JP3695965B2 - Antibacterial powder and antibacterial member for surface treatment - Google Patents

Antibacterial powder and antibacterial member for surface treatment Download PDF

Info

Publication number
JP3695965B2
JP3695965B2 JP31663198A JP31663198A JP3695965B2 JP 3695965 B2 JP3695965 B2 JP 3695965B2 JP 31663198 A JP31663198 A JP 31663198A JP 31663198 A JP31663198 A JP 31663198A JP 3695965 B2 JP3695965 B2 JP 3695965B2
Authority
JP
Japan
Prior art keywords
powder
antibacterial
content
surface treatment
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31663198A
Other languages
Japanese (ja)
Other versions
JP2000143422A (en
Inventor
亘 漆原
武典 中山
貞子 山田
英俊 山口
健治 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP31663198A priority Critical patent/JP3695965B2/en
Publication of JP2000143422A publication Critical patent/JP2000143422A/en
Application granted granted Critical
Publication of JP3695965B2 publication Critical patent/JP3695965B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、抗菌性付与効果に優れた表面処理用抗菌性粉末と、該抗菌性粉末を表皮層内に存在させることによって抗菌性を高めた抗菌性部材に関するものである。
【0002】
【従来の技術】
近年、食品加工業界や医療業界を初めとして、生活必需品に至るまで様々な用途で衛生上の観点から菌の生育を阻止するための抗菌処理を施した金属部材の採用が検討されている。それらに求められる抗菌性能の程度は用途によって異なり、高衛生というイメージ付与のため僅かな抗菌性能で要望を満たす用途から、時間単位での菌の繁殖・感染を確実に阻止することのできる即効性を重んじる用途まで様々である。そのうち、例えば病院や医療施設で用いる機器や食品の製造乃至取扱い機器、及びそれらの施設で用いられる建具、トイレ、空調機器、冷蔵庫、輸送機、運搬車等に求められる抗菌性能は後者に当たり、多くの菌に対し即応性と高い抗菌性を備えた抗菌性部材の要望が高まっている。
【0003】
こうした要望の下で、抗菌性を与えるための表面処理技術としては次の様な幾つかの提案が見られる。
【0004】
(1)CuやAgの如き抗菌性を有する金属あるいはTiO2 等の光触媒機能を有するセラミックスを含有させた塗装または樹脂層を金属表面に形成する方法(特開平8−156175号、同8−27404号、同8−25548号公報など)。
【0005】
(2)金属材、主にステンレス鋼材の表面に、CuやAgの如き抗菌性を有する金属を濃化させる方法(特開平8−53738号、同8−60303号、同8−104952号公報など)。
【0006】
(3)金属材の表面に、化成処理やめっき処理によってCuやAg等の抗菌性金属或いはTiO2 等の光触媒機能を有するセラミックスを含有する層を形成する方法(特開平9−195061号、同8−120482号、同7−228999号、同9−157860号公報など)。
【0007】
これら公知の方法で抗菌性付与に用いられる原料粉末の殆どは、CuやAgの様な電気化学的に貴な金属成分を担持させた無機酸化物か、或いは光触媒機能を有する無機物である。
【0008】
このうち前者の金属成分は、通常、基材表面に存在する吸着水中にCuやAg等を溶出させイオン化することによって抗菌性を発揮するが、電気化学的に貴であるCuやAgなどの金属はイオン化し難いため、担持法や担体を改良しても抗菌性粉末の安定性とイオン化速度の向上を両立し難いため、抗菌性能を発揮するまでに長時間(早いものでも6〜12時間)を必要とする。特に、上記(2)の方法によって電気化学的に卑な金属中へ含有させたものでは、イオン化するCuやAgは更に少なくなって抗菌効果は殆ど発揮されない。このとき、表層部内における抗菌性成分の分散量を増加すると共に、均一分散させることによって抗菌性能を多少高めることは可能であるが、抗菌皮膜の安定性や強度を確保することの必要上、分散量には限界があるため、満足のいく抗菌性能は得られ難い。
【0009】
上記以外の抗菌成分として、たとえば特開平8−120482号公報に開示されている如く、Co金属を含有させた例もある。また、Niは一般に抗菌成分とは認識されていないが、特開平9−157860号や同9−201905号公報に提案されている様に、導電性を付与するため、あるいは現像用や電池用としてNi基金属粉末を表面処理剤中に含有させることは知られている。
【0010】
また、CoやNiは電気化学的にCuやAgより卑であるためイオン化し易いが、Co金属、Ni金属単独の抗菌性は、Cu金属やAg金属に比べてかなり低いことも知られており、満足のいく抗菌性は期待できない。
【0011】
また、光触媒機能を有する無機物を含有せしめた表面処理剤では、抗菌効果を発揮させるのに強力な日光や紫外線を必要とするが、実用部品において強力な日光や紫外線を常時安定して確実に得ることのできる部品は限られている。
【0012】
また、抗菌性付与金属成分が1種類の場合は耐性菌を生じる可能性が高く、新たな菌を出現させる危険性もあり、CuやAgについても既に耐性菌の出現が多数報告されている。特に食品分野や医療分野への適用を考えた場合、新たな菌の出現は人類の存続にも関わるため、唯1種類のみの抗菌性金属の使用は避けるべきである。
【0013】
上記の様な理由もあって、現状の抗菌性処理技術は需要者の要求を満たしているとは言えない。一方で、食品や医療分野などにおける抗菌性向上に対する要望は高まる一方であり、新たな抗菌処理技術の開発が求められる。
【0014】
【発明が解決しようとする課題】
本発明は上記の様な状況に着目してなされたものであって、その目的は、食品取扱い分野や医療分野等を対象として、優れた抗菌性付与性能を発揮すると共に、即応性と抗菌持続性にも優れた表面処理用抗菌性粉末を提供すると共に、該粉末を抗菌性分として使用することによって優れた抗菌性を示す抗菌性部材を提供することにある。
【0015】
【課題を解決するための手段】
上記課題を解決することのできた本発明にかかる表面処理用抗菌性粉末とは、粉末全体または粉末の少なくとも最表面から0.1μm以内の深さ位置の表面層におけるNi含有量が50%(重量%を意味する、以下同じ)以上であり、且つCoおよび/またはP含有量が各々0.001%以上であるNi基合金粉末、あるいは、粉末全体または粉末の少なくとも最表面から0.1μm以内の深さ位置の表面層におけるNi含有量が1%以上で、且つCoおよび/またはP含有量が各々0.001%以上であり、残りの主成分が無機酸化物であるNi含有無機酸化物粉末からなり、平均粒径が0.01〜100μmであるところに特徴を有している。
【0016】
上記本発明にかかる抗菌性粉末中には、該粉末全体または前記表面層に、Mo,Sn,Pb,Cu,Ag,Pt,Auよりなる群から選択される少なくとも1種の元素が、Ni含有量に対し下記の比率で含まれているものは、更に優れた抗菌性を示すものとして推奨される。
Mo:0.01〜20%、
Sn:0.01〜20%、
Pb:0.001〜20%、
Cu:0.01〜20%、
Ag:0.001〜20%、
Pt:0.001〜5%、
Au:0.001〜5%。
【0017】
また該粉末が、粉末全体または前記表面層中に0.1〜50ppmの水素を含むものは、一層優れた抗菌活性を発揮し、また本発明の抗菌性粉末の抗菌活性を一段と高める上で、該抗菌性粉末の平均表面積が、該粉末を球形と仮定したときの平均粒径から算出される表面積の1.3倍以上であるものは、抗菌成分の溶出による抗菌活性を一層確実に発揮し得るものとなる。
【0018】
そして上記抗菌性粉末を抗菌成分として含む皮膜を、例えば塗装やめっき処理等によってステンレス鋼などの基材表面に形成し、特に少なくとも最表面から0.1μmの深さ位置までの表皮層中に、上記抗菌性粉末を0.001〜20%存在させると優れた抗菌性能を備えた抗菌部材を得ることができ、この抗菌部材も本発明の保護対象となる。
【0019】
【発明の実施の形態】
本発明者は前述した様な従来技術の問題点を解決すべく様々の角度から研究を重ねた結果、一般にCuやAgよりも抗菌性が劣るとされているNiに、適量のCoやPを共存させると、CuやAgよりも高い抗菌性能が発揮されることを見出した。そして、そのNi系抗菌粉末を配合・分散させた表面処理剤で金属部材の表面に抗菌性表皮層を形成してやれば、優れた抗菌性能を示す抗菌性部材が得られることを知り、上記本発明に想到した。
【0020】
まず本発明の表面処理用抗菌性粉末は、粉末全体または粉末の少なくとも最表面から0.1μm以内の深さの表面層におけるNi含有量が50%以上、より好ましくは80%以上であり、しかもCo及び/又はPを各々0.001%以上、より好ましくは0.01%以上、更に好ましくは0.1%以上含有するNi基合金であることが必須とされる。
【0021】
ちなみに、上記表面層のNi含有量が50%以上であっても、その中にCoとPが全く含まれていないものは抗菌活性を示さず、それらの含有量が何れも0.001%未満の微量であっても、満足のいく抗菌性付与性能を得ることができない。
【0022】
少量のCo及び/又はPを含むNi基合金皮膜が抗菌性の向上に有効に機能するのは、粉末の表面には通常10nm〜1μm程度、高湿度雰囲気下ではで数十〜数百μm程度存在の吸着水が存在しており、この吸着水中に、上記表面層中のNiやCo,Pがイオン化して溶出し、これらのイオンが、吸着水を介して増殖すると考えらる菌に接触して死滅させるためと考えている。
【0023】
ここで、Ni自体の抗菌性は極めて微弱であるが、Niと共にCoをNiに対して0.001%以上共存させると、抗菌活性が飛躍的に高まり、強い抗菌性能を示すものとなる。Coのこうした相乗的抗菌性向上効果をより効果的に発揮させるためのより好ましいCo含有量は0.1%以上である。またNiやCoは黴に対しても増殖を防止する作用を有しており、黴上での病原菌の増殖が阻止されるので、黴を原因とする食中毒や金属の微生物腐食等も防止できる。
【0024】
また、Niと共にNiに対して0.001%以上のPを含有させると、Niの抗菌性能が高められると共に、黴に対しても更に高い増殖防止効果を発揮することが確認された。これは、Pが還元性をもって溶解するためと思われる。こうしたPの効果をより有効に活かすためには、0.1%以上のPを含有させることが望ましい。
【0025】
この様に本発明では、Niと共に、適量のCo及び/又はPを抗菌性付与成分として含有させることにより、それらの相乗的作用効果によって、幅広い菌に対しCuやAg粉末と同等以上の強い抗菌性を付与することができ、また耐性菌の発生を防止することができる。特にNiとPを組合わせたものは、Niが有する重金属効果とP化合物によって発揮される還元効果という異なる抗菌作用の組合わせであり、耐性菌の出現防止の観点からも極めて有効と考えられる。また、Ni−Co−Pの3成分含有系とすれば、三種類の抗菌性付与成分の相乗的作用効果によって更に優れた抗菌効果を得ることができる。
【0026】
また本発明の上記抗菌性粉末は、その平均粒径が0.01〜100μm、好ましくは0.1〜10μmの範囲にあることが必要である。ちなみに該粉末の平均粒径が0.01μm未満のごく微粒物あるいは100μmを超える粗粒物では、該粉末を抗菌性付与成分とする表面処理剤を調製する際に、ビヒクル成分中に均一に分散し難くなり、安定した抗菌性皮膜が形成され難くなるからである。しかも該粉末の平均粒径が過大になると、この粉末を抗菌活性成分として含有させた表面処理皮膜の膜厚を厚くしなければならず、こうした厚膜化は表面処理に不向きとなる。こうした観点から、該粉末のより好ましい平均粒径の下限は0.1μm、より好ましい上限は10μmである。
【0027】
本発明で使用されるNi系粉末としては、例えばNi−P、Ni−Co、Ni−Co−P、Ni−Co−B、Ni−Co−C、Ni−P−B、Ni−Co−P−B、Ni−Zn−Co、Ni−Zn−P、Ni−Fe−Co、Ni−Fe−P等の各種Ni基合金粉末が挙げられ、更には、他の金属または合金粉末の表面を上記Ni基合金で被覆した複合粉末を使用することも可能である。また該粉末中には、抗菌活性を阻害しない範囲で更に他の許容元素を含むものであっても構わない。
【0028】
本発明で使用される上記Ni基合金粉末の作製法は特に制限されないが、好ましい方法としては、例えば上記成分組成の要件を満たすNi基合金を溶製してからアトマイズ法や機械粉砕によって粉砕する方法、或いは、他の金属もしくは合金粉末の表面に電気めっきや無電解めっき等の表面処理によって前記Ni基合金皮膜を形成する方法などが挙げられる。
【0029】
また本発明にかかる他の抗菌性粉末として、粉末の全体または粉末の前記表面層がNiを1%以上含有し、且つCo及び/又はPを各々Niに対して0.001%以上、より好ましくは0.1%以上含有すると共に、残りの主成分が無機酸化物である抗菌性粉末が挙げられる。
【0030】
このNi含有無機酸化物粉末においては、該粉末全体または該粉末の最表面から少なくとも0.1μmの深さ位置までのNi含有量が1%以上であり、且つCoおよび/またはP含有量が各々0.001%以上であり、残りの主成分が無機酸化物であることが、高い抗菌活性を確保する上で必須であり、Ni含有量が1%未満では満足のいく抗菌活性が得られず、またNi含有量が1%以上であっても、Co及びP含有量が共に0.001%未満では十分な抗菌性が得られない。この成分系の粉末の場合も、CoおよびPの好ましい含有量はNiに対して0.1%以上である。
【0031】
こうした無機酸化物を含む粉末の製法も特に制限されないが、通常は前記NiやCo,Pなどを無機酸化物に担持させる方法が好ましく採用され、この場合、Ni含有量が前述したNi基合金粉末よりも低いため、Ni基合金粉末よりも容易にイオン化する様に、Ni,Co,Pイオンやそれらの錯体を無機酸化物に担持させるのが望ましい。
【0032】
ここで用いられる無機酸化物としては、例えばシリカゲル、ゼオライト、リン酸カルシウム、リン酸ジルコニウム、ガラス、ケイ酸カルシウム、シリカ・アルミナ・マグネシアなどの多孔体が好ましく用いられる。そしてこれらの無機酸化物を担体としてNiおよびCo,Pを担持させると、粉末全体あるいは粉末の少なくとも前記表面層におけるNi含有量が1%であっても、前述したNi基合金系の抗菌性粉末と同等の抗菌性付与性能を発揮し得るものとなる。
【0033】
無機酸化物を含む該抗菌性粉末においても、その平均粒径は0.01〜100μmの範囲、より好ましくは0.1〜10μmのものを使用すべきであり、平均粒径が0.01μm未満の極微粒粉あるいは100μmを超える粗粒粉では、基材表面に形成される抗菌性皮膜内への該粉末の微分散が困難になり、均一且つ安定した抗菌性能が得られ難くなる。また平均粒径が過大になると、基材表面に形成される抗菌性皮膜の膜厚を厚くする必要が生じ、厚膜化は表面処理に不向きとなる。
【0034】
本発明で規定される上記抗菌性粉末中には、更に他の元素としてMo,Sn,Pb,Cu,Ag,Pt,Auよりなる群から選択される少なくとも1種の元素を含有させることにより、抗菌性付与性能を更に高めることができるので好ましく、それら各元素の好ましい含有比率は、それら粉末全体もしくは表面層中に含まれるNi量に対して、Mo:0.01〜20%、Sn:0.01〜20%、Pb:0.001〜20%、Cu:0.01〜20%、Ag:0.001〜20%、Pt:0.001〜5%、Au:0.001〜5%の範囲である。
【0035】
これらの元素は、NiやCoよりも電気化学的に貴であり、これらの元素を含有させることにより、NiやCoのイオン化が更に促進され、抗菌性付与性能は一段と高められる。また、これらの元素のうちCuやAgは、前述した通りそれ自身が優れた抗菌性を有しているので、抗菌性付与性能の更なる向上も期待できる。但しこれらの元素は、少量の含有で十分にその効果を発揮する反面、過度に含有させると粉末の成形性や担持性、抗菌性表面処理剤への分散性などに悪影響を及ぼし、また何れも非常に高価であるので、経済性も加味して好ましい上限値を前述の如く定めた。
【0036】
また、上記本発明の抗菌性粉末においては、粉末全体、または少なくともその表面層内に含まれる水素含有量を0.1〜50ppmの範囲、より好ましくは1.5〜20ppmの範囲内とすることにより、抗菌性付与性能を更に高めることができるので好ましい。しかしてこの水素量は、当該粉末自体を室温から350℃まで昇温したときに放出される水素量をいい、より具体的には、昇温速度12℃/minで350℃まで連続加熱し、その間に発生する水素量を大気圧イオン化質量分析計(API−MS)によって定量する方法で測定した値をいう。
【0037】
この水素量が抗菌性向上効果を発揮する理由としては、(1) 水素は還元作用を有しており、粉末表面において酸化・変質を防いで粉末表面を活性化するため、Ni,Co,Pの溶出量を増加させること、(2) 水素化物(P−Hなど)が菌の蛋白質の変質に有効に作用すること、の2つの作用が相乗的に働くためと考えられる。特に上記(2) の効果は、前述した異なる抗菌機構の組み合わせを促進するため、極めて有効と思われる。
【0038】
水素吸蔵量を増加する方法は特に制限されないが、粉末中に水素を効率よく吸蔵させる方法としては、粉末形成後に高温水素ガス雰囲気中に曝す方法、電気化学的に水素チャージする方法などが例示される。なお粉末中の水素量が50ppmを超えると、抗菌性粉末の靭性や、表面皮膜への分散性、表面皮膜の安定性等が著しく低下してくるので、水素吸蔵量は50ppm以下、より好ましくは20ppm以下に抑えるのがよい。
【0039】
この他、上記Ni基合金粉末やNi含有無機酸化物粉末の平均表面積も抗菌性付与性能に大きな影響を及ぼし、該表面積による抗菌活性向上効果を有効に発揮させるには、該粉末の平均表面積を、該粉末を球形と仮定した時の平均粒径から算出される表面積の1.3倍以上、より好ましくは2倍以上、更に好ましくは4倍以上であることが望ましい。しかして、粉末の表面積が高いほどNi,Co,Pの溶出量が増大するため抗菌効果は向上し、また表面皮膜を形成する際の皮膜の密着性も高まるためと思われる。
【0040】
尚、粉末の平均表面積を求める方法は種々あるが、本発明では、無作為に選んだ100個の粒子について走査トンネル顕微鏡を用いた画像解析により表面積を求め、その平均値を平均表面積とした。粉末の表面積を増加する方法にも格別の制限はないが、Ni基合金粉末の場合は、例えば当該粉末をエッチング液に浸漬して凹凸を付ける方法などが挙げられ、またNi含有無機酸化物粉末の場合は、三次元構造や網目構造を有する多孔質の無機酸化物粉末を使用し、これを担体として抗菌成分を担持させる方法が好ましく採用される。
【0041】
本発明の抗菌性粉末は、上記の様に粉末全体もしくは少なくとも最表層から0.1μm以内の深さ位置の表面層における成分組成を特定することによって、該粉末に優れた抗菌性付与性能を与えたものであり、該粉末を各種金属部材の表面処理剤として用いて抗菌性皮膜を形成するための材料として利用することにより、様々の部材に抗菌性を与えることができる。
【0042】
本発明にかかる上記Ni基合金粉末やNi含有無機酸化物粉末を、金属部材の表皮層(少なくとも表面から0.1μmの深さ位置までの領域を意味する、以下同じ)に分散させる際には、抗菌活性処理のための表面処理剤への分散性、安定性、コストなどを考慮して、前述したNi基合金粉末またはNi含有無機酸化物粉末の中から最適のものを選択して使用すればよいが、表皮層を構成する表面処理剤中に占める上記粉末の含有量は、固形分加算で0.001〜20%、より好ましくは0.1〜20%、更に好ましくは1〜20%の範囲となる様に調整することが望ましい。
【0043】
即ち、部材の表皮層に十分な抗菌活性を与えるには、該表皮層中に占める前記粉末の含有率を0.001%以上とすべきであり、これ未満では、表皮層中の抗菌成分量が不足するため十分な抗菌性を与えることができないからである。表皮層により高度の抗菌性能を与えるには、該表皮層中に占める前記粉末の含有率を0.1%以上、より好ましくは1%以上とするのがよい。但し、表皮層中の前記粉末の含有量が20%を超えると、表皮層内への該粉末の分散が不均一になり、しかも表皮層の強度や基材と表皮層との密着性も悪くなる。
【0044】
更に、本発明の抗菌性能を一段と高めるため、前記Ni基合金粉末やNi含有無機酸化物粉末を表皮層中に分散させる際に、更に他の元素として、Mo,Sn,Pb,Cu,Ag,Pt,Auのうち1種以上を混在させたり、或いはTiO2 、ZnO、Nb25 、WO3 、SnO2 、ZrO2 、SrTiO3 、KTaO3 、CdS、ZnS、CdSe、GaP、CdTe、MoSe2 、WSe2 の如き光触媒機能を有する粉末を含有させることも有効である。前者群の元素は、前述した如くNiやCoよりも電気化学的に貴な元素であるため、これらの元素を含有させることによってNiやCoのイオン化が促進され、抗菌性は更に高められる。後者群の光触媒機能を有する粉末は、防汚性の向上に有効に作用するため、外部汚染を抑えて抗菌性能の持続性向上に寄与する。但し、これらの金属粉末や光触媒機能粉末の配合量が多くなり過ぎると分散性に悪影響が現れてくるので、表面処理剤中に占める前記抗菌性粉末の配合量は、固形分換算で0.1〜20%の範囲が適当である。
【0045】
また、上記表面処理皮膜に適量の水素を含有することによっても、前述した水素の作用により抗菌活性を更に高めることができる。皮膜中に水素を吸蔵させる方法としては、皮膜形成後に高温水素ガス雰囲気中に曝す方法、電気化学的に水素チャージする方法などがある。電気めっき法を採用する場合は、カソード反応の一つとして水素反応があるので、電流効率をあえて低下させたりすることによって水素吸蔵量を増加することができる。但し皮膜中の水素吸蔵量が高くなり過ぎると、表面皮膜の安定性や強度が低下しするので、皮膜中の水素吸蔵量は50ppm以下、より好ましくは20ppm以下にするのがよい。
【0046】
上記表面処理用抗菌性粉末を有効成分として使用する具体的な表面処理層や膜厚も特に制限されないが、例えば以下に示す如く、樹脂をマトリックス成分とする塗装樹脂層、めっき層、陽極酸化処理に封孔処理を行った層、セラミックス層、コンクリート層、プラスチック層等に対して容易に適用できる。また抗菌性能を付与すべき部材によっては衝撃や摩耗を受けるものもあり、耐傷付き性や耐衝撃性が要求されることもあるので、抗菌性表皮層の表面硬度はHv300以上、より好ましくはHv450以上、更に好ましくはHv600以上が望ましい。
【0047】
塗装樹脂層としては、例えばアルキド系樹脂、ニトロセルロース樹脂、ブチラール樹脂、ポリウレタン系樹脂、エポキシ系樹脂、タールエポキシ樹脂、メラミン系樹脂、アクリル系樹脂、塩化ビニル系樹脂、シリコン系樹脂、フッ素系樹脂、フッ化ビニル系樹脂、ナイロン系樹脂、ポリカーボネート系樹脂、ガラス繊維強化ポリエステル系樹脂などが挙げられ、それら樹脂中に本発明の前記抗菌性粉末を分散させればよい。その方法としては、例えばスプレー塗装法、静電塗装法、TFS塗装法、浸漬塗装法、粉体塗装法、電着塗装法、ロールコーター塗装法などが挙げられる。
【0048】
めっき層としては、例えばZnめっき、Crめっき、Niめっき、Snめっきなどが挙げられ、それらめっき層中に本発明の前記抗菌性粉末を分散させた所謂分散めっきとすればよい。その方法としては、例えば電気めっき、無電解めっきなどの湿式めっきや各種気相めっきが挙げられる。
【0049】
また陽極酸化処理の後、陽極酸化処理層のポアー部に本発明の前記抗菌性粉末を分散含有した金属塩または樹脂を適用して封孔処理する方法も有効であり、この場合に用いられる金属塩としては、例えばNi、Co,Zn,Al,Cu,Pdなどの酢酸塩、硝酸塩、硫酸塩等が例示され、また樹脂としては前記塗装樹脂層の例として示した各種の樹脂が再び例示される。
【0050】
セラミックス層としては、SiO2 、Na2 O、K2 O、Li2 O、PbO、TiO2 、B23 、Al23 、ZrO2 等やそれらを配合してなる各種化合物に本発明の前記抗菌性粉末を混合すればよい。金属上にセラミックス層を作製する方法としては、ほうろうやゾルゲル法が簡単な方法として推奨される。
【0051】
コンクリート層としては、各種セメント、各種骨材と水の練混によって固化するペースト、モルタル、コンクリート、コールタールエナメル、アスファルト等が挙げられ、セメントや骨材と本発明の前記抗菌性粉末を混合すればよい。
【0052】
プラスチック層としては、塩化ビニル樹脂、エポキシ樹脂、タールエポキシ樹脂、ポリエチレン樹脂、ポリエチレンテレフタート樹脂、ポリプロピレン樹脂、ポリウレタン樹脂、アクリル樹脂、ポリエステル樹脂、ポリエチレンテレフタート樹脂、ポリオレフィン樹脂、フッ素系樹脂、フッ化ビニル樹脂等が挙げられ、それら樹脂中に本発明の前記抗菌性粒子を分散すればよい。その方法としては、ラミネート被覆やライニングが簡便な方法として推奨される。
【0053】
本発明において、抗菌性皮膜形成の基材となる金属基材の種類も特に制限されず、例えばステンレス鋼などの鉄基合金、或いはアルミニウムやチタン等の非鉄金属或いはそれらを含む各種合金などの全てを適用できる。部材の種類にも制限がなく、例えば食品製造機械、貯蔵タンク、コンベアープレート・ガイド等の食品工場機器、培養器、培養タンク、クリーンベンチ等のビール工場機器、残菜カゴ、机アジャスト、三角コーナー、水道蛇口等の調理施設機器、注射台、透析台、手洗い台、イルリガートル台等の診察室用機器、回診車、ギブスカート、カルテ車、救急カート等の診察用台車、手術台車、解剖台、消毒盤台、殺菌トレー、汚物収納器等の手術用機器、配膳車、患者運搬車、点滴台、貯尿架台等の病棟用機器、椅子、ベッド、オーバーテーブル等の病室用機器、それら食品製造工場、外食産業や病院、医療施設で用いるで用いるドアノブ、グリップ、台座、スイングドア、グレーチング、内壁等の建具や、それらの施設内のトイレで用いるドアラッチ、ペーパーホルダー、水道回り品等、また、天井換気システムや空調機器、空調フィルタ、冷蔵庫等、さらには食事運搬カーゴや食品用台車、食品運搬車両の内装や荷台等が例示される。
【0054】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0055】
実施例
基材としてアルミニウム合金およびステンレス鋼を使用し、以下に示す条件で表面処理を施した供試材を作製し、各特性を評価した。
【0056】
使用した各Ni基合金粉末は、溶製後、粉砕して作製した。また、各Ni含有無機酸化物粉末は、シリカゲル、ゼオライト、ガラス等にNi,P,Coなどのイオンまたは錯体を既存の方法で担持させた。
【0057】
各々の基材は、市販脱脂液と市販エッチング液を用いて脱脂・エッチングを順次行ない、その後、塗装材については、りん酸亜鉛系化成皮膜およびカチオン型電着塗装皮膜を順次形成した後、Ni含有無機酸化物粉末を分散させた水溶性塗料を浸漬法によって塗装し、200℃で20分焼付け処理した。陽極酸化処理材は、エッチングまで行ったAl合金を、10g/1リットルのAlを溶解した15vol%硫酸溶液中で60〜300A/m2 の電流で10μmの謡曲酸化皮膜を形成した後、酢酸ニッケル中にNi合金粉末を分散させた液に浸漬して封孔した。
【0058】
めっき材は、エッチング後市販のジンケート処理(キザイ社製商品名「SZ法」)にて亜鉛置換を行い、その後、市販のCrめっき浴(上村工業社製商品名「アサヒクロム」)にNi含有無機酸化物粉末またはNi基合金粉末を分散させた液を用いて分散めっき(20μm)を作製した。またセラミックス材は、エッチング後、SiO2 微粒子とCH3 Si(OCH33 とから調整したゾル中にNi含有無機酸化物粉末を分散してディップコーティングし、500℃で熱処理を行なって10μmのSiO2 膜を作製した。
【0059】
また、比較材として市販の抗菌塗装材を用いた。各粉末の元素含有量の確認は、各々の粉末から金属やPを溶出させた後、ICP発光分光分析法および重量法によって分析した。平均粒径と平均表面積は電子顕微鏡を用いて解析し、水素吸蔵量の確認は、各々の表面処理層を基材から機械的に剥離し、表皮層自体を昇温速度12℃/minで350℃まで連続昇温し、その間に発生する水素ガスの量を大気圧イオン化質量分析計(API−MS)により分析した。この皮膜分析法は岩田らの既報(「神戸製鋼技報」Vol.47,No.1,p.24、Apr.1997)に従った。また、各供試材の表面層のNi含有量は、各供試材の表面層を溶解した後、ICP発光分光分析法及び重量法を用いて確認した。
【0060】
抗菌性の調査には、黄色ブドウ球菌(グラム染色:陽性)、サルモネラ菌(グラム染色:陰性)、大腸菌(グラム染色:陰性)、MRSA(グラム染色:陽性)、緑膿菌(グラム染色:陰性)から選択して用いた。培養後の各種菌体を各々濃度が2×105〜1×106(CFU/ml)となる様に調整した液0.5mlをサンプルに滴下し、その上にポリエチレンフィルムを被せて密着させた後、これらを35℃、相対湿度90%以上の条件下で2時間保持し、その後生菌数(菌の生存率、:%)を平板希釈法によって測定することにより、試料1個当たりに換算した。各々の菌の生存率を平均し、平均生存率が5%未満の場合は評価◎、5〜25%の場合は評価○、20〜50%の場合は評価△、50〜80%の場合は評価+、80%以上の場合は評価×として表した。
【0061】
また分散性の調査については、分散性が劣ると色ムラが発生することから、色差計を用いて供試材各部の色差を測定し、最も色差ΔEが大きくなった値が1未満の場合は○、1〜3の場合は△、3以上の場合は×として評価した。
【0062】
表面層における各抗菌性粉末の含有量が0.1〜20%となる様に作製した各供試部材、及び市販抗菌塗装材の評価結果を表1に示す。
【0063】
【表1】

Figure 0003695965
【0064】
表1からも明らかである様に、市販の抗菌塗装材は抗菌性が不十分である。また、抗菌性粉末中のNi,Co,Pの各含有量や、該粉末の平均粒径が規定範囲を外れるものは、抗菌性が劣るか或いは分散性に劣ることが分かる。また、抗菌性粉末の分散性が劣る場合は、抗菌評価にバラツキがあるため抗菌性の確実性に欠ける。一方、それらの値が本発明で定める好適要件内に納まる実施例では、抗菌性および分散性が良好で何れの菌に対しても強い抗菌性を示している。
【0065】
次に、本発明の実施例に従って、Ni基合金粉末または各Ni含有無機酸化物粉末粉末中のNi,Co,Pの各含有量、抗菌性粉末の平均粒径を調整して作製した各供試材についての試験結果を図1〜5に示す。
【0066】
図1は粉末中のMo,Sn,Pb,Cu,Ag,Pt,Auの各含有量とCo含有量が抗菌性に与える影響を示したグラフであり、P含有量は0%である。図2は粉末中のMo,Sn,Pb,Cu,Ag,Pt,Auの各含有量とP含有量が抗菌性に与える影響を示したグラフであり、Co含有量は0%である。図3は粉末中の水素吸蔵量が抗菌性に与える影響を示したグラフである。図4は抗菌性粉末の表面積が抗菌性に与える影響を示したグラフである。
【0067】
なお、図1,2においてa〜hで示したものは、表面処理皮膜中の抗菌性粉末の種類およびNi,Mo,Sn,Pb,Cu,Ag,Pt,Auの各含有量が表2に示したものであることを示している。
【0068】
【表2】
Figure 0003695965
【0069】
また、図3,4において○、●で示したものは、抗菌性粉末の種類や該粉末中の各含有量が以下に記述したものであることを示している。
【0070】
○:Ni基合金粉末:
Ni含有量50%、Co含有量0.01%またはP含有量0.001%、Mo,Sn,Pb,Cu,Ag,Pt,Auの含有量は全て0%、残部Fe,C。
【0071】
●:Ni含有無機酸化物粉末:
Ni含有量1%、Co含有量0.01%またはP含有量0.01%、Mo,Sn,Pb,Cu,Ag,Pt,Auの含有量全て0%、残部シリカゲル。
【0072】
これらの結果からも明らかである様に、本発明の規定要件を満たす抗菌性粉末を適量含む表面処理剤によって抗菌性表面層を形成してものは、優れた抗菌性を示している。従って本発明の抗菌性粉末は、これを抗菌成分として用いて表面処理剤中に適量含有させて基材表面に抗菌性表面層を形成することによって、様々の部材に優れた抗菌性を与えることができるので、食品、医療を初めとした各分野に幅広く適用することができる。
【0073】
【発明の効果】
本発明は以上の様に構成されており、本発明の抗菌性粉末は非常に優れた抗菌性付与性能を有しているので、これを様々の表面処理剤に抗菌性成分として含有させることによって、様々の部材に対しその用途に応じた抗菌性能を簡単に付与することができる。
【図面の簡単な説明】
【図1】抗菌性粉末中のMo,Sn,Pb,Cu,Ag,Pt,Auの含有量とCo含有量が抗菌性に与える影響を示したグラフである。
【図2】抗菌性粉末中のMo,Sn,Pb,Cu,Ag,Pt,Auの含有量とP含有量が抗菌性に与える影響を示したグラフである。
【図3】抗菌性粉末中の水素吸蔵量が抗菌性に与える影響を示したグラフである。
【図4】抗菌性粉末の表面積が抗菌性に与える影響を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an antibacterial powder for surface treatment having an excellent antibacterial effect, and an antibacterial member having improved antibacterial properties by allowing the antibacterial powder to be present in a skin layer.
[0002]
[Prior art]
In recent years, the use of metal members that have been subjected to antibacterial treatment to prevent the growth of bacteria from various hygiene viewpoints has been studied in various applications ranging from food processing and medical industries to daily necessities. The degree of antibacterial performance required for them varies depending on the application, and from the use that satisfies the demand with a slight antibacterial performance to give an image of high hygiene, it can immediately prevent the growth and infection of bacteria in units of time There are a variety of uses up to value. Among them, for example, antibacterial performance required for equipment used in hospitals and medical facilities, food manufacturing and handling equipment, and fittings, toilets, air conditioning equipment, refrigerators, transport equipment, transport vehicles, etc. used in those facilities is the latter, and many There is an increasing demand for antibacterial members that are responsive to bacteria and have high antibacterial properties.
[0003]
Under these demands, there are several proposals for surface treatment technology for imparting antibacterial properties as follows.
[0004]
(1) Antibacterial metals such as Cu and Ag or TiO 2 A method of forming a coating or resin layer containing ceramics having a photocatalytic function such as JP-A-8-156175, JP-A-8-27404, and JP-A-8-25548.
[0005]
(2) A method of concentrating metal having antibacterial properties such as Cu and Ag on the surface of a metal material, mainly a stainless steel material (Japanese Patent Laid-Open Nos. 8-53738, 8-60303, 8-104952, etc.) ).
[0006]
(3) Antibacterial metal such as Cu or Ag or TiO by chemical conversion treatment or plating treatment on the surface of the metal material 2 A method of forming a layer containing ceramics having a photocatalytic function such as JP-A Nos. 9-195061, 8-120482, 7-228999, and 9-157860.
[0007]
Most of the raw material powder used for imparting antibacterial properties by these known methods is an inorganic oxide carrying an electrochemically noble metal component such as Cu or Ag, or an inorganic substance having a photocatalytic function.
[0008]
Of these, the former metal component usually exhibits antibacterial properties by eluting and ionizing Cu, Ag, etc. in the adsorbed water present on the surface of the substrate, but electrochemically noble metals such as Cu, Ag, etc. Since it is difficult to ionize, it is difficult to achieve both the stability of the antibacterial powder and the improvement of the ionization rate even if the loading method and carrier are improved. Need. In particular, when it is contained in an electrochemically base metal by the above method (2), the amount of ionized Cu and Ag is further reduced and the antibacterial effect is hardly exhibited. At this time, it is possible to increase the amount of the antibacterial component in the surface layer part and to improve the antibacterial performance to a certain extent by uniformly dispersing, but it is necessary to ensure the stability and strength of the antibacterial film. Since the amount is limited, satisfactory antibacterial performance is difficult to obtain.
[0009]
As an antibacterial component other than the above, there is an example in which Co metal is contained as disclosed in, for example, JP-A-8-120482. Ni is not generally recognized as an antibacterial component. However, as proposed in JP-A Nos. 9-157860 and 9-201905, Ni is used for imparting conductivity, for development and for batteries. It is known to include a Ni-based metal powder in a surface treatment agent.
[0010]
In addition, Co and Ni are electrochemically less basic than Cu and Ag, so they are easily ionized, but it is also known that the antibacterial properties of Co metal and Ni metal alone are considerably lower than those of Cu metal and Ag metal. Satisfactory antibacterial properties cannot be expected.
[0011]
In addition, a surface treatment agent containing an inorganic substance having a photocatalytic function requires strong sunlight and ultraviolet rays to exert an antibacterial effect, but always stably and reliably obtain strong sunlight and ultraviolet rays in practical parts. The parts that can be done are limited.
[0012]
In addition, when there is only one kind of antibacterial property-imparting metal component, there is a high possibility of causing resistant bacteria, and there is a risk that new bacteria may appear, and many occurrences of resistant bacteria have already been reported for Cu and Ag. Especially when considering application to the food and medical fields, the emergence of new bacteria is related to the survival of mankind, so the use of only one type of antibacterial metal should be avoided.
[0013]
For the above reasons, it cannot be said that the current antibacterial treatment technology meets the demands of consumers. On the other hand, demands for improving antibacterial properties in the food and medical fields are increasing, and development of new antibacterial treatment techniques is required.
[0014]
[Problems to be solved by the invention]
The present invention has been made paying attention to the situation as described above, and its purpose is to provide excellent antibacterial property-imparting performance for food handling field and medical field, etc. An object of the present invention is to provide an antibacterial powder for surface treatment having excellent properties and an antibacterial member exhibiting excellent antibacterial properties by using the powder as an antibacterial component.
[0015]
[Means for Solving the Problems]
The antibacterial powder for surface treatment according to the present invention that has solved the above-mentioned problems is that the Ni content in the surface layer at a depth within 0.1 μm from the entire powder or at least the outermost surface of the powder is 50% (weight) Ni-based alloy powder having a Co and / or P content of 0.001% or more, or the entire powder or at least 0.1 μm from at least the outermost surface of the powder. Ni-containing inorganic oxide powder in which the Ni content in the surface layer at the depth position is 1% or more, the Co and / or P contents are each 0.001% or more, and the remaining main components are inorganic oxides And having an average particle diameter of 0.01 to 100 μm.
[0016]
In the antibacterial powder according to the present invention, at least one element selected from the group consisting of Mo, Sn, Pb, Cu, Ag, Pt, and Au is contained in the entire powder or the surface layer. Those contained in the following ratios relative to the amount are recommended as exhibiting further excellent antibacterial properties.
Mo: 0.01-20%
Sn: 0.01-20%,
Pb: 0.001 to 20%,
Cu: 0.01 to 20%,
Ag: 0.001 to 20%,
Pt: 0.001 to 5%,
Au: 0.001 to 5%.
[0017]
In addition, when the powder contains 0.1 to 50 ppm of hydrogen in the whole powder or the surface layer, the antibacterial activity of the antibacterial powder of the present invention is further improved and the antibacterial activity of the present invention is further enhanced. When the average surface area of the antibacterial powder is 1.3 times or more the surface area calculated from the average particle diameter when the powder is assumed to be spherical, the antibacterial activity due to elution of the antibacterial component is more reliably exhibited. To get.
[0018]
Then, a film containing the antibacterial powder as an antibacterial component is formed on the surface of the base material such as stainless steel by, for example, painting or plating, and particularly in the skin layer at least from the outermost surface to a depth of 0.1 μm, When 0.001 to 20% of the antibacterial powder is present, an antibacterial member having excellent antibacterial performance can be obtained, and this antibacterial member is also a protection target of the present invention.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
As a result of repeated research from various angles to solve the problems of the prior art as described above, the present inventor has added appropriate amounts of Co and P to Ni, which is generally considered to be inferior in antibacterial properties to Cu and Ag. It was found that antibacterial performance higher than that of Cu and Ag is exhibited when they coexist. Then, knowing that an antibacterial member exhibiting excellent antibacterial performance can be obtained if an antibacterial skin layer is formed on the surface of the metal member with a surface treatment agent containing and dispersing the Ni-based antibacterial powder, the present invention I came up with it.
[0020]
First, the antibacterial powder for surface treatment according to the present invention has an Ni content of 50% or more, more preferably 80% or more, in the entire powder or in a surface layer having a depth within 0.1 μm from the outermost surface of the powder. It is essential that the Ni-based alloy contains Co and / or P in an amount of 0.001% or more, more preferably 0.01% or more, and still more preferably 0.1% or more.
[0021]
Incidentally, even if the Ni content in the surface layer is 50% or more, those containing no Co and P do not exhibit antibacterial activity, and their contents are both less than 0.001%. Even if it is a trace amount, satisfactory antibacterial property imparting performance cannot be obtained.
[0022]
The Ni-based alloy film containing a small amount of Co and / or P effectively functions to improve antibacterial properties, and is usually about 10 nm to 1 μm on the surface of the powder, and about several tens to several hundreds μm in a high humidity atmosphere. The adsorbed water is present, and Ni, Co, and P in the surface layer are ionized and eluted in the adsorbed water, and these ions come into contact with the bacteria that are thought to grow through the adsorbed water. I think to kill them.
[0023]
Here, the antibacterial property of Ni itself is extremely weak. However, when Co and Co are present together with Ni in an amount of 0.001% or more, the antibacterial activity is remarkably increased and strong antibacterial performance is exhibited. A more preferable Co content for effectively exhibiting such a synergistic antibacterial effect of Co is 0.1% or more. Ni and Co also have an action of preventing the growth of cocoons, and the growth of pathogenic bacteria on the cocoons is prevented, so that food poisoning caused by cocoons and microbial corrosion of metals can be prevented.
[0024]
Moreover, when 0.001% or more of P with respect to Ni was contained together with Ni, it was confirmed that the antibacterial performance of Ni was enhanced and that a higher antiproliferative effect was also exhibited against wrinkles. This seems to be because P dissolves with reducing properties. In order to utilize the effect of P more effectively, it is desirable to contain 0.1% or more of P.
[0025]
As described above, in the present invention, by containing an appropriate amount of Co and / or P as an antibacterial property-imparting component together with Ni, a strong antibacterial property equivalent to or better than Cu or Ag powder against a wide range of bacteria due to their synergistic effect. Sex can be imparted, and the generation of resistant bacteria can be prevented. In particular, the combination of Ni and P is a combination of different antibacterial actions, namely the heavy metal effect of Ni and the reduction effect exhibited by the P compound, and is considered to be extremely effective from the viewpoint of preventing the appearance of resistant bacteria. Moreover, if it is set as the 3 component containing system of Ni-Co-P, the further outstanding antimicrobial effect can be acquired by the synergistic action effect of three types of antimicrobial property provision components.
[0026]
The antibacterial powder of the present invention needs to have an average particle size in the range of 0.01 to 100 μm, preferably 0.1 to 10 μm. Incidentally, when the average particle size of the powder is very fine particles of less than 0.01 μm or coarse particles of more than 100 μm, it is uniformly dispersed in the vehicle component when preparing the surface treatment agent using the powder as an antibacterial component. This is because it becomes difficult to form a stable antibacterial film. In addition, if the average particle size of the powder becomes excessive, the film thickness of the surface treatment film containing this powder as an antibacterial active ingredient must be increased, and such thickening is unsuitable for surface treatment. From this viewpoint, the lower limit of the average particle diameter of the powder is more preferably 0.1 μm, and the upper limit is more preferably 10 μm.
[0027]
Examples of the Ni-based powder used in the present invention include Ni-P, Ni-Co, Ni-Co-P, Ni-Co-B, Ni-Co-C, Ni-P-B, and Ni-Co-P. -B, Ni-Zn-Co, Ni-Zn-P, Ni-Fe-Co, Ni-Fe-P, and other various Ni-based alloy powders, and further, the surface of other metal or alloy powder is the above It is also possible to use a composite powder coated with a Ni-based alloy. Further, the powder may further contain other permissible elements as long as the antibacterial activity is not inhibited.
[0028]
The method for producing the Ni-based alloy powder used in the present invention is not particularly limited, but as a preferred method, for example, a Ni-based alloy satisfying the requirements of the above component composition is melted and then pulverized by an atomizing method or mechanical pulverization. Examples thereof include a method or a method of forming the Ni-based alloy film on the surface of another metal or alloy powder by surface treatment such as electroplating or electroless plating.
[0029]
Further, as another antibacterial powder according to the present invention, the entire powder or the surface layer of the powder contains 1% or more of Ni, and Co and / or P is more preferably 0.001% or more with respect to Ni, respectively. Is 0.1% or more, and antibacterial powder in which the remaining main component is an inorganic oxide.
[0030]
In this Ni-containing inorganic oxide powder, the Ni content from the entire powder or the outermost surface of the powder to a depth position of at least 0.1 μm is 1% or more, and the Co and / or P contents are each It is essential to ensure a high antibacterial activity that it is 0.001% or more and the remaining main component is an inorganic oxide. If the Ni content is less than 1%, satisfactory antibacterial activity cannot be obtained. Moreover, even if the Ni content is 1% or more, sufficient antibacterial properties cannot be obtained if both the Co and P contents are less than 0.001%. Also in the case of this component powder, the preferable content of Co and P is 0.1% or more with respect to Ni.
[0031]
The method for producing such an inorganic oxide-containing powder is not particularly limited, but usually the method of supporting Ni, Co, P, etc. on the inorganic oxide is preferably employed. In this case, the Ni content is the Ni-based alloy powder described above. Therefore, it is desirable to support Ni, Co, P ions and their complexes on an inorganic oxide so that they are more easily ionized than Ni-based alloy powder.
[0032]
As the inorganic oxide used here, for example, porous bodies such as silica gel, zeolite, calcium phosphate, zirconium phosphate, glass, calcium silicate, silica / alumina / magnesia and the like are preferably used. When Ni, Co, and P are supported using these inorganic oxides as a carrier, the above-described Ni-based alloy antibacterial powder is obtained even if the Ni content in the whole powder or at least the surface layer of the powder is 1%. Can exhibit the same antibacterial properties.
[0033]
Even in the antibacterial powder containing an inorganic oxide, the average particle diameter should be in the range of 0.01 to 100 μm, more preferably 0.1 to 10 μm, and the average particle diameter should be less than 0.01 μm. In the case of the ultrafine powder or coarse powder exceeding 100 μm, it becomes difficult to finely disperse the powder in the antibacterial film formed on the surface of the substrate, and it becomes difficult to obtain uniform and stable antibacterial performance. On the other hand, if the average particle size is excessive, it is necessary to increase the thickness of the antibacterial film formed on the surface of the substrate, and the increase in the thickness is not suitable for surface treatment.
[0034]
In the antibacterial powder defined in the present invention, by containing at least one element selected from the group consisting of Mo, Sn, Pb, Cu, Ag, Pt, Au as another element, The antibacterial property-imparting performance can be further improved, and the preferable content ratio of these elements is preferably Mo: 0.01 to 20%, Sn: 0 with respect to the amount of Ni contained in the whole powder or the surface layer. 0.01-20%, Pb: 0.001-20%, Cu: 0.01-20%, Ag: 0.001-20%, Pt: 0.001-5%, Au: 0.001-5% Range.
[0035]
These elements are electrochemically more noble than Ni and Co. By containing these elements, the ionization of Ni and Co is further promoted, and the antibacterial property imparting performance is further enhanced. Further, among these elements, Cu and Ag themselves have excellent antibacterial properties as described above, so that further improvement in antibacterial property imparting performance can be expected. However, these elements exhibit their effects sufficiently even if contained in a small amount, but if they are contained excessively, they will adversely affect the moldability and supportability of the powder, dispersibility in the antibacterial surface treatment agent, etc. Since it is very expensive, a preferable upper limit value is set as described above in consideration of economy.
[0036]
In the antibacterial powder of the present invention, the hydrogen content contained in the whole powder or at least in the surface layer thereof is in the range of 0.1 to 50 ppm, more preferably in the range of 1.5 to 20 ppm. Is preferable because the antibacterial property imparting performance can be further enhanced. However, this hydrogen amount refers to the amount of hydrogen released when the powder itself is heated from room temperature to 350 ° C., more specifically, continuously heated to 350 ° C. at a temperature increase rate of 12 ° C./min, The value measured by the method of quantifying the amount of hydrogen generated during that time with an atmospheric pressure ionization mass spectrometer (API-MS).
[0037]
The reason why this amount of hydrogen exerts an antibacterial effect is as follows: (1) Hydrogen has a reducing action, and it activates the powder surface by preventing oxidation and alteration on the powder surface. It is thought that the two actions of increasing the elution amount of (2) and hydride (P-H, etc.) effectively act on the alteration of the bacterial protein synergistically. In particular, the effect (2) above seems to be extremely effective because it promotes the combination of the different antibacterial mechanisms described above.
[0038]
The method for increasing the hydrogen storage amount is not particularly limited, but examples of methods for efficiently storing hydrogen in the powder include a method in which the powder is formed in a high-temperature hydrogen gas atmosphere and a method in which hydrogen is charged electrochemically. The If the amount of hydrogen in the powder exceeds 50 ppm, the toughness of the antibacterial powder, the dispersibility to the surface film, the stability of the surface film, etc. are significantly reduced, so the hydrogen storage amount is 50 ppm or less, more preferably It is good to suppress to 20 ppm or less.
[0039]
In addition, the average surface area of the Ni-based alloy powder and the Ni-containing inorganic oxide powder also has a great influence on the antibacterial property imparting performance. It is desirable that the surface area is 1.3 times or more, more preferably 2 times or more, and further preferably 4 times or more of the surface area calculated from the average particle diameter when the powder is assumed to be spherical. Therefore, the higher the surface area of the powder, the more the elution amount of Ni, Co, and P increases, so that the antibacterial effect is improved, and the adhesion of the film when forming the surface film is also increased.
[0040]
Although there are various methods for obtaining the average surface area of the powder, in the present invention, the surface area of 100 randomly selected particles was obtained by image analysis using a scanning tunneling microscope, and the average value was defined as the average surface area. There is no particular limitation on the method of increasing the surface area of the powder, but in the case of Ni-based alloy powder, for example, a method in which the powder is immersed in an etching solution to form irregularities can be mentioned, and Ni-containing inorganic oxide powder In this case, a method of using a porous inorganic oxide powder having a three-dimensional structure or a network structure and supporting an antibacterial component using this as a carrier is preferably employed.
[0041]
As described above, the antibacterial powder of the present invention gives excellent antibacterial property imparting performance to the powder by specifying the composition of the entire powder or at least the surface layer at a depth within 0.1 μm from the outermost layer. By using this powder as a material for forming an antibacterial film using the surface treatment agent for various metal members, antibacterial properties can be imparted to various members.
[0042]
When the Ni-based alloy powder and the Ni-containing inorganic oxide powder according to the present invention are dispersed in the skin layer of a metal member (meaning at least a region from the surface to a depth position of 0.1 μm, hereinafter the same). In consideration of dispersibility in surface treatment agents for antibacterial activity treatment, stability, cost, etc., select the most suitable one from the aforementioned Ni-base alloy powder or Ni-containing inorganic oxide powder. However, the content of the powder in the surface treatment agent constituting the skin layer is 0.001 to 20%, more preferably 0.1 to 20%, still more preferably 1 to 20% in terms of solid content addition. It is desirable to adjust so that it becomes the range.
[0043]
That is, in order to give sufficient antibacterial activity to the skin layer of the member, the content of the powder in the skin layer should be 0.001% or more, and below this, the amount of antibacterial component in the skin layer This is because sufficient antibacterial properties cannot be imparted due to lack of. In order to give a high antibacterial performance to the skin layer, the content of the powder in the skin layer should be 0.1% or more, more preferably 1% or more. However, if the content of the powder in the skin layer exceeds 20%, the dispersion of the powder in the skin layer becomes non-uniform, and the strength of the skin layer and the adhesion between the substrate and the skin layer are also poor. Become.
[0044]
Furthermore, in order to further improve the antibacterial performance of the present invention, when the Ni-based alloy powder or the Ni-containing inorganic oxide powder is dispersed in the skin layer, as other elements, Mo, Sn, Pb, Cu, Ag, Mix one or more of Pt and Au, or TiO 2 , ZnO, Nb 2 O Five , WO Three , SnO 2 , ZrO 2 , SrTiO Three , KTaO Three , CdS, ZnS, CdSe, GaP, CdTe, MoSe 2 , WSe 2 It is also effective to include a powder having a photocatalytic function as described above. Since the elements of the former group are electrochemically noble elements than Ni and Co as described above, the inclusion of these elements promotes ionization of Ni and Co and further enhances antibacterial properties. Since the powder having the photocatalytic function of the latter group effectively acts to improve the antifouling property, it suppresses external contamination and contributes to the improvement of the antibacterial performance. However, if the blending amount of these metal powders and photocatalytic functional powders is too large, the dispersibility will be adversely affected. Therefore, the blending amount of the antibacterial powder in the surface treatment agent is 0.1% in terms of solid content. A range of ˜20% is suitable.
[0045]
Also, the antibacterial activity can be further enhanced by the action of hydrogen as described above by containing an appropriate amount of hydrogen in the surface treatment film. As a method for occluding hydrogen in the film, there are a method in which the film is exposed to a high-temperature hydrogen gas atmosphere after the film is formed, a method in which hydrogen is electrochemically charged, and the like. When the electroplating method is adopted, since hydrogen reaction is one of the cathode reactions, the hydrogen storage amount can be increased by deliberately reducing the current efficiency. However, if the hydrogen storage amount in the film becomes too high, the stability and strength of the surface film will decrease, so the hydrogen storage amount in the film should be 50 ppm or less, more preferably 20 ppm or less.
[0046]
The specific surface treatment layer and film thickness using the antibacterial powder for surface treatment as an active ingredient are not particularly limited. For example, as shown below, a coating resin layer, a plating layer, and an anodizing treatment containing a resin as a matrix component It can be easily applied to a layer subjected to sealing treatment, a ceramic layer, a concrete layer, a plastic layer and the like. In addition, some members to which antibacterial performance should be imparted are subject to impact and wear, and scratch resistance and impact resistance may be required. Therefore, the surface hardness of the antibacterial skin layer is Hv300 or more, more preferably Hv450. More preferably, Hv 600 or more is desirable.
[0047]
Examples of coating resin layers include alkyd resins, nitrocellulose resins, butyral resins, polyurethane resins, epoxy resins, tar epoxy resins, melamine resins, acrylic resins, vinyl chloride resins, silicon resins, and fluorine resins. , Vinyl fluoride resin, nylon resin, polycarbonate resin, glass fiber reinforced polyester resin, and the like. The antibacterial powder of the present invention may be dispersed in these resins. Examples of the method include a spray coating method, an electrostatic coating method, a TFS coating method, a dip coating method, a powder coating method, an electrodeposition coating method, and a roll coater coating method.
[0048]
Examples of the plating layer include Zn plating, Cr plating, Ni plating, Sn plating, and the like. What is necessary is just so-called dispersion plating in which the antibacterial powder of the present invention is dispersed in these plating layers. Examples of the method include wet plating such as electroplating and electroless plating and various vapor phase plating.
[0049]
Further, after the anodizing treatment, a method of applying a sealing treatment by applying the metal salt or resin containing the antibacterial powder of the present invention to the pore portion of the anodizing treatment layer is also effective, and the metal used in this case Examples of the salt include acetates such as Ni, Co, Zn, Al, Cu, and Pd, nitrates, sulfates, and the like, and examples of the resin include various resins shown as examples of the coating resin layer. The
[0050]
As the ceramic layer, SiO 2 , Na 2 O, K 2 O, Li 2 O, PbO, TiO 2 , B 2 O Three , Al 2 O Three , ZrO 2 The antibacterial powder of the present invention may be mixed with various compounds obtained by blending them. As a method for producing a ceramic layer on a metal, an enamel or sol-gel method is recommended as a simple method.
[0051]
Examples of the concrete layer include various cements, pastes that solidify by mixing various aggregates with water, mortar, concrete, coal tar enamel, asphalt, and the like. Mix the cement and aggregates with the antibacterial powder of the present invention. That's fine.
[0052]
Plastic layers include vinyl chloride resin, epoxy resin, tar epoxy resin, polyethylene resin, polyethylene terephthalate resin, polypropylene resin, polyurethane resin, acrylic resin, polyester resin, polyethylene terephthalate resin, polyolefin resin, fluorine-based resin, fluoride resin Vinyl resin etc. are mentioned, What is necessary is just to disperse | distribute the said antimicrobial particle of this invention in these resin. As its method, laminate coating or lining is recommended as a simple method.
[0053]
In the present invention, the type of metal base material used as the base material for forming the antibacterial film is not particularly limited, and for example, all of iron-based alloys such as stainless steel, non-ferrous metals such as aluminum and titanium, and various alloys containing them. Can be applied. There are no restrictions on the types of materials, for example, food production machines, storage tanks, food factory equipment such as conveyor plates and guides, incubators, culture tanks, beer factory equipment such as clean benches, leftover baskets, desk adjustments, triangle corners. Cooking facility equipment such as water faucets, injection tables, dialysis tables, hand-washing tables, ilrigator tables, etc., examination carts, gibskirts, charts, medical carts, emergency carts, surgical carts, dissection tables, Surgery equipment such as disinfection boards, sterilization trays, waste containers, wardrobes, patient carriers, ward equipment such as drip tables and urine racks, hospital room equipment such as chairs, beds, and overtables, and food manufacturing Door knobs, grips, pedestals, swing doors, gratings, interior walls and other fittings used in factories, restaurants, hospitals, and medical facilities, and doors used in toilets in those facilities Pitch, roll holder, water around Hinto Further, ceiling ventilation systems and air-conditioning equipment, air conditioning filters, refrigerators, more options transporting cargo and food carriage, interior and loading platform or the like of the food conveying vehicle is exemplified.
[0054]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to carry out and they are all included in the technical scope of the present invention.
[0055]
Example
Using aluminum alloy and stainless steel as a base material, specimens subjected to surface treatment under the conditions shown below were prepared, and each characteristic was evaluated.
[0056]
Each Ni-based alloy powder used was prepared by melting and then pulverizing. In addition, each Ni-containing inorganic oxide powder was obtained by supporting ions or complexes such as Ni, P, and Co on silica gel, zeolite, glass, and the like by an existing method.
[0057]
Each base material is sequentially degreased and etched using a commercially available degreasing solution and a commercially available etching solution. After that, for the coating material, a zinc phosphate-based chemical conversion coating and a cationic electrodeposition coating are sequentially formed, and then Ni A water-soluble paint in which the contained inorganic oxide powder was dispersed was applied by a dipping method and baked at 200 ° C. for 20 minutes. The anodized material is an Al alloy that has been etched up to 60-300 A / m in a 15 vol% sulfuric acid solution in which 10 g / 1 liter of Al is dissolved. 2 After forming a 10 μm bent oxide film at a current of 1, the film was immersed and sealed in a liquid in which Ni alloy powder was dispersed in nickel acetate.
[0058]
The plating material is zinc-substituted after etching by a commercially available zincate treatment (trade name “SZ method” manufactured by Kizai Co., Ltd.), and then contains Ni in a commercially available Cr plating bath (trade name “Asahichrome” manufactured by Uemura Kogyo Co., Ltd.). Dispersion plating (20 μm) was prepared using a liquid in which inorganic oxide powder or Ni-based alloy powder was dispersed. Also, the ceramic material is SiO 2 after etching. 2 Fine particles and CH Three Si (OCH Three ) Three Ni-containing inorganic oxide powder is dispersed in a sol prepared from the above and dip coated, and heat treated at 500 ° C. to obtain 10 μm SiO. 2 A membrane was prepared.
[0059]
In addition, a commercially available antibacterial coating material was used as a comparative material. The element content of each powder was confirmed by eluting metal and P from each powder and then analyzing by ICP emission spectroscopy and gravimetry. The average particle diameter and the average surface area are analyzed using an electron microscope, and the hydrogen storage amount is confirmed by mechanically peeling each surface-treated layer from the base material and removing the skin layer itself at a heating rate of 12 ° C./min. The temperature was continuously raised to ° C., and the amount of hydrogen gas generated during that time was analyzed by an atmospheric pressure ionization mass spectrometer (API-MS). This film analysis method was in accordance with a previous report by Iwata et al. (“Kobe Steel Engineering Reports” Vol. 47, No. 1, p. 24, Apr. 1997). Further, the Ni content of the surface layer of each test material was confirmed using ICP emission spectroscopic analysis and gravimetric method after dissolving the surface layer of each test material.
[0060]
For antibacterial studies, Staphylococcus aureus (Gram staining: positive), Salmonella (Gram staining: negative), E. coli (Gram staining: negative), MRSA (Gram staining: positive), Pseudomonas aeruginosa (Gram staining: negative) It was selected from and used. After 0.5 ml of a solution prepared by adjusting various microbial cells after culture so as to have a concentration of 2 × 10 5 to 1 × 10 6 (CFU / ml) is dropped on the sample, and a polyethylene film is placed on the solution, and then adhered. These were held for 2 hours under conditions of 35 ° C. and relative humidity of 90% or more, and then the number of viable bacteria (bacterial viability,%) was measured by a plate dilution method, thereby converting per sample. . Average the survival rate of each bacterium. If the average survival rate is less than 5%, evaluate ◎, if 5-25%, evaluate ○, 20-20%, evaluate △, 50-80%. In the case of evaluation +, 80% or more, it was expressed as evaluation x.
[0061]
As for the investigation of dispersibility, since color unevenness occurs when the dispersibility is inferior, the color difference of each part of the test material is measured using a color difference meter, and when the value where the color difference ΔE is the largest is less than 1. In the case of (circle) and 1-3, it evaluated as (triangle | delta) as (triangle | delta) and the case of 3 or more.
[0062]
Table 1 shows the evaluation results of each test member prepared so that the content of each antibacterial powder in the surface layer is 0.1 to 20% and a commercially available antibacterial coating material.
[0063]
[Table 1]
Figure 0003695965
[0064]
As is clear from Table 1, the commercially available antibacterial coating material has insufficient antibacterial properties. Further, it is understood that the antibacterial property is inferior or the dispersibility is inferior when the content of Ni, Co or P in the antibacterial powder or the average particle size of the powder is out of the specified range. In addition, when the dispersibility of the antibacterial powder is inferior, the antibacterial reliability is lacking due to variations in antibacterial evaluation. On the other hand, in the examples in which those values fall within the preferable requirements defined in the present invention, the antibacterial properties and dispersibility are good and strong antibacterial properties are shown against any bacteria.
[0065]
Next, according to the examples of the present invention, each of the prepared materials prepared by adjusting the content of Ni, Co, and P in the Ni-based alloy powder or each Ni-containing inorganic oxide powder and the average particle diameter of the antibacterial powder. The test result about a sample is shown in FIGS.
[0066]
FIG. 1 is a graph showing the influence of the contents of Mo, Sn, Pb, Cu, Ag, Pt, and Au on the antibacterial properties of the powder, and the P content is 0%. FIG. 2 is a graph showing the effect of each content of Mo, Sn, Pb, Cu, Ag, Pt, and Au in the powder on the antibacterial properties, and the Co content is 0%. FIG. 3 is a graph showing the effect of the hydrogen storage amount in the powder on the antibacterial properties. FIG. 4 is a graph showing the effect of the surface area of the antibacterial powder on the antibacterial properties.
[0067]
1 and 2, the types of antibacterial powder in the surface treatment film and the contents of Ni, Mo, Sn, Pb, Cu, Ag, Pt, and Au are shown in Table 2. It is shown.
[0068]
[Table 2]
Figure 0003695965
[0069]
3 and 4 indicate that the types of antibacterial powder and the contents in the powder are as described below.
[0070]
○: Ni-based alloy powder:
Ni content 50%, Co content 0.01% or P content 0.001%, Mo, Sn, Pb, Cu, Ag, Pt, Au contents are all 0%, balance Fe, C.
[0071]
●: Ni-containing inorganic oxide powder:
Ni content 1%, Co content 0.01% or P content 0.01%, Mo, Sn, Pb, Cu, Ag, Pt, Au contents all 0%, balance silica gel.
[0072]
As is clear from these results, the antibacterial surface layer formed by the surface treatment agent containing an appropriate amount of the antibacterial powder that satisfies the prescribed requirements of the present invention exhibits excellent antibacterial properties. Therefore, the antibacterial powder of the present invention gives excellent antibacterial properties to various members by forming an antibacterial surface layer on the surface of the base material by using the antibacterial powder as an antibacterial component and containing it in an appropriate amount in the surface treatment agent. Therefore, it can be widely applied to various fields including food and medicine.
[0073]
【The invention's effect】
The present invention is configured as described above, and the antibacterial powder of the present invention has a very excellent antibacterial property imparting performance. By incorporating this into various surface treatment agents as an antibacterial component, The antibacterial performance according to the use can be easily provided with respect to various members.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of the contents of Mo, Sn, Pb, Cu, Ag, Pt, Au and Co content in antibacterial powder on antibacterial properties.
FIG. 2 is a graph showing the effects of the contents of Mo, Sn, Pb, Cu, Ag, Pt, Au and the P content on the antibacterial properties in the antibacterial powder.
FIG. 3 is a graph showing the effect of hydrogen storage amount in antibacterial powder on antibacterial properties.
FIG. 4 is a graph showing the effect of the surface area of antibacterial powder on antibacterial properties.

Claims (6)

粉末全体または粉末の少なくとも最表面から0.1μm以内の深さ位置の表面層におけるNi含有量が50%(重量%を意味する、以下同じ)以上であり、且つCoおよび/またはP含有量が各々0.001%以上であるNi基合金粉末からなり、平均粒径が0.01〜100μmであることを特徴とする表面処理用抗菌性粉末。The Ni content in the entire powder or the surface layer at a depth within 0.1 μm from the outermost surface of the powder is 50% (meaning weight%, the same applies hereinafter) or more, and the Co and / or P content is An antibacterial powder for surface treatment, comprising an Ni-base alloy powder of 0.001% or more, each having an average particle diameter of 0.01 to 100 μm. 粉末全体または粉末の少なくとも最表面から0.1μm以内の深さ位置の表面層におけるNi含有量が1%以上で、且つCoおよび/またはP含有量が各々0.001%以上であり、残りの主成分が無機酸化物である粉末からなり、平均粒径が0.01〜100μmであることを特徴とする表面処理用抗菌性粉末。The Ni content in the entire powder or the surface layer at a depth within 0.1 μm from the outermost surface of the powder is 1% or more, and the Co and / or P contents are each 0.001% or more, and the rest An antibacterial powder for surface treatment, comprising an inorganic oxide as a main component and an average particle diameter of 0.01 to 100 µm. 前記粉末全体または前記表面層には、Mo,Sn,Pb,Cu,Ag,Pt,Auよりなる群から選択される少なくとも1種の元素が、Ni含有量に対し下記の比率で含まれている請求項1または2に記載の表面処理用抗菌性粉末。
Mo:0.01〜20%、
Sn:0.01〜20%、
Pb:0.001〜20%、
Cu:0.01〜20%、
Ag:0.001〜20%、
Pt:0.001〜5%、
Au:0.001〜5%。
The whole powder or the surface layer contains at least one element selected from the group consisting of Mo, Sn, Pb, Cu, Ag, Pt, and Au in the following ratio with respect to the Ni content. The antibacterial powder for surface treatment according to claim 1 or 2.
Mo: 0.01-20%
Sn: 0.01-20%,
Pb: 0.001 to 20%,
Cu: 0.01 to 20%,
Ag: 0.001 to 20%,
Pt: 0.001 to 5%,
Au: 0.001 to 5%.
前記粉末全体または前記表面層の水素含有量が0.1〜50ppmである請求項1〜3のいずれかに記載の表面処理用抗菌性粉末。The antibacterial powder for surface treatment according to any one of claims 1 to 3, wherein a hydrogen content of the whole powder or the surface layer is 0.1 to 50 ppm. 前記粉末の平均表面積が、該粉末を球形と仮定したときの平均粒径から算出される表面積の1.3倍以上である請求項1〜4のいずれかに記載の表面処理用抗菌性粉末。The antibacterial powder for surface treatment according to any one of claims 1 to 4, wherein an average surface area of the powder is 1.3 times or more of a surface area calculated from an average particle diameter when the powder is assumed to be spherical. 前記請求項1〜5のいずれかに記載の表面処理用抗菌性粉末を含む表面皮膜が形成された抗菌性部材であって、少なくとも最表面から0.1μmの深さ位置までの表皮層中に、0.001〜20%の抗菌性粉末が分散していることを特徴とする抗菌性部材。An antibacterial member on which a surface coating containing the antibacterial powder for surface treatment according to any one of claims 1 to 5 is formed, and at least in the skin layer from the outermost surface to a depth of 0.1 µm 0.001 to 20% of antibacterial powder is dispersed.
JP31663198A 1998-11-06 1998-11-06 Antibacterial powder and antibacterial member for surface treatment Expired - Lifetime JP3695965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31663198A JP3695965B2 (en) 1998-11-06 1998-11-06 Antibacterial powder and antibacterial member for surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31663198A JP3695965B2 (en) 1998-11-06 1998-11-06 Antibacterial powder and antibacterial member for surface treatment

Publications (2)

Publication Number Publication Date
JP2000143422A JP2000143422A (en) 2000-05-23
JP3695965B2 true JP3695965B2 (en) 2005-09-14

Family

ID=18079203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31663198A Expired - Lifetime JP3695965B2 (en) 1998-11-06 1998-11-06 Antibacterial powder and antibacterial member for surface treatment

Country Status (1)

Country Link
JP (1) JP3695965B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160096166A (en) * 2014-03-13 2016-08-12 가부시키가이샤 고베 세이코쇼 Antibacterial member

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4551516B2 (en) * 1998-11-06 2010-09-29 株式会社神戸製鋼所 Antibacterial material
JP2009215201A (en) * 2008-03-10 2009-09-24 Ritsuko Tanaka Deodorant antimicrobial powder material
JP5182647B2 (en) * 2009-02-13 2013-04-17 三菱マテリアル株式会社 Antibacterial material
WO2023195349A1 (en) * 2022-04-07 2023-10-12 株式会社神戸製鋼所 Antimicrobial powder, method for producing antimicrobial powder, antimicrobial coating, antimicrobial resin composition, antimicrobial member, and antimicrobial resin molded article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160096166A (en) * 2014-03-13 2016-08-12 가부시키가이샤 고베 세이코쇼 Antibacterial member
KR102006528B1 (en) 2014-03-13 2019-08-01 가부시키가이샤 고베 세이코쇼 Antibacterial member

Also Published As

Publication number Publication date
JP2000143422A (en) 2000-05-23

Similar Documents

Publication Publication Date Title
He et al. Review of antibacterial activity of titanium-based implants’ surfaces fabricated by micro-arc oxidation
US20080085326A1 (en) Antimicrobial material compositions enriched with different active oxygen species
Rtimi et al. Preparation and mechanism of Cu-decorated TiO2–ZrO2 films showing accelerated bacterial inactivation
US20100021710A1 (en) Antimicrobial coatings
Mo et al. Preparation and antibacterial effect of silver–hydroxyapatite/titania nanocomposite thin film on titanium
Uhm et al. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering
Visnapuu et al. UVA-induced antimicrobial activity of ZnO/Ag nanocomposite covered surfaces
Rtimi et al. ZrNO–Ag co-sputtered surfaces leading to E. coli inactivation under actinic light: Evidence for the oligodynamic effect
Rtimi et al. Photocatalysis/catalysis by innovative TiN and TiN-Ag surfaces inactivate bacteria under visible light
Lee et al. ZrO2/ZnO/TiO2 nanocomposite coatings on stainless steel for improved corrosion resistance, biocompatibility, and antimicrobial activity
Cui et al. Fabrication of Ag+, Cu2+, and Zn2+ ternary ion-exchanged zeolite as an antimicrobial agent in powder coating
JP3695965B2 (en) Antibacterial powder and antibacterial member for surface treatment
Baghriche et al. Accelerated bacterial reduction on Ag–TaN compared with Ag–ZrN and Ag–TiN surfaces
Abdulagatov et al. ALD coated polypropylene hernia meshes for prevention of mesh-related post-surgery complications: An experimental study in animals
Wrona et al. Antimicrobial properties of protective coatings produced by plasma spraying technique
Chen et al. Surface functionalization of 3D printed Ti scaffold with Zn-containing mesoporous bioactive glass
AU2014292022B2 (en) Composite coatings of oxidized and/or phosphorous copper
Khokhlova et al. Oxide thin films as bioactive coatings
JP3902329B2 (en) Surface-treated metal material with durability, antibacterial properties, algae-proofing properties and anti-fouling properties
EP3098333A1 (en) Electrolytic bath for producing antibacterial metal coatings containing nickel, phosphorus and nanoparticles of an antibacterial metal (ni-p-manp's)
Cavaliere et al. Antimicrobial nanostructured coating
Li et al. In situ preparation of antibacterial Ag particles on Ti6Al4V surfaces by spray deposition
Zhang et al. Surface modification of biomedical metals by double glow plasma surface alloying technology: A review of recent advances
Ahmed et al. Characteristics and applications of titanium oxide as a biomaterial for medical implants
JP4551516B2 (en) Antibacterial material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

EXPY Cancellation because of completion of term