JP4554142B2 - Substrate cleaning particles, cleaning material containing the substrate cleaning particles, and substrate cleaning method - Google Patents

Substrate cleaning particles, cleaning material containing the substrate cleaning particles, and substrate cleaning method Download PDF

Info

Publication number
JP4554142B2
JP4554142B2 JP2002129043A JP2002129043A JP4554142B2 JP 4554142 B2 JP4554142 B2 JP 4554142B2 JP 2002129043 A JP2002129043 A JP 2002129043A JP 2002129043 A JP2002129043 A JP 2002129043A JP 4554142 B2 JP4554142 B2 JP 4554142B2
Authority
JP
Japan
Prior art keywords
cleaning
substrate
particles
substrate cleaning
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002129043A
Other languages
Japanese (ja)
Other versions
JP2003321700A (en
Inventor
沢 光 章 熊
井 俊 晴 平
正 樹 佐々木
松 通 郎 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2002129043A priority Critical patent/JP4554142B2/en
Publication of JP2003321700A publication Critical patent/JP2003321700A/en
Application granted granted Critical
Publication of JP4554142B2 publication Critical patent/JP4554142B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Cleaning In General (AREA)
  • Detergent Compositions (AREA)

Description

【0001】
【発明の技術分野】
本発明は、基材を損傷することがなく効率的に基材表面を清浄にすることが可能な基板洗浄用粒子、および該基板洗浄用粒子を含む洗浄材、基材の洗浄方法に関する。
【0002】
【発明の技術的背景】
コンピューター、各種電子機器、各種表示装置等には各種基材が用いられており、これらの高性能化、高精細化等に伴い超クリーンな基材、部品等が求められている。また、これらの実装においても、異物や不純物が混入したり残存することを厳に防止することが求められている。
【0003】
この中で、たとえば液晶表示装置の実装分野を例にとり説明する。
液晶表示装置には、ガラス等の基板にスズをドープした酸化インジウム(ITO)の透明電極膜を形成した透明電極膜付基材が用いられている。このような透明電極膜付基材に液晶、シリコーン等が残存している場合は、画像が表示されなかったり、表示されても乱れる場合があり、このとき画像を表示させる際の印加電圧を高める必要が生じる。
【0004】
また、透明電極膜付基材に、指紋などの皮脂やマーカー類等の油脂が残存している場合は、配線のパターニングにおいて精度が低下して配線抵抗が不均一となったり配線ムラや断線の原因となることがあり、このため画像が完全に、あるいは鮮明に表示されない場合がある。
このため、表面の皮脂や油脂を洗浄除去することが行われるが、このとき中性洗剤、アルカリ性洗剤などの洗剤が残存し、液晶層に拡散したり配線を腐食することがあり、長期に使用した場合絶縁不良を起こしたり回路が短絡するなどの問題があった。
【0005】
従来、透明基板の洗浄は、上記異物等を除去するために、通常、先ず基板をブラシで洗浄し、ついで中性洗剤、アルカリ性洗剤などの洗剤を用いて油脂等を洗浄し、ついで、基板に低周波の超音波を照射して比較的粗大な異物を除去したり、高周波の超音波を照射して微細な異物を除去したり、さらに低圧紫外線ランプを照射して有機不純分を分解除去(UV洗浄)することが行われている。しかしながら、完全に油脂等を除去したり、大小の異物を除去したりすることは困難であり、また使用した洗剤が残存してしまうこともあった。
【0006】
さらに、前記透明電極膜を形成した透明電極膜付基材では、通常ガラス中のアルカリが透明電極、さらに液晶に拡散し、これが可動イオンの場合は消費電力が増大したり、表示不良を起こすことがあった。このため、ガラス基板と透明電極膜との間にSiO2膜等の絶縁性保護膜(アルカリパッシベーション膜と言うことがある)が設けられており、このような透明電極膜付基材では、パターニング後はSiO2膜が露出しているために、洗剤の種類によっては洗浄時にSiO2膜が溶出し、アルカリパッシベーション膜としての機能を果たさなくなる等の問題があった。さらに、このため洗剤の種類や使用量に制約があった。
【0007】
また、液晶封止後の液晶表示セルについても、基板に付着する液晶、シリコーン、油脂類などの洗浄して除去することが行われている。しかしながら、液晶を封止した後の基板は、インライン(流れ作業的な連続作業)できないため、たとえば液晶基板立てに通常6〜8mmのピッチで数百枚の液晶基板を立て、これを洗剤液に浸漬し、超音波を照射することが行われている。この操作を複数回繰り返した後、市水、あるいは純水で複数回洗浄し、ついで、加温した純水に浸漬後引き上げ、ついでエアーブロー乾燥する洗浄方法が採用されている。
【0008】
しかしながら、上記方法では、狭い基板間の洗浄が困難であり、汚れや、洗剤を充分に除去することが困難であった。また洗剤や有機溶剤を含む廃液が発生し、この廃液処理費用の点で経済性にも問題があった。
本発明者らは、このような従来技術に伴う問題点を解消すべく鋭意検討した結果、特定の平均粒子径を有する無機酸化物粒子の水および/または有機溶媒分散液を、超音波を照射しながら、基材と接触させることにより、汚れや異物を効率的に除去できることを見出して本発明を完成するに至った。
【0009】
【発明の目的】
本発明は、基材を損傷することがなく効率的に基材表面を清浄にすることが可能な基板洗浄用粒子、および該基板洗浄用粒子を含む洗浄材および洗浄方法を提供することを目的としている。
【0010】
【発明の概要】
本発明に係る基板洗浄用粒子は、無機酸化物からなる粒子であり、平均粒子径が2nm〜100μmの範囲にあることを特徴としている。
前記無機酸化物が、シリカ、アルミナ、ジルコニア、チタニア、セリアなどの無機酸化物、シリカ・アルミナ、シリカ・ジルコニアなどの複合無機酸化物からなる粒子が挙げられる。
【0011】
前記粒子の表面が、下記式(1)で表される加水分解性有機ケイ素化合物またはアミン類で処理されていることが好ましい。
nSiX4-n (1)
〔ただし、R:炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、シラノール基、ハロゲン、水素、n:1〜3〕
本発明に係る洗浄材は水系分散媒に前記基板洗浄用粒子が1〜20重量%の範囲で分散してなることを特徴としている。
【0012】
本発明に係る基材の洗浄方法は、超音波を照射しながら基材と前記洗浄材を接触させることを特徴としている。
【0013】
【発明の具体的説明】
以下、本発明について具体的に説明する。
[基板洗浄用粒子]
本発明の基板洗浄用粒子は、無機酸化物からなり、平均粒子径が2nm〜100μmの範囲にあることを特徴としている。さらに好ましい平均粒子径は2nm〜10μmの範囲にある。
【0014】
無機酸化物からなる粒子としては、シリカ、アルミナ、ジルコニア、チタニア、セリアなどの無機酸化物、シリカ・アルミナ、シリカ・ジルコニアなどの複合無機酸化物からなる粒子が挙げられる。またイオン吸着能を有する複合無機酸化物を用いると、異物を除去できるほかイオン性の不純物が残存しない点で好ましい。
【0015】
このとき、用いる無機酸化物粒子、複合無機酸化物粒子は高純度であることが好ましく、特にアルカリ金属の含有量が少ない粒子が好ましく、M2O(M:アルカリ金属)として1000重量ppm以下、さらには10重量ppm以下、特に1重量ppm以下であることが好ましい。
なお、本発明の無機酸化物粒子、複合無機酸化物粒子は主成分が無機酸化物、複合無機酸化物であって、他に後述する有機基に由来する有機物を含んでいてもよい。
【0016】
また、中でも、シリカ系の無機酸化物粒子は、絶縁性が高く、真球状の粒子が得られ易く、このため洗浄時に基材を摩耗、あるいは損傷することがないので好ましい。また、仮に基板に付着して残存しても屈折率が基板と同程度であるので視認性が低く、少量であれば実質的に問題となることはない。
このような無機酸化物からなる粒子の平均粒子径が2nm未満の場合は、比較的大きな異物を除去できない場合があり、無機酸化物からなる粒子の平均粒子径が100μmを越えると、基板によってはスクラッチ(傷)が生成することがある。また、洗浄材中で沈降速度が速く、実用上問題となることがある。
【0017】
なお、前記無機酸化物粒子について、平均粒子径が上記範囲であれば、必ずしも均一な粒子径分布である必要はなく、ブロードな粒子径分布であってもよい。
また比較的小さい平均粒子径の無機酸化物粒子と比較的大きい平均粒子径の無機酸化物粒子とを任意の割合で混合して用いることもできる。
前記基板洗浄用粒子は、下記式(1)で表される加水分解性有機ケイ素化合物で表面処理されていることが好ましい。
【0018】
nSiX4-n (1)
〔ただし、R:炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、シラノール基、ハロゲン、水素、n:1〜3〕
このような加水分解性有機ケイ素化合物として具体的には、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3−トリフルオロプロピルトリメトキシシラン、メチル−3,3,3−トリフルオロプロピルジメトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシトリプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、ビニルトリクロルシラン、トリメチルブロモシラン、ジエチルシラン等が挙げられる。
【0019】
基板洗浄用粒子がこのような加水分解性有機ケイ素化合物で表面処理されていると、加水分解性有機ケイ素化合物の有する有機官能基の種類によって、油脂、異物等を選択的に、より効果的に除去することができる。たとえば、有機官能基がアルキル基の場合、親油性を有しているので油脂、シリコーン、液晶等を効果的に除去でき、イオン性の有機官能基を有する場合はイオン性不純物特に反対電荷のイオン性不純物を効果的に除去することができる。たとえば、上記中アミノ基を有する加水分解性有機ケイ素化合物を用いるとアニオン性不純物を効果的に除去することができる。また、有機官能基の種類にかかわらずスクラッチの生成を抑制することができる。
【0020】
このような加水分解性有機ケイ素化合物の含有量は、基板洗浄用粒子中にRnSiO4-n/2 として0.01〜5重量%、さらには0.02〜3重量%の範囲で含有することが好ましい。
基板洗浄用粒子中の加水分解性有機基含有ケイ素化合物の含有量がRnSiO4-n/2として0.01重量%未満の場合は、基板洗浄用粒子表面の有機官能基(R)が少ないために前記した効果を充分発現することができず、また、加水分解性有機ケイ素化合物の分子量や基板洗浄用粒子の平均粒子径にもよるが、基板洗浄用粒子中の加水分解性有機基含有ケイ素化合物の含有量がRnSiO4-n/2として5重量%を越えては担持することが困難で、仮にできたとしても前記洗浄効果がさらに向上することもない。
【0021】
このような加水分解性有機基含有ケイ素化合物で表面処理された基板洗浄用粒子の製造方法は、加水分解性有機基含有ケイ素化合物を表面に有する基板洗浄用粒子が得られれば特に制限はなく、従来公知の方法を採用することができる。たとえば、無機酸化物粒子の分散液に所定量の加水分解性有機基含有ケイ素化合物の水および/または有機溶媒を溶媒とする溶液を加え、必要に応じて酸またはアルカリを加えて加水分解し、加水分解物を粒子表面に析出させることによって得ることができる。
【0022】
また、本発明に用いる基板洗浄用粒子は、アミン類化合物で表面処理されていてもよい。
アミン類で処理すると粒子表面に有機カチオンやアミン類が吸着あるいは結合した粒子が得られ、このような粒子はイオン性不純物、特にアニオン性不純物を効果的に除去することができる。アミン類はアンモニウムなどの有機塩基となっていてもよく、有機塩基としてはテトラメチルアンモニウム塩、テトラエチルアンモニウム塩などの4級アンモニウム塩があげられ、アミン類としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどがあげられる。
【0023】
このようなアミン類化合物の含有量は、基板洗浄用粒子1g中に1×10-6〜1×10-3モル、さらには1×10-5〜5×10-3モルの範囲で含有することが好ましい。
基板洗浄用粒子1g中の有機カチオンやアミン類の含有量が前記下限未満の場合は、洗浄用用粒子表面の有機カチオンやアミノ基が少ないために前記した効果を充分発現することができず、また、有機カチオンやアミン類化合物の分子量や基板洗浄用粒子の平均粒子径にもよるが、基板洗浄用粒子1g中の有機カチオンやアミン類化合物の含有量が前記上限を越えるような吸着あるいは結合は、困難で、仮にできたとしても前記洗浄効果がさらに向上することもない。
【0024】
このようなアミン類化合物による基板洗浄用粒子の表面処理方法は特に制限はなく、従来公知の方法を採用することができる。たとえば、無機酸化物粒子の分散液に所定量の有機塩基やアミン類化合物の水および/または有機溶媒を溶媒とする溶液を加え、必要に応じて酸またはアルカリを加えてpH調整することによって有機カチオンやアミン類化合物を粒子表面に吸着あるいは結合させることによって得ることができる。
【0025】
前記基板洗浄用粒子のうち、平均粒子径が0.5μmを越える粒子の場合は、10%圧縮弾性率が100〜5000Kgf/mm2、さらには200〜1000Kgf/mm2の範囲にある弾性粒子を使用することが好ましい。
10%圧縮弾性率が100Kgf/mm2 未満の場合は、洗浄時に粒子が壊れることがあり、10%圧縮弾性率が5000Kgf/mm2 を越えると、特に粒子径が0.5μm以上と大きい場合は、スクラッチ(筋状の傷)が発生することがある。10%圧縮弾性率が上記範囲にあれば、基板の種類や基板洗浄用粒子の大きさによらず、スクラッチが生成することなく効果的に異物等を除去することができる。
【0026】
上記10%圧縮弾性率の測定方法は下記の通りである。
10%K値は、測定器として微小圧縮試験機(島津製作所製 MCTM−201)を用い、試料として粒子直径がDである1個の粒子を用いて、試料に一定の負荷速度で荷重を負荷し、圧縮変位が粒子径の10%となるまで粒子を変形させ、10%変位時の荷重と圧縮変位(mm)を求める。粒径および求めた圧縮荷重、圧縮変位を次式に代入して計算によって求めた。本願では、10個の粒子について10%K値を測定し、この平均値で評価した。
【0027】
K=(3/21/2)・F・S-3/2・(D/2)-1/2
ここで、K:10%圧縮弾性率(Kgf/mm2)
F:微粒子の10%圧縮変形時の荷重値(Kgf)
S:微粒子の10%圧縮変形時の圧縮変位(mm)
D:粒子直径(mm)
である。
【0028】
具体的な測定条件としては、圧縮速度定数を1として、粒子径によって負荷速度を0.28〜2.67gf/secの範囲で変更し、試験荷重を最大10gfとした。
このような10%圧縮弾性率を有する無機酸化物粒子の製造方法としては、本願出願人の出願による特開平11−228699号公報)、特開2000−204168号公報等に開示したポリオルガノシロキサン微粒子、特開平11−61043号公報に開示した単分散シリカ粒子等の方法は好適に採用することができる。
【0029】
たとえば、下記(a)〜(f)の工程からなる製造方法が例示される。
(a) 式:Si(OR1)4
(式中、R1は、水素原子またはアルキル基、アルコキシアルキル基およびアシル基から選ばれる炭素数1〜10の有機基である。)で表される有機ケイ素化合物と、式:R'Si(OR2)3(式中、R2は、前記R1と同様の基であり、R'は、置換または非置換の炭化水素基から選ばれる炭素数1〜10の基である。)で表される有機ケイ素化合物との混合物を、水と有機溶媒との混合溶媒中で加水分解、縮重合することによりシード粒子を調製する工程。
(b)前記シード分散液にアルカリを添加してシード粒子を単分散させ、シード分散液を安定化させる工程。
(c)前記安定化されたシード粒子の分散液に、分散液のpHを6〜9に維持しながら、下記式(1)〜(3)で表される化合物の1種または2種以上を加えて加水分解・縮重合し、これによりシード粒子を成長させて球状微粒子分散液を調製する工程。
【0030】
(1)式:R'Si(OR2)3
(式中、R2、R’は、前記と同様の基である。)で表される有機ケイ素化合物;
(2)式:R’R”Si(OR3)2
(式中、R’、R”は、互いに同一であっても異なっていてもよく、置換または非置換の炭化水素基から選ばれる炭素数1〜10の基であり、R3は、前記R1と同様の基である。)で表される有機ケイ素化合物;
(3)式:
【0031】
【化1】

Figure 0004554142
【0032】
(式中、R4は、プロピルまたはブチル基であり、Yは、メチル基、メトキシ基、エチル基およびエトキシ基から選ばれる1種の有機基であり、
Mは、周期律表第IB族、第IIA、B族、第IIIA、B族、第IVA、B族、第VA族、第VIA族、第VIIA族、第VIII族から選ばれる元素であり、また、mは0〜3の整数であり、nは1〜4の整数であり、m+nは2〜4の整数である。)
で表されるアセチルアセトナトキレート化合物
(d)前記球状微粒子分散液を加熱して熟成する工程。
(e)前記熟成した球状微粒子分散液から球状微粒子を分離し、ついで該微粒子を乾燥する工程。
(f)前記乾燥した球状微粒子を、必要に応じて加熱処理する工程。
[洗浄材]
本発明の洗浄材は水系分散媒に前記基板洗浄用粒子が0.1〜20重量%、さらに好ましくは0.5〜10重量%の範囲で分散してなることを特徴としている。
【0033】
水系分散媒とは、水、または、メチルアルコール、エチルアルコール、イソプロピルアルコールなどのアルコール類や、エーテル類、エステル類、ケトン類等の水溶性の有機溶媒と水との混合溶媒をいう。なお、本願発明の洗浄材は、基板洗浄用粒子が表面に加水分解性有機ケイ素化合物に由来する有機官能基を有している場合必ずしも前記有機溶媒を用いることなく油脂系の汚れを洗浄することができる。
【0034】
基板洗浄用粒子の濃度が前記下限未満の場合は、基板洗浄用粒子の濃度が低すぎて、前記した本願発明の効果が充分得られず、また充分な効果を得るには長時間を要する。
基板洗浄用粒子の濃度が前記上限を越えると、洗浄材に粘性が生じるので、基材の洗浄にとどまらず、基材の研磨を伴うことがある。
【0035】
本発明に係る洗浄材にはその目的を損なわない範囲で、界面活性剤、防錆剤、防酸化剤、金属イオン封鎖材、ビルダーなどの添加剤が含まれていてもよく、具体的には公知のものを特に制限されることなく使用することが可能である。
本発明に係る洗浄材の製造方法としては特に制限されるものではない。たとえば、前記の水系分散媒に所定量の前記微粒子を必要に応じて添加される成分とともに、適宜の方法で分散させればよい。分散方法としては、粉末状の微粒子を分散媒に添加したのち、撹拌機などにより均一に分散させるか。水または有機溶媒を分散媒とする微粒子ゾルと、前記水系分散媒とを混合する、などの方法が挙げられる。
【0036】
本発明に用いられる微粒子のうち、無機酸化物微粒子または複合無機酸化物微粒子を用いる場合、従来公知のシリカゾル、アルミナゾル、チタニアゾル、シリカアルミナゾル等を用いることができる。たとえば、本願出願人の出願による特開昭63−45114号公報、特開昭63−64911号公報に開示したシリカゾル、特開平5−132309号公報に開示したシリカ系複合ゾル、特開平7−89717号公報に開示したアルミナゾル等は粒子径分布が均一であり好適に用いることができる。
【0037】
[洗浄方法]
本発明の基材の洗浄方法は、超音波を照射しながら基材と前記洗浄材を接触させることを特徴としている。
[基材]
本発明の洗浄方法を採用できる基材としては特に制限はないが、洗浄後の基材が高度に清浄であることを必要とする基材、従来の方法では洗浄が困難な基材、従来の方法では洗浄が困難な部位を有する基材、洗剤の使用が適当でない基材等の洗浄に好適に用いることができる。
【0038】
特に、前述した液晶表示装置関係における、ガラス基板、ガラス基板にスズをドープした酸化インジウム(ITO)の透明電極膜を形成した透明電極膜付基材、さらにアルカリパッシベーション膜を形成した透明電極膜付基材、あるいは配線パターニングした透明電極膜付基材などの液晶、シリコーン等が付着し残存している基板、また、液晶封止後の液晶、シリコーン、油脂類などの付着した液晶表示基板等の洗浄に好適である。
【0039】
具体的な洗浄方法としては、基材によって異なるが、前記した洗浄材の入った槽内に基材を浸漬し、これに超音波を照射する。たとえば大きな異物(通常5μm〜1mm程度)の除去・洗浄には周波数が28〜40KHz(1000〜2000W)の超音波を照射することが好ましく、小さな異物(通常5μm未満)の除去・洗浄には周波数が40KHz〜1MHz(1000〜2000W)の超音波を照射することが好ましい。
【0040】
超音波照射時には超音波発振子を基材と接触しない範囲で、反復移動させてもよく、また、超音波発振子を固定して被洗浄基板を発振子と接触しないように移動させてもよい。このような発振子または被洗浄基板を移動させると、洗浄効率を極めて向上させることができる。
このときの超音波の照射時間は特に制限はなく、所望の清浄基板が得られる時間、あるいは回数照射することができる。
【0041】
また、超音波発振子を内蔵したノズル体を用いて、ノズルより、超音波振動を付与された洗浄材を基材表面に噴出させて、表面を洗浄してもよい。
また、本発明に係る基材の洗浄方法は、従来の洗浄方法と組み合わせて、あるいは従来の洗浄方法の途中工程で実施することも、さらに従来の洗浄方法の途中工程の代わりに実施することもできる。また、本発明に係る洗浄方法は複数回繰り返してもよい。
【0042】
具体的には、他の洗浄処理としては、界面活性剤による洗浄処理、水によるリンス処理、乾燥処理、ブラシによる機械的処理などが挙げられる。
たとえば、液晶基板(セル)の場合、液晶基板を6〜8mm間隔で300〜600枚立てて並べた被洗浄基板の1バッチを、
洗浄材槽→市水リンス槽→純水リンス槽
の順に、28〜40kHz、1000〜2000Wの超音波を照射し、純水リンスが終了した後、60℃の湿純水雰囲気に保持し、エアーブローして乾燥する。
【0043】
また各基板は、本発明に係る洗浄方法で洗浄する前に、ブラシで洗浄したり、界面活性剤(中性洗剤、アルカリ性洗剤)水溶液で洗浄したりして、大きな汚れは除去されていてもよい。また、本発明によれば、洗浄に使用された界面活性剤が表面に付着していても、特定の洗浄材を使用しているので、付着した界面活性剤も好適に除去できる。
【0044】
以上のような本発明に係る基材の洗浄方法では、洗浄材中に無機酸化物からなる基板洗浄用粒子が含まれているので、基材と基板洗浄用粒子が接触することによって基材表面の異物、汚れ等を除去することができる。また、超音波を照射しているので、異物および基板洗浄用粒子が超音波エネルギーを吸収して振動することによって高い洗浄効果を奏することができる。
【0045】
さらに、基材の種類によっては適度に弾性を有する基板洗浄用粒子を含む洗浄材を用いることによって基材表面を損傷することなく洗浄することができる。
また、表面を加水分解性有機ケイ素化合物で処理した基板洗浄用粒子、あるいはアミン類を表面に吸着・結合させた基板洗浄用粒子を含む洗浄材を用いると表面に付着した油成分、洗剤や界面活性剤、イオン性不純物等の除去を効果的に行うことができる。
【0046】
【発明の効果】
本発明の基板洗浄用粒子によれば、基板洗浄用粒子が微細な粒子であり、超音波の照射下に基材と接触するので基材を損傷することなく基材表面の異物等を効果的に除去することができる。
本発明の洗浄材によれば、超音波の照射下に基材と接触させることによって基材を損傷することなく基材表面の異物等を効果的に除去することができる。また、従来の方法では洗浄が困難な部位、たとえば直接物理的に接触することができない部位、微細凹凸部位等を有する基材を効果的に清浄にすることができる。
【0047】
本発明の洗浄方法によれば、上記基板洗浄用粒子を含む洗浄材を用い、超音波の照射下に基材と接触するので基材を損傷することなく基材表面の異物等を効果的に除去することができる。また、従来の方法では洗浄が困難な部位、たとえば直接物理的に接触することができない部位、微細凹凸部位等を有する基材を効率的に清浄にすることができる。
【0048】
【実施例】
以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
【0049】
【実施例1】
基板洗浄用粒子(A)の分散液
シリカ粒子分散ゾル(触媒化成工業(株)製:カタロイド SI-45P、平均粒子径45nm、SiO2濃度40.2重量%、Na2O濃度0.75重量%(乾燥基準)、Al23濃度0.4重量%(乾燥基準))をSiO2濃度20重量%に希釈し、両性イオン交換樹脂(三菱化学(株)製:SMNUPB)を用いて脱塩し、ついで純水で希釈して基板洗浄用粒子(A)の分散液(SiO2濃度5重量%、Na2O:50ppm(乾燥基準))を調製した。
【0050】
[洗浄]
洗浄材(A)
上記で得た基板洗浄用粒子(A)の分散液をそのまま洗浄材(A)として用いた。
洗浄液(1)の調製
中性洗剤(ライオン(株)製:チャーミーV)を希釈して洗剤の濃度が0.5重量%の洗浄液(1)を調製した。
【0051】
洗浄液(2)の調製
アルカリ性洗剤(P&G(株)製:ジョイ)を希釈して洗剤の濃度が0.5重量%の洗浄液(2)を調製した。
洗浄テスト( 1-1 ):油脂汚れ
ガラス板表面を色巻き赤鉛筆(三菱鉛筆(株)製:DERMATOGRAPH)の外部が接するようにして5回摺り合わせ、油脂汚れを付着させた。この油脂汚れ付きガラス板を、洗浄材(A)の温度を5℃に調節した超音波洗浄槽に浸漬し、超音波(40kHz)を30分間照射し、ついでこれを取り出し純水を掛け水した後、純水の温度を5℃に調節した超音波洗浄槽に浸漬し、超音波(40kHz)を30分間照射した。ついで、60℃の純水に浸漬した後取り出し、エアーブローで乾燥した。このようにして洗浄したガラス基板の表面を目視観察し、以下の基準で油脂洗浄性を評価した。
【0052】
結果を表1に示す。
油脂汚れが認められない :◎
油脂汚れが僅かに認められる:○
油脂汚れが明らかに残存 :△
油脂汚れが1/2以上残存 :×
洗浄テスト( 1-2 ):シリコーン汚れ
ガラス板表面をシリコンゴム(井内(株)製:シリコンゴム栓)にて5回摺り合わせ、シリコーンを付着させた。このシリコーン付着ガラス板を、洗浄テスト(1-1)と同様にして洗浄した。洗浄したガラス基板の表面に水性ペン(ペンテル(株)製:サインペン黒)で筆記(水性インクを塗布)し、インクのはじき方を目視観察し、以下の基準で評価した。結果を表1に示す。
【0053】
インクのはじきが認められない :◎
インクのはじきが僅かに認められる :○
インクのはじきが明らかに認められる:△
インクのはじき面が1/2以上残存 :×
また、洗浄テスト(1-1)と同様に洗剤の洗浄性について評価した。結果を表1に示す。
【0054】
洗浄テスト( 1-3-1 ):中性洗剤汚れ
洗浄液(1)にガラス板を浸漬し、乾燥して洗剤が付着したガラス板とした。
この洗剤付着ガラス板を、洗浄テスト(1-1)と同様にして洗浄し、洗浄したガラス基板の表面を微分干渉顕微鏡(ニコン(株)製)にて観察し、洗剤の洗浄性(残存程度)を以下の基準で評価した。結果を表1に示す。
【0055】
干渉色が認められず、洗剤が除去されている :○
弱い干渉色が認められ、洗剤が僅かに残存している :△
比較的鮮明に干渉色があり、洗剤が明らかに残存している:×
洗浄テスト( 1-3-2 ):アルカリ性洗剤汚れ
洗浄液(2)に浸漬した以外は洗浄テスト(1-3-1)と同様にして洗浄し、洗浄したガラス基板の表面を微分干渉顕微鏡(ニコン(株)製)にて観察し、洗剤の洗浄性(残存程度)を以下の基準で評価した。結果を表1に示す。
【0056】
干渉色が認められず、洗剤が除去されている :○
弱い干渉色が認められ、洗剤が僅かに残存している :△
比較的鮮明に干渉色があり、洗剤が明らかに残存している:×
洗浄テスト( 2-1 ):油脂汚れ
透明電極付基板(基材:アルカリパッシベーションガラス、透明電極:ITO電極、厚み10μm)を用いた以外は洗浄テスト(1-1)と同様にして洗浄、評価した。結果を表1に示す。
【0057】
また、このとき、スクラッチの有無について光学顕微鏡で観察し、以下の基準で評価した。結果を表1に示す。
傷、筋等(スクラッチ)が認められず、表面が平滑である。 :○
傷、筋等(スクラッチ)が僅かに認められるが、表面が平滑である。 :△
傷、筋等(スクラッチ)が多く認められ、表面が平滑である。 :×
洗浄テスト( 2-2 ):シリコーン汚れ
透明電極付基板(基材:アルカリパッシベーションガラス、透明電極:ITO電極、厚み10μm)を用いた以外は洗浄テスト(1-2)と同様にして洗浄、評価した。結果を表1に示す。
【0058】
洗浄テスト( 2-3-1 ):中性洗剤汚れ
透明電極付基板(基材:アルカリパッシベーションガラス、透明電極:ITO電極、厚み10μm)を用いた以外は洗浄テスト(1-3-1)と同様にして洗浄、評価した。結果を表1に示す。
洗浄テスト( 2-3-2 ):アルカリ性洗剤汚れ
透明電極付基板(基材:アルカリパッシベーションガラス、透明電極:ITO電極、厚み10μm)を用いた以外は洗浄テスト(1-3-2)と同様にして洗浄、評価した。結果を表1に示す。
【0059】
洗浄テスト( 3 ):油脂汚れ
色巻き赤鉛筆(三菱鉛筆(株)製:DERMATOGRAPH)の外部が接するようにして5回摺り合わせて液晶基板の隙間(対抗する基板を張り合わせてできる外周部の微細な隙間)に油脂汚れを付着させた液晶基板を用いた以外は洗浄テスト(1-1)と同様にして洗浄、以下の評価基準で評価した。結果を表1に示す。
【0060】
液晶基板の表面を目視観察し、以下の基準で評価した。結果を表1に示す。
油脂汚れが認められない :◎
油脂汚れが隙間に僅かに認められる:○
油脂汚れが隙間に明らかに残存 :△
油脂汚れが平坦部にも残存 :×
【0061】
【実施例2】
洗浄材(B)
実施例1と同様にして、脱塩したSiO2濃度20重量%のシリカ粒子分散ゾルとした。このシリカ粒子分散ゾル1000gとメタノール1000gを混合し、濃度10重量%の硝酸1.0gを添加し、これにエチルトリエトキシシラン(多摩化学(株)製:SiO2濃度28重量%)34.7gを添加し、室温にて24時間撹拌した。ついで、ロータリーエバポレーターにて60℃、100mmHgでメタノールを除去し、ついで純水にて固形分濃度5重量%の洗浄材(B)を調製した。このとき、分散媒中のメタノールの割合は10重量%であった。
【0062】
[洗浄]
洗浄材(B)を用いた以外は実施例1と同様にして、洗浄テスト(1-1)〜洗浄テスト(3)を実施した。結果を表1に示す。
【0063】
【実施例3】
洗浄材(C)
実施例2で調製した洗浄材(B)1000gに濃度10重量%のテトラメチルアンモニウムハイドロオキサイド(TMAH)5gを添加して第4級アンモニウムイオンを吸着した洗浄材(C)を調製した。
【0064】
[洗浄]
洗浄材(C)を用いた以外は実施例1と同様にして、洗浄テスト(1-1)〜洗浄テスト(3)を実施した。結果を表1に示す。
【0065】
【実施例4】
洗浄材(D)
シリカ粒子分散ゾル(触媒化成工業(株)製:カタロイド SI-80P、平均粒子径80nm、SiO2濃度40重量%、Na2O:2.0重量%(乾燥基準))をSiO2濃度20重量%に希釈し、両性イオン交換樹脂(三菱化学(株)製:SMNUPB)を用いて脱塩し、ついで純水で希釈して基板洗浄用粒子(B)の分散液(SiO2濃度5重量%、Na2O:50ppm(乾燥基準))を調製し、洗浄材(D)として用いた。
【0066】
[洗浄]
洗浄材(D)を用いた以外は実施例1と同様にして、洗浄テスト(1-1)〜洗浄テスト(3)を実施した。結果を表1に示す。
【0067】
【実施例5】
洗浄材(E)
実施例4と同様にして、脱塩したSiO2濃度20重量%のシリカ粒子分散ゾルとした。このシリカ粒子分散ゾル1000gとメタノール1000gを混合し、濃度10重量%の硝酸1.0gを添加し、これにビストリメトキシシリルヘキサン(チッソ(株)製:SiO2濃度36.6重量%)27.3gを添加し、室温にて24時間撹拌した。ついで、両性イオン交換樹脂にて脱塩し、さらに、ロータリーエバポレーターにて60℃、100mmHgでメタノールを除去し、純水を加えて固形分濃度5重量%の洗浄材(E)を調製した。このとき、分散媒中のメタノールの割合は10重量%であった。
【0068】
[洗浄]
洗浄材(E)を用いた以外は実施例1と同様にして、洗浄テスト(1-1)〜洗浄テスト(3)を実施した。結果を表1に示す。
【0069】
【実施例6】
洗浄材(F)
シリカ粒子分散ゾル(触媒化成工業(株)製:カタロイド SI-550、平均粒子径5nm、SiO2濃度20重量%、Na2O:2.0重量%(乾燥基準))を両性イオン交換樹脂(三菱化学(株)製:SMNUPB)を用いて脱塩し、ついで純水で希釈して基板洗浄用粒子(C)の分散液(SiO2濃度5重量%、Na2O:50ppm(乾燥基準))を調製し、洗浄材(F)として用いた。
【0070】
[洗浄]
洗浄材(F)を用いた以外は実施例1と同様にして、洗浄テスト(1-1)〜洗浄テスト(3)を実施した。結果を表1に示す。
【0071】
【実施例7】
洗浄材(G)
実施例6と同様にして、脱塩したSiO2濃度20重量%のシリカ粒子分散ゾルとした。このシリカ粒子分散ゾル1000gとメタノール1000gを混合し、濃度10重量%の硝酸1.0gを添加し、これにエチルトリエトキシシラン(多摩化学(株)製:SiO2濃度28重量%)3.47gを添加し、室温にて24時間撹拌した。ついで、両性イオン交換樹脂にて脱塩し、さらに、ロータリーエバポレーターにて60℃、100mmHgでメタノールを除去し、純水を加えて固形分濃度5重量%の洗浄材(G)を調製した。
【0072】
[洗浄]
洗浄材(G)を用いた以外は実施例1と同様にして、洗浄テスト(1-1)〜洗浄テスト(3)を実施した。結果を表1に示す。
【0073】
【実施例8】
洗浄材(H)
テトラエトキシシランを加水分解して得たシリカ粒子(触媒化成工業(株)製:真絲球SW-5、平均粒子径4μm、Na2O:1ppm以下(乾燥基準)、10%圧縮弾性率:6500Kgf/mm2)を純水に分散させ、SiO2濃度10重量%のシリカ粒子分散液とし、これを洗浄材(H)として用いた。
【0074】
[洗浄]
洗浄材(H)を用いた以外は実施例1と同様にして、洗浄テスト(1-1)〜洗浄テスト(3)を実施した。結果を表1に示す。
【0075】
【実施例9】
洗浄材(I)
テトラエトキシシランを加水分解して得たシリカ粒子(触媒化成工業(株)製:真絲球SW-10、平均粒子径10μm、Na2O:1ppm以下(乾燥基準)、10%圧縮弾性率:7000Kgf/mm2)を純水に分散させ、SiO2濃度10重量%のシリカ粒子分散液とし、これを洗浄材(I)として用いた。
【0076】
[洗浄]
洗浄材(I)を用いた以外は実施例1と同様にして、洗浄テスト(1-1)〜洗浄テスト(3)を実施した。結果を表1に示す。
【0077】
【実施例10】
洗浄材(J)
メチルトリエトキシシランを加水分解して得たシリカ粒子(触媒化成工業(株)製:真絲球EW-5、平均粒子径5μm、Na2O:1ppm以下(乾燥基準)、10%圧縮弾性率2500Kgf/mm2)をメタノール/純水(1/9重量比)に分散させ、固形分濃度20重量%のシリカ粒子分散液とし、これを洗浄材(J)として用いた。
【0078】
[洗浄]
洗浄材(J)を用いた以外は実施例1と同様にして、洗浄テスト(1-1)〜洗浄テスト(3)を実施した。結果を表1に示す。
【0079】
【実施例11】
洗浄材(K)
メチルトリエトキシシランを加水分解して得たシリカ粒子(触媒化成工業(株)製:真絲球EW-10、平均粒子径10μm、Na2O:1ppm以下(乾燥基準)、10%圧縮弾性率3000Kgf/mm2)をメタノール/純水(1/9重量比)に分散させ、固形分濃度10重量%のシリカ粒子分散液とし、これを洗浄材(K)として用いた。
【0080】
[洗浄]
洗浄材(K)を用いた以外は実施例1と同様にして、洗浄テスト(1-1)〜洗浄テスト(3)を実施した。結果を表1に示す。
【0081】
【実施例12】
洗浄材(L)
実施例11で得たシリカ粒子を1000℃で時間焼成して得たシリカ粒子(平均粒子径9μm、Na2O:1ppm以下(乾燥基準)、10%圧縮弾性率6000Kgf/mm2)をメタノール/純水(1/9重量比)に分散させ、固形分濃度10重量%のシリカ粒子分散液とし、これを洗浄材(L)として用いた。
【0082】
[洗浄]
洗浄材(L)を用いた以外は実施例1と同様にして、洗浄テスト(1-1)〜洗浄テスト(3)を実施した。結果を表1に示す。
【0083】
【比較例1】
[洗浄]
洗浄材(A)の代わりに純水を用いた以外は実施例1と同様にして、洗浄テスト(1-1)〜洗浄テスト(3)を実施した。結果を表1に示す。
【0084】
【比較例2】
[洗浄]
洗浄材(A)の代わりにメタノール/純水(1/1重量比)を用いた以外は実施例1と同様にして、洗浄テスト(1-1)〜洗浄テスト(3)を実施した。結果を表1に示す。
【0085】
【比較例3】
洗浄材(A)の代わりに洗浄液(1)を用いた以外は実施例1と同様にして、洗浄テスト(1-1)、(1-2)、(2-1)、(2-2)、洗浄テスト(3)を実施した。結果を表1に示す。
【0086】
【比較例4】
洗浄材(A)の代わりに洗浄液(2)を用いた以外は実施例1と同様にして、洗浄テスト(1-1)、(1-2)、(2-1)、(2-2)、洗浄テスト(3)を実施した。結果を表1に示す。
【0087】
【比較例5】
洗浄材(M)
実施例1で調製した基板洗浄用粒子(A)の分散液(SiO2濃度10重量%、Na2O:50ppm(乾燥基準))をSiO2濃度20重量%に濃縮し、これを噴霧乾燥し、600℃で2時間焼成して平均粒子径120μmのシリカ粒子を得た。
これをメタノール/純水(1/9重量比)に分散させ、固形分濃度10重量%のシリカ粒子分散液とし、洗浄材(M)とした。
【0088】
[洗浄]
洗浄材(M)を用いた以外は実施例1と同様にして、洗浄テスト(1-1)〜洗浄テスト(3)を実施した。結果を表1に示す。
【0089】
【表1】
Figure 0004554142
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a substrate cleaning particle capable of efficiently cleaning a substrate surface without damaging the substrate, a cleaning material including the substrate cleaning particle, and a substrate cleaning method.
[0002]
TECHNICAL BACKGROUND OF THE INVENTION
Various base materials are used in computers, various electronic devices, various display devices, and the like, and ultra-clean base materials, parts, and the like have been demanded along with their high performance and high definition. Also in these mountings, it is required to strictly prevent foreign matters and impurities from being mixed in or remaining.
[0003]
Of these, for example, the field of mounting liquid crystal display devices will be described as an example.
In a liquid crystal display device, a substrate with a transparent electrode film is used in which a transparent electrode film of indium oxide (ITO) doped with tin is formed on a substrate such as glass. When liquid crystal, silicone, etc. remain on such a substrate with a transparent electrode film, the image may not be displayed or may be disturbed even if displayed, and the applied voltage when displaying the image is increased at this time Need arises.
[0004]
Also, when sebum such as fingerprints or oils such as markers remain on the substrate with a transparent electrode film, the accuracy in wiring patterning decreases, wiring resistance becomes uneven, wiring unevenness or disconnection In some cases, the image may not be displayed completely or clearly.
For this reason, the surface sebum and oil are washed and removed. At this time, detergents such as neutral detergents and alkaline detergents remain and may diffuse into the liquid crystal layer and corrode the wiring. In such a case, there is a problem such as an insulation failure or a short circuit.
[0005]
Conventionally, in order to remove the above-mentioned foreign substances and the like, the transparent substrate is usually first cleaned with a brush, then washed with a detergent such as a neutral detergent, an alkaline detergent, etc. Irradiate low-frequency ultrasonic waves to remove relatively coarse foreign matter, irradiate high-frequency ultrasonic waves to remove fine foreign matter, and further irradiate a low-pressure ultraviolet lamp to decompose and remove organic impurities ( UV cleaning) is performed. However, it is difficult to completely remove oils and fats, or to remove large and small foreign substances, and the used detergent may remain.
[0006]
Furthermore, in the substrate with a transparent electrode film in which the transparent electrode film is formed, the alkali in the glass usually diffuses into the transparent electrode and further into the liquid crystal, and if this is a mobile ion, power consumption increases or display failure occurs. was there. For this reason, SiO is interposed between the glass substrate and the transparent electrode film.2An insulating protective film such as a film (sometimes called an alkali passivation film) is provided. In such a substrate with a transparent electrode film, after patterning, SiO2Because the film is exposed, depending on the type of detergent, the SiO2There was a problem that the film was eluted and the function as an alkali passivation film was not achieved. Furthermore, this has limited the type and amount of detergent used.
[0007]
In addition, the liquid crystal display cell after liquid crystal sealing is also cleaned by removing liquid crystal, silicone, oils and the like adhering to the substrate. However, since the substrate after sealing the liquid crystal cannot be in-line (continuous operation in a flow process), for example, several hundreds of liquid crystal substrates are usually set up at a pitch of 6 to 8 mm on a liquid crystal substrate stand, and this is used as a detergent solution. Immersion and irradiation with ultrasonic waves are performed. A cleaning method is employed in which this operation is repeated a plurality of times, followed by a plurality of washings with city water or pure water, followed by dipping in heated pure water, followed by air blow drying.
[0008]
However, in the above method, it is difficult to clean between narrow substrates, and it is difficult to sufficiently remove dirt and detergent. In addition, waste liquids containing detergents and organic solvents are generated, and there is a problem in economic efficiency in terms of the waste liquid treatment costs.
As a result of diligent investigations to solve the problems associated with the prior art, the present inventors irradiated ultrasonic waves to water and / or organic solvent dispersions of inorganic oxide particles having a specific average particle size. However, the present invention was completed by finding that dirt and foreign matters can be efficiently removed by contacting with the base material.
[0009]
OBJECT OF THE INVENTION
It is an object of the present invention to provide a substrate cleaning particle capable of efficiently cleaning a substrate surface without damaging the substrate, a cleaning material including the substrate cleaning particle, and a cleaning method. It is said.
[0010]
SUMMARY OF THE INVENTION
The particle | grains for board | substrate washing | cleaning which concern on this invention are particles which consist of inorganic oxides, and an average particle diameter exists in the range of 2 nm-100 micrometers, It is characterized by the above-mentioned.
Examples of the inorganic oxide include particles composed of inorganic oxides such as silica, alumina, zirconia, titania and ceria, and composite inorganic oxides such as silica / alumina and silica / zirconia.
[0011]
The surface of the particles is preferably treated with a hydrolyzable organosilicon compound or amines represented by the following formula (1).
RnSiX4-n             (1)
[However, R: an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, which may be the same or different. X: C1-C4 alkoxy group, silanol group, halogen, hydrogen, n: 1-3]
The cleaning material according to the present invention is characterized in that the substrate cleaning particles are dispersed in an aqueous dispersion medium in the range of 1 to 20% by weight.
[0012]
The substrate cleaning method according to the present invention is characterized in that the substrate and the cleaning material are brought into contact with each other while irradiating ultrasonic waves.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
[Substrate cleaning particles]
The substrate cleaning particles of the present invention are made of an inorganic oxide and have an average particle diameter in the range of 2 nm to 100 μm. A more preferable average particle diameter is in the range of 2 nm to 10 μm.
[0014]
Examples of the particles made of an inorganic oxide include inorganic oxides such as silica, alumina, zirconia, titania and ceria, and particles made of a composite inorganic oxide such as silica / alumina and silica / zirconia. In addition, it is preferable to use a composite inorganic oxide having ion adsorption ability in that foreign substances can be removed and ionic impurities do not remain.
[0015]
At this time, it is preferable that the inorganic oxide particles and composite inorganic oxide particles to be used have high purity, and particles having a low content of alkali metal are particularly preferable.2O (M: alkali metal) is preferably 1000 ppm by weight or less, more preferably 10 ppm by weight or less, and particularly preferably 1 ppm by weight or less.
The inorganic oxide particles and composite inorganic oxide particles of the present invention are mainly composed of inorganic oxides and composite inorganic oxides, and may contain organic substances derived from organic groups described later.
[0016]
Among them, silica-based inorganic oxide particles are preferable because they have high insulating properties and are easy to obtain true spherical particles, so that the base material is not worn or damaged during cleaning. Further, even if it remains attached to the substrate, the refractive index is almost the same as that of the substrate, so the visibility is low, and if it is a small amount, there is virtually no problem.
If the average particle size of such inorganic oxide particles is less than 2 nm, relatively large foreign matter may not be removed. If the average particle size of inorganic oxide particles exceeds 100 μm, depending on the substrate, Scratches may be generated. In addition, the settling speed is high in the cleaning material, which may cause a problem in practice.
[0017]
In addition, about the said inorganic oxide particle, if an average particle diameter is the said range, it does not necessarily need to be uniform particle diameter distribution, and broad particle diameter distribution may be sufficient.
Further, inorganic oxide particles having a relatively small average particle diameter and inorganic oxide particles having a relatively large average particle diameter can be mixed and used at an arbitrary ratio.
The substrate cleaning particles are preferably surface-treated with a hydrolyzable organosilicon compound represented by the following formula (1).
[0018]
RnSiX4-n             (1)
[However, R: an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, which may be the same or different. X: C1-C4 alkoxy group, silanol group, halogen, hydrogen, n: 1-3]
Specific examples of such hydrolyzable organosilicon compounds include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, and diphenyldimethoxysilane. Ethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, 3,3,3-trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyl Dimethoxysilane, β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxytripropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycine Sidoxypropyltriethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltriethoxysilane, N-β (aminoethyl) ) Γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-amino Propyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, trimethylsilanol, methyltrichlorosilane, methyldichlorosilane, dimethyldichlorosilane, Examples include limethylchlorosilane, phenyltrichlorosilane, diphenyldichlorosilane, vinyltrichlorosilane, trimethylbromosilane, and diethylsilane.
[0019]
When the substrate cleaning particles are surface-treated with such a hydrolyzable organosilicon compound, depending on the type of the organic functional group possessed by the hydrolyzable organosilicon compound, oils and fats, foreign substances, etc. are selectively and more effectively used. Can be removed. For example, when the organic functional group is an alkyl group, it has lipophilicity and can effectively remove oils, silicones, liquid crystals, etc. When it has an ionic organic functional group, ionic impurities, especially ions of opposite charge Can be effectively removed. For example, when a hydrolyzable organosilicon compound having an amino group as described above is used, anionic impurities can be effectively removed. Moreover, generation | occurrence | production of a scratch can be suppressed irrespective of the kind of organic functional group.
[0020]
The content of such a hydrolyzable organosilicon compound is such that R is contained in the substrate cleaning particles.nSiO4-n / 2 The content is preferably 0.01 to 5% by weight, more preferably 0.02 to 3% by weight.
The content of the hydrolyzable organic group-containing silicon compound in the substrate cleaning particles is RnSiO4-n / 2In the case of less than 0.01% by weight, the organic functional group (R) on the surface of the substrate cleaning particles is small, so that the above-mentioned effects cannot be sufficiently exhibited, and the molecular weight of the hydrolyzable organosilicon compound Depending on the average particle size of the substrate cleaning particles, the content of the hydrolyzable organic group-containing silicon compound in the substrate cleaning particles is R.nSiO4-n / 2If it exceeds 5% by weight, it is difficult to carry, and even if it is made, the cleaning effect is not further improved.
[0021]
The method for producing the substrate cleaning particles surface-treated with the hydrolyzable organic group-containing silicon compound is not particularly limited as long as the substrate cleaning particles having a hydrolyzable organic group-containing silicon compound on the surface are obtained. Conventionally known methods can be employed. For example, a predetermined amount of a hydrolyzable organic group-containing silicon compound solution containing water and / or an organic solvent as a solvent is added to the dispersion of inorganic oxide particles, and if necessary, an acid or alkali is added for hydrolysis. It can be obtained by precipitating the hydrolyzate on the particle surface.
[0022]
The substrate cleaning particles used in the present invention may be surface-treated with an amine compound.
When treated with amines, particles having organic cations or amines adsorbed or bonded to the particle surface are obtained, and such particles can effectively remove ionic impurities, particularly anionic impurities. The amines may be an organic base such as ammonium, and examples of the organic base include quaternary ammonium salts such as tetramethylammonium salt and tetraethylammonium salt. The amines include monoethanolamine, diethanolamine, and triethanol. Examples include amines.
[0023]
The content of such amine compounds is 1 × 10 in 1 g of the substrate cleaning particles.-6~ 1x10-3Moles, or even 1 x 10-Five~ 5x10-3It is preferably contained in a molar range.
When the content of organic cations and amines in 1 g of the substrate cleaning particles is less than the lower limit, the effects described above cannot be sufficiently exhibited because there are few organic cations and amino groups on the surface of the cleaning particles, Further, depending on the molecular weight of the organic cation or amine compound and the average particle size of the substrate cleaning particles, the adsorption or binding may cause the organic cation or amine compound content in 1 g of the substrate cleaning particles to exceed the above upper limit. Is difficult, and even if it is made, the cleaning effect is not further improved.
[0024]
The surface treatment method of the substrate cleaning particles with such an amine compound is not particularly limited, and a conventionally known method can be employed. For example, a solution containing a predetermined amount of an organic base or amine compound water and / or an organic solvent as a solvent is added to a dispersion of inorganic oxide particles, and an acid or alkali is added as necessary to adjust the pH. It can be obtained by adsorbing or binding a cation or an amine compound to the particle surface.
[0025]
When the average particle diameter is more than 0.5 μm among the substrate cleaning particles, the 10% compression elastic modulus is 100 to 5000 kgf / mm.2Furthermore, 200 to 1000 kgf / mm2It is preferable to use elastic particles in the range.
10% compression modulus is 100 kgf / mm2 If it is less than 1, the particles may be broken during washing, and the 10% compression modulus is 5000 kgf / mm.2 If the particle diameter exceeds 50 μm, particularly when the particle diameter is as large as 0.5 μm or more, scratches (streak-like scratches) may occur. If the 10% compressive elastic modulus is in the above range, foreign matter and the like can be effectively removed without generating scratches regardless of the type of substrate and the size of the substrate cleaning particles.
[0026]
The method for measuring the 10% compression modulus is as follows.
For 10% K value, a micro compression tester (MCTM-201 manufactured by Shimadzu Corporation) is used as a measuring instrument, and a single particle having a particle diameter of D is used as a sample. Then, the particles are deformed until the compression displacement becomes 10% of the particle diameter, and the load and the compression displacement (mm) at the time of 10% displacement are obtained. The particle diameter, the obtained compression load, and the compression displacement were substituted into the following equation and obtained by calculation. In the present application, 10% K value was measured for 10 particles, and this average value was evaluated.
[0027]
K = (3/21/2) ・ F ・ S-3/2・ (D / 2)-1/2
Here, K: 10% compression elastic modulus (Kgf / mm2)
F: Load value at 10% compression deformation of fine particles (Kgf)
S: Compression displacement at 10% compression deformation of fine particles (mm)
D: Particle diameter (mm)
It is.
[0028]
As specific measurement conditions, the compression rate constant was set to 1, the load rate was changed in the range of 0.28 to 2.67 gf / sec depending on the particle diameter, and the test load was set to a maximum of 10 gf.
As a method for producing such inorganic oxide particles having 10% compression modulus, polyorganosiloxane fine particles disclosed in Japanese Patent Application Laid-Open No. 11-228699 and Japanese Patent Application Laid-Open No. 2000-204168 filed by the applicant of the present application. The methods such as monodispersed silica particles disclosed in JP-A-11-61043 can be suitably employed.
[0029]
For example, a production method comprising the following steps (a) to (f) is exemplified.
(A) Formula: Si (OR1)Four
(Wherein R1Is a C1-C10 organic group selected from a hydrogen atom or an alkyl group, an alkoxyalkyl group and an acyl group. ) And an organic silicon compound represented by the formula: R′Si (OR2)Three(Wherein R2R1And R ′ is a group having 1 to 10 carbon atoms selected from a substituted or unsubstituted hydrocarbon group. The step of preparing seed particles by hydrolyzing and polycondensing a mixture of the organic silicon compound represented by formula (II) in a mixed solvent of water and an organic solvent.
(B) A step of adding the alkali to the seed dispersion to monodisperse the seed particles and stabilize the seed dispersion.
(C) One or more compounds represented by the following formulas (1) to (3) are added to the stabilized dispersion of seed particles while maintaining the pH of the dispersion at 6 to 9. In addition, hydrolysis / condensation polymerization, thereby growing seed particles to prepare a spherical fine particle dispersion.
[0030]
(1) Formula: R'Si (OR2)Three
(Wherein R2, R 'is the same group as described above. An organosilicon compound represented by:
(2) Formula: R'R "Si (ORThree)2
(Wherein R ′ and R ″ may be the same or different from each other, and are groups having 1 to 10 carbon atoms selected from a substituted or unsubstituted hydrocarbon group;ThreeR1Is the same group. An organosilicon compound represented by:
(3) Formula:
[0031]
[Chemical 1]
Figure 0004554142
[0032]
(Wherein RFourIs a propyl or butyl group, Y is an organic group selected from a methyl group, a methoxy group, an ethyl group and an ethoxy group;
M is an element selected from Group IB, Group IIA, Group B, Group IIIA, Group B, Group IVA, Group B, Group VA, Group VIA, Group VIA, Group VIII of the Periodic Table; M is an integer from 0 to 3, n is an integer from 1 to 4, and m + n is an integer from 2 to 4. )
Acetylacetonate chelate compound represented by
(D) A step of heating and ripening the spherical fine particle dispersion.
(E) A step of separating spherical fine particles from the aged spherical fine particle dispersion and then drying the fine particles.
(F) A step of heat-treating the dried spherical fine particles as necessary.
[Cleaning material]
The cleaning material of the present invention is characterized in that the substrate cleaning particles are dispersed in an aqueous dispersion medium in the range of 0.1 to 20% by weight, more preferably 0.5 to 10% by weight.
[0033]
The aqueous dispersion medium refers to water or a mixed solvent of water and water-soluble organic solvents such as alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol, ethers, esters, and ketones. In the cleaning material of the present invention, when the substrate cleaning particles have an organic functional group derived from a hydrolyzable organosilicon compound on the surface, the cleaning material does not necessarily use the organic solvent to clean the oil-based soil. Can do.
[0034]
When the concentration of the substrate cleaning particles is less than the lower limit, the concentration of the substrate cleaning particles is too low to sufficiently obtain the effect of the present invention described above, and it takes a long time to obtain a sufficient effect.
If the concentration of the substrate cleaning particles exceeds the above upper limit, the cleaning material becomes viscous, so that the substrate is not only cleaned but also the substrate may be polished.
[0035]
The cleaning material according to the present invention may contain additives such as a surfactant, a rust inhibitor, an antioxidant, a metal ion sequestering material, and a builder, as long as the purpose is not impaired. Any known one can be used without particular limitation.
The method for producing the cleaning material according to the present invention is not particularly limited. For example, what is necessary is just to disperse | distribute a predetermined amount of the said microparticles | fine-particles to the said aqueous dispersion medium with an appropriate method with the component added as needed. As a dispersion method, after adding powdery fine particles to the dispersion medium, is it uniformly dispersed by a stirrer or the like? Examples thereof include a method of mixing a fine particle sol using water or an organic solvent as a dispersion medium and the aqueous dispersion medium.
[0036]
Among the fine particles used in the present invention, when using inorganic oxide fine particles or composite inorganic oxide fine particles, conventionally known silica sol, alumina sol, titania sol, silica alumina sol and the like can be used. For example, the silica sol disclosed in Japanese Patent Laid-Open Nos. 63-45114 and 63-64911, the silica-based composite sol disclosed in Japanese Patent Laid-Open No. 5-132309, and the Japanese Patent Laid-Open No. 7-89717 filed by the applicant of the present application. Alumina sol disclosed in Japanese Patent Publication No. 1 can be suitably used because the particle size distribution is uniform.
[0037]
[Cleaning method]
The substrate cleaning method of the present invention is characterized in that the substrate and the cleaning material are brought into contact with each other while irradiating ultrasonic waves.
[Base material]
The substrate that can employ the cleaning method of the present invention is not particularly limited, but a substrate that requires the substrate after cleaning to be highly clean, a substrate that is difficult to clean by conventional methods, The method can be suitably used for cleaning a substrate having a site that is difficult to clean, a substrate that does not properly use a detergent, and the like.
[0038]
In particular, in the above-mentioned liquid crystal display devices, a glass substrate, a substrate with a transparent electrode film in which a transparent electrode film of indium oxide (ITO) doped with tin is formed on the glass substrate, and a transparent electrode film with an alkali passivation film formed thereon Substrate or substrate with transparent electrode film patterned with wiring, etc. Liquid crystal, silicone, etc. remain attached, liquid crystal display substrate with liquid crystal, silicone, oils, etc. attached after liquid crystal sealing, etc. Suitable for cleaning.
[0039]
Although the specific cleaning method varies depending on the base material, the base material is immersed in a tank containing the cleaning material described above, and this is irradiated with ultrasonic waves. For example, it is preferable to irradiate ultrasonic waves with a frequency of 28 to 40 kHz (1000 to 2000 W) for removing and cleaning large foreign matters (usually about 5 μm to 1 mm), and for removing and washing small foreign matters (usually less than 5 μm). Is preferably irradiated with ultrasonic waves of 40 kHz to 1 MHz (1000 to 2000 W).
[0040]
During ultrasonic irradiation, the ultrasonic oscillator may be repeatedly moved as long as it does not contact the base material, or the ultrasonic oscillator may be fixed and the substrate to be cleaned may be moved so as not to contact the oscillator. . When such an oscillator or a substrate to be cleaned is moved, the cleaning efficiency can be greatly improved.
The irradiation time of the ultrasonic wave at this time is not particularly limited, and the irradiation can be performed for a time or a number of times for obtaining a desired clean substrate.
[0041]
Alternatively, the surface may be cleaned by ejecting a cleaning material provided with ultrasonic vibration from the nozzle onto the surface of the base material using a nozzle body incorporating an ultrasonic oscillator.
Further, the substrate cleaning method according to the present invention may be performed in combination with the conventional cleaning method, or in the middle of the conventional cleaning method, or may be performed in place of the intermediate step of the conventional cleaning method. it can. Further, the cleaning method according to the present invention may be repeated a plurality of times.
[0042]
Specifically, other cleaning treatments include a cleaning treatment with a surfactant, a rinsing treatment with water, a drying treatment, and a mechanical treatment with a brush.
For example, in the case of a liquid crystal substrate (cell), one batch of substrates to be cleaned in which 300 to 600 liquid crystal substrates are arranged at intervals of 6 to 8 mm,
Cleaning material tank → City water rinse tank → Pure water rinse tank
In this order, ultrasonic waves of 28 to 40 kHz and 1000 to 2000 W are irradiated, and after rinsing with pure water is completed, it is kept in a 60 ° C. humidified pure water atmosphere and air blown to dry.
[0043]
In addition, each substrate may be cleaned with a brush or an aqueous surfactant (neutral detergent, alkaline detergent) solution before washing with the cleaning method according to the present invention to remove large dirt. Good. In addition, according to the present invention, even if the surfactant used for cleaning adheres to the surface, since the specific cleaning material is used, the attached surfactant can also be suitably removed.
[0044]
In the substrate cleaning method according to the present invention as described above, since the substrate cleaning particles made of an inorganic oxide are contained in the cleaning material, the substrate surface is brought into contact with the substrate and the substrate cleaning particles. Foreign matter, dirt, etc. can be removed. Moreover, since the ultrasonic waves are applied, the foreign matter and the substrate cleaning particles absorb the ultrasonic energy and vibrate, thereby achieving a high cleaning effect.
[0045]
Furthermore, depending on the type of the base material, the surface of the base material can be cleaned without damaging it by using a cleaning material containing the substrate cleaning particles having moderate elasticity.
In addition, if cleaning materials containing substrate cleaning particles whose surfaces are treated with hydrolyzable organosilicon compounds, or substrate cleaning particles in which amines are adsorbed and bonded to the surface, oil components, detergents and interfaces attached to the surface are used. It is possible to effectively remove the activator, ionic impurities, and the like.
[0046]
【The invention's effect】
According to the substrate cleaning particles of the present invention, the substrate cleaning particles are fine particles and come into contact with the base material under the irradiation of ultrasonic waves, so it is effective to remove foreign matters on the base material surface without damaging the base material. Can be removed.
According to the cleaning material of the present invention, it is possible to effectively remove foreign matters and the like on the surface of a base material without damaging the base material by contacting with the base material under irradiation of ultrasonic waves. Moreover, the base material which has a site | part which is difficult to wash | clean by the conventional method, for example, a site | part which cannot be directly physically contacted, a fine uneven | corrugated site | part etc. can be cleaned effectively.
[0047]
According to the cleaning method of the present invention, the cleaning material containing the substrate cleaning particles is used, and the foreign material on the surface of the base material is effectively removed without damaging the base material because it contacts the base material under ultrasonic irradiation. Can be removed. Moreover, the base material which has a site | part difficult to wash | clean by the conventional method, for example, a site | part which cannot be directly physically contacted, a fine uneven | corrugated site | part etc. can be cleaned efficiently.
[0048]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
[0049]
[Example 1]
Dispersion of substrate cleaning particles (A)
Silica particle dispersion sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: Cataloid SI-45P, average particle size 45 nm, SiO2Concentration 40.2% by weight, Na2O concentration 0.75% by weight (dry basis), Al2OThree0.4% by weight (dry basis))2Dilute to a concentration of 20% by weight, desalinate using an amphoteric ion exchange resin (manufactured by Mitsubishi Chemical Corporation: SMNUPB), and then dilute with pure water to disperse the substrate cleaning particles (A) (SiO)2Concentration 5% by weight, Na2O: 50 ppm (dry basis)) was prepared.
[0050]
[Washing]
Cleaning material (A)
The dispersion liquid for substrate cleaning particles (A) obtained above was used as the cleaning material (A) as it was.
Preparation of cleaning solution (1)
A neutral detergent (Lion Co., Ltd .: Charmy V) was diluted to prepare a cleaning solution (1) having a detergent concentration of 0.5% by weight.
[0051]
Preparation of cleaning solution (2)
An alkaline detergent (P & G Co., Ltd .: Joy) was diluted to prepare a cleaning solution (2) having a detergent concentration of 0.5% by weight.
Cleaning test ( 1-1 ): Oil stains
The surface of the glass plate was rubbed five times so that the outside of the colored-rolled red pencil (Mitsubishi Pencil Co., Ltd .: DERMATOGRAPH) was in contact with it, and oily grease was adhered. This glass plate with oil stains was immersed in an ultrasonic cleaning tank in which the temperature of the cleaning material (A) was adjusted to 5 ° C., irradiated with ultrasonic waves (40 kHz) for 30 minutes, then taken out and sprinkled with pure water. Then, it immersed in the ultrasonic cleaning tank which adjusted the temperature of the pure water to 5 degreeC, and irradiated with the ultrasonic wave (40 kHz) for 30 minutes. Subsequently, it was immersed in pure water at 60 ° C. and then taken out and dried by air blow. The surface of the glass substrate washed in this way was visually observed, and the oil and fat detergency was evaluated according to the following criteria.
[0052]
The results are shown in Table 1.
Oil stains are not recognized: ◎
Slight oil stains are observed: ○
Fat and oil stains clearly remain: △
More than 1/2 oil stains remain: ×
Cleaning test ( 1-2 ): Silicone dirt
The surface of the glass plate was rubbed 5 times with silicon rubber (manufactured by Iuchi Co., Ltd .: silicon rubber stopper) to adhere the silicone. The silicone-attached glass plate was cleaned in the same manner as in the cleaning test (1-1). The surface of the cleaned glass substrate was written with a water-based pen (Pentel Co., Ltd .: sign pen black) (water-based ink was applied), and the ink repelling was visually observed and evaluated according to the following criteria. The results are shown in Table 1.
[0053]
Ink repelling is not recognized: ◎
Slight ink repellency: ○
Ink repelling is clearly observed:
Ink repelling surface remains 1/2 or more: ×
In addition, the washing performance of the detergent was evaluated in the same manner as the washing test (1-1). The results are shown in Table 1.
[0054]
Cleaning test ( 1-3-1 ): Neutral detergent stain
A glass plate was dipped in the cleaning liquid (1) and dried to obtain a glass plate to which a detergent adhered.
This detergent-adhered glass plate was cleaned in the same manner as the cleaning test (1-1), and the surface of the cleaned glass substrate was observed with a differential interference microscope (Nikon Corporation). ) Was evaluated according to the following criteria. The results are shown in Table 1.
[0055]
The interference color is not recognized and the detergent is removed: ○
A weak interference color is observed, and a slight amount of detergent remains: △
There is relatively clear interference color, and the detergent is clearly left: ×
Cleaning test ( 1-3-2 ): Alkaline detergent stain
Cleaning was performed in the same manner as the cleaning test (1-3-1) except that it was immersed in the cleaning solution (2). The surface of the cleaned glass substrate was observed with a differential interference microscope (manufactured by Nikon Corporation), and the detergent was washed. (Remaining degree) was evaluated according to the following criteria. The results are shown in Table 1.
[0056]
The interference color is not recognized and the detergent is removed: ○
A weak interference color is observed, and a slight amount of detergent remains: △
There is relatively clear interference color, and the detergent is clearly left: ×
Cleaning test ( 2-1 ): Oil stains
Cleaning and evaluation were carried out in the same manner as in the cleaning test (1-1) except that a substrate with a transparent electrode (base material: alkali passivation glass, transparent electrode: ITO electrode, thickness 10 μm) was used. The results are shown in Table 1.
[0057]
At this time, the presence or absence of scratches was observed with an optical microscope and evaluated according to the following criteria. The results are shown in Table 1.
No scratches, streaks, etc. (scratches) are observed, and the surface is smooth. : ○
Scratches, streaks, etc. (scratches) are slightly observed, but the surface is smooth. : △
Many scratches, streaks, etc. (scratches) are observed, and the surface is smooth. : ×
Cleaning test ( 2-2 ): Silicone dirt
Cleaning and evaluation were performed in the same manner as in the cleaning test (1-2) except that a substrate with a transparent electrode (base material: alkali passivation glass, transparent electrode: ITO electrode, thickness 10 μm) was used. The results are shown in Table 1.
[0058]
Cleaning test ( 2-3-1 ): Neutral detergent stain
Cleaning and evaluation were conducted in the same manner as in the cleaning test (1-3-1) except that a substrate with a transparent electrode (base material: alkali passivation glass, transparent electrode: ITO electrode, thickness 10 μm) was used. The results are shown in Table 1.
Cleaning test ( 2-3-2 ): Alkaline detergent stain
Washing and evaluation were performed in the same manner as in the washing test (1-3-2) except that a substrate with a transparent electrode (base material: alkali passivation glass, transparent electrode: ITO electrode, thickness 10 μm) was used. The results are shown in Table 1.
[0059]
Cleaning test ( Three ): Oil stains
Grease and oil stains adhere to the gap between the liquid crystal substrates (the fine gap on the outer periphery created by pasting the opposing substrates) by touching the outside of the colored winding red pencil (Mitsubishi Pencil Co., Ltd .: DERMATOGRAPH). Washing was performed in the same manner as in the washing test (1-1) except that the liquid crystal substrate was used, and the following evaluation criteria were used. The results are shown in Table 1.
[0060]
The surface of the liquid crystal substrate was visually observed and evaluated according to the following criteria. The results are shown in Table 1.
Oil stains are not recognized: ◎
Slight oil stains are observed in the gaps: ○
Fat and oil stains clearly remain in the gaps: △
Oil stains remain on the flat part: ×
[0061]
[Example 2]
Cleaning material (B)
Desalted SiO as in Example 12A silica particle-dispersed sol having a concentration of 20% by weight was obtained. 1000 g of this silica particle dispersed sol and 1000 g of methanol are mixed, and 1.0 g of nitric acid having a concentration of 10% by weight is added thereto. Ethyltriethoxysilane (manufactured by Tama Chemical Co., Ltd .: SiO234.7 g) (concentration 28% by weight) was added and stirred at room temperature for 24 hours. Subsequently, methanol was removed at 60 ° C. and 100 mmHg with a rotary evaporator, and then a cleaning material (B) having a solid content concentration of 5% by weight was prepared with pure water. At this time, the ratio of methanol in the dispersion medium was 10% by weight.
[0062]
[Washing]
Cleaning tests (1-1) to (3) were performed in the same manner as in Example 1 except that the cleaning material (B) was used. The results are shown in Table 1.
[0063]
[Example 3]
Cleaning material (C)
To 1000 g of the cleaning material (B) prepared in Example 2, 5 g of tetramethylammonium hydroxide (TMAH) having a concentration of 10% by weight was added to prepare a cleaning material (C) adsorbing quaternary ammonium ions.
[0064]
[Washing]
Cleaning tests (1-1) to (3) were performed in the same manner as in Example 1 except that the cleaning material (C) was used. The results are shown in Table 1.
[0065]
[Example 4]
Cleaning material (D)
Silica particle dispersion sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: Cataloid SI-80P, average particle size 80 nm, SiO2Concentration 40% by weight, Na2O: 2.0% by weight (dry basis))2Dilute to a concentration of 20% by weight, desalinate using an amphoteric ion exchange resin (manufactured by Mitsubishi Chemical Corporation: SMNUPB), and then dilute with pure water to disperse the substrate cleaning particle (B) (SiO)2Concentration 5% by weight, Na2O: 50 ppm (dry basis)) was prepared and used as the cleaning material (D).
[0066]
[Washing]
Cleaning tests (1-1) to (3) were performed in the same manner as in Example 1 except that the cleaning material (D) was used. The results are shown in Table 1.
[0067]
[Example 5]
Cleaning material (E)
Desalted SiO as in Example 42A silica particle-dispersed sol having a concentration of 20% by weight was obtained. 1000 g of this silica particle dispersed sol and 1000 g of methanol are mixed, and 1.0 g of nitric acid having a concentration of 10% by weight is added, and bistrimethoxysilylhexane (manufactured by Chisso Corporation: SiO) is added thereto.227.3 g) (concentration 36.6% by weight) was added and stirred at room temperature for 24 hours. Subsequently, desalting was performed with an amphoteric ion exchange resin, and methanol was further removed at 60 ° C. and 100 mmHg using a rotary evaporator, and pure water was added to prepare a cleaning material (E) having a solid content concentration of 5% by weight. At this time, the ratio of methanol in the dispersion medium was 10% by weight.
[0068]
[Washing]
Cleaning tests (1-1) to (3) were performed in the same manner as in Example 1 except that the cleaning material (E) was used. The results are shown in Table 1.
[0069]
[Example 6]
Cleaning material (F)
Silica particle dispersion sol (manufactured by Catalyst Kasei Kogyo Co., Ltd .: Cataloid SI-550, average particle size 5 nm, SiO2Concentration 20% by weight, Na2O: 2.0% by weight (dry basis)) is desalted using an amphoteric ion exchange resin (manufactured by Mitsubishi Chemical Corporation: SMNUPB) and then diluted with pure water to disperse the substrate cleaning particles (C). Liquid (SiO2Concentration 5% by weight, Na2O: 50 ppm (dry basis)) was prepared and used as the cleaning material (F).
[0070]
[Washing]
Cleaning tests (1-1) to (3) were performed in the same manner as in Example 1 except that the cleaning material (F) was used. The results are shown in Table 1.
[0071]
[Example 7]
Cleaning material (G)
Similar to Example 6, desalted SiO2A silica particle-dispersed sol having a concentration of 20% by weight was obtained. 1000 g of this silica particle-dispersed sol and 1000 g of methanol are mixed, and 1.0 g of nitric acid having a concentration of 10% by weight is added thereto. Ethyltriethoxysilane (manufactured by Tama Chemical Co., Ltd .: SiO23.47 g) (concentration 28 wt%) was added and stirred at room temperature for 24 hours. Next, desalting was performed with an amphoteric ion exchange resin, and methanol was removed at 60 ° C. and 100 mmHg using a rotary evaporator, and pure water was added to prepare a cleaning material (G) having a solid content concentration of 5% by weight.
[0072]
[Washing]
Cleaning tests (1-1) to (3) were performed in the same manner as in Example 1 except that the cleaning material (G) was used. The results are shown in Table 1.
[0073]
[Example 8]
Cleaning material (H)
Silica particles obtained by hydrolyzing tetraethoxysilane (manufactured by Catalyst Kasei Kogyo Co., Ltd .: True Ryukyu SW-5, average particle size 4 μm, Na2O: 1 ppm or less (dry basis), 10% compression modulus: 6500 kgf / mm2) Is dispersed in pure water and SiO2A silica particle dispersion having a concentration of 10% by weight was used as a cleaning material (H).
[0074]
[Washing]
Cleaning tests (1-1) to (3) were performed in the same manner as in Example 1 except that the cleaning material (H) was used. The results are shown in Table 1.
[0075]
[Example 9]
Cleaning material (I)
Silica particles obtained by hydrolyzing tetraethoxysilane (manufactured by Catalyst Kasei Kogyo Co., Ltd .: True Ryukyu SW-10, average particle size 10 μm, Na2O: 1 ppm or less (dry basis), 10% compression elastic modulus: 7000 kgf / mm2) Is dispersed in pure water and SiO2A silica particle dispersion having a concentration of 10% by weight was used as the cleaning material (I).
[0076]
[Washing]
Cleaning tests (1-1) to (3) were performed in the same manner as in Example 1 except that the cleaning material (I) was used. The results are shown in Table 1.
[0077]
[Example 10]
Cleaning material (J)
Silica particles obtained by hydrolyzing methyltriethoxysilane (manufactured by Catalyst Kasei Kogyo Co., Ltd .: True Ryukyu EW-5, average particle size 5 μm, Na2O: 1 ppm or less (dry basis), 10% compression elastic modulus 2500 kgf / mm2) Was dispersed in methanol / pure water (1/9 weight ratio) to obtain a silica particle dispersion having a solid concentration of 20% by weight, and this was used as the cleaning material (J).
[0078]
[Washing]
Cleaning tests (1-1) to (3) were performed in the same manner as in Example 1 except that the cleaning material (J) was used. The results are shown in Table 1.
[0079]
Example 11
Cleaning material (K)
Silica particles obtained by hydrolyzing methyltriethoxysilane (manufactured by Catalyst Kasei Kogyo Co., Ltd .: true sphere EW-10, average particle size 10 μm, Na2O: 1 ppm or less (dry basis), 10% compression modulus 3000 kgf / mm2) Was dispersed in methanol / pure water (1/9 weight ratio) to obtain a silica particle dispersion having a solid concentration of 10% by weight, and this was used as the cleaning material (K).
[0080]
[Washing]
Cleaning tests (1-1) to (3) were performed in the same manner as in Example 1 except that the cleaning material (K) was used. The results are shown in Table 1.
[0081]
Example 12
Cleaning material (L)
Silica particles obtained by calcining the silica particles obtained in Example 11 at 1000 ° C. for an hour (average particle size 9 μm, Na2O: 1 ppm or less (dry basis), 10% compression modulus 6000 kgf / mm2) Was dispersed in methanol / pure water (1/9 weight ratio) to obtain a silica particle dispersion having a solid concentration of 10% by weight, and this was used as the cleaning material (L).
[0082]
[Washing]
Cleaning tests (1-1) to (3) were performed in the same manner as in Example 1 except that the cleaning material (L) was used. The results are shown in Table 1.
[0083]
[Comparative Example 1]
[Washing]
Cleaning tests (1-1) to (3) were performed in the same manner as in Example 1 except that pure water was used instead of the cleaning material (A). The results are shown in Table 1.
[0084]
[Comparative Example 2]
[Washing]
Cleaning tests (1-1) to (3) were carried out in the same manner as in Example 1 except that methanol / pure water (1/1 weight ratio) was used instead of the cleaning material (A). The results are shown in Table 1.
[0085]
[Comparative Example 3]
Cleaning tests (1-1), (1-2), (2-1), (2-2) in the same manner as in Example 1 except that the cleaning liquid (1) was used instead of the cleaning material (A). A cleaning test (3) was conducted. The results are shown in Table 1.
[0086]
[Comparative Example 4]
Cleaning tests (1-1), (1-2), (2-1), (2-2) in the same manner as in Example 1 except that the cleaning liquid (2) was used instead of the cleaning material (A). A cleaning test (3) was conducted. The results are shown in Table 1.
[0087]
[Comparative Example 5]
Cleaning material (M)
Dispersion liquid (SiO) of substrate cleaning particles (A) prepared in Example 12Concentration 10% by weight, Na2O: 50 ppm (dry basis))2Concentrated to a concentration of 20% by weight, spray-dried, and calcined at 600 ° C. for 2 hours to obtain silica particles having an average particle size of 120 μm.
This was dispersed in methanol / pure water (1/9 weight ratio) to obtain a silica particle dispersion having a solid content concentration of 10% by weight, and a cleaning material (M) was obtained.
[0088]
[Washing]
Cleaning tests (1-1) to (3) were performed in the same manner as in Example 1 except that the cleaning material (M) was used. The results are shown in Table 1.
[0089]
[Table 1]
Figure 0004554142

Claims (5)

シリカ、アルミナ、ジルコニア、チタニア、セリア、シリカ・アルミナ、シリカ・ジルコニアから選ばれる無機酸化物からなる粒子であり、
平均粒子径が2nm〜100μmの範囲にあり、表面が、下記式(1)で表される加水分解性有機ケイ素化合物またはアミン類化合物で処理されている基板洗浄用粒子が、水または水と有機溶媒との混合溶媒からなる分散媒に1〜20重量%の範囲で分散している基板洗浄材を、超音波を照射させながら基板と接触させることを特徴とする基板の洗浄方法。
nSiX4-n (1)
〔ただし、R:炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、シラノール基、ハロゲン、水素、n:1〜3〕
It is a particle made of an inorganic oxide selected from silica, alumina, zirconia, titania, ceria, silica / alumina, silica / zirconia,
The substrate cleaning particles whose average particle diameter is in the range of 2 nm to 100 μm and whose surface is treated with a hydrolyzable organosilicon compound or amine compound represented by the following formula (1) are water or water and organic A substrate cleaning method comprising contacting a substrate cleaning material dispersed in a dispersion medium composed of a solvent mixture with a solvent in an amount of 1 to 20% by weight with the substrate while irradiating ultrasonic waves.
R n SiX 4-n (1 )
[However, R: an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, which may be the same or different. X: C1-C4 alkoxy group, silanol group, halogen, hydrogen, n: 1-3]
シリカ、アルミナ、ジルコニア、チタニア、セリア、シリカ・アルミナ、シリカ・ジルコニアから選ばれる無機酸化物からなる粒子であり、平均粒子径が0.5μmを超えて100μmの範囲にあり、10%圧縮弾性率が100〜5000kgf/mm2 の弾性率を有する基板洗浄用粒子が、水または水と有機溶媒との混合溶媒からなる分散媒に1〜20重量%の範囲で分散している基板洗浄材を、超音波を照射させながら基板と接触させることを特徴とする基板の洗浄方法。Particles made of inorganic oxide selected from silica, alumina, zirconia, titania, ceria, silica-alumina, silica-zirconia, average particle diameter is in the range of more than 0.5μm to 100μm, and 10% compression modulus A substrate cleaning material in which particles for substrate cleaning having an elastic modulus of 100 to 5000 kgf / mm 2 are dispersed in a dispersion medium composed of water or a mixed solvent of water and an organic solvent in a range of 1 to 20% by weight, A method for cleaning a substrate, wherein the substrate is brought into contact with the substrate while being irradiated with a sound wave. 基板洗浄用粒子が、前記式(1)で表される加水分解性有機ケイ素化合物またはアミン類化合物で処理されていることを特徴とする請求項2に記載の基板の洗浄方法。The substrate cleaning method according to claim 2 , wherein the substrate cleaning particles are treated with a hydrolyzable organosilicon compound or an amine compound represented by the formula (1). 無機酸化物粒子のアルカリ金属の含有量が、M 2 O(M:アルカリ金属)として、1000重量ppm以下であることを特徴とする請求項1〜3のいずれかに記載の基板の洗浄方法。The method for cleaning a substrate according to claim 1, wherein the content of the alkali metal in the inorganic oxide particles is 1000 ppm by weight or less as M 2 O (M: alkali metal) . 無機酸化物粒子のアルカリ金属の含有量が、M 2 O(M:アルカリ金属)として、1重量ppm以下であることを特徴とする請求項4に記載の基板の洗浄方法。The substrate cleaning method according to claim 4, wherein the content of the alkali metal in the inorganic oxide particles is 1 ppm by weight or less as M 2 O (M: alkali metal) .
JP2002129043A 2002-04-30 2002-04-30 Substrate cleaning particles, cleaning material containing the substrate cleaning particles, and substrate cleaning method Expired - Lifetime JP4554142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002129043A JP4554142B2 (en) 2002-04-30 2002-04-30 Substrate cleaning particles, cleaning material containing the substrate cleaning particles, and substrate cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002129043A JP4554142B2 (en) 2002-04-30 2002-04-30 Substrate cleaning particles, cleaning material containing the substrate cleaning particles, and substrate cleaning method

Publications (2)

Publication Number Publication Date
JP2003321700A JP2003321700A (en) 2003-11-14
JP4554142B2 true JP4554142B2 (en) 2010-09-29

Family

ID=29542601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002129043A Expired - Lifetime JP4554142B2 (en) 2002-04-30 2002-04-30 Substrate cleaning particles, cleaning material containing the substrate cleaning particles, and substrate cleaning method

Country Status (1)

Country Link
JP (1) JP4554142B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6151484B2 (en) * 2012-06-11 2017-06-21 東京応化工業株式会社 Lithographic cleaning liquid and wiring forming method
CN118360108B (en) * 2024-06-18 2024-09-13 潍坊凯利来生物科技有限公司 Gel for eliminating abnormal sound of bicycle disc brake pad and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58225177A (en) * 1982-06-21 1983-12-27 ナルコ・ケミカル・カンパニ− Colloidal silica and abrasion therewith
JPS62285976A (en) * 1986-06-03 1987-12-11 Mitsubishi Chem Ind Ltd Abrasive composition
WO1989012082A1 (en) * 1988-06-03 1989-12-14 Mitsubishi Monsanto Chemical Company Abrasive composition for silicon wafer
JPH02146732A (en) * 1988-07-28 1990-06-05 Fujitsu Ltd Abrasive liquid and abrasion
JPH11102881A (en) * 1997-09-26 1999-04-13 Sharp Corp Substrate cleaning method and device
JPH11279534A (en) * 1998-03-26 1999-10-12 Asahi Denka Kogyo Kk Surface polishing liquid composition for semiconductor product
JPH11330025A (en) * 1998-03-10 1999-11-30 Internatl Business Mach Corp <Ibm> Slurry having high selectivity and chemical-mechanical polishing of composite material substrate
JP2000114211A (en) * 1998-08-05 2000-04-21 Showa Denko Kk Abrasive composition for polishing of lsi device and polishing method
JP2000343390A (en) * 1999-06-04 2000-12-12 Nippon Sheet Glass Co Ltd Processing method for glass substrate
WO2001057919A1 (en) * 2000-02-04 2001-08-09 Showa Denko K. K. Polishing composite for use in lsi manufacture and method of manufacturing lsi
JP2001316133A (en) * 2000-04-28 2001-11-13 Nippon Sheet Glass Co Ltd Glass substrate method for manufacturing same and information recorder using it

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2378492A1 (en) * 1999-07-07 2001-01-18 Cabot Microelectronics Corporation Cmp composition containing silane modified abrasive particles

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58225177A (en) * 1982-06-21 1983-12-27 ナルコ・ケミカル・カンパニ− Colloidal silica and abrasion therewith
JPS62285976A (en) * 1986-06-03 1987-12-11 Mitsubishi Chem Ind Ltd Abrasive composition
WO1989012082A1 (en) * 1988-06-03 1989-12-14 Mitsubishi Monsanto Chemical Company Abrasive composition for silicon wafer
JPH02146732A (en) * 1988-07-28 1990-06-05 Fujitsu Ltd Abrasive liquid and abrasion
JPH11102881A (en) * 1997-09-26 1999-04-13 Sharp Corp Substrate cleaning method and device
JPH11330025A (en) * 1998-03-10 1999-11-30 Internatl Business Mach Corp <Ibm> Slurry having high selectivity and chemical-mechanical polishing of composite material substrate
JPH11279534A (en) * 1998-03-26 1999-10-12 Asahi Denka Kogyo Kk Surface polishing liquid composition for semiconductor product
JP2000114211A (en) * 1998-08-05 2000-04-21 Showa Denko Kk Abrasive composition for polishing of lsi device and polishing method
JP2000343390A (en) * 1999-06-04 2000-12-12 Nippon Sheet Glass Co Ltd Processing method for glass substrate
WO2001057919A1 (en) * 2000-02-04 2001-08-09 Showa Denko K. K. Polishing composite for use in lsi manufacture and method of manufacturing lsi
JP2001316133A (en) * 2000-04-28 2001-11-13 Nippon Sheet Glass Co Ltd Glass substrate method for manufacturing same and information recorder using it

Also Published As

Publication number Publication date
JP2003321700A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
CN1137864C (en) Method for temporary protecting glass products
JP6357407B2 (en) Hybrid coating and related application methods
JP5819589B2 (en) Method using polishing composition
JP2003147340A (en) Super water repellent and super-water-repellent material made by using it
JP2013505320A (en) Novel application of lipolytic enzyme for forming anti-fingerprint coating, method for forming anti-fingerprint coating, equipment including anti-fingerprint coating formed thereby, and product including the same
JP2010089373A (en) Water repellent-oil repellent coating article and production of the same
JP4312606B2 (en) Chemical adsorption film production method and chemical adsorption film production solution used therefor
JP2017519249A (en) Treatment of glass surfaces to improve adhesion
JP4554142B2 (en) Substrate cleaning particles, cleaning material containing the substrate cleaning particles, and substrate cleaning method
Korkmaz et al. AFM-based study of the interaction forces between ceria, silicon dioxide and polyurethane pad during non-Prestonian polishing of silicon dioxide films
JP3824766B2 (en) Organopolysiloxane fine particles, method for producing the same, and liquid crystal display device
JP2005350502A (en) Ultra water repellent film-coated article, method for producing the same and coating material for forming ultra water-repellent coated film
JP5163022B2 (en) Treatment agent for forming antifouling coating on optical functional laminate
JP4401907B2 (en) Easily washable articles for members used around water in a dwelling house and method for producing the same
JPWO2014057860A1 (en) Substrate cleaning method and cleaning liquid composition
JP6595935B2 (en) Adhesive for glass, method for producing glass adhesive, and method for producing glass bonded body
JPWO2014057861A1 (en) Glass substrate cleaning method
JP3174243B2 (en) Liquid crystal display element spacer and liquid crystal display element
JP4963896B2 (en) Water repellent treatment agent and water repellent treatment method
JP3992949B2 (en) Coating liquid for forming sol-gel film for base film having pit-like or uneven surface shape, and method for obtaining sol-gel film for base film
WO2014021135A1 (en) Water-repellent liquid, water-repellent article, and method for producing water-repellent liquid and water-repellent article
JP4101032B2 (en) Semiconductor substrate cleaning particles, cleaning material containing the cleaning particles, and substrate cleaning method using the cleaning material
JP5341419B2 (en) Water repellent with oil stain removal function
WO2010134545A1 (en) Waterdrop slidable article and method for producing same
TW589288B (en) Substrate having treated surface layers and process for producing it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4554142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term