JP4551516B2 - Antibacterial material - Google Patents

Antibacterial material Download PDF

Info

Publication number
JP4551516B2
JP4551516B2 JP31441699A JP31441699A JP4551516B2 JP 4551516 B2 JP4551516 B2 JP 4551516B2 JP 31441699 A JP31441699 A JP 31441699A JP 31441699 A JP31441699 A JP 31441699A JP 4551516 B2 JP4551516 B2 JP 4551516B2
Authority
JP
Japan
Prior art keywords
antibacterial
content
antibacterial member
surface layer
member according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31441699A
Other languages
Japanese (ja)
Other versions
JP2000198709A (en
Inventor
亘 漆原
武典 中山
貞子 山田
英俊 山口
健治 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP31441699A priority Critical patent/JP4551516B2/en
Publication of JP2000198709A publication Critical patent/JP2000198709A/en
Application granted granted Critical
Publication of JP4551516B2 publication Critical patent/JP4551516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Paints Or Removers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、食品や医療などの分野およびカビが問題となる電化製品などとして好ましく使用される抗菌特性に優れた抗菌部材に関するものである。
【0002】
【従来の技術】
近年、食品加工業界や医療業界を初めとして、生活必需品に至るまで様々な用途で衛生上の観点から菌やカビの生育を阻止するため、抗菌性(本明細書では、菌およびカビに対する生育抑制効果を合わせて抗菌性という)を付与した金属部材の採用が検討されている。それらに求められる抗菌性能の程度は用途によって異なり、高衛生性という好イメージ付与のため僅かな抗菌性能で要望を満たす用途から、時間単位での菌の繁殖・感染を確実に阻止することのできる即効性を重んじる用途まで様々である。そのうち病院や医療施設などの取扱い機器や食品の製造乃至取扱い機器、更にはそれらの施設で用いられる建具、トイレ、空調機器、冷蔵庫、輸送機、運搬車等に求められる抗菌性能は後者に当たり、多くの菌に対し即効性と高い抗菌性を備えた表面抗菌部材の要望が高まっている。また、家庭用品の中でも洗濯水槽、乾燥機、掃除機、冷蔵庫、空調機器などに代表される清掃が困難でカビの発生が問題となる電化製品に求められる抗菌性能も後者に当たり、菌のみでなくカビに対しても生育抑制効果の高い表面抗菌部材の要望が強い。
【0003】
こうした要望の下で、表面処理により抗菌性を与える技術については次の様な幾つかの提案が見られる。
【0004】
(1)CuやAgの如き抗菌性を有する金属あるいはTiO2等の光触媒機能を有するセラミックスを含有させた塗膜または樹脂層を金属表面に形成する方法(特開平8−156175号、同8−27404号、同8−25548号公報など)。
【0005】
(2)金属材、主にステンレス鋼材の表面に、CuやAgの如き抗菌性を有する金属を濃化させる方法(特開平8−53738号、同8−60303号、同8−104952号公報など)。
【0006】
(3)金属材の表面に、化成処理やめっき処理によってCuやAg等の抗菌性金属やTiO2等の光触媒機能を有するセラミックスを含有する層を形成する方法(特開平9−195061号、同8−120482号、同7−228999号、同9−157860号公報など)。
【0007】
これら公知の方法は、抗菌性を付与するためCuやAgの如き電気化学的に貴な金属成分か、あるいは光触媒機能を有する無機物を微量に含有させる方法であり、抗菌活性成分は表層部に多くとも数%しか露出していない。そのため性能的に不十分であり、抗菌効果を発揮するまでに長時間を必要とする。
【0008】
上記抗菌成分のうち抗菌性金属成分は、通常、基材表面に存在する吸着水中にCuやAg等がイオン化して溶出することにより抗菌性を発揮するが、電気化学的に貴であるCuやAg等の金属はイオン化し難いため、少量の含有ではイオン化するCuやAg量が少なくて満足な抗菌性が得られない。特に、上記(2)として示した方法の如く電気化学的に卑な金属内へ含有させた場合は、イオン化するCuやAgの量が更に少なくなり、抗菌性能は殆ど生かされない。
【0009】
表層部における抗菌性金属の分散量を増加し且つ均一に分散させれば、多少抗菌効果を高めことができるが、抗菌皮膜の安定性や強度の関係上分散量には自ずと限界があり、特にAgの場合は値段が高いという経済上の問題に加えて、Ag自体が変色し易いため含有量を過度に増大することはできない。しかも抗菌層中に分散された抗菌性粒子はマトリックスから脱落し易く、衝撃や摩耗を受ける部材では抗菌活性の持続性に欠ける。
【0010】
また、抗菌性金属成分が1種類の場合は耐性菌を生じる可能性が高く、新たな菌を生む危険性もあり、CuやAgについては既に耐性菌の出現が多数報告されている。特に食品分野や医療分野等への適用を考えた場合、新たな菌の出現は人類の存続にも関わるため、ただ1種類のみの抗菌性金属成分の使用は避けるべきである。
【0011】
上記以外の抗菌性金属として、特開平8−120482号公報に開示されている様にCoを含有させた例もある。また、Niは一般に抗菌成分とは認識されていないが、特開平9−157860号公報や表面技術協会発行の「表面技術」Vol.49,No.5,p433−438には、前述した様な抗菌性付与粒子を分散させるマトリックスとしてNiめっきやNi−Pめっきが提案されている。
CoやNiは電気化学的にCuやAgに比べて抗菌性がかなり低いことが確認されており、抗菌性付与成分としては性能的に不十分とされている。また、上記特開平9−157860号公報や「表面技術」にも、マトリックスを構成するNi自体に抗菌性を付与することについては記述がない。
【0012】
他方、光触媒機能を付与した表面処理材では、抗菌効果を発揮させるのに強力な日光や紫外線を必要とするが、実用部品において強力な日光や紫外線を常時安定して確実に得ることのできる部品は限られている。
【0013】
また、カビの生育抑制については、「抗菌剤の科学PART2」(西野敦編著、工業調査会発行)にも記載されている様に、有機系の防カビ剤を用いることが多いが、それら有機系の防カビ剤は、即効性には優れているものの効果の持続期間が短いため、前述の如く清掃が容易でない部材への適用には不向きである。
【0014】
上記の様な理由もあって、現状の抗菌処理技術は需要者の要求を満たしているとは言えない。一方で、食品や医療分野などにおける抗菌性向上に対する要望は高まる一方であり、新たな抗菌処理技術の開発が求められる。
【0015】
【発明が解決しようとする課題】
本発明は上記の様な状況に着目してなされたものであって、その目的は、食品取扱い分野や医療分野等を対象として、優れた抗菌活性を有すると共に、即効性や抗菌持続性にも優れた抗菌部材を提供することにある。
【0016】
【課題を解決するための手段】
上記課題を解決することのできた本発明にかかる抗菌部材とは、表面に抗菌性皮膜を有する抗菌部材であって、抗菌性皮膜の少なくとも最表面から1μm以内の深さの表面層におけるNi含有量が50%(質量%を意味する、以下同じ)以上で、且つCo含有量が0.001%以上であり、或いは上記表面層におけるNi含有量が50質量%以上で、且つ該表面層の水素含有量が0.1〜50ppmであるところに要旨がある。
【0017】
上記表面層には、更に他の元素としてMo,Sn,Pb,Cu,Ag,Pt,Auよりなる群から選択される少なくとも1種の元素を、下記の比率で含有させると、一段と優れた抗菌作用が発揮されるので好ましい。
Mo:0.01〜20%、
Sn:0.01〜20%、
Pb:0.001〜20%
Cu:0.01〜20%、
Ag:0.001〜20%、
Pt:0.001〜5%、
Au:0.001〜5%。
【0018】
更に、該抗菌部材が下記の要件、すなわち
イ)前記表面層中のP含有量が0.01〜30%、より好ましくは1〜10%、更に好ましくは1.5〜3.5%の範囲、
ロ)前記表面層の硫黄含有量が25〜1000ppmの範囲、
ハ)前記表面層の塩素含有量が10〜100ppmの範囲、
ニ)前記表面層の酸素含有量が0.01〜5%の範囲、
ホ)抗菌部材を30℃の静止水中へ浸漬したときのニッケル溶出量が、1〜50μg/cm2/週、より好ましくは10〜50μg/cm2/週の範囲、
ヘ)抗菌部材を30℃の静止水中へ浸漬したときのリン溶出量が、0.1〜5μg/cm2/週の範囲、
ト)表面粗度が、PP150として100以上、
チ)基材と表面層との自然電位差が800mV以下、より好ましくは500mV以下、更に好ましくは300mV以下、
リ)表面硬度がHv300以上、より好ましくはHv450以上、更に好ましくはHv600以上
という要件を1以上満たすものは、抗菌作用の一段と高められたものとして推奨される。
【0019】
そして本発明の抗菌部材は、多くの菌類に対して優れた抗菌活性を示すが、特に、黄色ブドウ球菌、サルモネラ菌、大腸菌、MRSA、緑膿菌のいずれか1種もしくは2種以上の病原菌に対して高い抗菌効果を示し、あるいはアスペルギルス・ニゲル、ペニシリウム・クリソゲナム、リゾプス・オリゼ、クラドスポリウム・クラドスポリオイデス、ケトミウム・グロボスムのいずれか1種または2種以上のカビに対して高い生育抑制効果を示す点で極めて有用である。
【0020】
【発明の実施の形態】
本発明者らは前述した様な従来技術の問題点を解決すべく様々の角度から研究を進めた結果、一般にCuやAgよりも抗菌性が劣ると考えられているNiを、抗菌皮膜の主成分として使用し、この中にCoまたは水素を含有させ、或いは更に、該抗菌皮膜中のMo,Sn,Pb,Cu,Ag,Au,P,S,Clの含有量や、水中へのNi,Pなどの溶出量等を適正に制御すれば、前述したCuやAgよりも優れた抗菌効果が得られることを知り、上記本発明に想到したものである。
【0021】
まず本発明の抗菌部材は、基材となる金属材の表面にNiを主たる成分とする抗菌皮膜を形成したものであるが、該Ni系抗菌皮膜は、少なくとも下記2つの要件のいずれかを満たす必要がある。
【0022】
(イ)表面層のNi含有量が50%以上、より好ましくは80%以上で、且つCo含有量が0.001%以上、より好ましくは0.01%以上、更に好ましくは0.1%以上であること、
(ロ)表面層のNi含有量が50%以上、より好ましくは80%以上で、且つ水素含有量が0.1〜50ppm、より好ましくは1.5〜20ppmの範囲であること。
【0023】
即ち、本発明において抗菌層を構成する全成分中のNi含有量が50%未満では満足な抗菌性能が得られず、またNi含有量が50%以上であっても、その中に含まれるCo含有量が0.001%未満で、且つ水素含有量が0.1〜50ppmの範囲外である場合は、本発明で意図するレベルの抗菌性能を得ることができない。
【0024】
そして様々の菌に対し幅広く強力な抗菌性と即効性を与えるには、
(1)抗菌性能を与える部材表面の半分以上の領域に、主たる抗菌性付与成分であるNiを露出させること、しかも
(2)上記Niと共に、追って詳述するその他の抗菌性付与成分を共存させ、抗菌性能を相乗的に発揮させること
が望ましい。
【0025】
Ni−Co系合金皮膜が抗菌性に有効に機能する理由としては、該皮膜表面に通常10nm〜1μm程度、高湿度雰囲気下では数十〜数百μm程度存在する吸着水中に皮膜中の金属イオンが溶出し、これらのイオンが、吸着水を介して増殖すると考えられる菌に接触し死滅させるためと考えている。また、適量の水素を含むNi系皮膜では、水素が還元作用を有していることから、還元性の水素化物が特に菌の蛋白質に作用して死滅させるためと推定される。
【0026】
この様に、NiとCo、またはNiと水素という少なくとも2種の抗菌性付与成分を共存させることにより、様々の菌に対して幅広く強力な抗菌活性が発揮され、また耐性菌の発生も予防することができる。特にNiと水素を組合わた抗菌皮膜は、Niによって発揮される重金属の効果と還元性水素化物によって発揮される蛋白質変質効果という異なる抗菌作用の組合わせであり、耐性菌の発生防止に極めて有効である。
【0027】
本発明を実施するに当たっては、表面層の主成分となるNiと、前記Coおよび水素を共に含有させ、水素吸蔵量を0.1〜50ppmの範囲に調整したNi−Co系の水素含有皮膜とすれば、三種の抗菌性付与成分の共存により一段と優れた抗菌活性を示すものとなる。
【0028】
また、NiとCoとの組合わせはカビに対しても増殖を防止する効果があり、カビ上での菌の増殖を防止できる他、カビを原因とする食中毒も防止できるので好ましい。また水素の他の効果として、還元作用により皮膜表面での酸化を抑えてNiやCoの活性を高め、NiやCoの溶出量を増加させて抗菌活性の向上に寄与する効果も挙げられる。
【0029】
Niと共に含有させる上記Coや水素は、共に含有量が多いほど抗菌性は高くなるが、Ni系合金皮膜中の水素吸蔵量が50ppmを超えると、抗菌皮膜の靭性が著しく低下して皮膜に割れが生じ易くなるため、水素吸蔵量は50ppm以下、望ましくは20ppm以下に抑えるべきである。Coの上限は特に制限されないが、その添加効果は約5%で飽和するので、それ以上の添加は経済的に無駄である。
【0030】
本発明で適用されるNi系皮膜は、Niを主成分とする限り他の種々の元素を含むものであってもよく、例えばNi−Co,Ni−Co−P,Ni−Co−B,Ni−Co−C,Ni−Co−P−B,Ni−Zn−Co,Ni−Fe−Co等のNi−Co系皮膜や、Ni,Ni−P,Ni−B,Ni−C,Ni−P−B,Ni−Fe,Ni−Zn等からなり、水素吸蔵量を0.1〜50ppmの範囲に調整した皮膜、或いはそれらの皮膜に、硬質粒子(SiC,Si34,SiO2,TiC,TiN,WC,Al23,ZrO2,Cr32,Cr23,ダイヤモンド粉など)、自己潤滑粒子(PTFE,弗化黒鉛、WS2,CaF2,BN,MoS2,黒鉛など)、光触媒機能粒子(TiO2,ZnO,Nb25,SnO2,ZrO2,CdS,ZnS,SrTiO2など)等を分散させた複合皮膜、更には、セラミックスやサーメット主体の皮膜や樹脂塗膜中に前述した様なNi系合金を分散させた複合皮膜などが挙げられる。
【0031】
上記の中でも、TiO2等の光触媒機能を有する粒子を分散させた抗菌皮膜は、表面の防汚性においても優れたものとなるので、抗菌効果の持続性を更に高めることができる。
【0032】
本発明における抗菌皮膜の構成素材は以上の通りであるが、本発明の抗菌特性を阻害しない範囲で更に他の許容成分が含まれていてもよく、また前記必須構成素材の使用に伴って不可避的に混入してくる成分の含有が排除されないことは勿論である。
【0033】
ところで本発明では、少なくとも最表面より1μm以内の深さ位置における表面層の組成を規定しており、当該表面層を外れる深さ位置の組成や内部構造等は制限されないが、抗菌活性の持続性を高める上では、先に説明した好適組成を満たす抗菌層が深い位置まで維持されているのに越したことはない。
【0034】
上記Ni系皮膜の作製法としては、例えば電気めっき、無電解めっき、気相めっき、塗装、圧着などの様々の方法を採用することができ、特に制限されるものではないが、より簡便なのは電気めっき法である。
【0035】
また抗菌活性を高めるための上記水素吸蔵量の増加法も特に制限されないが、一般的なのは、皮膜形成後に高温水素ガス雰囲気中に曝す方法、電気化学的に水素チャージする方法などが例示される。電気めっき法を採用する場合は、カソード反応の一つである水素反応を利用し、電流効率をコントロールすることによって水素吸蔵量を容易に増加することができる。
【0036】
本発明で規定される前記水素量は、抗菌皮膜を基材から機械的に剥がし、皮膜自身について室温から350℃まで昇温したときに放出される水素量であり、より具体的には、昇温速度12℃/minで350℃まで連続加熱し、発生する水素量を大気圧イオン化質量分析計(API−MS)によって測定した値である。
【0037】
本発明で抗菌皮膜を構成する上記Ni系皮膜中には、Mo,Sn,Cu,Ag,Pt,Auの如き抗菌性を有する他の金属を1種以上含有させることにより、抗菌性能を更に高めることができるので好ましく、表面層中に含まれるそれら各元素の好ましい含有率は、Mo:0.01〜20%、Sn:0.01〜20%、Pb:0.001〜20%、Cu:0.01〜20%、Ag:0.001〜20%、Pt:0.001〜5%、Au:0.001〜5%の範囲である。これらの元素はNiやCoよりも電気化学的に貴な元素であり、これらの元素をごく僅かでも共存させれば、Ni及びCoのイオン化が促進され、抗菌性能を一段と高めることが可能となる。
【0038】
また、上記元素のうちCuやAgは、前述した様にそれ自身が高い抗菌性を有しているので、更なる相乗効果も期待できる。特にAgは、水素化物と同様に蛋白質の変質をも促進するので、様々な菌に対してより広い抗菌効果が期待される。但し、これら元素の含有量が多すぎると、電蝕反応が顕著となって耐食性の低下や変色等が問題になる恐れがあり、また装飾品等に用いる場合は金属アレルギーの原因になることもあるので、注意すべきである。
【0039】
また本発明を実施するに当たっては、Ni系皮膜中に0.1〜30%、より好ましくは1〜10%、更に好ましくは1.5〜3.5%のPを含有させることにより、抗菌活性を更に高めることができる。また適量のPを含有させると、カビに対する増殖防止効果も一段と高められるので好ましい。こうしたPの作用は、Pが水素と反応し、抗菌性及び防カビ性に有効な水素化物として溶出するためと考えられる。
【0040】
こうしたP添加に加えて、前述したMo,Sn,Pb,Cu,Ag,Pt,Auの1種以上の添加を併用し、それらの相加的乃至相乗的作用によって抗菌活性を更に高めることも勿論有効である。
【0041】
更に上記Ni系皮膜中には、25〜1000ppmの硫黄を含有させ、或いは10〜100ppmの塩素を含有させることにより、抗菌性の一層の向上が期待できる。ちなみに、Ni系皮膜中に適量の硫黄を含有させると、皮膜表面において硫黄が金属成分の酸化を抑えて抗菌活性を更に高め、また適量の塩素を含有させると、皮膜表面の自然皮膜(酸化皮膜など)を破壊して吸着水へのNiやCoの溶出量が増大するためと考えている。但し、Ni系皮膜中の硫黄や塩素の含有量が多過ぎると抗菌皮膜の靭性や強度が著しく低下するので、硫黄は1000ppm以下に、また塩素は100ppm以下に夫々抑えるべきである。
【0042】
また上記Ni系皮膜中の酸素含有量は、0.01〜5%の範囲に制御することが望ましい。即ち、酸素は抗菌皮膜の強度を高める作用があり、酸素含有量が0.01%未満では強度不足となって衝撃や摩耗により抗菌皮膜が破壊し易くなる。また5%を超えて酸素含有量が過多になると、抗菌皮膜が靭性不足になる他、皮膜表面のNiが酸化物となってイオン化し難くなり、抗菌活性が低下してくる。
【0043】
前述した通り本発明においては、抗菌皮膜を構成する前記Ni系皮膜中の抗菌性金属イオンの付着水への溶出によって抗菌活性を発揮するものであり、従って、該皮膜からのNi溶出量によって抗菌性を評価することができる。そして、こうしたNiイオンの溶出による抗菌効果を定量化すべく検討した結果、30℃の静止水中へのNiの溶出量によって抗菌性の良否を確認することができ、該Ni溶出量が1〜50μg/cm2/週の範囲、より好ましくは10〜50μg/cm2/週の範囲であるもの、更に好ましくはこうしたNi溶出量に加えてPの溶出量が0.1〜5μg/cm2/週の範囲であるものは、優れた抗菌活性を確実に発揮することが確認された。
【0044】
ここでNiおよびPの溶出量は、次の方法で測定した値をいう。即ち、500mlのビーカー内で、供試材の面積25cm2当たり50mlのイオン交換水(30℃)に1週間浸漬し、溶出液中のNi量およびP量を定量分析して単位面積当たりのNi溶出量およびP溶出量を求める。そしてこの方法によって求められるNi溶出量が1μg/cm2/週未満のものでは、十分な抗菌性が得られ難く、Ni溶出量が増加するほど抗菌性能は高まるが、実用規模でより確実な抗菌性能を発揮するのは、Ni溶出量が10μg/cm2/週以上のものである。
【0045】
また、上記Ni溶出量に加えてPの溶出量が0.1μg/cm2/週以上であるものは、前述した水素化物生成による効果とも相俟って抗菌性は更に高まる。
【0046】
尚、Ni系皮膜からのNiおよびPの溶出量を増加させる方法としては、前述した様に皮膜中の水素含有量を増加させる方法、或いは、Niより電気化学的に貴となる元素やSやCl等を含有させる方法などが推奨されるが、その他の方法を採用することも勿論可能である。
【0047】
但し、Ni溶出量が50μg/cm2/週を超え、或いはPの溶出量が5μg/cm2/週を超えると、皮膜の耐食性劣化や変色等の問題を引き起こす恐れがあり、またNiに関しては、装飾品等として用いたときに金属アレルギーを起こす恐れもあるので注意すべきである。
【0048】
この他、抗菌皮膜の表面粗度を高めて表面積を拡大することも、Ni、Coおよび水素化物の溶出を促進して抗菌活性を高める上で有効であり、好ましくは表面粗度をPP150で100以上とすることが望ましい。ここでPP150とは、表面1インチ当たりに存在する50μインチ以上の山数を示し、この山数が100以上であるものは、抗菌皮膜表面からのNi,P,水素の溶出が促進され、安定して優れた抗菌活性を示すものとなる。
【0049】
また本発明において抗菌性の付与される基材としては、アルミニウム、チタン、真鍮、等の非鉄金属や合金、ステンレス等の鉄基合金、或いはそれらの複合金属材などが挙げられ、それら基材の種類は特に制限されないが、基材と表面層との自然電位差が800mV以内、より好ましくは500mV以内、更に好ましくは300mV以内、とりわけ100mV以内のものが好ましい。
【0050】
しかして、基材の自然電位が表面層よりも高過ぎると、表面層の溶出量が増加して耐食性劣化や変色等の問題を起こす原因になり、またNiに関しては、装飾品等として用いたときに金属アレルギーの問題を引き起こす恐れが生じてくるからである。但し、基材の自然電位が表面層よりも著しく低くなると、表面層の膜厚が小さいときに基材の耐食性が問題となることがあるので注意すべきである。
【0051】
また本発明では特に限定されないが、構造部材としての強度を確保するため、基材の強度は引張強さ(TS)で20kgf/mm2以上、より好ましくは40kgf/mm2以上のものを使用することが望まれる。
【0052】
また抗菌層を構成する前記表面層の表面硬度は、衝撃や摩耗を受けたときの耐傷付き性や耐衝撃性などを考慮してHv300以上、より好ましくはHv450以上、更に好ましくはHv600以上であることが望ましい。
【0053】
上記本発明の抗菌部材がその作用を有効に発揮する菌としては、例えばサルモネラ、腸炎ビブリオ、黄色ブドウ球菌、病原大腸菌、ボツリヌス菌、ウェルシュ菌、セレウス菌、カンピロバクター・ジェジュニ、カンピロバクター・コリ、エルジニア・エンテロコリチカ、エロモナス・ヒドロフィア、エロモナス・ソブリア、プレシオモナス・シゲロイデス、ビブリオ・コレレ非01、ビブリオ・ミミカス、ビブリオ・フルビアリス、リステリア・モノサイトゲネス、エルシニア・シュードチュバキュローシス、ビブリオ・ブルニフィカス、クロストリディウム・ディフィシェレ等の食中毒原因菌や、緑膿菌、MRSA(メチシリン耐性黄色ブドウ球菌)、結核菌、Enterobacter、Acinetobacter、Klebsiella、Serratia、Proteus、Candida、Asperigillus、Nocardia、ヘルペスウィルス、バンコマイシン耐性腸球菌等の日和見感染原因菌、アスペルギルス・ニゲル、アスペルギルス・テレウス、ユーロチム・トノヒルム、ペニシリウム・シトリナム、ペニシリウム・フニクロスム、ペニシリウム・クリソゲナム、リゾプス・オリゼ、クラドスポリウム・クラドスポリオイデス、オーレオバシディウム・プルランス、グリオクラジウム・ビレンス、ケトミウム・グロボスム、フザリウム・モニリホメル、ミロテシウム・ベルカリアなどのカビ類などが挙げられる。
【0054】
また上記抗菌皮膜が形成された抗菌部材としては、食品関連部材として例えば食品製造機械、貯蔵タンク、コンベアープレート・ガイド等の食品工場機器、培養器、培養タンク、クリーンベンチ等のビール工場機器、残菜カゴ、机アジャスト、三角コーナー、水道蛇口等の調理施設機器、それら食品製造工場や外食産業で用いるドアノブ、ハンドル、グリップ、クレセント、ギボシ、台座、スイングドア、グレーチング、網戸、手摺、腰壁、天井、内壁等の建具や、食品製造工場や外食産業内のトイレで用いるドアラッチ、天板、ペーパーホルダー、レバー、水道回り品等、また、天井換気システムや空調フィルターなどの空調機器、冷蔵庫等、さらには食事運搬カーゴや食品用台車、食品運搬車両の内装や荷台等が挙げられる。また医療用部材として、例えば注射台、透析台、手洗い台、イルリガートル台等の診察室用機器、回診車、ギブスカート、カルテ車、予薬車、救急カート等の診察用台車、手術台車、麻酔カート、解剖台、消毒盤台、殺菌トレー、汚物収納器等の手術用機器、配膳車、患者運搬車、車椅子、点滴台、貯尿架台等の病棟用機器、椅子、ベッド、オーバーテーブル等の病室用機器、また病院、医療施設で用いるドアノブ、ハンドル、グリップ、クレセント、ギボシ、台座、スイングドア、グレーチング、網戸、手摺、腰壁、天井、内壁等の建具や、それらのトイレで用いるドアラッチ、天板、ペーパーホルダー、レバー、水道回り品等、また、天井換気システムや空調フィルターなどの空調機器、冷蔵庫等が挙げられる。また電化製品としては、冷蔵庫、冷凍庫、洗濯機、乾燥機、食器乾燥機、加湿器、空調機器、空気清浄器、電気シェーバー、掃除機、電子レンジ、アイロン、自動調理器などが例示される。
【0055】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0056】
実施例
基材として純Tiまたはステンレス鋼を使用し、以下に示す条件で供試材を作製して夫々の特性を評価した。また比較のため、市販されている各種の抗菌性付与表面処理材についても同様の評価試験を行なった。
【0057】
各々の基材について、市販のめっき前処理液で脱脂処理、エッチング、表面活性化処理、Niストライクめっきを順次行なった後、電気Ni−Coめっき[硫酸ニッケル:240g/l、塩化ニッケル:45g/l、硫酸コバルト:15g/l、ほう酸:30g/l、ぎ酸ナトリウム:45g/lからなる所謂ヒンリッチモン浴、または該ヒンリッチモン浴の各成分を増減させた浴に、界面活性剤や光沢剤等を適宜を加えためっき浴を使用]を行なって夫々約20μm厚さのめっきを施し、供試材とした。
【0058】
また電気Ni−Co系めっき浴は、上述の電気Ni−Coめっき浴にリン酸、亜リン酸、オルトほう酸、アスコルビン酸、塩化錫、塩化クロム、塩化鉄(II)、硫酸銅、アンモニア等を適宜添加しためっき浴を使用し、各々約20μmのめっきを施して供試材とした。また一部の供試材については、水素チャージ、熱処理、或いはイオン注入を行い、各元素の含有量を増加させた。
【0059】
各供試材の各元素含有量は、各々のめっき最表面から約1μm部分を機械的に削り落として溶解した後、ICP発光分光分析法によって確認した。また酸素および水素の吸蔵量は、各々のめっき最表面から約1μm部分を機械的に削って、その部分を昇温速度12℃/minで350℃まで連続加熱し、この間に発生するガスとその量を大気圧イオン化質量分析計(API−MS)により分析して確認した。この皮膜分析方法は、岩田ら(「神戸製鋼技報」Vol.47,No.1,p24、Apr.1997)の開示する方法に従った。またNi,P溶出量は、各々の試料25cm2を30℃に保持したイオン交換水50cm2中に1週間浸漬し、浸漬後の液をICP発光分光分析法により分析して確認した。
【0060】
また抗菌性の検査には、黄色ブドウ球菌(グラム染色:陽性)、サルモネラ菌(グラム染色:陰性)、大腸菌(グラム染色:陰性)、MRSA(グラム染色:陽性)、緑膿菌(グラム染色:陰性)、ペニシリウム・クロソゲナム、クラドスポリウム・クラドスポリオイデスから複数を選択して用いた。前者5種類の菌に対しては、培養後の各菌体を各々濃度が2×105〜1×106(CFU/ml)となる様に調整した液0.5mlをサンプルに滴下した後、その上にポリエチレンフィルムを被せて密着させる。これを35℃、相対湿度90%以上の暗光下で2時間保持した後、生菌数(菌の生存率:%)を平板希釈法によって測定し、試料1個当たりに換算した。各々の菌の生存率を平均し、平均生存率が5%未満の場合は評価◎、5〜20%の場合は評価○、20〜50%の場合は評価△、50〜80%の場合は評価+、80%以上の場合は評価×として表した。
【0061】
また後者2種類の菌(カビ)に対しては、十分に生育させた黒麹カビを懸濁させた液1mlをサンプルに接種した後、28℃で48時間保持してから、Alamar blueを0.1ml添加し、分光光度計により570nm、600nmの2波長の吸収値の差を測定し、液のみの吸収値の差との比較により阻害率を算出した。
各々の菌による試験の阻害率を平均し、平均阻害率が99%以上の場合は評価◎、95〜99%の場合は評価○、90〜95%の場合は評価△、80〜90%の場合は評価+、80%未満の場合は評価×とした。
【0062】
また、蛋白質の変質効果の有無を調査するため、ファージ(細菌を宿主とするウィルスの1種)の不活化試験を行なった。この試験においてファージ数の減少は、蛋白質が変質しファージが不活化することによって感染能を失ったことを示すため、容易に蛋白質の変質の有無を確認できる。予め濃度を2×105〜1×106(PFU/ml)に調整したファージ液0.5mlをサンプルに滴下してからカバーグラスで密着させ、これを30℃で4時間保持した後、洗い出して二重寒天法によりファージ感染させ、その後、37℃で24時間培養後に形成されたプラークの数を計測して活性ファージ数を求め、残存率を測定した。ファージ残存率が5%未満の場合は評価◎、5〜20%の場合は評価○、20〜50%の場合は評価△、50〜80%の場合は評価+、80%超の場合は評価×として表した。
【0063】
また、各試料の色調変化を調査するため、上記Ni,Pの溶出量を調査したのと同じ方法で試料を水に1週間浸漬し、試験前後の色調を色差計によって調べた。この方法によれば、皮膜表面の変色や基材の錆発生の状態が明確に評価できる。色差ΔEが3未満のときは○、3〜5のときは△、5超のときは×として示した。
【0064】
また、供試材の皮膜の耐傷付き性は、ショットブラスト試験(ガラスビーズ#100を5kgf/cm2の強さで供試材の直上、高さ10cmから一箇所に吹き付けて基材を露出させる試験)により確認した。試験開始後5秒以内で剥離して基材が露出すれば×、5〜30秒で剥離して基材が露出すれば△、30〜60秒で剥離して基材が露出すれば○、60秒以上で剥離して基材が露出すれば◎として評価した。
【0065】
実施例、比較例に従って作製した各供試材と市販の抗菌処理材および防カビ処理材、市販のNi系めっき材の各特性評価結果を表1,2に示す。
【0066】
【表1】

Figure 0004551516
【0067】
【表2】
Figure 0004551516
【0068】
表1,2からも明らかな様に、市販の抗菌または防カビ処理材、市販のNi系めっき材およびNi、Co、水素含有量が本発明の規定要件を外れる比較材では、調査した何れの菌に対しても低い抗菌・防カビ評価しか得られない。また、これらは蛋白質変質効果も殆ど有していない。
【0069】
これらに対し、Ni、Co、水素含有量が規定要件を満たす実施例では、何れの菌に対しても強い抗菌性を示している。またNiと水素含有量が規定要件を満たすものは、強い蛋白質変質効果を有していることが分かる。
【0070】
次に、本発明の好適要件を満たす様に調整して作製した各供試材の黄色ブドウ球菌、サルモネラ菌、大腸菌、MRSA、緑膿菌に対する抗菌性試験結果を図1〜7に示す。このうち図1は、Mo,Sn,Pb,Cu,Ag,Pt,Au,Oの各含有量と水素吸蔵量が抗菌性に与える影響を示したグラフ、図2は、P含有量が抗菌性に与える影響を示したグラフ、図3は、硫黄含有量が抗菌性に与える影響を示したグラフ、図4は、塩素含有量が抗菌性に与える影響を示したグラフ、図5は、30℃の静止水中へのNi溶出量、P溶出量が抗菌性に与える影響を示したグラフ、図6は、表面粗度が抗菌性に与える影響を示したグラフ、図7は、基材と表面層との電位差が色調変化に与える影響を示したグラフである。
【0071】
なお、図1においてa〜kで示したものは、Ni系皮膜のNiに対するMo,Sn,Pb,Cu,Ag,Pt,Au,Oの含有量が表3に示した量であることを示している。
【0072】
【表3】
Figure 0004551516
【0073】
また、図2〜7においてA〜Dで示したものは、Ni系皮膜中のCoおよび水素含有量が下記のものであることを示している。更に図5においてA〜Dの右肩に☆印を示したものは、P溶出量が0.1〜5μg/cm2/週の範囲内にあるもので、☆印のないものは、P溶出量が0.1μg/cm2/週未満のものである。
A:Co含有量≧0.001%、水素含有量:1.5〜20ppm
B:Co含有量≧0.001%、水素含有量:0.1〜1.5ppm
C:Co含有量≧0.001%、水素含有量<0.1ppm
D:Co含有量<0.001%、水素含有量:0.1〜1.5ppm
また図8は、表面硬度が耐傷付き性に与える影響を示したグラフである。
【0074】
これらの図からも明らかな様に、Ni−Co系皮膜中のNi、Co含有量、水素吸蔵量、電気化学的に貴である元素の含有量、硫黄、塩素、酸素含有量、30℃の静止水中へのNi溶出量などに抗菌・防カビ性能は大きく依存しており、夫々の値を前述した好適範囲内に調整することによって、優れた抗菌・防カビ性能を確保し得ることが分かる。
【0075】
【発明の効果】
本発明は以上の様に構成されており、特にNi系皮膜中のNi含有量、Co含有量、水素吸蔵量、電気化学的に貴である元素の含有量、硫黄、塩素、酸素含有量、30℃の静止水中へのNi溶出量などを適正に調整することによって金属部材に優れた抗菌活性を与えることができるので、この抗菌部材は、食品取扱い分野や医療分野、あるいは家庭用電化製品等に有用な衛生性に優れたものとして幅広く有効に活用できる。
【図面の簡単な説明】
【図1】抗菌皮膜中のMo,Sn,Pb,Cu,Ag,Pt,Au,Oの各含有量と水素吸蔵量が抗菌性に与える影響を示したグラフである。
【図2】抗菌皮膜中のP含有量が抗菌性に与える影響を示したグラフである。
【図3】抗菌皮膜中の硫黄含有量が抗菌性に与える影響を示したグラフである。
【図4】抗菌皮膜中の塩素含有量が抗菌性に与える影響を示したグラフである。
【図5】抗菌皮膜からの30℃の静止水中へのNi,P溶出量が抗菌性に与える影響を示したグラフである。
【図6】抗菌皮膜の表面粗度が抗菌性に与える影響を示したグラフである。
【図7】基材と表面層との電位差が色調変化に与える影響を示したグラフである。
【図8】抗菌皮膜の表面硬度が耐傷付き性に与える影響を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an antibacterial member excellent in antibacterial properties, which is preferably used as a field of food and medical care, and an electric appliance in which mold is a problem.
[0002]
[Prior art]
In recent years, in order to prevent the growth of fungi and molds from a hygienic point of view in various applications ranging from food processing industry and medical industry to daily necessities, antibacterial properties (in this specification, growth control against fungi and molds) Adoption of a metal member imparted with antibacterial properties in combination with the effect is being studied. The degree of antibacterial performance required varies depending on the application, and it is possible to reliably prevent the growth and infection of bacteria in units of time from applications that satisfy the requirements with a slight antibacterial performance to give a good image of high hygiene. There are a variety of applications that value immediate effect. Among them, antibacterial performance required for handling equipment such as hospitals and medical facilities, food manufacturing and handling equipment, and joinery, toilets, air conditioning equipment, refrigerators, transport equipment, transport vehicles, etc. used in those facilities is the latter, and there are many There is a growing demand for surface antibacterial members with immediate and high antibacterial properties against these bacteria. In addition, the antibacterial performance required for electrical appliances that are difficult to clean and have problems with mold generation, such as washing tubs, dryers, vacuum cleaners, refrigerators, and air conditioners among household items, is the latter, not only bacteria. There is a strong demand for antibacterial members with a high growth inhibitory effect against mold.
[0003]
Under these demands, there are several proposals regarding the technology for imparting antibacterial properties by surface treatment as follows.
[0004]
(1) Antibacterial metals such as Cu and Ag or TiO 2 A method of forming a coating film or a resin layer containing ceramics having a photocatalytic function such as the above on a metal surface (Japanese Patent Application Laid-Open Nos. 8-156175, 8-27404, 8-25548, etc.).
[0005]
(2) A method for concentrating metal having antibacterial properties such as Cu and Ag on the surface of a metal material, mainly stainless steel material (Japanese Patent Laid-Open Nos. 8-53738, 8-60303, 8-104952, etc.) ).
[0006]
(3) Antibacterial metal such as Cu or Ag or TiO by chemical conversion treatment or plating treatment on the surface of the metal material 2 A method of forming a layer containing ceramics having a photocatalytic function such as JP-A Nos. 9-195061, 8-120482, 7-228999, and 9-157860.
[0007]
These known methods are methods in which a trace amount of an electrochemically noble metal component such as Cu or Ag or an inorganic substance having a photocatalytic function is added to impart antibacterial properties, and there are many antibacterial active components in the surface layer portion. Both are only a few percent exposed. Therefore, it is inadequate in performance and requires a long time to exhibit the antibacterial effect.
[0008]
Among the above antibacterial components, the antibacterial metal component usually exhibits antibacterial properties when Cu, Ag, etc. are ionized and eluted in the adsorbed water present on the surface of the base material. Since metal such as Ag is difficult to ionize, if it is contained in a small amount, the amount of Cu or Ag to be ionized is small and satisfactory antibacterial properties cannot be obtained. In particular, when it is contained in an electrochemically base metal as in the method shown as (2) above, the amount of ionized Cu and Ag is further reduced, and the antibacterial performance is hardly utilized.
[0009]
If the amount of antibacterial metal dispersed in the surface layer is increased and evenly dispersed, the antibacterial effect can be enhanced somewhat, but the amount of dispersion is naturally limited due to the stability and strength of the antibacterial film, In the case of Ag, in addition to the economical problem that the price is high, Ag itself is easily discolored, so the content cannot be increased excessively. In addition, the antibacterial particles dispersed in the antibacterial layer easily fall off from the matrix, and the member subjected to impact or wear lacks the durability of the antibacterial activity.
[0010]
In addition, when there is only one kind of antibacterial metal component, there is a high possibility that resistant bacteria will be produced, and there is also a risk that new bacteria will be produced, and many appearances of resistant bacteria have already been reported for Cu and Ag. In particular, when considering application to the food and medical fields, the use of only one type of antibacterial metal component should be avoided because the emergence of new bacteria is related to the survival of mankind.
[0011]
As other antibacterial metals, there is an example in which Co is contained as disclosed in JP-A-8-120482. Although Ni is not generally recognized as an antibacterial component, Japanese Patent Application Laid-Open No. 9-157860 and “Surface Technology” Vol. 49, no. 5, p433-438 proposes Ni plating or Ni-P plating as a matrix for dispersing the antibacterial property-imparting particles as described above.
Co and Ni have been confirmed electrochemically to have considerably lower antibacterial properties than Cu and Ag, and are considered to be insufficient in terms of performance as antibacterial properties-imparting components. In addition, the above Japanese Patent Application Laid-Open No. 9-157860 and “Surface Technology” have no description about imparting antibacterial properties to Ni itself constituting the matrix.
[0012]
On the other hand, surface treatment materials with photocatalytic functions require strong sunlight and ultraviolet rays to exert antibacterial effects, but in practical parts, components that can always obtain strong sunlight and ultraviolet rays stably and reliably. Is limited.
[0013]
In addition, as described in “Science of antibacterial agents PART 2” (edited by Kei Nishino, published by the Industrial Research Council), organic fungicides are often used to suppress mold growth. Although the antifungal agent of the system is excellent in immediate effect, the duration of the effect is short, so that it is not suitable for application to a member that is not easy to clean as described above.
[0014]
For the above reasons, it cannot be said that the current antibacterial treatment technology meets the demands of consumers. On the other hand, demands for improving antibacterial properties in the food and medical fields are increasing, and development of new antibacterial treatment techniques is required.
[0015]
[Problems to be solved by the invention]
The present invention has been made paying attention to the situation as described above, and its purpose is to have excellent antibacterial activity, as well as immediate effect and antibacterial sustainability for food handling field and medical field. The object is to provide an excellent antibacterial member.
[0016]
[Means for Solving the Problems]
The antibacterial member according to the present invention that has solved the above-mentioned problems is an antibacterial member having an antibacterial film on its surface, and the Ni content in the surface layer at a depth within 1 μm from at least the outermost surface of the antibacterial film Is 50% (meaning mass%, the same shall apply hereinafter) and the Co content is 0.001% or more, or the Ni content in the surface layer is 50% by mass or more, and hydrogen in the surface layer The gist is that the content is 0.1 to 50 ppm.
[0017]
When the surface layer further contains at least one element selected from the group consisting of Mo, Sn, Pb, Cu, Ag, Pt, and Au as another element in the following ratio, a further excellent antibacterial property This is preferable because of its action.
Mo: 0.01-20%
Sn: 0.01-20%,
Pb: 0.001 to 20%
Cu: 0.01 to 20%,
Ag: 0.001 to 20%,
Pt: 0.001 to 5%,
Au: 0.001 to 5%.
[0018]
Further, the antibacterial member has the following requirements:
A) The P content in the surface layer is 0.01 to 30%, more preferably 1 to 10%, still more preferably 1.5 to 3.5%.
B) The sulfur content of the surface layer is in the range of 25 to 1000 ppm,
C) The chlorine content of the surface layer is in the range of 10 to 100 ppm,
D) the oxygen content of the surface layer is in the range of 0.01 to 5%;
E) When the antibacterial member is immersed in still water at 30 ° C., the nickel elution amount is 1 to 50 μg / cm. 2 / Week, more preferably 10 to 50 μg / cm 2 / Week range,
F) The phosphorus elution amount when the antibacterial member is immersed in still water at 30 ° C. is 0.1 to 5 μg / cm 2 / Week range,
G) The surface roughness is 100 or more as PP150,
H) The natural potential difference between the substrate and the surface layer is 800 mV or less, more preferably 500 mV or less, still more preferably 300 mV or less,
B) Surface hardness is Hv300 or higher, more preferably Hv450 or higher, and still more preferably Hv600 or higher.
Those that meet one or more of these requirements are recommended as having further enhanced antibacterial activity.
[0019]
The antibacterial member of the present invention exhibits excellent antibacterial activity against many fungi, particularly against one or more pathogenic bacteria of Staphylococcus aureus, Salmonella, Escherichia coli, MRSA, and Pseudomonas aeruginosa. High antibacterial effect, or high growth inhibitory effect on one or more molds of Aspergillus niger, Penicillium chrysogenum, Rhizopus oryzae, Cladosporium cladosporioides, Ketomium globusum It is extremely useful in that
[0020]
DETAILED DESCRIPTION OF THE INVENTION
As a result of conducting research from various angles in order to solve the problems of the prior art as described above, the present inventors have found that Ni, which is generally considered to be inferior in antibacterial properties to Cu and Ag, is the main component of the antibacterial coating. It is used as a component, and Co or hydrogen is contained therein, or the content of Mo, Sn, Pb, Cu, Ag, Au, P, S, Cl in the antibacterial film, Ni in water, Knowing that the antibacterial effect superior to the above-described Cu and Ag can be obtained by appropriately controlling the amount of elution of P and the like, the present invention has been conceived.
[0021]
First, the antibacterial member of the present invention is obtained by forming an antibacterial film containing Ni as a main component on the surface of a metal material as a base material. The Ni-based antibacterial film satisfies at least one of the following two requirements: There is a need.
[0022]
(A) The Ni content of the surface layer is 50% or more, more preferably 80% or more, and the Co content is 0.001% or more, more preferably 0.01% or more, still more preferably 0.1% or more. Being
(B) The Ni content of the surface layer is 50% or more, more preferably 80% or more, and the hydrogen content is in the range of 0.1 to 50 ppm, more preferably 1.5 to 20 ppm.
[0023]
That is, in the present invention, satisfactory antibacterial performance cannot be obtained if the Ni content in all components constituting the antibacterial layer is less than 50%, and even if the Ni content is 50% or more, the Co contained therein When the content is less than 0.001% and the hydrogen content is outside the range of 0.1 to 50 ppm, the antibacterial performance at the level intended by the present invention cannot be obtained.
[0024]
And to give a wide range of powerful antibacterial and immediate effects against various bacteria,
(1) Exposing Ni, which is the main antibacterial component, to more than half of the surface of the member that provides antibacterial performance;
(2) Along with the above-mentioned Ni, other antibacterial property-imparting components that will be described in detail later are coexisted to exhibit synergistic antibacterial performance.
Is desirable.
[0025]
The reason why the Ni-Co-based alloy film functions effectively in antibacterial properties is that metal ions in the film are usually present on the surface of the film in adsorbed water, which is about 10 nm to 1 μm, and about several tens to several hundreds μm in a high humidity atmosphere. It is thought that these ions are brought into contact with and killed by bacteria thought to grow via adsorbed water. In addition, in a Ni-based film containing an appropriate amount of hydrogen, since hydrogen has a reducing action, it is presumed that the reducing hydride particularly acts on the bacterial protein to kill it.
[0026]
In this way, by coexisting at least two types of antibacterial property-imparting components, Ni and Co, or Ni and hydrogen, a wide range of powerful antibacterial activity is exhibited against various bacteria, and the generation of resistant bacteria is also prevented. be able to. In particular, the antibacterial film that combines Ni and hydrogen is a combination of different antibacterial effects, the effect of heavy metals exhibited by Ni and the protein alteration effect exhibited by reducing hydrides, and is extremely effective in preventing the generation of resistant bacteria. is there.
[0027]
In carrying out the present invention, a Ni-Co-based hydrogen-containing film containing Ni as a main component of the surface layer, the Co and hydrogen together, and adjusting the hydrogen storage amount to a range of 0.1 to 50 ppm; If so, the coexistence of the three types of antibacterial property-imparting components will exhibit further excellent antibacterial activity.
[0028]
Further, the combination of Ni and Co is preferable because it has an effect of preventing the growth of molds and can prevent the growth of fungi on the molds and can prevent food poisoning caused by molds. In addition, other effects of hydrogen include an effect of suppressing oxidation on the surface of the film by reducing action to increase the activity of Ni and Co, and increasing the elution amount of Ni and Co to contribute to the improvement of antibacterial activity.
[0029]
The Co and hydrogen contained together with Ni increase the antibacterial property as the content increases. However, if the hydrogen storage amount in the Ni-based alloy film exceeds 50 ppm, the toughness of the antibacterial film significantly decreases and cracks in the film. Therefore, the hydrogen storage amount should be suppressed to 50 ppm or less, desirably 20 ppm or less. The upper limit of Co is not particularly limited, but the effect of addition is saturated at about 5%, so addition beyond this is economically wasteful.
[0030]
The Ni-based coating applied in the present invention may contain other various elements as long as Ni is the main component. For example, Ni-Co, Ni-Co-P, Ni-Co-B, Ni Ni-Co based films such as Co-C, Ni-Co-P-B, Ni-Zn-Co, Ni-Fe-Co, Ni, Ni-P, Ni-B, Ni-C, Ni-P -B, Ni-Fe, Ni-Zn, etc., the hydrogen storage amount of which is adjusted to a range of 0.1 to 50 ppm, or hard particles (SiC, Si Three N Four , SiO 2 , TiC, TiN, WC, Al 2 O Three , ZrO 2 , Cr Three C 2 , Cr 2 O Three , Diamond powder, etc.), self-lubricating particles (PTFE, fluorinated graphite, WS) 2 , CaF 2 , BN, MoS 2 , Graphite, etc.), photocatalytic functional particles (TiO 2 , ZnO, Nb 2 O Five , SnO 2 , ZrO 2 , CdS, ZnS, SrTiO 2 Etc.), a composite film in which a Ni-based alloy as described above is dispersed in a ceramic or cermet-based film or a resin film.
[0031]
Among the above, TiO 2 Since the antibacterial film in which particles having a photocatalytic function such as the above are dispersed has excellent surface antifouling properties, the antibacterial effect can be further maintained.
[0032]
The constituent materials of the antibacterial film in the present invention are as described above, but other permissible components may be further contained within the range not inhibiting the antibacterial properties of the present invention, and are unavoidable with the use of the essential constituent materials. Needless to say, the inclusion of components that are mixed in is not excluded.
[0033]
By the way, in the present invention, the composition of the surface layer at the depth position within 1 μm from the outermost surface is specified, and the composition and internal structure of the depth position outside the surface layer are not limited, but the durability of the antibacterial activity In order to increase the antibacterial layer, the antibacterial layer satisfying the preferred composition described above is maintained at a deep position.
[0034]
Various methods such as electroplating, electroless plating, vapor phase plating, painting, and pressure bonding can be adopted as a method for producing the Ni-based film, and the method is not particularly limited. It is a plating method.
[0035]
The method for increasing the hydrogen storage amount for enhancing the antibacterial activity is not particularly limited, but general examples include a method of exposing to a high-temperature hydrogen gas atmosphere after film formation and a method of electrochemically charging hydrogen. When the electroplating method is adopted, the hydrogen occlusion amount can be easily increased by utilizing the hydrogen reaction which is one of the cathode reactions and controlling the current efficiency.
[0036]
The amount of hydrogen specified in the present invention is the amount of hydrogen released when the antibacterial film is mechanically peeled from the substrate and the film itself is heated from room temperature to 350 ° C., more specifically, This is a value obtained by continuously heating to 350 ° C. at a temperature rate of 12 ° C./min and measuring the amount of generated hydrogen with an atmospheric pressure ionization mass spectrometer (API-MS).
[0037]
In the Ni-based film constituting the antibacterial film in the present invention, the antibacterial performance is further enhanced by including one or more other metals having antibacterial properties such as Mo, Sn, Cu, Ag, Pt, and Au. The content of each element contained in the surface layer is preferably Mo: 0.01 to 20%, Sn: 0.01 to 20%, Pb: 0.001 to 20%, Cu: The range is 0.01 to 20%, Ag: 0.001 to 20%, Pt: 0.001 to 5%, and Au: 0.001 to 5%. These elements are electrochemically noble elements than Ni and Co, and if these elements coexist very little, the ionization of Ni and Co is promoted and the antibacterial performance can be further enhanced. .
[0038]
Further, among the above elements, Cu and Ag themselves have high antibacterial properties as described above, so that further synergistic effects can be expected. In particular, Ag promotes protein alteration as well as hydride, and thus a broader antibacterial effect is expected against various bacteria. However, if the content of these elements is too large, the electroerosion reaction may become prominent and there may be a problem of deterioration in corrosion resistance, discoloration, etc., and when used for decorations, it may cause metal allergy. Because there is, you should be careful.
[0039]
In carrying out the present invention, the antibacterial activity is obtained by containing 0.1 to 30%, more preferably 1 to 10%, and still more preferably 1.5 to 3.5% of P in the Ni-based film. Can be further increased. Moreover, it is preferable to contain an appropriate amount of P since the effect of preventing growth against mold is further enhanced. Such an action of P is considered to be because P reacts with hydrogen and is eluted as a hydride effective for antibacterial and antifungal properties.
[0040]
In addition to such P addition, one or more additions of Mo, Sn, Pb, Cu, Ag, Pt, and Au described above may be used in combination to further enhance antibacterial activity by their additive or synergistic action. It is valid.
[0041]
Furthermore, further improvement in antibacterial properties can be expected by adding 25 to 1000 ppm of sulfur or 10 to 100 ppm of chlorine in the Ni-based coating. Incidentally, when an appropriate amount of sulfur is contained in the Ni-based film, sulfur suppresses oxidation of metal components on the surface of the film to further enhance antibacterial activity, and when an appropriate amount of chlorine is included, a natural film (oxide film on the surface of the film). Etc.) and the amount of Ni and Co elution into the adsorbed water increases. However, if the content of sulfur or chlorine in the Ni-based film is too large, the toughness and strength of the antibacterial film are remarkably reduced, so sulfur should be suppressed to 1000 ppm or less and chlorine should be suppressed to 100 ppm or less.
[0042]
The oxygen content in the Ni-based film is desirably controlled in the range of 0.01 to 5%. That is, oxygen has an effect of increasing the strength of the antibacterial film, and if the oxygen content is less than 0.01%, the strength is insufficient, and the antibacterial film is easily broken by impact or wear. On the other hand, if the oxygen content exceeds 5%, the antibacterial film becomes insufficient in toughness, and Ni on the surface of the film becomes an oxide that is difficult to ionize, resulting in a decrease in antibacterial activity.
[0043]
As described above, in the present invention, the antibacterial metal ions in the Ni-based film constituting the antibacterial film exhibit antibacterial activity by elution into the adhering water. Therefore, the antibacterial activity is determined by the amount of Ni eluted from the film. Sex can be evaluated. And as a result of examining in order to quantify the antibacterial effect by such elution of Ni ions, the antibacterial quality can be confirmed by the amount of Ni eluted in still water at 30 ° C., and the Ni elution amount is 1 to 50 μg / cm 2 / Week range, more preferably 10-50 μg / cm 2 / Week, more preferably, in addition to such Ni elution amount, the elution amount of P is 0.1 to 5 μg / cm 2 It was confirmed that those having a / week range surely exhibit excellent antibacterial activity.
[0044]
Here, the elution amounts of Ni and P are values measured by the following method. That is, the area of the test material is 25 cm in a 500 ml beaker. 2 It is immersed in 50 ml of ion exchange water (30 ° C.) per week for 1 week, and the amount of Ni and P eluted per unit area is determined by quantitative analysis of the amount of Ni and P in the eluate. And the Ni elution amount calculated | required by this method is 1 microgram / cm. 2 If it is less than a week, it is difficult to obtain sufficient antibacterial properties, and the antibacterial performance increases as the Ni elution amount increases. However, the Ni elution amount is 10 μg / cm for more reliable antibacterial performance on a practical scale. 2 / More than a week.
[0045]
In addition to the Ni elution amount, the elution amount of P is 0.1 μg / cm. 2 Those having a week / week or more further increase the antibacterial property in combination with the effect of the hydride generation described above.
[0046]
In addition, as a method of increasing the elution amount of Ni and P from the Ni-based film, as described above, a method of increasing the hydrogen content in the film, or an element that is electrochemically noble than Ni, S, or Although the method of containing Cl etc. is recommended, of course, it is also possible to employ | adopt another method.
[0047]
However, Ni elution amount is 50 μg / cm 2 / Week, or the elution amount of P is 5 μg / cm 2 / Week over may cause problems such as deterioration of the corrosion resistance and discoloration of the film, and Ni should be noted because it may cause metal allergy when used as a decorative article.
[0048]
In addition, increasing the surface roughness by increasing the surface roughness of the antibacterial film is also effective in enhancing the antibacterial activity by promoting the elution of Ni, Co and hydride, and the surface roughness is preferably 100 by PP150. It is desirable to set it above. Here, PP150 indicates the number of peaks of 50 μinch or more existing per inch of the surface, and those having a peak number of 100 or more promote the elution of Ni, P and hydrogen from the surface of the antibacterial film, and are stable. As a result, it exhibits excellent antibacterial activity.
[0049]
In addition, examples of the base material to which antibacterial properties are imparted in the present invention include non-ferrous metals and alloys such as aluminum, titanium and brass, iron-based alloys such as stainless steel, and composite metal materials thereof. The type is not particularly limited, but a natural potential difference between the substrate and the surface layer is preferably within 800 mV, more preferably within 500 mV, still more preferably within 300 mV, and particularly preferably within 100 mV.
[0050]
Thus, if the natural potential of the substrate is too higher than the surface layer, the amount of elution of the surface layer increases, causing problems such as corrosion resistance deterioration and discoloration, and Ni was used as a decorative article. This can sometimes cause problems with metal allergies. However, it should be noted that if the natural potential of the substrate is significantly lower than that of the surface layer, the corrosion resistance of the substrate may become a problem when the thickness of the surface layer is small.
[0051]
Although not particularly limited in the present invention, in order to ensure the strength as a structural member, the strength of the base material is 20 kgf / mm in terms of tensile strength (TS). 2 Or more, more preferably 40 kgf / mm 2 It is desirable to use the above.
[0052]
Further, the surface hardness of the surface layer constituting the antibacterial layer is Hv300 or more, more preferably Hv450 or more, more preferably Hv600 or more in consideration of scratch resistance or impact resistance when subjected to impact or wear. It is desirable.
[0053]
Examples of the bacteria that the antibacterial member of the present invention effectively exerts its action include, for example, Salmonella, Vibrio parahaemolyticus, Staphylococcus aureus, pathogenic Escherichia coli, Clostridium botulinum, Clostridium perfringens, Bacillus cereus, Campylobacter jejuni, Campylobacter coli, Elginia Enterocolitica, Aeromonas hydrofia, Aeromonas sobria, Plesiomonas sigeroides, Vibrio cholera non-01, Vibrio mimicus, Vibrio flubiarisu, Listeria monocytogenes, Yersinia pseudochubaculosis, Vibrio brunificus, Cross Food poisoning bacteria such as Tridium difficile, Pseudomonas aeruginosa, MRSA (methicillin-resistant Staphylococcus aureus), tuberculosis, Enterobacter, Acinetobacter, Klebsiella, Serratia, Proteus, Candida, Asperigillus, Nocardia, He Opportunistic pathogens such as pesviruses, vancomycin-resistant enterococci, Aspergillus niger, Aspergillus tereus, Eurothym tonohilum, Penicillium citrinum, Penicillium funiculosum, Penicillium chrysogenum, Rhizopus oryzae, Cladosporidium cladosporioid , Molds such as Aureobasidium pullulans, Glyocradium bilens, Ketomium globosum, Fusarium monilihommel, Milotesium velcaria and the like.
[0054]
The antibacterial member on which the antibacterial film is formed includes, as food-related members, food production equipment, food factory equipment such as storage tanks, conveyor plates and guides, beer factory equipment such as incubators, culture tanks, and clean benches, and the rest. Cooking facility equipment such as vegetable baskets, desk adjustments, triangle corners, water faucets, door knobs, handles, grips, crescents, gibboshis, pedestals, swing doors, gratings, screen doors, handrails, waist walls, etc. Fixtures such as ceilings and inner walls, door latches used in toilets in food manufacturing factories and the restaurant industry, top plates, paper holders, levers, water supply items, etc., air conditioning equipment such as ceiling ventilation systems and air conditioning filters, refrigerators, etc. Further examples include food-carrying cargo, food carts, and interiors and cargo beds of food-carrying vehicles. In addition, as medical members, for example, examination room equipment such as an injection table, dialysis table, hand washing table, irrigator table, round wheel, gibskirt, medical record car, prescription car, emergency cart, etc., operation cart, anesthesia Surgical equipment such as carts, dissection tables, disinfection boards, sterilization trays, waste containers, wardrobes, patient carriers, wheelchairs, drip tables, urine storage racks, ward equipment, chairs, beds, overtables, etc. Equipment for hospital rooms, door knobs, handles, grips, crescents, gibboshis, pedestals, swing doors, gratings, screen doors, handrails, waist walls, ceilings, inner walls, etc. used in hospitals and medical facilities, and door latches used in those toilets, Examples include top plates, paper holders, levers, water supply items, air conditioning equipment such as ceiling ventilation systems and air conditioning filters, and refrigerators. Examples of the electrical appliance include a refrigerator, a freezer, a washing machine, a dryer, a tableware dryer, a humidifier, an air conditioner, an air cleaner, an electric shaver, a vacuum cleaner, a microwave oven, an iron, and an automatic cooker.
[0055]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to carry out and they are all included in the technical scope of the present invention.
[0056]
Example
Using pure Ti or stainless steel as a base material, specimens were prepared under the conditions shown below, and their characteristics were evaluated. For comparison, the same evaluation test was performed on various antibacterial surface treatment materials that are commercially available.
[0057]
Each substrate was sequentially subjected to degreasing treatment, etching, surface activation treatment, and Ni strike plating with a commercially available plating pretreatment solution, followed by electric Ni-Co plating [nickel sulfate: 240 g / l, nickel chloride: 45 g / l, cobalt sulfate: 15 g / l, boric acid: 30 g / l, sodium formate: 45 g / l, a so-called Hinrichmon bath, or a bath in which each component of the Hinrichmon bath is increased or decreased, a surfactant, a brightener, etc. Using an appropriately added plating bath], plating of about 20 μm thickness was performed to obtain test materials.
[0058]
The electric Ni-Co plating bath contains phosphoric acid, phosphorous acid, orthoboric acid, ascorbic acid, tin chloride, chromium chloride, iron (II) chloride, copper sulfate, ammonia, etc. in the above-mentioned electric Ni-Co plating bath. Using an appropriately added plating bath, each sample was plated by about 20 μm to obtain a test material. Moreover, about some test materials, hydrogen charge, heat processing, or ion implantation was performed, and content of each element was increased.
[0059]
The content of each element of each test material was confirmed by ICP emission spectroscopic analysis after mechanically scraping and dissolving about 1 μm from each plating outermost surface. The amount of occlusion of oxygen and hydrogen is determined by mechanically cutting a portion of about 1 μm from the outermost surface of each plating and continuously heating the portion to 350 ° C. at a rate of temperature increase of 12 ° C./min. The amount was confirmed by analysis with an atmospheric pressure ionization mass spectrometer (API-MS). This film analysis method followed the method disclosed by Iwata et al. (“Kobe Steel Engineering Reports” Vol. 47, No. 1, p24, Apr. 1997). Ni and P elution amounts are 25 cm for each sample. 2 Of ion-exchanged water kept at 30 ° C. 2 The sample was immersed for 1 week, and the solution after immersion was analyzed and confirmed by ICP emission spectroscopy.
[0060]
Antibacterial tests include Staphylococcus aureus (Gram staining: positive), Salmonella (Gram staining: negative), Escherichia coli (Gram staining: negative), MRSA (Gram staining: positive), and Pseudomonas aeruginosa (Gram staining: negative). ), Penicillium / Chrosogenum, and Cladosporium / Cladosporiaides. For the former five types of fungi, the concentration of each cell after culturing is 2 × 10 Five ~ 1 × 10 6 After dripping 0.5 ml of the liquid adjusted so that it may become (CFU / ml) to a sample, a polyethylene film is covered on it and it adheres. This was kept for 2 hours in a dark light at 35 ° C. and a relative humidity of 90% or more, and then the viable cell count (bacterial survival rate:%) was measured by a plate dilution method and converted to one sample. Average the survival rate of each bacterium. If the average survival rate is less than 5%, it is evaluated ◎, if it is 5-20%, it is evaluated ○, if it is 20-50%, it is evaluated Δ, if it is 50-80% In the case of evaluation +, 80% or more, it was expressed as evaluation x.
[0061]
In addition, for the latter two types of fungi, the sample was inoculated with 1 ml of a suspension of well-grown black mold and then kept at 28 ° C. for 48 hours. .1 ml was added, the difference between the absorption values of two wavelengths of 570 nm and 600 nm was measured with a spectrophotometer, and the inhibition rate was calculated by comparison with the difference between the absorption values of the solutions alone.
When the average inhibition rate is 99% or more, the evaluation is ◎, when 95 to 99% is evaluation ○, when 90 to 95% is evaluation Δ, and 80 to 90% The case was evaluated +, and the case of less than 80% was evaluated x.
[0062]
In addition, in order to investigate the presence or absence of protein alteration effects, an inactivation test of phage (a kind of virus hosted by bacteria) was performed. In this test, a decrease in the number of phages indicates that the protein has been altered and the inactivation ability of the phages has resulted in loss of infectivity. Therefore, the presence or absence of protein alterations can be easily confirmed. Pre-concentration 2 × 10 Five ~ 1x10 6 After adding 0.5 ml of the phage solution adjusted to (PFU / ml) to the sample, it was closely attached with a cover glass, and this was kept at 30 ° C. for 4 hours, then washed out and phage-infected by the double agar method, The number of plaques formed after culturing at 37 ° C. for 24 hours was counted to determine the number of active phages, and the residual rate was measured. Evaluate if the phage residual rate is less than 5%, evaluate if 5-20%, evaluate △ if 20-50%, evaluate + if 50-80%, evaluate if more than 80% Expressed as x.
[0063]
Moreover, in order to investigate the color tone change of each sample, the sample was immersed in water for one week by the same method as the amount of elution of Ni and P, and the color tone before and after the test was examined with a color difference meter. According to this method, the discoloration of the coating surface and the state of rust generation on the substrate can be clearly evaluated. When the color difference ΔE was less than 3, it was indicated as “◯”, when it was 3-5, it was indicated as Δ, and when it was more than 5, it was indicated as “x”.
[0064]
Further, the scratch resistance of the coating film of the test material is determined by the shot blast test (glass beads # 100 of 5 kgf / cm 2 This was confirmed by a test in which the base material was exposed by spraying from one place at a height of 10 cm directly above the specimen. If the base material is exposed by peeling within 5 seconds after the start of the test, X, if the base material is exposed after peeling in 5 to 30 seconds, ○ if the base material is exposed after peeling in 30 to 60 seconds, When it peeled in 60 seconds or more and a base material was exposed, it evaluated as (double-circle).
[0065]
Tables 1 and 2 show the respective property evaluation results of the test materials prepared according to the examples and the comparative examples, the commercially available antibacterial treatment material, the antifungal treatment material, and the commercially available Ni-based plating material.
[0066]
[Table 1]
Figure 0004551516
[0067]
[Table 2]
Figure 0004551516
[0068]
As is clear from Tables 1 and 2, commercially available antibacterial or antifungal treatment materials, commercially available Ni-based plating materials, and comparative materials whose Ni, Co, and hydrogen contents deviate from the requirements of the present invention, Only low antibacterial and antifungal evaluation can be obtained against bacteria. In addition, they have almost no protein alteration effect.
[0069]
On the other hand, in the Example which Ni, Co, and hydrogen content satisfy | fill a prescription | regulation requirement, the strong antimicrobial property is shown with respect to any microbe. Moreover, it turns out that what has Ni and hydrogen content satisfy | fills prescription | regulation requirements has a strong protein alteration effect.
[0070]
Next, the antibacterial test results for S. aureus, Salmonella, Escherichia coli, MRSA, and Pseudomonas aeruginosa are shown in FIGS. Of these, FIG. 1 is a graph showing the effect of each content of Mo, Sn, Pb, Cu, Ag, Pt, Au, and O on the antibacterial properties, and FIG. 2 is an antibacterial property of P content. FIG. 3 is a graph showing the effect of sulfur content on antibacterial properties, FIG. 4 is a graph showing the effect of chlorine content on antibacterial properties, and FIG. Is a graph showing the effect of Ni elution amount and P elution amount in still water on antibacterial properties, FIG. 6 is a graph showing the effect of surface roughness on antibacterial properties, and FIG. 7 is a substrate and a surface layer. 5 is a graph showing the influence of the potential difference between the two and the color tone on the color tone change.
[0071]
In addition, what was shown by ak in FIG. 1 shows that content of Mo, Sn, Pb, Cu, Ag, Pt, Au, and O with respect to Ni in the Ni-based film is the amount shown in Table 3. ing.
[0072]
[Table 3]
Figure 0004551516
[0073]
Moreover, what was shown by AD in FIGS. 2-7 has shown that Co and hydrogen content in a Ni-type membrane | film | coat are the following. Further, in FIG. 5, those indicated by ☆ on the right shoulders of A to D have a P elution amount of 0.1 to 5 μg / cm. 2 / Within the range of a week, those without a ☆ mark have a P elution amount of 0.1 μg / cm 2 / Less than a week.
A: Co content ≧ 0.001%, hydrogen content: 1.5-20 ppm
B: Co content ≧ 0.001%, hydrogen content: 0.1 to 1.5 ppm
C: Co content ≧ 0.001%, hydrogen content <0.1 ppm
D: Co content <0.001%, hydrogen content: 0.1 to 1.5 ppm
FIG. 8 is a graph showing the effect of surface hardness on scratch resistance.
[0074]
As is clear from these figures, Ni, Co content, hydrogen storage amount, electrochemically noble element content, sulfur, chlorine, oxygen content, 30 ° C. The antibacterial and antifungal performance greatly depends on the amount of Ni elution into still water, etc., and it can be seen that excellent antibacterial and antifungal performance can be secured by adjusting the respective values within the above-mentioned preferred ranges. .
[0075]
【The invention's effect】
The present invention is configured as described above. In particular, the Ni content in the Ni-based film, the Co content, the hydrogen storage amount, the content of electrochemically noble elements, sulfur, chlorine, oxygen content, By appropriately adjusting the amount of Ni elution in still water at 30 ° C., the metal member can be provided with excellent antibacterial activity. It can be used widely and effectively as an excellent hygiene product.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of each content of Mo, Sn, Pb, Cu, Ag, Pt, Au, and O in the antibacterial film on the antibacterial properties.
FIG. 2 is a graph showing the effect of P content in an antibacterial film on antibacterial properties.
FIG. 3 is a graph showing the effect of sulfur content in an antibacterial film on antibacterial properties.
FIG. 4 is a graph showing the effect of chlorine content in an antibacterial film on antibacterial properties.
FIG. 5 is a graph showing the influence of the elution amount of Ni and P in still water at 30 ° C. from the antibacterial film on the antibacterial properties.
FIG. 6 is a graph showing the effect of the surface roughness of the antibacterial film on the antibacterial properties.
FIG. 7 is a graph showing the influence of a potential difference between a substrate and a surface layer on a change in color tone.
FIG. 8 is a graph showing the influence of the surface hardness of the antibacterial film on the scratch resistance.

Claims (14)

表面に抗菌性皮膜を有する抗菌部材であって、抗菌性皮膜の少なくとも最表面から1μm以内の深さの表面層におけるNi含有量が50%(質量%を意味する、以下同じ)以上であり、且つ該表面層の水素含有量が0.1〜50ppmであることを特徴とする抗菌部材。An antibacterial member having an antibacterial film on the surface, wherein the Ni content in the surface layer at a depth of 1 μm or less from at least the outermost surface of the antibacterial film is 50% (meaning mass%, the same shall apply hereinafter) or more, An antibacterial member , wherein the surface layer has a hydrogen content of 0.1 to 50 ppm . 前記表面層におけるCo含有量が0.001%以上である請求項1に記載の抗菌部材。 The antibacterial member according to claim 1, wherein the Co content in the surface layer is 0.001% or more . 上記表面層に、Mo,Sn,Pb,Cu,Ag,Pt,Auよりなる群から選択される少なくとも1種の元素が、下記の比率で含まれている請求項1または2に記載の抗菌部材。
Mo:0.01〜20%、
Sn:0.01〜20%、
Pb:0.001〜20%
Cu:0.01〜20%、
Ag:0.001〜20%、
Pt:0.001〜5%、
Au:0.001〜5%。
The antibacterial member according to claim 1 or 2, wherein at least one element selected from the group consisting of Mo, Sn, Pb, Cu, Ag, Pt, and Au is contained in the surface layer in the following ratio. .
Mo: 0.01-20%
Sn: 0.01-20%,
Pb: 0.001~20%,
Cu: 0.01 to 20%,
Ag: 0.001 to 20%,
Pt: 0.001 to 5%,
Au: 0.001 to 5%.
前記表面層中のP含有量が0.01〜30%である請求項1〜3のいずれかに記載の抗菌部材。  The antibacterial member according to any one of claims 1 to 3, wherein a P content in the surface layer is 0.01 to 30%. 前記表面層中の硫黄含有量が25〜1000ppmである請求項1〜4のいずれかに記載の抗菌部材。  The antibacterial member according to any one of claims 1 to 4, wherein a sulfur content in the surface layer is 25 to 1000 ppm. 前記表面層の塩素含有量が10〜100ppmである請求項1〜5のいずれかに記載の抗菌部材。  The antibacterial member according to any one of claims 1 to 5, wherein the chlorine content of the surface layer is 10 to 100 ppm. 前記表面層の酸素含有量が0.01〜5%である請求項1〜6のいずれかに記載の抗菌部材。  The antibacterial member according to any one of claims 1 to 6, wherein the surface layer has an oxygen content of 0.01 to 5%. 抗菌部材を30℃の静止水中へ浸漬したときのニッケル溶出量が、1〜50μg/cm2/週である請求項1〜7のいずれかに記載の抗菌部材。The antibacterial member according to any one of claims 1 to 7, wherein an elution amount of nickel when the antibacterial member is immersed in still water at 30 ° C is 1 to 50 µg / cm 2 / week. 抗菌部材を30℃の静止水中へ浸漬したときのリン溶出量が、0.1〜5μg/cm2/週である請求項1〜8のいずれかに記載の抗菌部材。The antibacterial member according to any one of claims 1 to 8, wherein a phosphorus elution amount when the antibacterial member is immersed in still water at 30 ° C is 0.1 to 5 µg / cm 2 / week. 表面粗度が、PP150として100以上である請求項1〜9のいずれかに記載の抗菌部材。  The antibacterial member according to any one of claims 1 to 9, wherein the surface roughness is 100 or more as PP150. 基材と表面層との自然電位差が800mV以下である請求項1〜10のいずれかに記載の抗菌部材。  The antibacterial member according to any one of claims 1 to 10, wherein a natural potential difference between the substrate and the surface layer is 800 mV or less. 表面硬度がHv300以上である請求項1〜11のいずれかに記載の抗菌部材。  The antibacterial member according to any one of claims 1 to 11, having a surface hardness of Hv300 or higher. 黄色ブドウ球菌、サルモネラ菌、大腸菌、MRSA、緑膿菌のいずれか1種または2種以上の病原菌に対して高い抗菌効果を示すものである請求項1〜12のいずれかに記載の抗菌部材。  The antibacterial member according to any one of claims 1 to 12, which exhibits a high antibacterial effect against any one or more of S. aureus, Salmonella, Escherichia coli, MRSA and Pseudomonas aeruginosa. アスペルギルス・ニゲル、ペニシリウム・クリソゲナム、リゾプス・オリゼ、クラドスポリウム・クラドスポリオイデス、ケトミウム・グロボスムのいずれか1種または2種以上のカビに対して高い生育抑制効果を示すものである請求項1〜12のいずれかに記載の抗菌部材。  2. A high growth inhibitory effect against any one or more of Aspergillus niger, Penicillium chrysogenum, Rhizopus oryzae, Cladosporium cladospoloides, and Ketomium globusum. The antibacterial member in any one of -12.
JP31441699A 1998-11-06 1999-11-04 Antibacterial material Expired - Fee Related JP4551516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31441699A JP4551516B2 (en) 1998-11-06 1999-11-04 Antibacterial material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-316632 1998-11-06
JP31663298 1998-11-06
JP31441699A JP4551516B2 (en) 1998-11-06 1999-11-04 Antibacterial material

Publications (2)

Publication Number Publication Date
JP2000198709A JP2000198709A (en) 2000-07-18
JP4551516B2 true JP4551516B2 (en) 2010-09-29

Family

ID=26567931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31441699A Expired - Fee Related JP4551516B2 (en) 1998-11-06 1999-11-04 Antibacterial material

Country Status (1)

Country Link
JP (1) JP4551516B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4068879B2 (en) 2001-08-21 2008-03-26 株式会社神戸製鋼所 Metal parts with excellent antibacterial and / or algal resistance
JP4995416B2 (en) * 2004-10-05 2012-08-08 パナソニック株式会社 IP communication apparatus and IP communication method
JP2009215201A (en) * 2008-03-10 2009-09-24 Ritsuko Tanaka Deodorant antimicrobial powder material
JP6406875B2 (en) * 2013-05-16 2018-10-17 裕 翠川 Antibacterial test method
AU2014307481B2 (en) * 2013-08-13 2019-12-05 Nasmedic Corporation Hydrogen-containing antimicrobial agent
JP6336789B2 (en) * 2014-03-13 2018-06-06 株式会社神戸製鋼所 Antibacterial material
JP5656138B1 (en) * 2014-05-08 2015-01-21 株式会社原田伸銅所 Phosphor bronze alloy having antibacterial properties and article using the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578861A (en) * 1991-09-21 1993-03-30 Osaka Prefecture Method for imparting sterilizing property and fungal resistance to appliance
JPH0892760A (en) * 1994-09-28 1996-04-09 Nisshin Steel Co Ltd Ceramic-coated metallic sheet excellent in antibacterial and mildew proofing property
JPH08311683A (en) * 1995-05-19 1996-11-26 Satosen Co Ltd Plated product excellent in antibacterial property
JPH08311687A (en) * 1995-05-18 1996-11-26 Satosen Co Ltd Antifungal plated product
JPH08311686A (en) * 1995-05-17 1996-11-26 Satosen Co Ltd Plated product excellent in stain resistance in water
JPH09505112A (en) * 1993-11-18 1997-05-20 ウェステイム テクノロジーズ インコーポレイテッド Antibacterial material
JPH10158539A (en) * 1996-11-27 1998-06-16 Nisshin Steel Co Ltd Antimicrobial and antifungal pigment excellent in water repellency and nontackiness
JPH10156277A (en) * 1996-11-27 1998-06-16 Nisshin Steel Co Ltd Precoated steel plate of superior water-repellent, non-adhesive, antifungus and fungus-resistant properties
JPH10156281A (en) * 1996-11-27 1998-06-16 Nisshin Steel Co Ltd Coated steel plate of superior water-repellent, non-adhesive, antifungus and fungus-resistant properties
JPH11156369A (en) * 1997-12-01 1999-06-15 Toyo Ink Mfg Co Ltd Inhibitor for generation of hydrogen sulfide and method for inhibiting generation of hydrogen sulfide
JPH11181327A (en) * 1997-12-25 1999-07-06 Nisshin Steel Co Ltd Antibacterial antimold black pigment and resin particle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2776259B2 (en) * 1994-08-31 1998-07-16 松下電工株式会社 Antibacterial inorganic paint
JPH08120482A (en) * 1994-10-24 1996-05-14 Satosen Co Ltd Antibacterial plated product
JPH08165213A (en) * 1994-12-14 1996-06-25 Kanto Chem Co Inc Antimicrobial agent
JPH08231324A (en) * 1995-02-28 1996-09-10 Teika Corp Antimicrobial composition and its blend
JPH08276531A (en) * 1995-04-05 1996-10-22 Nippon Steel Corp Conductive precoated steel sheet of excellent fungus resistance
JPH0912415A (en) * 1995-06-29 1997-01-14 Sekisui Chem Co Ltd Antibacterial composition and antibacterial and bactericidal treatment
JP2967116B2 (en) * 1995-10-04 1999-10-25 杉浦 美知子 Antibacterial plating layer
JP3513581B2 (en) * 1996-06-19 2004-03-31 株式会社Inax Nickel-chromium plating film having antibacterial properties and plating method
JP3695965B2 (en) * 1998-11-06 2005-09-14 株式会社神戸製鋼所 Antibacterial powder and antibacterial member for surface treatment

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578861A (en) * 1991-09-21 1993-03-30 Osaka Prefecture Method for imparting sterilizing property and fungal resistance to appliance
JPH09505112A (en) * 1993-11-18 1997-05-20 ウェステイム テクノロジーズ インコーポレイテッド Antibacterial material
JPH0892760A (en) * 1994-09-28 1996-04-09 Nisshin Steel Co Ltd Ceramic-coated metallic sheet excellent in antibacterial and mildew proofing property
JPH08311686A (en) * 1995-05-17 1996-11-26 Satosen Co Ltd Plated product excellent in stain resistance in water
JPH08311687A (en) * 1995-05-18 1996-11-26 Satosen Co Ltd Antifungal plated product
JPH08311683A (en) * 1995-05-19 1996-11-26 Satosen Co Ltd Plated product excellent in antibacterial property
JPH10158539A (en) * 1996-11-27 1998-06-16 Nisshin Steel Co Ltd Antimicrobial and antifungal pigment excellent in water repellency and nontackiness
JPH10156277A (en) * 1996-11-27 1998-06-16 Nisshin Steel Co Ltd Precoated steel plate of superior water-repellent, non-adhesive, antifungus and fungus-resistant properties
JPH10156281A (en) * 1996-11-27 1998-06-16 Nisshin Steel Co Ltd Coated steel plate of superior water-repellent, non-adhesive, antifungus and fungus-resistant properties
JPH11156369A (en) * 1997-12-01 1999-06-15 Toyo Ink Mfg Co Ltd Inhibitor for generation of hydrogen sulfide and method for inhibiting generation of hydrogen sulfide
JPH11181327A (en) * 1997-12-25 1999-07-06 Nisshin Steel Co Ltd Antibacterial antimold black pigment and resin particle

Also Published As

Publication number Publication date
JP2000198709A (en) 2000-07-18

Similar Documents

Publication Publication Date Title
Hassan et al. Antimicrobial activity of copper and copper (I) oxide thin films deposited via aerosol-assisted CVD
Bharadishettar et al. Coating technologies for copper based antimicrobial active surfaces: A perspective review
US9050386B2 (en) Antimicrobial raw material and method for manufacturing the same, and antimicrobial material
US20100136325A1 (en) Antimicrobial materials and coatings
US20080085326A1 (en) Antimicrobial material compositions enriched with different active oxygen species
Kusiak-Nejman et al. E. coli inactivation by high-power impulse magnetron sputtered (HIPIMS) Cu surfaces
JP5017638B2 (en) Method for producing antibacterial Sn-Cu alloy thin film formed article and antibacterial Sn-Cu alloy thin film formed article produced thereby
Mostaghimi et al. Thermal spray copper alloy coatings as potent biocidal and virucidal surfaces
JP4551516B2 (en) Antibacterial material
JP2014534048A (en) Surface photocatalytically active coating method
KR100530791B1 (en) Method of production of antibacterial hardwares
JP3902329B2 (en) Surface-treated metal material with durability, antibacterial properties, algae-proofing properties and anti-fouling properties
EP3098333A1 (en) Electrolytic bath for producing antibacterial metal coatings containing nickel, phosphorus and nanoparticles of an antibacterial metal (ni-p-manp&#39;s)
US7244452B2 (en) Member excellent in antibacterial antimold and/or antialgae effects and process for producing the same
JP3695965B2 (en) Antibacterial powder and antibacterial member for surface treatment
JP6600576B2 (en) Antimicrobial component
JPH0860303A (en) Ferritic stainless steel having antibacterial characteristic and its production
JP3675868B2 (en) Method for producing stainless steel having antibacterial coating
JP2022167393A (en) Antimicrobial plating film, and method of producing the same
CN1250821A (en) Automatically disinfecting and zinc-supplementing stainless steel utensils and its manufacture process
US20230329242A1 (en) Alloy, alloy powder, and alloy coated body having antimicrobial activity
JPH08156175A (en) Antibacterial and antifungal coated steel panel excellent in weldability
JPH0860302A (en) Austenitic stainless steel having antibacterial characteristic and its production
JPH11269615A (en) Ni-containing stainless steel excellent in antibacterial property and its production
Hassan Antimicrobial thin films via aerosol assisted chemical vapour deposition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4551516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees