digital cameras are conceivable, but only those that can satisfy all of the above requirements are limited. In the zoom lens of about 3 times, as the most general type, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens having a positive refractive power. A lens group, and an aperture stop that moves integrally with the second group on the object side of the second lens group, and the second lens group is located on the image side during zooming from the short focal end to the long focal end. There is a lens that moves monotonically from the object side to the object side, and the first lens group moves so as to correct the fluctuation of the image plane position due to zooming. However, it is not suitable for high zoom ratio exceeding 4 times.

高変倍化に適したタイプのズームレンズとして知られているものに,物体側から順に,正の屈折力を有する第1レンズ群,負の屈折力を有する第2レンズ群,正の屈折力を有する第3レンズ群からなる3群構成とし,広角端から望遠端への変倍に際して,第1レンズ群と第2レンズ群の間隔が大きくなり,第2レンズ群と第3レンズ群の間隔が小さくなるズームレンズが知られている(例えば、特許文献1、特許文献2、特許文献3参照)。   What is known as a zoom lens of a type suitable for high zooming is, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. When the zooming is performed from the wide-angle end to the telephoto end, the distance between the first lens group and the second lens group is increased, and the distance between the second lens group and the third lens group is increased. Zoom lenses with a small value are known (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).

また、物体側より順に,正の屈折力を有する第1レンズ群,負の屈折力を有する第2レンズ群,正の屈折力を有する第3レンズ群,正の屈折力を有する第4レンズ群、の4群構成とし、広角端から望遠端への変倍に際して,第1レンズ群と第2レンズ群の間隔が大きくなり,第2レンズ群と第3レンズ群の間隔が小さくなるズームレンズが知られている(例えば、特許文献4、特許文献5、特許文献6参照)。   Further, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power. A zoom lens in which the distance between the first lens group and the second lens group is increased and the distance between the second lens group and the third lens group is decreased upon zooming from the wide-angle end to the telephoto end. Known (for example, see Patent Document 4, Patent Document 5, and Patent Document 6).

特開平11−109236号公報JP-A-11-109236 特開平11−142733号公報JP-A-11-142733 特開平11−242157号公報JP 11-242157 A 特開平04−190211号公報Japanese Patent Laid-Open No. 04-190211 特開平04−296809号公報Japanese Patent Laid-Open No. 04-296809 特開2001−056436号公報JP 2001-056436 A

しかし,3群構成または4群構成のいずれの従来例においても,変倍比は5倍を超えるものが多いものの,広角端の半画角が35度以上のものはない。最も広画角の実施例が開示されているのは特許文献2に記載されている発明で,その実施例は変倍比が3〜5倍程度で、半画角は25〜34度程度である。しかし,半画角が34度と比較的広いものは、変倍比が3倍に止まっており,広画角化と高変倍化の両立という点でも十分とは言えない。   However, in any of the conventional examples of the three-group configuration or the four-group configuration, although there are many cases where the zoom ratio exceeds 5 times, there is no half-field angle of 35 degrees or more at the wide-angle end. The widest angle of view is disclosed in the invention described in Patent Document 2, which has a zoom ratio of about 3 to 5 times and a half angle of view of about 25 to 34 degrees. is there. However, when the half angle of view is relatively wide at 34 degrees, the zoom ratio is only 3 times, which is not sufficient in terms of both wide angle of view and high zoom ratio.

本発明は,以上の従来技術の問題点に鑑みてなされたもので,請求項1記載の発明は,広角端の半画角が35度以上と十分に広画角でありながら4.5倍以上の変倍比を有し,小型でかつ、300万〜500万画素の撮像素子に対応した解像力を有するズームレンズを提供することを目的としている。   The present invention has been made in view of the above-mentioned problems of the prior art, and the invention according to claim 1 is such that the half angle of view at the wide-angle end is not less than 35 degrees and the angle of view is 4.5 times. An object of the present invention is to provide a zoom lens that has the above zoom ratio, is small, and has a resolving power corresponding to an image sensor with 3 to 5 million pixels.

請求項2記載の発明は,各収差をより良好に補正した,高性能なズームレンズを提供することを目的としている。
請求項3記載の発明は,特に広角端における歪曲収差をより良好に補正した,高性能なズームレンズを提供することを目的としている。
請求項4記載の発明は,色収差をより良好に補正した,高性能なズームレンズを提供することを目的としている。
請求項5ないし請求項8記載の発明は,各収差をさらに良好に補正した,高性能なズームレンズを提供することを目的としている。
請求項9記載の発明は,広角端の半画角が35度以上と十分に広画角でありながら4.5倍以上の変倍比を有し,小型で、かつ、300万〜500万画素の撮像素子に対応した解像力を有するズームレンズを実現する別の手段を提供することを目的としている。
An object of the present invention is to provide a high-performance zoom lens in which each aberration is corrected better.
A third object of the present invention is to provide a high-performance zoom lens in which distortion at the wide-angle end is corrected more satisfactorily.
An object of the present invention is to provide a high-performance zoom lens in which chromatic aberration is corrected better.
It is an object of the present invention to provide a high-performance zoom lens in which each aberration is corrected more satisfactorily.
The invention according to claim 9 has a zoom ratio of 4.5 times or more while the half angle of view at the wide-angle end is 35 degrees or more and a sufficiently wide angle of view, is small, and is 3 million to 5 million. Another object of the present invention is to provide another means for realizing a zoom lens having a resolving power corresponding to an image sensor of a pixel.

請求項10記載の発明は,広角端の半画角が35度以上と十分に広画角でありながら4.5倍以上の変倍比を有し,小型で、かつ、300万〜500万画素の撮像素子に対応した解像力を有するズームレンズを撮影光学系として使用した,小型で高画質のカメラを提供することを目的としている。   The invention according to claim 10 has a zoom ratio of 4.5 or more while having a sufficiently wide field angle of 35 degrees or more at the wide-angle end, is small, and is 3 million to 5 million. An object of the present invention is to provide a small and high-quality camera using a zoom lens having a resolving power corresponding to a pixel image sensor as a photographing optical system.

請求項11記載の発明は,広角端の半画角が35度以上と十分に広画角でありながら4.5倍以上の変倍比を有し,小型で、かつ300万〜500万画素の撮像素子に対応した解像力を有するズームレンズをカメラ機能部の撮影光学系として使用した,小型で高画質の携帯情報端末装置を提供することを目的としている。   The invention according to claim 11 has a zoom ratio of 4.5 times or more while having a sufficiently wide field angle of 35 degrees or more at the wide-angle end, is small, and has 3 to 5 million pixels. An object of the present invention is to provide a small-sized and high-quality portable information terminal device using a zoom lens having a resolving power corresponding to the image pickup device as a photographing optical system of a camera function unit.

請求項1〜10に記載されている本発明にかかるズームレンズは,物体側より順に,正の屈折力を有する第1レンズ群,負の屈折力を有する第2レンズ群,正の屈折力を有する第3レンズ群を配設し,広角端から望遠端への変倍に際して,第1レンズ群と第2レンズ群の間隔が大きくなり,第2レンズ群と第3レンズ群の間隔が小さくなるズームレンズであって,さらに,それぞれ以下のような特徴を有するものである。   The zoom lens according to the first aspect of the present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. A third lens group having the first lens group and the second lens group is increased and the distance between the second lens group and the third lens group is decreased in zooming from the wide-angle end to the telephoto end. The zoom lens further has the following characteristics.

請求項1記載のズームレンズは,fを広角端における全系の焦点距離,Y´maxを最大像高とするとき,以下の条件式
0.70<Y´max/f<1.00
を満足すると共に,第2レンズ群を,物体側から順に互いに空気間隔を設けて配置された,像側に曲率の大きな面を向けた負レンズ,像側に曲率の大きな面を向けた正レンズ,物体側に曲率の大きな面を向けた負レンズの3枚で構成したことを特徴とする。
In the zoom lens according to claim 1, when f W is a focal length of the entire system at the wide angle end and Ymax is a maximum image height, the following conditional expression 0.70 <Y ′ max / f w <1.00
In addition, the second lens group is arranged in order from the object side with an air gap therebetween, a negative lens having a large curvature surface facing the image side, and a positive lens having a large curvature surface facing the image side , It is composed of three negative lenses having a large curvature surface facing the object side.

請求項2記載のズームレンズは,請求項1記載のズームレンズにおいて,第2レンズ群の最も像側に配設される負レンズの像側面が,光軸から離れるに従って負の屈折力が弱まるような形状の非球面であり,N2Iを第2レンズ群の最も像側に配設される負レンズの屈折率,X2I(H0。8)を第2レンズ群の最も像側の非球面における最大光線有効高さの8割における非球面量とするとき,以下の条件式
0.0010<(1−N2I)×X2I(H0。8)/Y´max<0.0500
を満足すること特徴とする。ここで,非球面量X(H)とは,非球面の近軸曲率で定義される球面と実際の非球面との光軸からの高さHにおけるサグ量の差であり、物体側から像側に向かう方向を正とする。
According to a second aspect of the present invention, in the zoom lens according to the first aspect, the negative refracting power becomes weaker as the image side surface of the negative lens disposed closest to the image side of the second lens group is separated from the optical axis. N 2I is the refractive index of the negative lens disposed closest to the image side of the second lens group, and X 2I (H 0.8 ) is the aspherical surface closest to the image side of the second lens group. When the aspherical amount is 80% of the maximum effective ray height at the following, the following conditional expression 0.0010 <(1-N 2I ) × X2I (H 0.8 ) / Y ′ max <0.0500
It is characterized by satisfying. Here, the aspheric amount X (H) is the difference in the sag amount at the height H from the optical axis between the spherical surface defined by the paraxial curvature of the aspheric surface and the actual aspheric surface. The direction toward the side is positive.

請求項3記載のズームレンズは,請求項2記載のズームレンズにおいて,第2レンズ群の最も像側に配設される負レンズの像側面に加えて,第2レンズ群の最も物体側に配設される負レンズの物体側面が非球面であり,N2Oを第2レンズ群の最も物体側に配設される負レンズの屈折率,X2O(H0。8)を第2レンズ群の最も物体側の非球面における最大光線有効高さの8割における非球面量とするとき,以下の条件式
−0.0500<((N2O−1)×X2O(H0。8
+(1−N2I)×X2I(H0。8))/Y´max<0.1500
を満足すること特徴とする。
According to a third aspect of the present invention, in the zoom lens according to the second aspect, in addition to the image side surface of the negative lens disposed closest to the image side of the second lens group, the zoom lens is disposed closest to the object side of the second lens group. The object side surface of the negative lens provided is aspheric, N 2 O is the refractive index of the negative lens disposed closest to the object side of the second lens group, and X 2O (H 0.8 ) is the second lens group. When the amount of aspherical surface is 80% of the maximum effective ray height on the most aspherical surface on the object side, the following conditional expression −0.0500 <((N 2 O −1) × X 2O (H 0.8 )
+ (1-N 2I ) × X 2I (H 0.8 )) / Y ′ max <0.1500
It is characterized by satisfying.

請求項4記載のズームレンズは,請求項1ないし請求項3のいずれかに記載のズームレンズにおいて,N2iを第2群中で物体側から数えてi番目のレンズの屈折率,ν2iを第2群中で物体側から数えてi番目のレンズのアッベ数とするとき,以下の条件式
1.75<N21<1.90,35<ν21<50
1.65<N22<1.90,20<ν22<35
1.75<N23<1.90,35<ν23<50
を満足すること特徴とする。
A zoom lens according to a fourth aspect is the zoom lens according to any one of the first to third aspects, wherein N 2i is counted from the object side in the second group, and the refractive index of the i-th lens is represented by ν 2i . When the Abbe number of the i-th lens is counted from the object side in the second group, the following conditional expression 1.75 <N 21 <1.90, 35 <ν 21 <50
1.65 <N 22 <1.90, 20 <ν 22 <35
1.75 <N 23 <1.90, 35 <ν 23 <50
It is characterized by satisfying.

請求項5記載のズームレンズは,請求項1ないし請求項4のいずれかに記載のズームレンズにおいて,D12Wを広角端における第1レンズ群と第2レンズの間隔,D12Tを望遠端における第1レンズ群と第2レンズの間隔,fを望遠端における全系の焦点距離としたとき、広角端から望遠端への変倍に際し,第1レンズ群が物体側に単調に移動すると共に,以下の条件式
0.50<(D12T−D12W)/f<0.85
を満足することを特徴とする。
The zoom lens according to claim 5, wherein, in the zoom lens according to any one of claims 1 to 4, the first lens group and the distance between the second lens at the wide-angle end to D 12W, the at the telephoto end of the D 12T When the distance between the first lens unit and the second lens, f T is the focal length of the entire system at the telephoto end, the first lens unit monotonously moves to the object side during zooming from the wide-angle end to the telephoto end. the following conditional expression 0.50 <(D 12T -D 12W) / f T <0.85
It is characterized by satisfying.

請求項6記載のズームレンズは,請求項1ないし請求項5のいずれかに記載のズームレンズにおいて,D23Wを広角端における第1レンズ群と第2レンズの間隔,D23Tを望遠端における第1レンズ群と第2レンズの間隔,fを望遠端における全系の焦点距離とするとき,以下の条件式
0.25<(D23W−D23T)/f<0.65
を満足すること特徴とする。
A zoom lens according to a sixth aspect is the zoom lens according to any one of the first to fifth aspects, wherein D23W is a distance between the first lens unit and the second lens at the wide angle end, and D23T is a first distance at the telephoto end. When the distance between one lens group and the second lens, f T is the focal length of the entire system at the telephoto end, the following conditional expression 0.25 <(D 23W −D 23T ) / f T <0.65
It is characterized by satisfying.

請求項7記載のズームレンズは,請求項1ないし請求項6のいずれかに記載のズームレンズにおいて,fを第2レンズ群の焦点距離,fを第3レンズ群の焦点距離とするとき,以下の条件式
0.5<|f|/f<1.0
を満足すること特徴とする。
The zoom lens according to claim 7, wherein, in the zoom lens according to any one of claims 1 to 6, when the a f 2 the focal length of the second lens group, the focal length of the f 3 third lens group , The following conditional expression 0.5 <| f 2 | / f 3 <1.0
It is characterized by satisfying.

請求項8記載のズームレンズは,請求項1ないし請求項7のいずれかに記載のズームレンズにおいて,fを第1レンズ群の焦点距離、fを広角端における全系の焦点距離とするとき,以下の条件式
6.0<f/f<12.0
を満足すること特徴とする。
The zoom lens according to claim 8 is the zoom lens according to any one of claims 1 to 7, wherein f 1 is a focal length of the first lens unit, and f w is a focal length of the entire system at the wide angle end. Then, the following conditional expression 6.0 <f 1 / f W <12.0
It is characterized by satisfying.

請求項9記載のズームレンズは,物体側より順に,正の屈折力を有する第1レンズ群,負の屈折力を有する第2レンズ群,正の屈折力を有する第3レンズ群,正の屈折力を有する第4レンズ群を配設し,広角端から望遠端への変倍に際して,第1レンズ群と第2レンズ群の間隔が大きくなり,第2レンズ群と第3レンズ群の間隔が小さくなるように,少なくとも第1レンズ群および第3レンズ群が物体側に移動するズームレンズにおいて,fを広角端における全系の焦点距離,Y´maxを最大像高としたとき、以下の条件式
0.70<Y´max/f<1.00
を満足すると共に,第2レンズ群を,物体側から順に互いに空気間隔を設けて配置された,像側に曲率の大きな面を向けた負レンズ,像側に曲率の大きな面を向けた正レンズ,物体側に曲率の大きな面を向けた負レンズの3枚で構成したことを特徴とする。
The zoom lens according to claim 9, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a positive refraction. A fourth lens group having a force is provided, and the distance between the first lens group and the second lens group becomes large and the distance between the second lens group and the third lens group becomes large when zooming from the wide-angle end to the telephoto end. In a zoom lens in which at least the first lens unit and the third lens unit move to the object side so as to decrease, when f W is the focal length of the entire system at the wide angle end and Ymax is the maximum image height, the following Conditional expression 0.70 < Y ′ max / f W <1.00
In addition, the second lens group is arranged in order from the object side with an air gap therebetween, a negative lens having a large curvature surface facing the image side, and a positive lens having a large curvature surface facing the image side , It is composed of three negative lenses having a large curvature surface facing the object side.

本発明の請求項10記載のカメラは,請求項1から請求項9のいずれかに記載のズームレンズを,撮影用光学系として有することを特徴とする。   According to a tenth aspect of the present invention, there is provided a camera having the zoom lens according to any one of the first to ninth aspects as a photographing optical system.

本発明の請求項11記載の携帯情報端末装置は,請求項1から請求項9のいずれかに記載のズームレンズを,カメラ機能部の撮影用光学系として有することを特徴とする。   A portable information terminal device according to an eleventh aspect of the present invention includes the zoom lens according to any one of the first to ninth aspects as a photographing optical system of a camera function unit.

請求項1記載の発明によれば,広角端の半画角が35度以上と十分に広画角でありながら4.5倍以上の変倍比を有し,小型で、かつ300万〜500万画素の撮像素子に対応した解像力を有するズームレンズを提供することができる。かかるズームレンズを使用することにより,小型かつ高画質で,通常の撮影領域を十分にカバーする変倍域を有したカメラまたは携帯情報端末装置を実現することができる。   According to the first aspect of the present invention, the half angle of view at the wide-angle end is 35 degrees or more and a sufficiently wide angle of view, but has a zoom ratio of 4.5 or more, a small size, and 3 million to 500 It is possible to provide a zoom lens having a resolving power corresponding to an image sensor with 10,000 pixels. By using such a zoom lens, it is possible to realize a camera or a portable information terminal device that is small and has high image quality and has a zooming range that sufficiently covers a normal shooting area.

請求項2記載の発明によれば,各収差をより良好に補正した,高性能なズームレンズを提供することができ,このズームレンズを使用することにより,小型かつ高画質で,通常の撮影領域を十分にカバーする変倍域を有したカメラおよび携帯情報端末装置を実現することができる。   According to the second aspect of the present invention, it is possible to provide a high-performance zoom lens in which each aberration is corrected more favorably. By using this zoom lens, it is possible to provide a small, high-quality, normal photographing region. It is possible to realize a camera and a portable information terminal device having a zoom range that sufficiently covers the above.

請求項3記載の発明によれば,特に広角端における歪曲収差をより良好に補正した,高性能なズームレンズを提供することができるため,このズームレンズを使用することにより,小型かつ高画質で,通常の撮影領域を十分にカバーする変倍域を有したカメラまたは携帯情報端末装置を実現することができる。   According to the third aspect of the present invention, it is possible to provide a high-performance zoom lens in which distortion at a wide-angle end is corrected more satisfactorily. Thus, it is possible to realize a camera or a portable information terminal device having a zooming range that sufficiently covers a normal shooting area.

請求項4記載の発明によれば,色収差をより良好に補正した,高性能なズームレンズを提供することができるため,このズームレンズを使用することにより,小型かつ高画質で,通常の撮影領域を十分にカバーする変倍域を有したカメラまたは携帯情報端末装置を実現することができる。   According to the fourth aspect of the present invention, a high-performance zoom lens in which chromatic aberration is corrected better can be provided. By using this zoom lens, it is possible to provide a small, high-quality, normal photographing region. It is possible to realize a camera or a portable information terminal device having a zoom range that sufficiently covers the above.

請求項5ないし請求項8に記載の発明によれば,各収差をさらに良好に補正した,高性能なズームレンズを提供することができるため,このズームレンズを使用することにより,さらに高い解像力を有する高画質のカメラまたは携帯情報端末装置を実現することができる。   According to the invention described in claims 5 to 8, since it is possible to provide a high-performance zoom lens in which each aberration is corrected more satisfactorily, the use of this zoom lens further increases the resolving power. A high-quality camera or a portable information terminal device can be realized.

請求項9記載の発明によれば,広角端の半画角が35度以上と十分に広画角でありながら4.5倍以上の変倍比を有し,小型で、かつ300万〜500万画素の撮像素子に対応した解像力を有するズームレンズを実現する別の手段を提供することができる。このズームレンズを使用することにより,小型かつ高画質で,通常の撮影領域を十分にカバーする変倍域を有したカメラまたは携帯情報端末装置を実現することができる。   According to the ninth aspect of the present invention, the half angle of view at the wide-angle end is 35 degrees or more and a sufficiently wide angle of view, but has a zoom ratio of 4.5 times or more, a small size, and 3 million to 500 It is possible to provide another means for realizing a zoom lens having a resolving power corresponding to an image sensor with 10,000 pixels. By using this zoom lens, it is possible to realize a camera or a portable information terminal device that is small and has high image quality and has a zooming range that sufficiently covers a normal shooting area.

請求項10記載の発明によれば,広角端の半画角が38度以上と十分に広画角でありながら4.5倍以上の変倍比を有し,小型で、かつ300万〜500万画素の撮像素子に対応した解像力を有するズームレンズを撮影光学系として使用した,小型で高画質のカメラを提供ことができる。このカメラを使用することにより,ユーザは携帯性に優れたカメラで高画質な画像を撮影することができる。   According to the tenth aspect of the present invention, the half angle of view at the wide angle end is a wide angle of view of 38 degrees or more, while having a zoom ratio of 4.5 times or more, a small size, and 3 million to 500 It is possible to provide a small, high-quality camera using a zoom lens having a resolving power corresponding to an image sensor with 10,000 pixels as a photographing optical system. By using this camera, the user can take a high-quality image with a camera having excellent portability.

請求項11記載の発明によれば,広角端の半画角が35度以上と十分に広画角でありながら4.5倍以上の変倍比を有し,小型で、かつ300万〜500万画素の撮像素子に対応した解像力を有するズームレンズをカメラ機能部の撮影光学系として使用した,小型で高画質の携帯情報端末装置を提供ことができる。ユーザは携帯性に優れた携帯情報端末装置で高画質な画像を撮影し,その画像を外部へ送信することもできる。   According to the eleventh aspect of the present invention, the half angle of view at the wide-angle end is 35 degrees or more and a sufficiently wide angle of view, but has a zoom ratio of 4.5 times or more, is small, and has a zoom ratio of 3 to 500,000. It is possible to provide a small and high-quality portable information terminal device that uses a zoom lens having a resolving power corresponding to an image sensor with 10,000 pixels as a photographing optical system of a camera function unit. The user can take a high-quality image with a portable information terminal device excellent in portability and transmit the image to the outside.

本発明にかかるズームレンズのうち,物体側から順に正・負・正の3レンズ群を有するズームレンズは,一般に,第2レンズ群が主要な変倍作用を負担するいわゆるバリエータとして構成される。よって,第2レンズ群の構成は非常に重要である。特にコンパクトデジタルカメラにおいては,撮像素子の画素ピッチが小さく,高度な収差補正が要求される上,本発明が目的とするような広角化は軸外収差の補正をより困難にするため,第2レンズ群の構成には従来にない工夫が必要となる。   Among zoom lenses according to the present invention, a zoom lens having three lens groups of positive, negative, and positive in order from the object side is generally configured as a so-called variator in which the second lens group bears a main zooming action. Therefore, the configuration of the second lens group is very important. In particular, in a compact digital camera, the pixel pitch of the image sensor is small, and advanced aberration correction is required. Further, widening as intended by the present invention makes correction of off-axis aberrations more difficult. An unprecedented device is required for the configuration of the lens group.

従来から良く知られている第2レンズ群の構成として,物体側から順に,像側に曲率の大きな面を向けた負レンズ,像側に凹面を向けた負レンズ,物体側に凸面を向けた正レンズの3枚からなるものがある。第2群を3枚のレンズで構成する場合,ほとんど全ての従来例がこの構成を採っている。しかし,コンパクトデジタルカメラ用途で,広角端の半画角が35度を超えるようなズームレンズを実現するためには,最適な構成とは言えない。
また,これよりも第2レンズ群のレンズ枚数を増加させて高性能化を図ったものも多い。例えば,物体側から順に,像側に曲率の大きな面を向けた負レンズ,負レンズ,正レンズ,負レンズの4枚からなるもの等である。しかし,第2レンズ群もレンズ枚数が増加すると、第2レンズ群が厚くなっていまい,レンズ収納時の全長が大きくなって,コンパクト化を阻害し,コストアップの要因ともなる。
The second lens group, which has been well known in the past, has, in order from the object side, a negative lens with a large curvature on the image side, a negative lens with a concave surface on the image side, and a convex surface on the object side. Some of them consist of three positive lenses. When the second group is constituted by three lenses, almost all conventional examples adopt this configuration. However, it is not an optimal configuration for realizing a zoom lens with a half angle of view exceeding 35 degrees at the wide-angle end for compact digital camera applications.
In many cases, the number of lenses in the second lens group is increased to improve performance. For example, in order from the object side, there are four lenses, a negative lens, a negative lens, a positive lens, and a negative lens having a surface with a large curvature facing the image side. However, as the number of lenses in the second lens group also increases, the second lens group becomes thicker, and the total length when the lens is accommodated increases, which impedes compactification and increases costs.

本発明は,第2レンズ群の構成を3枚というレンズ枚数の制限の下,コンパクトデジタルカメラ用途で,広角端の半画角が35度を超えるようなズームレンズを実現するのに最適な第2レンズ群の構成を見いだしたことによって完成したものである。その基本となる要件は,以下の条件式を満足すると共に,第2レンズ群を,物体側から順に互いに空気間隔を設けて配置された,像側に曲率の大きな面を向けた負レンズ,像側に曲率の大きな面を向けた正レンズ,物体側に曲率の大きな面を向けた負レンズの3枚で構成することにある。
0.70<Y´max/f<1.00
(ただし,fは広角端における全系の焦点距離,Y´maxは最大像高)
Y´max/fが0.70以下であると,歪曲収差を十分に補正した状態では,広角端において半画角35度以上の広角化が実現できない。一方,Y´max/fが1.00以上であると,広角端における軸外収差の補正が非常に困難となり,また,第1レンズ群が大型化して,コンパクト化を図ることができなくなる。
The present invention is optimal for realizing a zoom lens in which the half lens angle at the wide-angle end exceeds 35 degrees in a compact digital camera application, with the configuration of the second lens group being limited to three lenses. It was completed by finding the configuration of the two lens groups. The basic requirements are that the following conditional expression is satisfied, and the second lens group is arranged in order from the object side with an air gap between them, a negative lens with a large curvature surface facing the image side, and an image The object is to consist of three lenses: a positive lens having a surface with a large curvature on the side, and a negative lens having a surface with a large curvature on the object side.
0.70 <Y ′ max / f w <1.00
(Where f w is the focal length of the entire system at the wide-angle end, and Y ′ max is the maximum image height)
When Y'max / f w is 0.70 or less, in the state where sufficiently correct distortion, wide-angle more than 35 degrees half angle at the wide angle end can not be realized. On the other hand, if the Y'max / f w is 1.00 or more, the correction of the off-axial aberration becomes very difficult at the wide-angle end, also, the first lens group becomes large, it can not be made compact .

上記条件式範囲を満足した状態で,第2レンズ群を,物体側から順に,像側に曲率の大きな面を向けた負レンズ,像側に曲率の大きな面を向けた正レンズ,物体側に曲率の大きな面を向けた負レンズの3枚で構成すると,広角端における軸外収差,特に倍率色収差を良好に補正することが可能となる。構成上のポイントは,物体側から2番目のレンズの像側面と,物体側から3番目(最も像側)のレンズの物体側面を,共に像側に凸の形状を有するようにした点にある。このような構成を採ることにより,広角端付近の軸外光束は,大きな角度でこれらの面に入射するため,必要十分な量の収差を高い自由度で発生させることができ,ここで発生した収差を他の面で発生させた収差で適宜打ち消すことにより,従来よりも高いレベルの収差補正が可能となるのである。   While satisfying the above conditional expression range, in order from the object side, the second lens group is a negative lens having a large curvature surface facing the image side, a positive lens having a large curvature surface facing the image side, and the object side. If it is composed of three negative lenses having a surface with a large curvature, off-axis aberrations at the wide-angle end, particularly lateral chromatic aberration, can be corrected satisfactorily. The structural point is that both the image side surface of the second lens from the object side and the object side surface of the third lens (most image side) from the object side have a convex shape on the image side. . By adopting such a configuration, off-axis light beams near the wide-angle end are incident on these surfaces at a large angle, so that a necessary and sufficient amount of aberration can be generated with a high degree of freedom. By appropriately canceling out aberrations with aberrations generated on other surfaces, it becomes possible to correct aberrations at a higher level than before.

第2レンズ群を,従来から知られているような,像側に曲率の大きな面を向けた負レンズ,像側に凹面を向けた負レンズ,物体側に凸面を向けた正レンズの3枚で構成すると,物体側から2番目のレンズの像側面と,物体側から3番目(最も像側)のレンズの物体側面が,共に物体側に凸の形状を有することになる。このような構成では,広角化に際して軸外光束の光軸に対する角度が大きくなった場合,軸外光束のこれらの面への入射角が非常に小さくなり,発生する収差量が限られてしまうため,軸外収差の補正に十分な効果を得ることができなくなってしまう。
物体側から2番目のレンズと,物体側から3番目(最も像側)のレンズは,互いに接合して,その接合面に上述の収差補正効果を持たせても良い。しかし,分離した方がより高い自由度で収差をコントロールすることができる。
The second lens group is composed of a negative lens having a large curvature surface on the image side, a negative lens having a concave surface on the image side, and a positive lens having a convex surface on the object side. In this case, the image side surface of the second lens from the object side and the object side surface of the third lens (most image side) from the object side both have a convex shape on the object side. In such a configuration, when the angle of the off-axis light beam with respect to the optical axis is increased in widening the angle, the incident angle of the off-axis light beam on these surfaces becomes very small, and the amount of aberration generated is limited. Thus, a sufficient effect for correcting off-axis aberrations cannot be obtained.
The second lens from the object side and the third lens (most image side) from the object side may be cemented together so that the cemented surface has the above-described aberration correction effect. However, it is possible to control the aberration with a higher degree of freedom when separated.

本発明のズームレンズにおいて,より良好な収差補正を実現するためには,第2レンズ群の最も像側に配設される負レンズの像側面が,光軸から離れるに従って負の屈折力が弱まるような形状の非球面であることが望ましい。さらに,この非球面は以下の条件式を満足することが望ましい。
0.0010<(1−N2I)×X2I(H0.8)/Y´max<0.0500
ただし,N2Iは第2レンズ群の最も像側に配設される負レンズの屈折率,X2I(H0.8)は第2レンズ群の最も像側の非球面における最大光線有効高さの8割における非球面量を表す。ここで,非球面量X(H)とは,非球面の近軸曲率で定義される球面と実際の非球面との光軸からの高さHにおけるサグ量の差であり、物体側から像側に向かう方向を正とする。(1−N2I)×X2I(H0.8)が0.0010以下,または,0.0500以上であると,歪曲収差と非点収差・コマ収差をバランス良く補正することができず,特に広角端においてより高い結像性能を確保しようとする上で妨げとなる。
In the zoom lens of the present invention, in order to realize better aberration correction, the negative refractive power becomes weaker as the image side surface of the negative lens arranged closest to the image side of the second lens group moves away from the optical axis. It is desirable that the aspherical surface has such a shape. Furthermore, it is desirable that this aspherical surface satisfy the following conditional expression.
0.0010 <(1-N 2I ) × X 2I (H 0.8 ) / Y ′ max <0.0500
Where N 2I is the refractive index of the negative lens disposed closest to the image side of the second lens group, and X 2I (H 0.8 ) is the maximum ray effective height on the aspherical surface closest to the image side of the second lens group. Represents the amount of aspherical surface at 80% of. Here, the aspheric amount X (H) is the difference in the sag amount at the height H from the optical axis between the spherical surface defined by the paraxial curvature of the aspheric surface and the actual aspheric surface. The direction toward the side is positive. If (1-N 2I ) × X 2I (H 0.8 ) is 0.0010 or less, or 0.0500 or more, distortion aberration and astigmatism / coma aberration cannot be corrected in a well-balanced manner. In particular, this is an obstacle to securing higher imaging performance at the wide-angle end.

広角端における歪曲収差をより良好に補正するためには,第2レンズ群の最も像側に配設される負レンズの像側面に加えて,第2レンズ群の最も物体側に配設される負レンズの物体側面が非球面とすることが望ましい。さらに,この非球面は以下の条件式を満足することが望ましい。
−0.0500<((N2O−1)×X2O(H0.8
+(1−N2I)×X2I(H0.8))/Y´max<0.1500
ただし,N2Oは第2レンズ群の最も物体側に配設される負レンズの屈折率,X2O(H0.8)は第2レンズ群の最も物体側の非球面における最大光線有効高さの8割における非球面量を表す。((N2O−1)×X2O(H0.8)+(1−N2I)×X2I(H0.8))/Y´maxが−0.0500以下であると,広角端における歪曲収差が補正不足なるか,変曲点を持つ不自然な形となって好ましくない。一方,((N2O−1)×X2O(H0.8)+(1−N2I)×X2I(H0.8))/Y´maxを0.1500以上とすると,歪曲収差が補正過剰となるばかりか,他の軸外収差を良好に補正することも難しくなる。
In order to better correct distortion at the wide-angle end, in addition to the image side surface of the negative lens arranged closest to the image side of the second lens group, it is arranged closest to the object side of the second lens group. It is desirable that the object side surface of the negative lens be an aspherical surface. Furthermore, it is desirable that this aspherical surface satisfy the following conditional expression.
−0.0500 <((N 2 O −1) × X 2 O (H 0.8 )
+ (1-N 2I ) × X 2I (H 0.8 )) / Y ′ max <0.1500
Where N 2 O is the refractive index of the negative lens disposed closest to the object side of the second lens group, and X 2O (H 0.8 ) is the maximum effective ray height on the aspherical surface closest to the object side of the second lens group. Represents the amount of aspherical surface at 80% of. When ((N 2 O −1) × X 2 O (H 0.8 ) + (1-N 2I ) × X 2I (H 0.8 )) / Y ′ max is −0.0500 or less, at the wide angle end. This is not preferable because the distortion aberration is insufficiently corrected or an unnatural shape having an inflection point. On the other hand, when ((N 2 O −1) × X 2 O (H 0.8 ) + (1−N 2I ) × X 2I (H 0.8 )) / Y ′ max is set to 0.1500 or more, the distortion is reduced. In addition to being overcorrected, it becomes difficult to correct other off-axis aberrations well.

第2レンズ群の各レンズは,以下の条件式を満足することが望ましい。
1.75<N21<1.90,35<ν21<50
1.65<N22<1.90,20<ν22<35
1.75<N23<1.90,35<ν23<50
ただし,N21は第2群中で物体側から数えてi番目のレンズの屈折率,ν21は第2群中で物体側から数えてi番目のレンズのアッベ数を表す。このような硝種を選択することにより,色収差のより良好な補正が可能となる。
It is desirable that each lens in the second lens group satisfies the following conditional expression.
1.75 <N 21 <1.90, 35 <ν 21 <50
1.65 <N 22 <1.90, 20 <ν 22 <35
1.75 <N 23 <1.90, 35 <ν 23 <50
N 21 represents the refractive index of the i-th lens counted from the object side in the second group, and ν 21 represents the Abbe number of the i-th lens counted from the object side in the second group. By selecting such a glass type, it is possible to correct chromatic aberration better.

本発明において,より高い変倍化を達成するためには,広角端から望遠端への変倍に際して,第3レンズ群を物体側へ移動させることにより,第3レンズ群にも変倍作用を分担させ,第2レンズ群の負担を軽くして,収差補正の自由度を確保することが望ましい。また,広角端から望遠端への変倍に際して,第1群を物体側へ移動させることにより,広角端において第1レンズ群を通過する光線高さを低くして,広角化に伴う第1レンズ群の大型化を抑制することができ,望遠端では第1レンズ群と第2レンズ群の間隔を大きく確保して,長焦点化を達成することができる。   In the present invention, in order to achieve higher zooming, when zooming from the wide-angle end to the telephoto end, the third lens unit is moved toward the object side, so that the zooming action is also exerted on the third lens unit. It is desirable to share it and reduce the burden on the second lens group to ensure the degree of freedom of aberration correction. Further, at the time of zooming from the wide-angle end to the telephoto end, the first lens unit is moved to the object side, so that the height of the light beam passing through the first lens unit is reduced at the wide-angle end, and the first lens accompanying the widening of the angle. The enlargement of the group can be suppressed, and at the telephoto end, a long distance can be achieved by ensuring a large interval between the first lens group and the second lens group.

第1レンズ群の移動に関しては,以下の条件式を満足することが望ましい。
0.50<(D12T−D12W)/f<0.85
ただし,D12Wは広角端における第1レンズ群と第2レンズの間隔,D12Tは望遠端における第1レンズ群と第2レンズの間隔,fは望遠端における全系の焦点距離を表す。(D12T−D12W)を0.50以下とすると,第2レンズ群の変倍への寄与が小さくなって第3レンズ群の負担が増加するか,第1レンズ群・第2レンズ群の屈折力を強めなければならなくなって,いずれにせよ,各種収差の悪化を招く。また,広角端におけるレンズ全長が長くなって,第1レンズ群を通過する光線高さが増加し,第1群の大型化を招く。一方,(D12T−D12W)を0.85以上とすると,広角端での全長が短くなりすぎるか,望遠端での全長が長くなりすぎることになる。広角端での全長が短くなりすぎると,第3レンズ群の移動スペースが限定され,第3レンズ群の変倍への寄与が小さくなって,全体の収差補正が困難となる。望遠端での全長が長くなりすぎると,全長方向の小型化の妨げになるだけでなく,望遠端での周辺光量確保のために径方向が大型化し,また,鏡胴の倒れ等の製作誤差による像性能の劣化も招きやすくなる。
なお,さらに望ましくは,以下の条件式を満足するのが良い。
0.60<(D12T−D12W)/f<0.75
Regarding the movement of the first lens group, it is desirable to satisfy the following conditional expression.
0.50 <(D 12T -D 12W) / f T <0.85
Here, D 12W represents the distance between the first lens group and the second lens at the wide angle end, D 12T represents the distance between the first lens group and the second lens at the telephoto end, and f T represents the focal length of the entire system at the telephoto end. If (D 12T −D 12W ) is 0.50 or less, the contribution of the second lens group to the zooming is reduced and the load on the third lens group is increased, or the first lens group / second lens group The refractive power must be increased, and in any case, various aberrations are deteriorated. In addition, the total lens length at the wide-angle end increases, and the height of the light beam passing through the first lens group increases, leading to an increase in size of the first group. On the other hand, if (D 12T −D 12W ) is 0.85 or more, the total length at the wide-angle end becomes too short, or the total length at the telephoto end becomes too long. If the total length at the wide-angle end becomes too short, the moving space of the third lens group is limited, and the contribution of the third lens group to zooming becomes small, making it difficult to correct the entire aberration. If the total length at the telephoto end becomes too long, it will not only hinder downsizing in the total length direction, but also the radial direction will be enlarged to ensure the amount of peripheral light at the telephoto end, and manufacturing errors such as tilting of the lens barrel will occur. Degradation of the image performance due to is likely to be caused.
More preferably, the following conditional expression should be satisfied.
0.60 <(D 12T -D 12W) / f T <0.75

第2レンズ群と第3レンズ群との間隔の変化に関しては,以下の条件式を満足することが望ましい。
0.25<(D23W−D23T)/f<0.65
ただし,D23Wは広角端における第2レンズ群と第3レンズの間隔,D23Tは望遠端における第2レンズ群と第3レンズの間隔を表す。(D23W−D23T)/fを0.25以下とすると,第3レンズ群の変倍への寄与が小さくなって,第2ンズ群の負担が増加するか,第3レンズ群自体の屈折力を強めなければならなくなって,いずれにせよ,各種収差の悪化を招く。一方,(D23W−D23T)/fを0.65以上とすると,広角端におけるレンズ全長が長くなって,第1レンズ群を通過する光線高さが増加し,第1群の大型化を招く。
なお,さらに望ましくは,以下の条件式を満足するのが良い。
0.30<(D23W−D23T)/f<0.60
Regarding the change in the distance between the second lens group and the third lens group, it is desirable to satisfy the following conditional expression.
0.25 <(D 23W -D 23T) / f T <0.65
However, D23W represents the distance between the second lens group and the third lens at the wide-angle end, and D23T represents the distance between the second lens group and the third lens at the telephoto end. If (D 23W −D 23T ) / f T is 0.25 or less, the contribution of the third lens group to zooming is reduced, and the burden on the second lens group increases, or the third lens group itself The refractive power must be increased, and in any case, various aberrations are deteriorated. On the other hand, if (D 23W −D 23T ) / f T is set to 0.65 or more, the total lens length at the wide angle end becomes longer, the height of the light beam passing through the first lens group increases, and the size of the first group increases. Invite.
More preferably, the following conditional expression should be satisfied.
0.30 <(D 23W -D 23T) / f T <0.60

収差補正に関して,さらに以下の条件式を満足することは望ましい。
0.5<|f|/f<1.0
6.0<f/f<12.0
ただし,fは第1レンズ群の焦点距離,fは第2レンズ群の焦点距離,fは第3レンズ群の焦点距離,fは広角端における全系の焦点距離を表す。|f|/fを0.5以下とすると,第2レンズ群の屈折力が強くなりすぎ,|f|/fを1.0以上とすると,第3レンズ群の屈折力が強くなりすぎて,いずれにしろ変倍に際する収差変動が大きくなりやすくなる。f/fを6.0以下とすると,第2レンズ群の結像倍率が等倍に近付いて変倍効率が上がり,高変倍化には有利であるが,第1レンズ群の各レンズに大きな屈折力が必要になって,特に望遠端での色収差が悪化する等の弊害があるばかりか,第1群が厚肉化・大口径化して,特に収納状態での小型化にとって不利となる。一方,f/fを12.0以上とすると,第2レンズ群の変倍への寄与が小さくなってしまい,高変倍化が難しくなる。なお、望ましくは、f/fを10.0以上とするのが良い。
It is desirable to satisfy the following conditional expression regarding aberration correction.
0.5 <| f 2 | / f 3 <1.0
6.0 <f 1 / f W <12.0
Here, f 1 is the focal length of the first lens group, f 2 is the focal length of the second lens group, f 3 is the focal length of the third lens group, and f W is the focal length of the entire system at the wide angle end. If | f 2 | / f 3 is 0.5 or less, the refractive power of the second lens group becomes too strong. If | f 2 | / f 3 is 1.0 or more, the refractive power of the third lens group is In any case, the aberration variation during zooming tends to increase. If f 1 / f W is 6.0 or less, the imaging magnification of the second lens unit approaches to the same magnification and the zooming efficiency is improved, which is advantageous for high zooming. The lens requires a large refracting power, which not only has adverse effects such as worsening chromatic aberration at the telephoto end, but is also disadvantageous for downsizing especially in the storage state because the first group becomes thicker and larger in diameter. It becomes. On the other hand, if f 1 / f W is set to 12.0 or more, the contribution of the second lens group to zooming becomes small, and high zooming becomes difficult. Desirably, f 1 / f W is preferably 10.0 or more.

なお,本発明の目的は,以下の構成によっても達成できる。すなわち,物体側より順に,正の屈折力を有する第1レンズ群,負の屈折力を有する第2レンズ群,正の屈折力を有する第3レンズ群,正の屈折力を有する第4レンズ群を配設して4群構成とし,広角端から望遠端への変倍に際して,第1レンズ群と第2レンズ群の間隔が大きくなり,第2レンズ群と第3レンズ群の間隔が小さくなるように,少なくとも第1レンズ群および第3レンズ群が物体側に移動するズームレンズとする。しして,以下の条件式を満足すると共に,第2レンズ群を,物体側から順に,像側に曲率の大きな面を向けた負レンズ,像側に曲率の大きな面を向けた正レンズ,物体側に曲率の大きな面を向けた負レンズの3枚で構成する。
0.70<Y´max/f<1.00
ただし,fは広角端における全系の焦点距離,Y´maxは最大像高を表す。
The object of the present invention can also be achieved by the following configuration. That is, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power. Are arranged in a four-group configuration, and when changing the magnification from the wide-angle end to the telephoto end, the distance between the first lens group and the second lens group is increased, and the distance between the second lens group and the third lens group is decreased. Thus, a zoom lens in which at least the first lens group and the third lens group move to the object side is used. Thus, the following conditional expression is satisfied, and the second lens group is arranged in order from the object side, a negative lens having a surface with a large curvature on the image side, a positive lens having a surface with a large curvature on the image side, It consists of three negative lenses with a large curvature facing the object side.
0.70 < Y ′ max / f W <1.00
However, f W represents the focal length of the entire system at the wide angle end, and Ymax represents the maximum image height.

また,本発明のズームレンズにおいては,第2レンズ群と第3レンズ群の間に開口絞りを配設し,その開口絞りは隣接するレンズ群とは独立に移動して,開口絞りと第3レンズ群との間隔が,広角端で最も広く,望遠端で最も狭くなるように構成することが望ましい。開口絞りと第3レンズ群との間隔を広角端で最も広くすることで,広角端において開口絞りを第1レンズ群に近づけ,第1レンズ群を通過する光線高さをより低くすることが可能となって,第1群のさらなる小型化が達成できる。   In the zoom lens of the present invention, an aperture stop is disposed between the second lens group and the third lens group, and the aperture stop moves independently of the adjacent lens group, and the aperture stop and the third lens group are moved. It is desirable that the distance from the lens group be the widest at the wide-angle end and the narrowest at the telephoto end. By widening the distance between the aperture stop and the third lens group at the wide-angle end, it is possible to bring the aperture stop closer to the first lens group at the wide-angle end and to lower the height of the light beam passing through the first lens group. Thus, further downsizing of the first group can be achieved.

以下,小型化を妨げない範囲で,より良好な収差補正を行うための条件を述べる。第1レンズ群は物体側より,少なくとも1枚の負レンズと,少なくとも1枚の正レンズを有する構成であることが望ましい。より具体的には,物体側から順に,物体側に凸面を向けた負メニスカスレンズ,物体側に強い凸面を向けた正レンズの2枚で構成するか,または,物体側から順に,物体側に凸面を向けた負メニスカスレンズ,物体側に強い凸面を向けた正レンズ,
物体側に強い凸面を向けた正レンズの3枚で構成するのが良い。
The following describes the conditions for better aberration correction within a range that does not hinder downsizing. It is desirable that the first lens group has at least one negative lens and at least one positive lens from the object side. More specifically, either a negative meniscus lens having a convex surface facing the object side and a positive lens having a strong convex surface facing the object side are arranged in order from the object side, or the object side is arranged in order from the object side. Negative meniscus lens with convex surface, positive lens with strong convex surface on object side,
It is preferable to use three positive lenses having a strong convex surface on the object side.

全系が正・負・正の3群のみで構成される場合,第3レンズ群は物体側から順に,正レンズ,正レンズ,負レンズ,正レンズの4枚で構成することが望ましい。ここで,物体側から2番目のレンズと3番目のレンズは適宜接合しても良い。また,全系が正・負・正・正の4群で構成される場合,第3レンズ群は物体側から順に,正レンズ,正レンズ,負レンズの3枚で構成することが望ましい。ここで,物体側から2番目のレンズと3番目のレンズは適宜接合しても良い。   When the entire system is composed of only three groups of positive, negative, and positive, it is desirable that the third lens group is composed of four lenses in order from the object side: a positive lens, a positive lens, a negative lens, and a positive lens. Here, the second lens and the third lens from the object side may be appropriately joined. When the entire system is composed of four groups of positive, negative, positive, and positive, it is desirable that the third lens group is composed of three lenses in order from the object side: a positive lens, a positive lens, and a negative lens. Here, the second lens and the third lens from the object side may be appropriately joined.

全系が正・負・正・正の4群で構成される場合,第4レンズ群は正レンズ1枚で構成することが望ましい。また,有限距離へのフォーカシングの際には,第4レンズ群のみを移動させる方法が,移動させるべき物体の重量が最も小さくて良い。第4レンズ群は変倍に際する移動量が小さく,変倍のための移動機構とフォーカシングのための移動機構を兼用できるメリットもある。   When the entire system is composed of four groups of positive, negative, positive, and positive, it is desirable that the fourth lens group be composed of one positive lens. Further, when focusing to a finite distance, the method of moving only the fourth lens group may minimize the weight of the object to be moved. The fourth lens group has a small movement amount at the time of zooming, and there is an advantage that a moving mechanism for zooming can be used as a moving mechanism for focusing.

良好な収差補正を保ちながらより小型化を進めるためには非球面が不可欠であり,第2レンズ群以外では,少なくとも第3レンズ群に,1面以上の非球面を有することが望ましい。第3レンズ群の非球面は,主として球面収差,コマ収差の補正に効果がある。   An aspherical surface is indispensable for further downsizing while maintaining good aberration correction, and it is desirable that at least the third lens unit has at least one aspherical surface other than the second lens unit. The aspherical surface of the third lens group is mainly effective in correcting spherical aberration and coma aberration.

なお,非球面レンズとしては,光学ガラスや光学プラスチックを成型したもの、すなわち、ガラスモールド非球面あるいはプラスチックモールド非球面や,ガラスレンズの面上に薄い樹脂層を成型し,その表面を非球面としたもの、例えば、ハイブリッド非球面,レプリカ非球面等と称されるもの等を使用することができる。   As an aspheric lens, an optical glass or plastic is molded, that is, a glass mold aspheric surface or a plastic mold aspheric surface, or a thin resin layer is molded on the surface of the glass lens, and the surface is aspherical. For example, what is called a hybrid aspherical surface, a replica aspherical surface, or the like can be used.

第2レンズ群の最も像側にガラスモールド非球面レンズを採用することを考えた場合,第2レンズ群の最も像側のレンズが正レンズであると,色収差補正のためにはレンズの素材として、重フリント系の硝種が必要となるが,重フリント系の硝種にはモールドに適したものが少ないという不具合が発生する。本発明のように,第2レンズ群の最も像側のレンズが負レンズであると,色収差補正のためには、レンズ素材としてランタンクラウン系〜タンタルフリント系の硝種が用いられ,モールドに適した硝種が多い。   Considering the adoption of a glass mold aspherical lens on the most image side of the second lens group, if the most image side lens in the second lens group is a positive lens, the lens material is used for correcting chromatic aberration. However, a heavy flint glass type is required, but there is a problem that few heavy flint type glass materials are suitable for molding. As in the present invention, when the lens on the most image side of the second lens group is a negative lens, a lanthanum crown type to tantalum flint type glass material is used as a lens material for chromatic aberration correction, which is suitable for a mold. There are many glass types.

また,第2レンズ群の最も像側にハイブリッド非球面レンズを採用することを考えた場合,樹脂層を成型するための金型を当て付ける都合上,やや大きなレンズ外径が必要となるが,第2レンズ群の最も像側のレンズが正レンズであると,レンズのコバ厚が小さくなって,加工できなくなる不具合が発生する。本発明のように,第2レンズ群の最も像側のレンズが負レンズであると,コバ厚は大きくなる方向であるため,加工上の問題は発生しない。   In addition, when considering using a hybrid aspherical lens on the most image side of the second lens group, a slightly larger lens outer diameter is required for the purpose of applying a mold for molding the resin layer. If the lens on the most image side of the second lens group is a positive lens, the edge thickness of the lens becomes small, which causes a problem that it cannot be processed. As in the present invention, when the lens closest to the image side of the second lens group is a negative lens, the edge thickness is increased, so that no processing problems occur.

絞りの開放径は変倍に係わらず一定とするのが機構上簡略となって良い。ただし,長焦点端の開放径短焦点端に比べて大きくすることにより,変倍に伴うFナンバの変化を小さくすることもできる。また,像面に到達する光量を減少させる必要があるときには,絞りを小径化しても良いが,絞り径を大きく変えることなく,NDフィルタ等の挿入により光量を減少させた方が,回折現象による解像力の低下を防止できて好ましい。   It may be simplified in terms of the mechanism that the aperture diameter of the aperture is constant regardless of zooming. However, the change in the F number accompanying zooming can be reduced by increasing the length of the long focal point compared to the short focal length. In addition, when it is necessary to reduce the amount of light reaching the image plane, the diameter of the diaphragm may be reduced. However, if the amount of light is reduced by inserting an ND filter or the like without greatly changing the diameter of the diaphragm, it is caused by the diffraction phenomenon. It is preferable because a decrease in resolution can be prevented.

以下に本発明のズームレンズの具体的な数値実施例を示す。図1ないし図4はそれぞれ本発明にかかるズームレンズの別々の実施例を示す断面図で、図1、図2は3群構成の例、図3、図4は4群構成の例を示す。これらの図において、各面の面番号を物体側から順に「01」「02」「03」・・・のように示し、各レンズを物体側から順に「L1」「L2」「L3」・・・のように示す。また、第1レンズ群を「I」で、第2レンズ群を「II」で、第3レンズ群を「III」で、第4レンズ群を「IV」で示す。図1ないし図4において、上段の図は不使用時ないしは携帯時のレンズ配置を、中段の図は広角端でのレンズ配置を、下段の図は望遠端でのレンズ配置を示している。なお,最大像高は,数値実施例1において3.50mm,数値実施例2ないし数値実施例4において3.70mmである。各実施例において,レンズ系の像面側に配設される平行平板は,光学ローパスフィルタ・赤外カットフィルタ等の各種フィルタや,CCDセンサ等の受光素子のカバーガラス(シールガラス)を想定したものである。レンズの材質は,実施例3の第9レンズ(第4群)が光学プラスチックである他は,全て光学ガラスとなっている。   Specific numerical examples of the zoom lens of the present invention are shown below. 1 to 4 are sectional views showing different embodiments of the zoom lens according to the present invention. FIGS. 1 and 2 show examples of a three-group configuration, and FIGS. 3 and 4 show examples of a four-group configuration. In these drawings, the surface numbers of the respective surfaces are shown as “01”, “02”, “03”,... In order from the object side, and the respective lenses are indicated by “L1”, “L2”, “L3”,.・ Indicates like The first lens group is indicated by “I”, the second lens group is indicated by “II”, the third lens group is indicated by “III”, and the fourth lens group is indicated by “IV”. 1 to 4, the upper diagram shows the lens arrangement at the time of non-use or carrying, the middle diagram shows the lens arrangement at the wide angle end, and the lower diagram shows the lens arrangement at the telephoto end. The maximum image height is 3.50 mm in Numerical Example 1 and 3.70 mm in Numerical Example 2 to Numerical Example 4. In each embodiment, the parallel plate disposed on the image plane side of the lens system is assumed to be various filters such as an optical low-pass filter and an infrared cut filter, and a cover glass (seal glass) of a light receiving element such as a CCD sensor. Is. The materials of the lenses are all optical glass except that the ninth lens (fourth group) of Example 3 is an optical plastic.

各実施例の収差は十分に補正されており,300万画素〜500万画素の受光素子に対応することが可能となっている。図5ないし図16は、各数値実施例の収差曲線を示している。これらの収差曲線において、球面収差を示す図の中で、破線は正弦条件を示している。非点収差を示す図の中で、実線はサジタルを、破線はメリディオナルを示している。本発明のようにズームレンズを構成することで,十分な小型化を達成しながら非常に良好な像性能を確保し得ることは,実施例より明らかである。
実施例における記号の意味は以下の通りである。
f :全系の焦点距離
F :Fナンバ
ω :半画角
R :曲率半径
D :面間隔
:屈折率
ν :アッベ数
K :非球面の円錐定数
:4次の非球面係数
:6次の非球面係数
:8次の非球面係数
10 :10次の非球面係数
ただし,ここで用いられる非球面は,近軸曲率半径の逆数(近軸曲率)をC,光軸からの高さをHとするとき,以下の式で定義される。

Figure 2006078979
The aberration in each example is sufficiently corrected, and can correspond to a light receiving element having 3 to 5 million pixels. 5 to 16 show aberration curves of the respective numerical examples. In these aberration curves, broken lines in the diagrams showing spherical aberration indicate sine conditions. In the diagram showing astigmatism, the solid line indicates sagittal and the broken line indicates meridional. It is clear from the embodiment that by configuring the zoom lens as in the present invention, a very good image performance can be secured while achieving a sufficiently small size.
The meanings of the symbols in the examples are as follows.
f: the focal length F of the entire system: F number omega: half field angle R: curvature radius D: surface interval N d: refractive index [nu d: Abbe number K: aspherical conic constant A 4: 4-order aspheric coefficients A 6 : 6th-order aspheric coefficient A 8 : 8th-order aspheric coefficient A 10 : 10th-order aspheric coefficient However, the aspheric surface used here represents the reciprocal of the paraxial radius of curvature (paraxial curvature) as C When the height from the optical axis is H, it is defined by the following equation.
Figure 2006078979

数値実施例1Numerical example 1


Figure 2006078979

Figure 2006078979

Figure 2006078979

Figure 2006078979

数値実施例1にかかるズームレンズの短焦点端における収差曲線を図5に、中間焦点距離における収差曲線を図6に、長焦点端における収差曲線を図7に示す。   FIG. 5 shows an aberration curve at the short focal point of the zoom lens according to Numerical Example 1, FIG. 6 shows an aberration curve at the intermediate focal length, and FIG. 7 shows an aberration curve at the long focal point.

数値実施例2Numerical example 2


Figure 2006078979

Figure 2006078979

Figure 2006078979

Figure 2006078979

数値実施例2にかかるズームレンズの短焦点端における収差曲線を図8に、中間焦点距離における収差曲線を図9に、長焦点端における収差曲線を図10に示す。   FIG. 8 shows an aberration curve at the short focal point of the zoom lens according to Numerical Example 2, FIG. 9 shows an aberration curve at the intermediate focal length, and FIG. 10 shows an aberration curve at the long focal point.

数値実施例3Numerical Example 3


Figure 2006078979

Figure 2006078979

Figure 2006078979

Figure 2006078979

数値実施例3にかかるズームレンズの短焦点端における収差曲線を図11に、中間焦点距離における収差曲線を図12に、長焦点端における収差曲線を図13に示す。
FIG. 11 shows an aberration curve at the short focal end of the zoom lens according to Numerical Example 3, FIG. 12 shows an aberration curve at the intermediate focal length, and FIG. 13 shows an aberration curve at the long focal end.

数値実施例4Numerical Example 4


Figure 2006078979

Figure 2006078979

Figure 2006078979

Figure 2006078979

数値実施例4にかかるズームレンズの短焦点端における収差曲線を図14に、中間焦点距離における収差曲線を図15に、長焦点端における収差曲線を図16に示す。
FIG. 14 shows an aberration curve at the short focal end of the zoom lens according to Numerical Example 4, FIG. 15 shows an aberration curve at the intermediate focal length, and FIG. 16 shows an aberration curve at the long focal end.

次に,図17ないし図19を参照しながら,本発明にかかるズームレンズを用いたカメラおよび携帯情報端末装置の実施例について説明する。
カメラまたはカメラ付き携帯電話などの携帯情報端末装置は,撮影レンズとエリアセンサからなる受光素子を有し,撮影レンズによって受光素子上に形成される撮影対象物の像を受光素子によって読み取るように構成されている。この撮影レンズとしては,これまで説明してきた各実施例にかかるズームレンズを用いる。
Next, embodiments of a camera and a portable information terminal device using the zoom lens according to the present invention will be described with reference to FIGS.
A portable information terminal device such as a camera or a mobile phone with a camera has a light receiving element including a photographing lens and an area sensor, and is configured to read an image of a photographing object formed on the light receiving element by the photographing lens with the light receiving element. Has been. As the photographing lens, the zoom lens according to each of the embodiments described so far is used.

図19において、受光素子34から出力される被写体の画像情報は中央演算装置40の制御を受ける信号処理装置36によって処理され,デジタル情報に変換される。信号処理装置36によってデジタル化された画像情報は,中央演算装置40の制御を受ける画像処理装置38において所定の画像処理を受けた後,半導体メモリ42に記録される。液晶モニタ46には撮影中の画像を表示することもできるし,半導体メモリ42に記録されている画像を表示することもできる。また,半導体メモリ42に記録した画像情報は通信カード等44を使用して外部へ送信することも可能である。   In FIG. 19, the image information of the subject output from the light receiving element 34 is processed by the signal processing device 36 under the control of the central processing unit 40 and converted into digital information. The image information digitized by the signal processing device 36 is recorded in the semiconductor memory 42 after undergoing predetermined image processing in the image processing device 38 under the control of the central processing unit 40. An image being shot can be displayed on the liquid crystal monitor 46, and an image recorded in the semiconductor memory 42 can be displayed. The image information recorded in the semiconductor memory 42 can also be transmitted to the outside using a communication card 44 or the like.

図17、図18に示すように、撮影レンズ30はカメラの携帯時には図17(a)に示すように沈胴状態にあり,ユーザが電源スイッチ58を操作して電源を入れると,図17(b)に示すように撮影レンズ30の鏡胴が繰り出される。このとき,鏡胴の内部でズームレンズの各群は例えば短焦点端の配置となっており,ズームレバー52を操作することで各群の配置が変化し,長焦点端への変倍を行うことができる。このとき,ファインダ32も撮影レンズ30の画角の変化に連動して変倍する。   As shown in FIGS. 17 and 18, the taking lens 30 is in the retracted state as shown in FIG. 17A when the camera is carried, and when the user operates the power switch 58 to turn on the power, FIG. ), The lens barrel of the taking lens 30 is extended. At this time, each group of zoom lenses in the lens barrel has an arrangement of, for example, a short focal point, and the arrangement of each group is changed by operating the zoom lever 52 and zooming to the long focal point is performed. be able to. At this time, the viewfinder 32 is also scaled in conjunction with the change in the angle of view of the photographic lens 30.

シャッタボタン50の半押しによりフォーカシングがなされる。前に説明した各実施例にかかるズームレンズにおいて,フォーカシングは第2群または第4群の移動,もしくは,受光素子の移動によって行うことができる。シャッタボタン50を半押しの状態からさらに押し込むと撮影がなされ,その後は既述の処理がなされる。半導体メモリ42に記録した画像情報を液晶モニタ46に表示し、あるいは,通信カード等44を使用して外部へ送信する際は,適宜の操作ボタン60を使用して行う。半導体メモリ42および通信カード等44は,それぞれ専用または汎用のスロット62,64に挿入して使用される。   Focusing is performed by half-pressing the shutter button 50. In the zoom lens according to each of the embodiments described above, focusing can be performed by moving the second group or the fourth group, or moving the light receiving element. When the shutter button 50 is further pressed from the half-pressed state, photographing is performed, and thereafter, the above-described processing is performed. When the image information recorded in the semiconductor memory 42 is displayed on the liquid crystal monitor 46 or transmitted to the outside using the communication card 44 or the like, the appropriate operation button 60 is used. The semiconductor memory 42 and the communication card 44 are used by being inserted into dedicated or general-purpose slots 62 and 64, respectively.

なお,撮影レンズ30が沈胴状態にあるとき,ズームレンズの各群は必ずしも光軸上に並んでいなくても良い。例えば第3レンズ群が光軸上から退避して,他のレンズ群と並列に収納されるような機構とすれば,カメラのさらなる薄型化を実現することができる。図17、図18は、前記実施例にかかるズームレンズがカメラに組み込まれた例を示しているが、本発明にかかるズームレンズは携帯電話などの携帯情報端末装置に組み込まれるカメラの撮影レンズとして組み込むこともできる。   When the photographing lens 30 is in the retracted state, each group of zoom lenses does not necessarily have to be aligned on the optical axis. For example, if the mechanism is such that the third lens group is retracted from the optical axis and stored in parallel with the other lens groups, the camera can be made thinner. FIGS. 17 and 18 show an example in which the zoom lens according to the embodiment is incorporated in a camera. The zoom lens according to the present invention is used as a photographing lens for a camera incorporated in a portable information terminal device such as a cellular phone. It can also be incorporated.

以上説明したようなカメラまたは携帯情報端末装置に,数値実施例1〜数値実施例4にかかるズームレンズを撮影レンズとして使用することにより,300万画素〜500万画素クラスの受光素子を使用した、高画質で小型のカメラまたは携帯情報端末装置を実現することができる。   By using the zoom lens according to Numerical Example 1 to Numerical Example 4 as a photographic lens in the camera or the portable information terminal device as described above, a light receiving element of 3 to 5 million pixel class is used. A small camera or a portable information terminal device with high image quality can be realized.

本発明にかかるズームレンズは、デジタルカメラ、銀塩写真方式カメラ、ビデオカメラ、その他各種カメラの撮影レンズとして使用可能である。特に、コンパクトで、かつ、高変倍率でありながら、画素数の多いデジタルカメラなどに対応することが可能な高精細度のズームレンズを実現することができる。また、このようなズームレンズを採用することにより、コンパクトで変倍率が高く、高性能のカメラあるいはカメラ付き携帯情報端末装置を得ることができる。   The zoom lens according to the present invention can be used as a shooting lens for digital cameras, silver halide photography cameras, video cameras, and other various cameras. In particular, it is possible to realize a high-definition zoom lens that is compatible with a digital camera having a large number of pixels while being compact and having a high zoom ratio. In addition, by adopting such a zoom lens, it is possible to obtain a high-performance camera or a camera-equipped portable information terminal device that is compact and has a high zoom ratio.

数値実施例1のズームレンズの構成を示すもので、(a)は不使用時を、(b)は短焦点端を、(c)は長焦点端を示す断面図である。1 shows a configuration of a zoom lens according to Numerical Example 1, wherein (a) is a non-use state, (b) is a short focal end, and (c) is a cross sectional view showing a long focal end. 数値実施例2のズームレンズの構成を示すもので、(a)は不使用時を、(b)は短焦点端を、(c)は長焦点端を示す断面図である。2 shows a configuration of a zoom lens according to Numerical Example 2, in which (a) is a non-use state, (b) is a short focal end, and (c) is a cross sectional view showing a long focal end. 数値実施例3のズームレンズの構成を示すもので、(a)は不使用時を、(b)は短焦点端を、(c)は長焦点端を示す断面図である。9 shows a configuration of a zoom lens according to Numerical Example 3, in which (a) shows a non-use state, (b) shows a short focal end, and (c) shows a long focal end. 数値実施例4のズームレンズの構成を示すもので、(a)は不使用時を、(b)は短焦点端を、(c)は長焦点端を示す断面図である。9 shows a configuration of a zoom lens according to Numerical Example 4, in which (a) is a non-use state, (b) is a short focal end, and (c) is a cross sectional view showing a long focal end. 数値実施例1のズームレンズの短焦点端における収差曲線図である。6 is an aberration curve diagram at a short focal end of the zoom lens according to Numerical Example 1. FIG. 数値実施例1のズームレンズの中間焦点距離における収差曲線図である。6 is an aberration curve diagram at an intermediate focal length of the zoom lens according to Numerical Example 1. FIG. 数値実施例1のズームレンズの長焦点端における収差曲線図である。6 is an aberration curve diagram at the long focal end of the zoom lens according to Numerical Example 1. FIG. 数値実施例2のズームレンズの短焦点端における収差曲線図である。FIG. 10 is an aberration curve diagram at the short focal point of the zoom lens according to Numerical Example 2. 数値実施例2のズームレンズの中間焦点距離における収差曲線図である。FIG. 9 is an aberration curve diagram at an intermediate focal length of the zoom lens according to Numerical Example 2. 数値実施例2のズームレンズの長焦点端における収差曲線図である。FIG. 6 is an aberration curve diagram at the long focal end of the zoom lens according to Numerical Example 2. 数値実施例3のズームレンズの短焦点端における収差曲線図である。10 is an aberration curve diagram at the short focal point of the zoom lens according to Numerical Example 3. FIG. 数値実施例3のズームレンズの中間焦点距離における収差曲線図である。10 is an aberration curve diagram at an intermediate focal length of the zoom lens according to Numerical Example 3. FIG. 数値実施例3のズームレンズの長焦点端における収差曲線図である。FIG. 10 is an aberration curve diagram at the long focal end of the zoom lens according to Numerical Example 3. 数値実施例4のズームレンズの短焦点端における収差曲線図である。FIG. 9 is an aberration curve diagram at the short focal point of the zoom lens according to Numerical Example 4; 数値実施例4のズームレンズの中間焦点距離における収差曲線図である。FIG. 10 is an aberration curve diagram at an intermediate focal length of the zoom lens according to Numerical Example 4; 数値実施例4のズームレンズの長焦点端における収差曲線図である。FIG. 10 is an aberration curve diagram at the long focal end of the zoom lens according to Numerical Example 4; 本発明にかかるカメラの実施例の外観を示すもので、(a)は撮影レンズが沈胴した状態を示す全体の斜視図、(b)は撮影レンズが進出した状態を示すカメラの一部分の斜視図である。1A and 1B show an external appearance of an embodiment of a camera according to the present invention, in which FIG. 1A is an overall perspective view showing a state where a taking lens is retracted, and FIG. 2B is a perspective view of a part of the camera showing a state where the taking lens is advanced. It is. 上記実施例にかかるカメラを裏側から見た全体の斜視図である。It is the whole perspective view which looked at the camera concerning the above-mentioned example from the back side. 本発明にかかるカメラまたは携帯情報端末装置の撮影機能に関係する部分の処理回路例を示すブロック図である。It is a block diagram which shows the processing circuit example of the part relevant to the imaging | photography function of the camera concerning this invention or a portable information terminal device.

符号の説明Explanation of symbols

I 第1群レンズ
II 第2群レンズ
III 第3群レンズ
IV 第4群レンズ
L1〜L10 レンズ
01,02,03・・・ 面番号
I 1st group lens II 2nd group lens III 3rd group lens IV 4th group lens L1-L10 Lens 01, 02, 03 ... Surface number

Claims (11)

物体側から順に,正の屈折力を有する第1レンズ群,負の屈折力を有する第2レンズ群,正の屈折力を有する第3レンズ群を配設し,広角端から望遠端への変倍に際して,第1レンズ群と第2レンズ群の間隔が大きくなり,第2レンズ群と第3レンズ群の間隔が小さくなるズームレンズにおいて,以下の条件式
0.70<Y´max/f<1.00
(ただし,fは広角端における全系の焦点距離,Y´maxは最大像高)
を満足すると共に,第2レンズ群を,物体側から順に互いに空気間隔を設けて配置された,像側に曲率の大きな面を向けた負レンズ,像側に曲率の大きな面を向けた正レンズ,物体側に曲率の大きな面を向けた負レンズの3枚で構成したことを特徴とするズームレンズ。
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power are arranged to change from the wide-angle end to the telephoto end. When zooming, in a zoom lens in which the distance between the first lens group and the second lens group is large and the distance between the second lens group and the third lens group is small, the following conditional expression 0.70 < Y ′ max / f W <1.00
(Where f W is the focal length of the entire system at the wide-angle end, and Ymax is the maximum image height)
In addition, the second lens group is arranged in order from the object side with an air gap therebetween, a negative lens having a large curvature surface facing the image side, and a positive lens having a large curvature surface facing the image side A zoom lens comprising three negative lenses having a surface with a large curvature facing the object side.
請求項1記載のズームレンズにおいて,第2レンズ群の最も像側に配設される負レンズの像側面が,光軸から離れるに従って負の屈折力が弱まるような形状の非球面であり,以下の条件式
0.0010<(1−N2I)×X2I(H0.8)/Y´max<0.0500
(ただし,N2Iは第2レンズ群の最も像側に配設される負レンズの屈折率,X2I(H0.8)は第2レンズ群の最も像側の非球面における最大光線有効高さの8割における非球面量を表す。非球面量X(H)とは,非球面の近軸曲率で定義される球面と実際の非球面との光軸からの高さHにおけるサグ量の差であり、物体側から像側に向かう方向を正とする)
を満足することを特徴とするズームレンズ。
2. The zoom lens according to claim 1, wherein the image side surface of the negative lens disposed closest to the image side of the second lens group is an aspherical surface having a shape in which the negative refractive power decreases as the distance from the optical axis increases. Conditional expression 0.0010 <(1-N 2I ) × X 2I (H 0.8 ) / Y ′ max <0.0500
(Where N 2I is the refractive index of the negative lens disposed closest to the image side of the second lens group, and X 2I (H 0.8 ) is the maximum effective ray height on the aspherical surface closest to the image side of the second lens group. The aspherical amount in 80% of the aspherical amount X (H) is the sag amount at the height H from the optical axis between the spherical surface defined by the paraxial curvature of the aspherical surface and the actual aspherical surface. This is the difference, and the direction from the object side to the image side is positive)
A zoom lens characterized by satisfying
請求項2記載のズームレンズにおいて,第2レンズ群の最も像側に配設される負レンズの像側面に加えて,第2レンズ群の最も物体側に配設される負レンズの物体側面が非球面であり,以下の条件式
−0.0500<((N2O−1)×X2O(H0.8
+(1−N2I)×X2I(H0.8))/Y´max<0.1500
(ただし,N2Oは第2レンズ群の最も物体側に配設される負レンズの屈折率,X2O(H0.8)は第2レンズ群の最も物体側の非球面における最大光線有効高さの8割における非球面量)
を満足することを特徴とするズームレンズ。
3. The zoom lens according to claim 2, wherein, in addition to the image side surface of the negative lens disposed closest to the image side of the second lens group, the object side surface of the negative lens disposed closest to the object side of the second lens group includes: It is an aspherical surface, and the following conditional expression −0.0500 <((N 2 O −1) × X 2 O (H 0.8 )
+ (1-N 2I ) × X 2I (H 0.8 )) / Y ′ max <0.1500
(Where N 2 O is the refractive index of the negative lens disposed closest to the object side of the second lens group, and X 2O (H 0.8 ) is the maximum effective ray height on the aspherical surface closest to the object side of the second lens group. Aspheric amount in 80% of the above)
A zoom lens characterized by satisfying
請求項1ないし請求項3のいずれかに記載のズームレンズにおいて,以下の条件式
1.75<N21<1.90,35<ν21<50
1.65<N22<1.90,20<ν22<35
1.75<N23<1.90,35<ν23<50
(ただし,N2iは第2群中で物体側から数えてi番目のレンズの屈折率,ν2iは第2群中で物体側から数えてi番目のレンズのアッベ数)
を満足することを特徴とするズームレンズ。
4. The zoom lens according to claim 1, wherein the following conditional expressions: 1.75 <N 21 <1.90, 35 <ν 21 <50
1.65 <N 22 <1.90, 20 <ν 22 <35
1.75 <N 23 <1.90, 35 <ν 23 <50
(Where N 2i is the refractive index of the i-th lens counted from the object side in the second group, and ν 2i is the Abbe number of the i-th lens counted from the object side in the second group)
A zoom lens characterized by satisfying
請求項1ないし請求項4のいずれかに記載のズームレンズにおいて,広角端から望遠端への変倍に際し,第1レンズ群が物体側に単調に移動すると共に,以下の条件式
0.50<(D12T−D12W)/f<0.85
(ただし,D12Wは広角端における第1レンズ群と第2レンズの間隔,D12Tは望遠端における第1レンズ群と第2レンズの間隔,fは望遠端における全系の焦点距離)
を満足することを特徴とするズームレンズ。
5. The zoom lens according to claim 1, wherein the first lens unit monotonously moves toward the object side upon zooming from the wide-angle end to the telephoto end, and the following conditional expression 0.50 < (D 12T -D 12W) / f T <0.85
(Where D 12W is the distance between the first lens group and the second lens at the wide angle end, D 12T is the distance between the first lens group and the second lens at the telephoto end, and f T is the focal length of the entire system at the telephoto end).
A zoom lens characterized by satisfying
請求項1ないし請求項5のいずれかに記載のズームレンズにおいて,広角端から望遠端への変倍に際し,第3レンズ群が物体側に単調に移動すると共に,以下の条件式
0.25<(D23W−D23T)/f<0.65
(ただし,D23Wは広角端における第2レンズ群と第3レンズの間隔,D23Tは望遠端における第2レンズ群と第3レンズの間隔)
を満足することを特徴とするズームレンズ。
6. The zoom lens according to claim 1, wherein the third lens unit monotonously moves toward the object side upon zooming from the wide-angle end to the telephoto end, and the following conditional expression 0.25 < (D 23W -D 23T) / f T <0.65
(Where D 23W is the distance between the second lens group and the third lens at the wide-angle end, and D 23T is the distance between the second lens group and the third lens at the telephoto end)
A zoom lens characterized by satisfying
請求項1ないし請求項6のいずれかに記載のズームレンズにおいて,以下の条件式
0.5<|f|/f<1.0
(ただし,fは第2レンズ群の焦点距離,fは第3レンズ群の焦点距離)
を満足することを特徴とするズームレンズ。
7. The zoom lens according to claim 1, wherein the following conditional expression: 0.5 <| f 2 | / f 3 <1.0
(Where f 2 is the focal length of the second lens group, f 3 is the focal length of the third lens group)
A zoom lens characterized by satisfying
請求項1ないし請求項7のいずれかに記載のズームレンズにおいて,以下の条件式
6.0<f/f<12.0
(ただし,fは第1レンズ群の焦点距離、fは広角端における全系の焦点距離)
を満足することを特徴とするズームレンズ。
In the zoom lens according to any one of claims 1 to 7, the following conditional expression 6.0 <f 1 / f W <12.0
(Where f 1 is the focal length of the first lens group, and f W is the focal length of the entire system at the wide-angle end)
A zoom lens characterized by satisfying
物体側より順に,正の屈折力を有する第1レンズ群,負の屈折力を有する第2レンズ群,正の屈折力を有する第3レンズ群,正の屈折力を有する第4レンズ群を配設し,広角端から望遠端への変倍に際して,第1レンズ群と第2レンズ群の間隔が大きくなり,第2レンズ群と第3レンズ群の間隔が小さくなるように,少なくとも第1レンズ群および第3レンズ群が物体側に移動するズームレンズにおいて,以下の条件式
0.70<Y´max/f<1.00
(ただし,fは広角端における全系の焦点距離,Y´maxは最大像高)
を満足すると共に,第2レンズ群を,物体側から順に互いに空気間隔を設けて配置された,像側に曲率の大きな面を向けた負レンズ,像側に曲率の大きな面を向けた正レンズ,物体側に曲率の大きな面を向けた負レンズの3枚で構成したことを特徴とするズームレンズ。
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power are arranged. And at the time of zooming from the wide-angle end to the telephoto end, at least the first lens so that the distance between the first lens group and the second lens group is increased and the distance between the second lens group and the third lens group is decreased. In the zoom lens in which the first lens unit and the third lens unit are moved toward the object side, the following conditional expression 0.70 < Y ′ max / f W <1.00
(Where f W is the focal length of the entire system at the wide-angle end, and Ymax is the maximum image height)
In addition, the second lens group is arranged in order from the object side with an air gap therebetween, a negative lens having a large curvature surface facing the image side, and a positive lens having a large curvature surface facing the image side A zoom lens comprising three negative lenses having a surface with a large curvature facing the object side.
請求項1〜請求項9のいずれかに記載のズームレンズを,撮影用光学系として有することを特徴とするカメラ。   A camera comprising the zoom lens according to claim 1 as a photographing optical system. 請求項1〜請求項9のいずれかに記載のズームレンズを,カメラ機能部の撮影用光学系として有することを特徴とする携帯情報端末装置。   A portable information terminal device comprising the zoom lens according to claim 1 as a photographing optical system of a camera function unit.
JP2004265651A 2004-09-13 2004-09-13 Zoom lens, camera, and personal digital terminal unit Pending JP2006078979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004265651A JP2006078979A (en) 2004-09-13 2004-09-13 Zoom lens, camera, and personal digital terminal unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004265651A JP2006078979A (en) 2004-09-13 2004-09-13 Zoom lens, camera, and personal digital terminal unit

Publications (1)

Publication Number Publication Date
JP2006078979A true JP2006078979A (en) 2006-03-23

Family

ID=36158460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004265651A Pending JP2006078979A (en) 2004-09-13 2004-09-13 Zoom lens, camera, and personal digital terminal unit

Country Status (1)

Country Link
JP (1) JP2006078979A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184416A (en) * 2004-12-27 2006-07-13 Konica Minolta Photo Imaging Inc Photographic optical system and imaging apparatus
JP2006308649A (en) * 2005-04-26 2006-11-09 Olympus Imaging Corp Imaging apparatus
JP2007286233A (en) * 2006-04-14 2007-11-01 Canon Inc Zoom lens and imaging apparatus having the same
US7450316B2 (en) 2006-10-31 2008-11-11 Olympus Imaging Corp. Zoom lens system and image pickup apparatus using the same
JP2008286910A (en) * 2007-05-16 2008-11-27 Olympus Imaging Corp Imaging apparatus equipped with wide-viewing-angle zoom lens
US7477457B2 (en) 2006-09-19 2009-01-13 Olympus Imaging Corp. Zoom lens system and electronic image pickup apparatus using the same
US7477455B2 (en) 2006-08-25 2009-01-13 Olympus Imaging Corp. Zoom lens system and electronic image pickup apparatus
US7623306B2 (en) 2008-01-09 2009-11-24 Olympus Imaging Corp. Zoom lens and imaging apparatus incorporating the same
US7643224B2 (en) 2007-11-29 2010-01-05 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
US7643219B2 (en) 2007-11-29 2010-01-05 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
WO2010001944A1 (en) * 2008-07-03 2010-01-07 株式会社ニコン Zoom lens, imaging device, and method of manufacturing zoom lens
US7719774B2 (en) 2007-02-27 2010-05-18 Olympus Imaging Corp. Zoom lens system and electronic image pickup apparatus using the same
US7724448B2 (en) 2007-12-07 2010-05-25 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
JP2010145783A (en) * 2008-12-19 2010-07-01 Olympus Imaging Corp Zoom lens and imaging apparatus with the same
US7755848B2 (en) 2007-03-15 2010-07-13 Olympus Imaging Corp. Zoom lens system and electronic image pickup apparatus using the same
JP2011002503A (en) * 2009-06-16 2011-01-06 Olympus Imaging Corp Zoom lens and image capturing apparatus with the same
US7885013B2 (en) 2008-01-08 2011-02-08 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
US8014079B2 (en) 2009-07-03 2011-09-06 Panasonic Corporation Zoom lens system, imaging device and camera
JP2012083472A (en) * 2010-10-08 2012-04-26 Canon Inc Zoom lens and imaging apparatus having the same
CN102628981A (en) * 2011-02-04 2012-08-08 株式会社理光 Zoom lens, camera and carrying type information terminal device
JP2013061679A (en) * 2012-12-17 2013-04-04 Olympus Imaging Corp Zoom lens and imaging apparatus with the same
CN112649951A (en) * 2020-12-23 2021-04-13 福建福光股份有限公司 Low-distortion wide-angle zoom lens

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184416A (en) * 2004-12-27 2006-07-13 Konica Minolta Photo Imaging Inc Photographic optical system and imaging apparatus
JP2006308649A (en) * 2005-04-26 2006-11-09 Olympus Imaging Corp Imaging apparatus
JP2007286233A (en) * 2006-04-14 2007-11-01 Canon Inc Zoom lens and imaging apparatus having the same
US7477455B2 (en) 2006-08-25 2009-01-13 Olympus Imaging Corp. Zoom lens system and electronic image pickup apparatus
US7477457B2 (en) 2006-09-19 2009-01-13 Olympus Imaging Corp. Zoom lens system and electronic image pickup apparatus using the same
US7450316B2 (en) 2006-10-31 2008-11-11 Olympus Imaging Corp. Zoom lens system and image pickup apparatus using the same
US7719774B2 (en) 2007-02-27 2010-05-18 Olympus Imaging Corp. Zoom lens system and electronic image pickup apparatus using the same
US7755848B2 (en) 2007-03-15 2010-07-13 Olympus Imaging Corp. Zoom lens system and electronic image pickup apparatus using the same
JP2008286910A (en) * 2007-05-16 2008-11-27 Olympus Imaging Corp Imaging apparatus equipped with wide-viewing-angle zoom lens
US7643224B2 (en) 2007-11-29 2010-01-05 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
US7643219B2 (en) 2007-11-29 2010-01-05 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
US7724448B2 (en) 2007-12-07 2010-05-25 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
US7885013B2 (en) 2008-01-08 2011-02-08 Olympus Imaging Corp. Zoom lens and image pickup apparatus equipped with same
US7623306B2 (en) 2008-01-09 2009-11-24 Olympus Imaging Corp. Zoom lens and imaging apparatus incorporating the same
JP2010014963A (en) * 2008-07-03 2010-01-21 Nikon Corp Zoom lens, imaging device, method for varying power of zoom lens
WO2010001944A1 (en) * 2008-07-03 2010-01-07 株式会社ニコン Zoom lens, imaging device, and method of manufacturing zoom lens
US8390937B2 (en) 2008-07-03 2013-03-05 Nikon Corporation Zoom lens, imaging apparatus and method for manufacturing zoom lens
CN102132189B (en) * 2008-07-03 2014-07-09 株式会社尼康 Zoom lens, imaging device, and method of manufacturing zoom lens
JP2010145783A (en) * 2008-12-19 2010-07-01 Olympus Imaging Corp Zoom lens and imaging apparatus with the same
JP2011002503A (en) * 2009-06-16 2011-01-06 Olympus Imaging Corp Zoom lens and image capturing apparatus with the same
US8014079B2 (en) 2009-07-03 2011-09-06 Panasonic Corporation Zoom lens system, imaging device and camera
JP2012083472A (en) * 2010-10-08 2012-04-26 Canon Inc Zoom lens and imaging apparatus having the same
CN102628981A (en) * 2011-02-04 2012-08-08 株式会社理光 Zoom lens, camera and carrying type information terminal device
JP2012163678A (en) * 2011-02-04 2012-08-30 Ricoh Co Ltd Zoom lens, camera, and portable information terminal device
JP2013061679A (en) * 2012-12-17 2013-04-04 Olympus Imaging Corp Zoom lens and imaging apparatus with the same
CN112649951A (en) * 2020-12-23 2021-04-13 福建福光股份有限公司 Low-distortion wide-angle zoom lens

Similar Documents

Publication Publication Date Title
JP5158465B2 (en) Zoom lens, camera, and portable information terminal device
JP4916198B2 (en) Zoom lens, imaging device having zoom lens, camera device, and portable information terminal device
JP5590444B2 (en) Zoom lens, imaging device, and information device
JP5574225B2 (en) Zoom lens, imaging device, and information device
JP5429612B2 (en) Zoom lens, information device, and imaging device
JP4664727B2 (en) Zoom lens and information device
JP5376276B2 (en) Zoom lens, camera, and portable information terminal device
JP4907169B2 (en) Zoom lens, camera device, and portable information terminal device
JP6238103B2 (en) Imaging optical system, camera device, and portable information terminal device
JP2006078979A (en) Zoom lens, camera, and personal digital terminal unit
JP4496009B2 (en) Information device having zoom lens and photographing function
JP4548766B2 (en) Zoom lens, lens unit, camera, and portable information terminal device
JP4268773B2 (en) Zoom group, zoom lens, and imaging device for zoom lens
JP4321850B2 (en) Zoom lens, camera, and portable information terminal device
JP5659762B2 (en) Zoom lens, camera, and portable information terminal device
JP4518472B2 (en) Zoom lens, lens unit, camera, and portable information terminal device
JP2004198855A (en) Zoom lens, camera and personal digital assistance device
JP2003287679A (en) Zoom lens and camera device
JP2005043607A (en) Zoom lens, camera, portable information terminal device and projector
JP5532405B2 (en) Zoom lens, camera, and portable information terminal device
JP4302375B2 (en) Zoom lens and camera device
JP4346977B2 (en) Variable focal length lens, photographing lens unit, camera, and portable information terminal device
JP6160058B2 (en) Zoom lens, camera, and portable information terminal device
JP5626647B2 (en) Zoom lens and imaging device
JP5691780B2 (en) Zoom lens, camera, and portable information terminal device