JPH08311686A - Plated product excellent in stain resistance in water - Google Patents
Plated product excellent in stain resistance in waterInfo
- Publication number
- JPH08311686A JPH08311686A JP11854295A JP11854295A JPH08311686A JP H08311686 A JPH08311686 A JP H08311686A JP 11854295 A JP11854295 A JP 11854295A JP 11854295 A JP11854295 A JP 11854295A JP H08311686 A JPH08311686 A JP H08311686A
- Authority
- JP
- Japan
- Prior art keywords
- water
- plating layer
- nickel
- copper
- test piece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/021—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、金属製およびプラスチ
ック製の製品に高度の水中防汚性を付与する技術に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for imparting a high degree of underwater stain resistance to products made of metal and plastic.
【0002】[0002]
【従来の技術】海水などの水中で使用する金属製および
プラスチックス製の器具類、装置類など(以下単に製品
という)には、各種の藻類、フジツボなどの各種の貝類
(以下単に水棲生物ということがある)が付着し、繁殖
するので、その除去に多大の労力を要する。また、これ
らの除去した水棲生物が腐敗した場合には、悪臭を放つ
ので、製品に水中生物が付着しないようにする必要があ
る。2. Description of the Related Art Metal and plastic instruments and devices for use in water such as seawater (hereinafter simply referred to as products) include various algae, various shellfish such as barnacles (hereinafter simply referred to as aquatic organisms). However, it takes a lot of labor to remove it. Further, when the removed aquatic organisms rot, they give off a bad odor, and it is necessary to prevent aquatic organisms from adhering to the product.
【0003】また、海水を冷却水として使用する発電
所、船舶などの冷却系統の配管内部で水棲生物が繁殖し
た場合には、冷却能力が低下して、発電所の運転、船舶
の運行などに支障を来すことがあるので、やはり水棲生
物の付着乃至繁殖を抑制する必要がある。Further, when aquatic organisms propagate inside the piping of a cooling system such as a power plant or a ship that uses seawater as cooling water, the cooling capacity is lowered, and the operation of the power plant or the operation of the ship is reduced. Since it may cause problems, it is necessary to suppress the attachment or reproduction of aquatic organisms.
【0004】従来、例えば、冷却用の海水取水口に次亜
塩素酸ナトリウムなどの薬剤を投入することにより水棲
生物の繁殖を防いでいる例もあるが、立地条件によって
は、環境汚濁防止法、漁業組合との協定などにより、そ
の様な薬剤の使用が出来ない企業もある。[0004] Conventionally, for example, there is an example in which the propagation of aquatic organisms is prevented by introducing a chemical such as sodium hypochlorite into the seawater intake for cooling. Some companies are unable to use such drugs due to agreements with fishery associations.
【0005】さらに、海水などの水中における金属製品
に対する水棲生物の付着を防止するために、コバルトお
よびその合金(但しコバルト−銅合金を除く)のめっき
或いは銅めっきを形成することが行われている。しかし
ながら、水中でのこれら金属めっき或いは合金めっきの
水中防汚性効果は、あまり長くは持続しない。これは、
めっき表面に水酸化物或いは酸化物の皮膜が形成され
て、抗菌化学種であるコバルトイオン或いは銅イオンの
溶出が阻害されるためであると推測される。勿論、めっ
き表面に形成された皮膜を周期的に物理的或いは化学的
手段により除去すれば、効果は再び発揮されるが、水中
という使用環境を考慮すると、この様な手段による皮膜
の除去は、困難であり、実用的ではない。Further, in order to prevent aquatic organisms from adhering to metal products in water such as seawater, plating of cobalt and its alloys (excluding cobalt-copper alloy) or copper plating is performed. . However, the underwater antifouling effect of these metal plating or alloy plating in water does not last very long. this is,
It is presumed that this is because a hydroxide or oxide film is formed on the plating surface and the elution of cobalt ion or copper ion which is an antibacterial chemical species is inhibited. Of course, if the film formed on the plating surface is periodically removed by physical or chemical means, the effect is again exhibited, but in consideration of the use environment of water, removal of the film by such means is Difficult and impractical.
【0006】[0006]
【発明が解決しようとする課題】従って、本発明は、水
中で使用される金属製およびプラスチック製の製品への
水棲生物の付着とその繁殖を防止すること(水中防汚性
を高めること)を主な目的とする。Therefore, the present invention aims to prevent adhesion of aquatic organisms to metal and plastic products used in water and their propagation (improve antifouling property in water). The main purpose is.
【0007】[0007]
【課題を解決するための手段】本発明者は、上記の様な
従来技術の現状に鑑みて研究を進めた結果、水中で使用
される金属製およびプラスチック製の製品の表面に特定
割合で銅を含有するコバルトめっき層を形成させる場合
には、上記の目的を達成しうることを見出した。The present inventor has conducted research in view of the current state of the art as described above, and as a result, copper has been added in a specific ratio on the surface of metal and plastic products used in water. It has been found that the above object can be achieved in the case of forming a cobalt plating layer containing a.
【0008】また、金属製およびプラスチック製の製品
の表面にニッケルめっき層またはニッケル合金めっき層
を形成した後、その上に特定割合で銅を含有するコバル
トめっき層を形成させる場合には、製品と銅−コバルト
合金めっき層との接合がより強固になり、水中防汚性が
より長期にわたり持続されることを見出した。Further, when a nickel plating layer or a nickel alloy plating layer is formed on the surface of a metal or plastic product and then a cobalt plating layer containing copper in a specific ratio is formed thereon, It has been found that the bond with the copper-cobalt alloy plating layer becomes stronger and the underwater antifouling property is maintained for a longer period.
【0009】すなわち、本発明は、下記の水中防汚性に
優れためっき製品を提供するものである; 1.金属またはプラスチックに銅を22〜88重量%含
む銅−コバルト合金めっき層を設けた水中における防汚
性に優れためっき製品。That is, the present invention provides the following plated products having excellent antifouling properties in water: A plated product having excellent antifouling properties in water, which is provided with a copper-cobalt alloy plating layer containing 22 to 88% by weight of copper on metal or plastic.
【0010】2.金属またはプラスチックに(1)ニッ
ケルめっき層、ニッケル合金めっき層およびコバルトめ
っき層の少なくとも1種と(2)銅を22〜88重量%
含む銅−コバルト合金めっき層を順次設けた水中におけ
る防汚性に優れためっき製品。[0010] 2. 22 to 88% by weight of (1) at least one of nickel plating layer, nickel alloy plating layer and cobalt plating layer and (2) copper on metal or plastic
A plated product with excellent antifouling properties in water, in which a copper-cobalt alloy plating layer containing it is sequentially provided.
【0011】本願発明においては、金属製またはプラス
チック製の製品表面に銅−コバルトめっき層を設ける。
前述の様に、コバルトめっき或いは一部のコバルト合金
めっきが、めっき形成直後には、優れた水中防汚性能を
発揮するものの、時間の経過とともにその効果を減ずる
ことは、知られている。しかるに、本発明でめっき層金
属として使用するCo78〜12重量%とCu22〜8
8重量%とからなるCo−Cu合金の場合には、長期に
わたり、優れた水中防汚性能を発揮する。本発明による
Co−Cu合金がこの様に優れた効果を発揮するのは、
大要以下の様な理由によるものと推測される。In the present invention, a copper-cobalt plating layer is provided on the surface of a metal or plastic product.
As described above, it is known that cobalt plating or a part of cobalt alloy plating exhibits excellent underwater antifouling performance immediately after plating, but its effect decreases with the passage of time. However, in the present invention, 78 to 12% by weight of Co and 22 to 8% of Cu used as the plating layer metal are used.
In the case of a Co-Cu alloy composed of 8% by weight, excellent underwater antifouling performance is exhibited for a long period of time. The Co-Cu alloy according to the present invention exerts such excellent effects as follows.
It is presumed that it is due to the following reasons.
【0012】即ち、金属或いはプラスチックの製品表面
にめっき層として形成されたCo−Cu合金が水中で腐
食する場合、初期の腐食反応においては、Coリッチ部
分がアノードとなってコバルトイオンが溶出し、Cuリ
ッチ部分がカソードなってOH-イオンが生成される
(H2O2も生成されると考えられる)。時間の経過とと
もに、アノード側ではCoの溶出に伴ってCo濃度が低
下するとともに酸化皮膜が形成されて、Coイオンの溶
出が減少する。この時点では、銅リッチ部分での溶出は
少なく、化学的に活性な状態にある。そのため、電位の
相違により、銅リッチ部分がアノードとカソードとに分
かれて腐食反応を生じ、アノード側からCuイオンが溶
出するとともに、カソード部側は、OH-イオンなどの
生成反応が進行する。この状態での反応がしばらく継続
すると、銅リッチ部のアノード側ではCuの溶出に伴っ
てCu濃度が低下するので、Coリッチ部分が露出する
とともに、Co表面に形成されていた酸化皮膜も次第に
溶解する。この様にして、再び上述の初期と同様の腐食
反応が行われるようになる。この様にしてCoイオンの
溶出とCuイオンの溶出とが繰り返し行われるので、水
棲生物の製品表面への付着および製品表面での増殖が効
果的に抑制される。That is, when the Co--Cu alloy formed as a plating layer on the surface of a metal or plastic product corrodes in water, in the initial corrosion reaction, the Co-rich portion becomes an anode and cobalt ions are eluted, The Cu-rich portion becomes a cathode and OH − ions are generated (it is considered that H 2 O 2 is also generated). With the passage of time, the Co concentration on the anode side decreases with the elution of Co, and an oxide film is formed, so that the elution of Co ions decreases. At this point, the elution in the copper-rich portion is small and it is in a chemically active state. Therefore, due to the difference in potential, the copper-rich portion is divided into an anode and a cathode to cause a corrosion reaction, Cu ions are eluted from the anode side, and a production reaction of OH − ions and the like proceeds on the cathode side. If the reaction in this state continues for a while, the Cu concentration on the anode side of the copper-rich portion decreases with the elution of Cu, so that the Co-rich portion is exposed and the oxide film formed on the Co surface gradually dissolves. To do. In this way, the same corrosion reaction as in the initial stage is performed again. Since the elution of Co ions and the elution of Cu ions are repeated in this manner, the adhesion of aquatic organisms to the product surface and the growth on the product surface are effectively suppressed.
【0013】金属或いはプラスチックに対するCo−C
u合金めっき層の形成は、製品に加工する前の材料の状
態で行っても良く、或いは製品に加工した状態で行って
も良い。Co-C for metal or plastic
The u alloy plating layer may be formed in a state of a material before being processed into a product, or may be formed in a state of being processed into a product.
【0014】或いは、本願発明においては、金属製品ま
たはプラスチック製品に対するCo−Cu合金めっき層
の密着をより良好にするために、製品の表面にニッケル
めっき層、ニッケル合金めっき層およびコバルトめっき
層の少なくとも1種を形成した後、その上にCo78〜
12重量%とCu22〜88重量%とからなる銅−コバ
ルトめっき層を設けることが出来る。Alternatively, in the present invention, in order to improve the adhesion of the Co—Cu alloy plating layer to the metal product or the plastic product, at least the nickel plating layer, the nickel alloy plating layer and the cobalt plating layer are formed on the surface of the product. After forming one, Co78 ~ on it
A copper-cobalt plating layer composed of 12% by weight and 22 to 88% by weight of Cu can be provided.
【0015】Co−Cu合金めっき層の形成は、Cu含
有量22〜88重量%のCo−Cu合金めっき層が形成
できる限り特に限定されるものではないが、1例とし
て、硫酸銅10g/l、硫酸コバルト20g/l、ピロ
りん酸カリウム108g/lおよび四ほう酸二カリウム
40g/lを含む浴を使用して、温度45〜65℃程
度、pH約9.5、陽極電流密度0.5〜2A/dm2
程度の条件で行うことが出来る。陽極材料としては、例
えば、炭素板、黒鉛板、白金被覆チタン、白金被覆チタ
ン合金などが例示される。The formation of the Co-Cu alloy plating layer is not particularly limited as long as a Co-Cu alloy plating layer having a Cu content of 22 to 88% by weight can be formed, but as an example, copper sulfate 10 g / l , Cobalt sulfate 20 g / l, potassium pyrophosphate 108 g / l and dipotassium tetraborate 40 g / l are used at a temperature of about 45 to 65 ° C., a pH of about 9.5, and an anode current density of 0.5 to 2 A / dm 2
It can be performed under moderate conditions. Examples of the anode material include a carbon plate, a graphite plate, platinum-coated titanium, and platinum-coated titanium alloy.
【0016】本発明において、Cu含有量の含有量が2
2重量%未満となる場合には、Co−Cu合金層をめっ
き法により作成することが困難であること、およびCo
が酸化されてその溶出量が少なくなって、水中防汚効果
が低下する。一方、Cu含有量が88重量%を上回る場
合には、Coの溶出が減少して、やはり水中防汚効果が
低下する。Co−Cu合金中のCu含有量は、50〜7
0重量%程度とすることがより好ましい。In the present invention, the Cu content is 2
When it is less than 2% by weight, it is difficult to form a Co—Cu alloy layer by a plating method, and Co
Is oxidized and the elution amount is reduced, and the antifouling effect in water is reduced. On the other hand, when the Cu content exceeds 88% by weight, the elution of Co is reduced and the antifouling effect in water is also lowered. The Cu content in the Co-Cu alloy is 50 to 7
More preferably, it is about 0% by weight.
【0017】金属またはプラスチックへの下地めっき層
としてのニッケルめっき層、ニッケル合金めっき層或い
はコバルトめっき層は、通常の電気めっき法または/お
よび化学めっき(無電解めっき)法により、形成するこ
とができる。下地めっき層の厚さは、特に限定されるも
のではないが、通常1〜30μm程度でよい。The nickel plating layer, the nickel alloy plating layer, or the cobalt plating layer as the underlying plating layer on the metal or plastic can be formed by a usual electroplating method and / or chemical plating (electroless plating) method. . The thickness of the base plating layer is not particularly limited, but is usually about 1 to 30 μm.
【0018】次いで、常法に従って、下地めっき層上に
電気めっき法および/または化学めっき法により、Co
−Cu合金めっき層を形成させる。Co−Cu合金めっ
き層の厚さは、特に限定されるものではないが、通常
0.5〜35μm程度の範囲内にある。めっき厚さは、
使用環境を考慮して適宜定めれば良く、上記の範囲外で
あっても良い。Then, according to a conventional method, Co is formed on the underlying plating layer by electroplating and / or chemical plating.
-Form a Cu alloy plating layer. The thickness of the Co—Cu alloy plating layer is not particularly limited, but is usually in the range of about 0.5 to 35 μm. Plating thickness is
It may be appropriately determined in consideration of the usage environment, and may be outside the above range.
【0019】従来から、金属製品およびプラスチック製
品にCo−Cu合金めっき層を形成するには、各種の前
処理工程(脱脂工程、洗浄工程、触媒付与工程、活性化
工程など)、めっき層形成方法(電気めっき法、化学め
っき法乃至無電解めっき法など)などが採用されてい
る。本発明においては、これらの公知の前処理工程にお
ける手法、条件などをそのまま採用することができる。Conventionally, in order to form a Co—Cu alloy plating layer on metal products and plastic products, various pretreatment steps (degreasing step, washing step, catalyst applying step, activation step, etc.), plating layer forming method. (Electroplating method, chemical plating method or electroless plating method, etc.) are adopted. In the present invention, these known methods and conditions in the pretreatment step can be adopted as they are.
【0020】より具体的には、本発明による鉄系金属製
品は、例えば、(a)脱脂−水洗−酸性水溶液浸漬−水
洗−ニッケルめっき−水洗−Co/Cu合金めっき層形
成、(b)脱脂−水洗−酸性水溶液浸漬−水洗−Coめ
っき層形成−水洗−Co/Cu合金めっき層形成、
(c)脱脂−水洗−酸性水溶液浸漬−水洗−Co/Cu
合金めっき層形成などの工程により、製造することが出
来る。More specifically, the iron-based metal product according to the present invention has, for example, (a) degreasing-water washing-acidic aqueous solution soaking-water washing-nickel plating-water washing-Co / Cu alloy plating layer formation, (b) degreasing -Washing-Dip in acidic aqueous solution-Water washing-Co plating layer formation-Water washing-Co / Cu alloy plating layer formation,
(C) Degreasing-washing-immersing in acidic aqueous solution-washing-Co / Cu
It can be manufactured by a process such as forming an alloy plating layer.
【0021】また、銅製品および銅合金製品(例えば黄
銅製品)は、例えば、(d)脱脂−水洗−酸性水溶液浸
漬−水洗−Co/Cu合金めっき層形成などの工程によ
り、製造することが出来るし、上記の(a)〜(c)に
準じて製造することもできる。Copper products and copper alloy products (for example, brass products) can be manufactured, for example, by the steps of (d) degreasing-washing-immersing in an acidic aqueous solution-washing-forming a Co / Cu alloy plating layer. However, it can also be manufactured according to the above (a) to (c).
【0022】さらに、プラスチック製品に対しても、上
記と同様に公知の工程により前処理を行った後、コバル
ト−銅合金めっき層を形成することができる。当然のこ
とながら、プラスチックの場合には、その種類に応じた
適切な前処理工程が採用される。例えば、ABS樹脂に
対しては、脱脂−水洗−エッチング(無水クロム酸/硫
酸の混合水溶液)−中和(還元剤を含む酸性水溶液中で
無水クロム酸に由来する付着物の6価クロムイオンを3
価クロムイオンに還元する)−水洗−触媒付与工程(塩
化パラジウム/塩化第一スズ)−水洗−活性化工程(硫
酸水溶液)−無電解ニッケルめっき層形成−硫酸水溶液
浸漬−水洗−ニッケルめっき層形成−コバルト/銅合金
めっき層形成などの公知の工程により、コバルト−銅合
金めっき層を形成することができる。Further, a plastic product can also be pretreated by a known process in the same manner as described above, and then a cobalt-copper alloy plating layer can be formed. As a matter of course, in the case of plastic, an appropriate pretreatment process according to the type is adopted. For example, for ABS resin, degreasing-washing-etching (chromic anhydride / sulfuric acid mixed aqueous solution) -neutralization (in an acidic aqueous solution containing a reducing agent, hexavalent chromium ions derived from chromic anhydride are attached). Three
(Reduce to valent chromium ions) -Washing-Catalyst application step (palladium chloride / stannous chloride) -Water washing-Activation step (sulfuric acid aqueous solution) -Electroless nickel plating layer formation-Sulfuric acid aqueous solution immersion-Water washing-Nickel plating layer formation The cobalt-copper alloy plating layer can be formed by a known process such as forming a cobalt / copper alloy plating layer.
【0023】[0023]
【発明の効果】本発明によれば、金属製品およびプラス
チック製品の水中防汚効果を著しく高めることが出来る
とともに、その効果は長期にわたり持続する。EFFECTS OF THE INVENTION According to the present invention, the underwater antifouling effect of metal products and plastic products can be remarkably enhanced, and the effect lasts for a long time.
【0024】[0024]
【実施例】以下に参考例、実施例および比較例を示し、
本発明の特徴とするところをより一層明らかにする。EXAMPLES Reference examples, examples and comparative examples are shown below,
The features of the present invention will be further clarified.
【0025】なお、実施例および比較例における水中防
汚性試験およびその判定は、以下の様にして行った。The underwater antifouling test and its judgment in Examples and Comparative Examples were carried out as follows.
【0026】1)水中防汚性試験 150mm×210mm×0.3mmの試験片(ステンレス鋼および軟
鋼の場合)或いは150mm×210mm×1.3mmの試験片(AB
S樹脂の場合)或いは150mm×210mm×1mmの試験片(ポ
リアミドの場合)に所定のめっき層を形成した後、生物
の成育が最も盛んな6月から10月までの5ヶ月間にわ
たり海水の水面下約1.5mに設置して、生物の付着成
育状態を観察した。1) Underwater antifouling test 150 mm × 210 mm × 0.3 mm test piece (for stainless steel and mild steel) or 150 mm × 210 mm × 1.3 mm test piece (AB
After forming a predetermined plating layer on a test piece of S resin) or a 150 mm × 210 mm × 1 mm test piece (in the case of polyamide), the surface of seawater is maintained for 5 months from June to October when the growth of organisms is the most active. It was installed about 1.5 m below and the state of attachment and growth of organisms was observed.
【0027】2)判定 試験片に対する生物付着成育状況を肉眼で観察し、下記
に示す5段階評価法により水中防汚性を判定した。2) Judgment The state of growth of biofouling on the test piece was observed with the naked eye, and the antifouling property in water was judged by the following five-step evaluation method.
【0028】1:殆ど付着していない。 2:僅かなが
ら付着している。 3:付着がやや多い。 4:付着が
多い。 5:付着が著しく多い。1: Almost no adhesion. 2: Slightly adhered. 3: Adhesion is slightly large. 4: A lot of adhesion. 5: Remarkably large adhesion.
【0029】比較例1 ステンレス鋼試験片(SUS304)を電解脱脂し、水洗し、
次に10%塩酸に3分間浸漬し、水洗した後、塩化ニッケ
ル240g/lおよび濃塩酸120ml/lのめっき浴を使用して、
浴温20℃、陰極電流密度20A/dm2で2分間電解した。次
いで、この試験片を水洗した後、硫酸ニッケル240g/l、
塩化ニッケル45g/lおよびホウ酸30g/lのめっき浴を使用
して、空気攪拌下に浴温48〜53℃、陰極電流密度4A/dm2
で58分間電解して、約35μmのニッケルめっき層を形成
させた。Comparative Example 1 A stainless steel test piece (SUS304) was electrolytically degreased, washed with water,
Then, soak in 10% hydrochloric acid for 3 minutes, wash with water, and then use a plating bath of nickel chloride 240g / l and concentrated hydrochloric acid 120ml / l.
Electrolysis was carried out for 2 minutes at a bath temperature of 20 ° C. and a cathode current density of 20 A / dm 2 . Then, after washing this test piece with water, nickel sulfate 240 g / l,
Using a plating bath of nickel chloride 45g / l and boric acid 30g / l, bath temperature 48-53 ℃, cathode current density 4A / dm 2 under air stirring.
Electrolysis for 58 minutes to form a nickel plating layer of about 35 μm.
【0030】得られた試験片の水中防汚性試験の判定値
は、4であった。The judgment value of the underwater antifouling property test of the obtained test piece was 4.
【0031】比較例2 ステンレス鋼試験片に代えて軟鋼試験片を使用する以外
は比較例1と同様にして、約35μmのニッケルめっき層
を形成させた。Comparative Example 2 A nickel plating layer of about 35 μm was formed in the same manner as in Comparative Example 1 except that a mild steel test piece was used instead of the stainless steel test piece.
【0032】得られた試験片の水中防汚性試験の判定値
は、4であった。The judgment value of the underwater stain resistance test of the obtained test piece was 4.
【0033】比較例3 ステンレス鋼試験片(SUS304)を電解脱脂し、水洗し、
次に10%塩酸に約3分間浸漬し、水洗した後、塩化ニッ
ケル240g/lおよび濃塩酸120ml/lのめっき浴を使用し
て、浴温18℃、陰極電流密度20A/dm2で2分間電解し
た。次いで、この試験片を水洗した後、硫酸ニッケル24
0g/l、塩化ニッケル45g/lおよびホウ酸30g/lのめ
っき浴を使用して、空気攪拌下に浴温48〜53℃、陰極
電流密度4A/dm2で16分間電解して、約10μmのニッケル
めっき層を形成させた。次いで、この試験片を水洗した
後、硫酸コバルト120g/l、塩化コバルト30g/l、ホウ酸3
0g/lのコバルトめっき浴を使用して、空気攪拌下に浴温
約62℃、陰極電流密度4A/dm2で43分間電解して、約25μ
mのコバルトめっき層を形成させた。Comparative Example 3 A stainless steel test piece (SUS304) was electrolytically degreased, washed with water,
Then, soak in 10% hydrochloric acid for about 3 minutes, wash with water, and then use a plating bath of 240 g / l nickel chloride and 120 ml / l concentrated hydrochloric acid for 2 minutes at a bath temperature of 18 ° C and a cathode current density of 20 A / dm 2. Electrolyzed. Then, after washing this test piece with water, nickel sulfate 24
Using a plating bath of 0 g / l, 45 g / l of nickel chloride and 30 g / l of boric acid, electrolyze for 16 minutes at a bath temperature of 48 to 53 ° C. and a cathode current density of 4 A / dm 2 under agitation of air to about 10 μm. Of nickel plating layer was formed. Then, after washing this test piece with water, cobalt sulfate 120 g / l, cobalt chloride 30 g / l, boric acid 3
Using a 0 g / l cobalt plating bath, electrolyze for 43 minutes at a bath temperature of about 62 ° C and a cathode current density of 4 A / dm 2 under air agitation for about 25 μm.
m cobalt plating layer was formed.
【0034】得られた試験片の水中防汚性試験の判定値
は、3であった。The judgment value of the underwater antifouling test of the obtained test piece was 3.
【0035】比較例4 ステンレス鋼試験片に代えて軟鋼試験片を使用する以外
は比較例3と同様にして、約35μmのコバルトめっき層
を形成させた。Comparative Example 4 A cobalt plating layer having a thickness of about 35 μm was formed in the same manner as in Comparative Example 3 except that a mild steel test piece was used instead of the stainless steel test piece.
【0036】得られた試験片の水中防汚性試験の判定値
は、3であった。The judgment value of the underwater antifouling property test of the obtained test piece was 3.
【0037】比較例5 ステンレス鋼試験片(SUS304)を電解脱脂し、水洗し、
次に10%塩酸に3分間浸漬し、水洗した後、塩化ニッケ
ル240g/lおよび濃塩酸120ml/lのめっき浴を使用して、
浴温18℃、陰極電流密度20A/dm2で約2分間電解した。
次いで、この試験片を水洗した後、硫酸ニッケル240g/
l、塩化ニッケル45g/lおよびホウ酸30g/lのめっき浴を
使用して、空気攪拌下に浴温48〜53℃、陰極電流密度4A
/dm2で16分間電解して、約10μmのニッケルめっき層を
形成させた。次いで、この試験片を水洗した後、硫酸銅
200g/lおよび硫酸100g/lの銅めっき浴を使用して、空気
攪拌下に浴温約20〜25℃、陰極電流密度3A/dm2で41分間
電解して、約25μmの銅めっき層を形成させた。Comparative Example 5 A stainless steel test piece (SUS304) was electrolytically degreased and washed with water,
Then, soak in 10% hydrochloric acid for 3 minutes, wash with water, and then use a plating bath of nickel chloride 240g / l and concentrated hydrochloric acid 120ml / l.
Electrolysis was performed at a bath temperature of 18 ° C. and a cathode current density of 20 A / dm 2 for about 2 minutes.
Then, after washing this test piece with water, nickel sulfate 240 g /
l, nickel chloride 45g / l and boric acid 30g / l plating bath, bath temperature 48-53 ℃, cathode current density 4A under air stirring
Electrolysis was performed at / dm 2 for 16 minutes to form a nickel plating layer of about 10 μm. Then, after washing this test piece with water, copper sulfate
Using a copper plating bath of 200 g / l and sulfuric acid 100 g / l, electrolyze for 41 minutes at a bath temperature of about 20 to 25 ° C and a cathode current density of 3 A / dm 2 under air stirring to form a copper plating layer of about 25 μm. Formed.
【0038】得られた試験片の水中防汚性試験の判定値
は、3であった。The judgment value of the underwater antifouling property test of the obtained test piece was 3.
【0039】実施例1 ステンレス鋼試験片を電解脱脂した後、水洗し、次に10
%塩酸に約3分間浸漬し、水洗した。Example 1 A stainless steel test piece was electrolytically degreased, washed with water, and then washed with water.
% Hydrochloric acid for about 3 minutes and washed with water.
【0040】次いで、このステンレス鋼試験片を塩化ニ
ッケル240g/lおよび濃塩酸120ml/lを含むニッケルめっ
き浴を使用して、陰極電流密度20A/dm2で2分間電解め
っきした。次いで、試験片を水洗し、さらに硫酸ニッケ
ル240g/l、塩化ニッケル45g/lおよびホウ酸30g/lの無光
沢ニッケルめっき浴を使用して、空気攪拌下に陰極電流
密度4A/dm2で約16分間電解めっきを行って、厚さ約10μ
mのニッケルめっき層を形成させた。Then, this stainless steel test piece was electroplated for 2 minutes at a cathode current density of 20 A / dm 2 using a nickel plating bath containing 240 g / l of nickel chloride and 120 ml / l of concentrated hydrochloric acid. Next, the test piece was washed with water, and further, using a matte nickel plating bath of 240 g / l of nickel sulfate, 45 g / l of nickel chloride and 30 g / l of boric acid, with a cathode current density of 4 A / dm 2 under air stirring. Electrolytic plating is performed for 16 minutes and the thickness is about 10μ
m nickel plating layer was formed.
【0041】次いで、上記のニッケルめっき層を形成さ
せたステンレス鋼試験片を水洗した後、硫酸銅10g/l、
硫酸コバルト20g/l、ピロりん酸カリウム108g/lおよび
四ほう酸二カリウム40g/lの銅−コバルト合金めっき浴
を使用して、浴温55℃、陰極電流密度1A/dm2の条件下に
120分間電解し、水洗し、乾燥した。得られたCo/C
u合金めっき層の厚さは、約25μm(Cu含有量57重量
%)であった。Then, the stainless steel test piece on which the nickel plating layer was formed was washed with water, and then 10 g / l of copper sulfate,
Using a copper-cobalt alloy plating bath containing 20 g / l of cobalt sulfate, 108 g / l of potassium pyrophosphate and 40 g / l of dipotassium tetraborate, at a bath temperature of 55 ° C. and a cathode current density of 1 A / dm 2 .
It was electrolyzed for 120 minutes, washed with water and dried. Co / C obtained
The thickness of the u alloy plating layer was about 25 μm (Cu content 57% by weight).
【0042】得られた試験片の水中防汚性試験の判定値
は、2であった。The judgment value of the underwater antifouling property test of the obtained test piece was 2.
【0043】実施例2 軟鋼試験片を電解脱脂した後、水洗し、次に10%塩酸に
約2分間浸漬し、水洗し、10%塩酸に約3分間浸漬し、
水洗した。Example 2 A mild steel test piece was electrolytically degreased, washed with water, then immersed in 10% hydrochloric acid for about 2 minutes, washed with water and immersed in 10% hydrochloric acid for about 3 minutes,
Washed with water.
【0044】次に、この軟鋼試験片を塩化ニッケル240g
/lおよび濃塩酸120ml/lを含むニッケルめっき浴を使用
して、陰極電流密度20A/dm2で2分間電解めっきした。
次に、試験片を水洗した後、さらに硫酸ニッケル240g/
l、塩化ニッケル45g/lおよびホウ酸30g/lの無光沢ニッ
ケルめっき浴を使用して、空気攪拌下に陰極電流密度4A
/dm2で約16分間電解めっきを行って、厚さ約10μmのニ
ッケルめっき層を形成させた。Next, this mild steel test piece was filled with 240 g of nickel chloride.
Electrolytic plating was performed for 2 minutes at a cathode current density of 20 A / dm 2 using a nickel plating bath containing / l and concentrated hydrochloric acid of 120 ml / l.
Next, after washing the test piece with water, further nickel sulfate 240 g /
Cathode current density 4A under air agitation using a dull nickel plating bath of l, nickel chloride 45g / l and boric acid 30g / l
Electroplating was performed at / dm 2 for about 16 minutes to form a nickel plating layer having a thickness of about 10 μm.
【0045】次いで、上記のニッケルめっき層を形成さ
せた軟鋼試験片を水洗した後、硫酸銅22g/l、硫酸コバ
ルト20g/l、ピロりん酸カリウム148g/lおよび四ほう酸
二カリウム40g/lの銅−コバルト合金めっき浴を使用し
て、浴温55℃、陰極電流密度1A/dm2の条件下に120分間
電解し、水洗し、乾燥した。得られたCo/Cu合金め
っき層の厚さは、約25μm(Cu含有量71重量%)であ
った。Next, after washing the mild steel test piece on which the above nickel plating layer was formed, with water, 22 g / l of copper sulfate, 20 g / l of cobalt sulfate, 148 g / l of potassium pyrophosphate and 40 g / l of dipotassium tetraborate were added. Using a copper-cobalt alloy plating bath, electrolysis was performed for 120 minutes under conditions of a bath temperature of 55 ° C. and a cathode current density of 1 A / dm 2 , washed with water, and dried. The thickness of the obtained Co / Cu alloy plating layer was about 25 μm (Cu content: 71% by weight).
【0046】得られた試験片の水中防汚性試験の判定値
は、2であった。The judgment value of the underwater antifouling property test of the obtained test piece was 2.
【0047】実施例3 軟鋼試験片を電解脱脂した後、水洗し、次に10%塩酸に
2分間浸漬し、水洗し、10%塩酸に3分間浸漬し、水洗
した。Example 3 A mild steel test piece was electrolytically degreased, washed with water, then immersed in 10% hydrochloric acid for 2 minutes, washed with water, immersed in 10% hydrochloric acid for 3 minutes, and washed with water.
【0048】次いで、この軟鋼試験片を塩化ニッケル24
0g/lおよび濃塩酸120ml/lを含むニッケルめっき浴を使
用して、陰極電流密度20A/dm2で2分間電解めっきし
た。次いで、試験片を水洗した後、さらに硫酸ニッケル
240g/l、塩化ニッケル45g/lおよびホウ酸30g/lの無光沢
ニッケルめっき浴を使用して、空気攪拌下に浴温48〜53
℃、陰極電流密度4A/dm2で約16分間電解めっきを行っ
て、厚さ約10μmのニッケルめっき層を形成させた。Then, this mild steel test piece was subjected to nickel chloride 24
Using a nickel plating bath containing 0 g / l and concentrated hydrochloric acid 120 ml / l, electroplating was performed for 2 minutes at a cathode current density of 20 A / dm 2 . Then, after washing the test piece with water, nickel sulfate is further added.
Using a matte nickel plating bath of 240g / l, nickel chloride 45g / l and boric acid 30g / l, bath temperature 48-53 under air stirring
Electrolytic plating was performed at a temperature of 4 ° C. and a cathode current density of 4 A / dm 2 for about 16 minutes to form a nickel plating layer having a thickness of about 10 μm.
【0049】次いで、上記のニッケルめっき層を形成さ
せた軟鋼試験片を水洗した後、硫酸銅5.8g/l、硫酸コバ
ルト20g/l、ピロりん酸カリウム95g/lおよび四ほう酸二
カリウム40g/lの銅−コバルト合金めっき浴を使用し
て、浴温55℃、陰極電流密度1A/dm2の条件下に120分間
電解し、水洗し、乾燥した。得られたCo/Cu合金め
っき層の厚さは、約25μm(Cu含有量35重量%)であ
った。Then, the mild steel test piece on which the nickel plating layer was formed was washed with water and then copper sulfate 5.8 g / l, cobalt sulfate 20 g / l, potassium pyrophosphate 95 g / l and dipotassium tetraborate 40 g / l. Using the copper-cobalt alloy plating bath of No. 1, electrolysis was performed for 120 minutes under conditions of a bath temperature of 55 ° C. and a cathode current density of 1 A / dm 2 , washed with water, and dried. The thickness of the obtained Co / Cu alloy plating layer was about 25 μm (Cu content 35% by weight).
【0050】得られた試験片の水中防汚性試験の判定値
は、2であった。The judgment value of the underwater antifouling property test of the obtained test piece was 2.
【0051】実施例4 ABS樹脂試験片を洗浄液(炭酸ナトリウム10g/l、り
ん酸ナトリウム20g/lおよび界面活性剤2ml/l)に温度50
℃で4分間浸漬し、水洗した後、無水クロム酸400g/lと
硫酸400g/lとの混合水溶液に温度67℃で10分間浸漬し
て、エッチングを行った。Example 4 ABS resin test pieces were immersed in a washing solution (sodium carbonate 10 g / l, sodium phosphate 20 g / l and surfactant 2 ml / l) at a temperature of 50.
After immersing at ℃ for 4 minutes and washing with water, it was immersed for 10 minutes at a temperature of 67 ℃ in a mixed aqueous solution of chromic anhydride 400 g / l and sulfuric acid 400 g / l for etching.
【0052】次いで、上記のABS樹脂試験片を水洗
し、濃塩酸50ml/lと酸性亜硫酸ナトリウム8ml/lと
の混合水溶液に2分間浸漬した後、水洗して中和した。Next, the above ABS resin test piece was washed with water, immersed in a mixed aqueous solution of concentrated hydrochloric acid 50 ml / l and acidic sodium sulfite 8 ml / l for 2 minutes, and then washed with water to be neutralized.
【0053】次いで、この試験片を塩化第一スズ10g/l
および濃塩酸8ml/lの混合水溶液に5分間浸漬し、水洗
した後、塩化パラジウム0.2g/l、濃塩酸3ml/lの混合水
溶液に4分間浸漬し、水洗した。Then, this test piece was treated with stannous chloride 10 g / l.
Then, it was immersed in a mixed aqueous solution of 8 ml / l of concentrated hydrochloric acid for 5 minutes, washed with water, then immersed in a mixed aqueous solution of 0.2 g / l of palladium chloride and 3 ml / l of concentrated hydrochloric acid for 4 minutes, and washed with water.
【0054】次いで、上記の処理を終えたABS樹脂試
験片を硫酸ニッケル21g/l、乳酸28g/l、プロピオン酸2.
3g/lおよび次亜リン酸21g/lの無電解ニッケルめっき浴
に温度90℃、pH5.2で10分間浸漬し、水洗した後、さら
に硫酸100g/lの水溶液に浸漬し、水洗した。Next, the ABS resin test piece that had been subjected to the above treatment was treated with nickel sulfate 21 g / l, lactic acid 28 g / l, propionic acid 2.
It was immersed in an electroless nickel plating bath containing 3 g / l and 21 g / l hypophosphorous acid at a temperature of 90 ° C. and a pH of 5.2 for 10 minutes, washed with water, further immersed in an aqueous solution of 100 g / l sulfuric acid, and washed with water.
【0055】次いで、上記の処理を終えたABS樹脂試
験片を硫酸ニッケル240g/l、塩化ニッケル45g/lおよび
ホウ酸30g/lのニッケルめっき浴に浸漬し、浴温35℃、
陰極電流密度1A/cm2で7分間電解した後、水洗し、ニッ
ケルめっきを層形成させた。Next, the ABS resin test piece which has been subjected to the above treatment is immersed in a nickel plating bath of nickel sulfate 240 g / l, nickel chloride 45 g / l and boric acid 30 g / l, and the bath temperature is 35 ° C.
After electrolysis was carried out for 7 minutes at a cathode current density of 1 A / cm 2 , it was washed with water to form a nickel plating layer.
【0056】次いで、上記のABS樹脂試験片を硫酸ニ
ッケル240g/l、塩化ニッケル45g/lおよびホウ酸30g/lの
ニッケルめっき浴に浸漬し、空気攪拌下に浴温48〜53
℃、陰極電流密度4A/cm2で16分間電解した後、水洗し、
無光沢ニッケルめっき層(約10μm)を形成させた。Next, the above ABS resin test piece was immersed in a nickel plating bath of nickel sulfate 240 g / l, nickel chloride 45 g / l and boric acid 30 g / l, and the temperature of the bath was 48 to 53 while stirring with air.
After electrolysis for 16 minutes at ℃, cathode current density 4A / cm 2 , washed with water,
A matte nickel plating layer (about 10 μm) was formed.
【0057】次いで、上記のABS樹脂試験片を硫酸銅
22g/l、硫酸コバルト20g/l、ピロりん酸カリウム148g/l
および四ほう酸二カリウム40g/lの銅−コバルト合金め
っき浴を使用して、浴温55℃、陰極電流密度1A/dm2の条
件下に80分間電解し、水洗し、乾燥した。得られたCo
/Cu合金めっき層の厚さは、約17μm(Cu含有量71
重量%)であった。Then, the above ABS resin test piece was treated with copper sulfate.
22g / l, cobalt sulfate 20g / l, potassium pyrophosphate 148g / l
Using a copper-cobalt alloy plating bath containing 40 g / l of dipotassium tetraborate and a bath temperature of 55 ° C. and a cathode current density of 1 A / dm 2 , electrolysis was performed for 80 minutes, washing with water, and drying. Obtained Co
/ Cu alloy plating layer has a thickness of about 17 μm (Cu content 71
% By weight).
【0058】得られた試験片の水中防汚性試験の判定値
は、2であった。The judgment value of the underwater antifouling property test of the obtained test piece was 2.
【0059】実施例5 ポリアミド試験片を水酸化ナトリウム100g/lおよび界面
活性剤2ml/lの組成を有する洗浄液に温度60℃で10分間
浸漬し、水洗し、次いで塩酸80ml/lの水溶液に温度25℃
で約3分間浸漬し、水洗した後、濃塩酸5ml/lと酸性亜
硫酸ナトリウム3g/lの混合水溶液に2分間浸漬し、水洗
して洗浄した。Example 5 A polyamide test piece was immersed in a cleaning solution having a composition of 100 g / l of sodium hydroxide and 2 ml / l of a surfactant at a temperature of 60 ° C. for 10 minutes, washed with water, and then immersed in an aqueous solution of 80 ml / l of hydrochloric acid. 25 ° C
After immersing in water for about 3 minutes and washing with water, it was immersed in a mixed aqueous solution of concentrated hydrochloric acid 5 ml / l and acidic sodium sulfite 3 g / l for 2 minutes, washed with water and washed.
【0060】次に、上記の様にして洗浄したポリアミド
試験片を塩化第一スズ10g/lと濃塩酸8ml/lの混合溶液に
5分間浸漬し、水洗した後、塩化パラジウム0.3g/lと濃
塩酸3ml/lの混合水溶液に4分間浸漬し、水洗して、活
性化および触媒の付与を行った。Next, the polyamide test piece washed as described above was immersed in a mixed solution of 10 g / l of stannous chloride and 8 ml / l of concentrated hydrochloric acid for 5 minutes, washed with water, and then with 0.3 g / l of palladium chloride. It was immersed in a mixed aqueous solution of concentrated hydrochloric acid of 3 ml / l for 4 minutes and washed with water to activate and apply a catalyst.
【0061】次に、上記のようにして前処理した試験片
を硫酸ニッケル21g/l、乳酸28g/l、プロピオン酸2.3g/l
および次亜リン酸21g/lからなる無電解Niめっき浴を
使用して、温度90℃、pH5.2、浸漬時間10分の条件
で無電解Niめっき処理した。Next, the test piece pretreated as described above was treated with nickel sulfate 21 g / l, lactic acid 28 g / l and propionic acid 2.3 g / l.
Using an electroless Ni plating bath consisting of 21 g / l of hypophosphorous acid, electroless Ni plating was performed under the conditions of temperature 90 ° C., pH 5.2, and immersion time 10 minutes.
【0062】次いで、Ni無電解めっき処理後の試験片
を水洗した後、硫酸100g/lの水溶液に浸漬し、水洗し、
次いで硫酸ニッケル240g/l、塩化ニッケル45g/lおよび
ホウ酸30g/lという組成のニッケル電解めっき浴を使用
して、電解めっきを行った。電解めっき処理に際して
は、浴温35℃、陰極電流密度1A/dm2で7分間電解した
後、水洗した。この結果、全厚さ約1μmのニッケルめ
っき層が形成された。Next, the test piece after the Ni electroless plating treatment was washed with water, then immersed in an aqueous solution of sulfuric acid 100 g / l and washed with water,
Next, electrolytic plating was performed using a nickel electrolytic plating bath having a composition of 240 g / l of nickel sulfate, 45 g / l of nickel chloride and 30 g / l of boric acid. In the electrolytic plating treatment, electrolysis was carried out for 7 minutes at a bath temperature of 35 ° C. and a cathode current density of 1 A / dm 2 , followed by washing with water. As a result, a nickel plating layer having a total thickness of about 1 μm was formed.
【0063】次いで、電解Niめっきを行ったポリアミ
ド試験片に無光沢ニッケルめっきを施した。浴組成は、
硫酸ニッケル240g/l、塩化ニッケル45g/lおよびホウ酸3
0g/lである。めっき操作は、空気撹拌下に浴温48〜53
℃、陰極電流密度4A/dm2で16分間行い、厚さ10mのニッ
ケルめっき層を形成した。Then, a polyamide test piece plated with electrolytic Ni was plated with dull nickel. The bath composition is
240g / l nickel sulphate, 45g / l nickel chloride and 3 boric acids
It is 0 g / l. For plating operation, the bath temperature should be 48 to 53 with air stirring.
It was carried out at a temperature of 4 ° C. and a cathode current density of 4 A / dm 2 for 16 minutes to form a nickel plating layer having a thickness of 10 m.
【0064】次いで、上記の様にして無光沢ニッケルめ
っき層を形成したポリアミド試験片を水洗し、Co/C
u合金めっき層を形成した。Co/Cu合金めっき浴の
組成は、硫酸銅10g/l、硫酸コバルト20g/l、ピロりん酸
カリウム108g/lおよび四ほう酸二カリウム40g/lであ
り、めっきに際しては、浴温55℃、陰極電流密度1A/dm2
の条件で96分間電解し、水洗し、乾燥した。得られたC
o/Cu合金めっき層の厚さは、約20μm(Cu含有
量57重量%)であった。Then, the polyamide test piece on which the matte nickel plating layer was formed as described above was washed with water and Co / C
A u alloy plating layer was formed. The composition of the Co / Cu alloy plating bath was copper sulfate 10 g / l, cobalt sulfate 20 g / l, potassium pyrophosphate 108 g / l and dipotassium tetraborate 40 g / l. Current density 1A / dm 2
It electrolyzed for 96 minutes on condition of, was washed with water, and was dried. C obtained
The thickness of the o / Cu alloy plating layer was about 20 μm (Cu content 57% by weight).
【0065】得られた試験片の水中防汚性試験の判定値
は、2であった。The judgment value of the underwater antifouling property test of the obtained test piece was 2.
Claims (2)
重量%含む銅−コバルト合金めっき層を設けた水中にお
ける防汚性に優れためっき製品。1. Copper 22 to 88 for metal or plastic
A plated product having a copper-cobalt alloy plating layer containing 50% by weight and having excellent antifouling properties in water.
めっき層、ニッケル合金めっき層およびコバルトめっき
層の少なくとも1種と(2)銅を22〜88重量%含む
銅−コバルト合金めっき層を順次設けた水中における防
汚性に優れためっき製品。2. A metal or plastic is sequentially provided with (1) at least one of a nickel plating layer, a nickel alloy plating layer and a cobalt plating layer and (2) a copper-cobalt alloy plating layer containing 22 to 88% by weight of copper. A plated product with excellent antifouling properties in water.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11854295A JPH08311686A (en) | 1995-05-17 | 1995-05-17 | Plated product excellent in stain resistance in water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11854295A JPH08311686A (en) | 1995-05-17 | 1995-05-17 | Plated product excellent in stain resistance in water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08311686A true JPH08311686A (en) | 1996-11-26 |
Family
ID=14739175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11854295A Withdrawn JPH08311686A (en) | 1995-05-17 | 1995-05-17 | Plated product excellent in stain resistance in water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08311686A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000198709A (en) * | 1998-11-06 | 2000-07-18 | Kobe Steel Ltd | Antimicrobial member |
KR20210097465A (en) * | 2020-01-30 | 2021-08-09 | 주식회사 미래인더스트리 | Oil-water separation board for oil-water separator having antibacterial function |
-
1995
- 1995-05-17 JP JP11854295A patent/JPH08311686A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000198709A (en) * | 1998-11-06 | 2000-07-18 | Kobe Steel Ltd | Antimicrobial member |
JP4551516B2 (en) * | 1998-11-06 | 2010-09-29 | 株式会社神戸製鋼所 | Antibacterial material |
KR20210097465A (en) * | 2020-01-30 | 2021-08-09 | 주식회사 미래인더스트리 | Oil-water separation board for oil-water separator having antibacterial function |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6331239B1 (en) | Method of electroplating non-conductive plastic molded products | |
US3664933A (en) | Process for acid copper plating of zinc | |
US20100167085A1 (en) | Electroplating Method and Electroplated Product | |
US11047052B2 (en) | Resin plating method | |
CN102363884B (en) | Surface treatment process for zinc alloy die casting | |
US5234574A (en) | Process for direct zinc electroplating of aluminum strip | |
CA1137396A (en) | Composition and process for chemically stripping metallic deposits | |
US4904354A (en) | Akaline cyanide-free Cu-Zu strike baths and electrodepositing processes for the use thereof | |
US20030085130A1 (en) | Zinc-nickel electrolyte and method for depositing a zinc-nickel alloy therefrom | |
US2457059A (en) | Method for bonding a nickel electrodeposit to a nickel surface | |
JP2007254866A (en) | Plating pretreatment method for aluminum or aluminum alloy raw material | |
JPH08311686A (en) | Plated product excellent in stain resistance in water | |
CN112111765B (en) | Method for forming nickel-tungsten alloy coating | |
CA1153978A (en) | Coating aluminium alloy with cyanide-borate before electroplating with bronze | |
GB1445553A (en) | Process for producing an adherent metal coating on an article | |
JP2962496B2 (en) | Magne-based alloy plating method | |
US3689380A (en) | Process for acid copper plating of steel | |
JPH08311687A (en) | Antifungal plated product | |
JPS5887296A (en) | Method for applying gold plating directly on stainless steel | |
EP2334844B1 (en) | Method for the electrolytic plating of an article, and an electrolytic solution | |
JPH08120482A (en) | Antibacterial plated product | |
RU2233915C1 (en) | Method of creation of a protective decorative coating | |
JP2007100197A (en) | Galvanizing treatment method | |
JPS6011117B2 (en) | Manufacturing method of iron-zinc alloy electroplated steel sheet | |
Hoque et al. | Electroplating of chromium from Cr (III) aqueous solutions on the mild steel: Optimization of bath constituents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020806 |