JP4550367B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4550367B2
JP4550367B2 JP2003085180A JP2003085180A JP4550367B2 JP 4550367 B2 JP4550367 B2 JP 4550367B2 JP 2003085180 A JP2003085180 A JP 2003085180A JP 2003085180 A JP2003085180 A JP 2003085180A JP 4550367 B2 JP4550367 B2 JP 4550367B2
Authority
JP
Japan
Prior art keywords
vent hole
gas vent
elastic body
secondary battery
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003085180A
Other languages
Japanese (ja)
Other versions
JP2004296192A (en
Inventor
雅秋 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003085180A priority Critical patent/JP4550367B2/en
Publication of JP2004296192A publication Critical patent/JP2004296192A/en
Application granted granted Critical
Publication of JP4550367B2 publication Critical patent/JP4550367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池に関するものである。
【0002】
【従来の技術】
リチウムイオン二次電池のような非水電解質二次電池は、従来のアルカリ蓄電池や鉛蓄電池に比べて作動電圧が高く、重量当たりのエネルギー密度と体積当たりエネルギー密度のいずれも実用化された電池の中で最も大きいことから、近年大きく需要が伸びている。
【0003】
しかしながら、高い作動電圧が得られることの裏返しとして充電状態の電極は、正極及び負極ともに著しく異常な高温環境下におかれると電解液と酸化状態の正極、あるいは電解液と還元状態の負極がわずかながら反応するため、発生したガスによって外装缶の内部圧力が上昇し、外装缶が膨れて変形を生じるという問題点を生じる。通常、電池はプラスチックケースなどに収められ、電池パックとして携帯機器に組み込まれるため、外装缶が変形すると携帯機器の外形に歪を生じることになり、装置の外観を損なうという不具合を生じる。
【0004】
特開2000−268811号公報には、密閉式電池の封口蓋の注液孔の封止栓として、封口蓋の表面上に注液孔を蔽う状態で固着されている支持部材と、弾性を有する材料で形成され前記注液孔に圧入された状態で前記支持部材によって支持されている圧入部材とから構成されているものを用いることが記載されている。
【0005】
【特許文献1】
特開2000−268811号公報(特許請求の範囲)
【0006】
【発明が解決しようとする課題】
本発明は、高温環境下での外装缶の膨れが抑制された非水電解質二次電池を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明に係る非水電解質二次電池は、外装缶と、
前記外装缶内に収納され、正極及び負極を含む電極群と、
前記電極群に保持される非水電解質と、
前記外装缶の開口部に配置される封口板と、
前記外装缶または前記封口板に開口されたガス抜き孔と、
前記ガス抜き孔とは異なる形状で前記ガス抜き孔の開口面積以上の面積を有する封止断面部を有する弾性体とを具備し、
前記弾性体は前記ガス抜き孔に挿入され、前記弾性体の前記封止断面部の周面全体が前記ガス抜き孔の内面と圧縮状態で接していることを特徴とするものである。
【0008】
【発明の実施の形態】
本発明に係る非水電解質二次電池は、外装缶と、前記外装缶内に収納され、正極及び負極を含む電極群と、前記電極群に保持される非水電解質と、前記外装缶の開口部に配置される封口板と、前記外装缶または前記封口板に開口されたガス抜き孔と、前記ガス抜き孔とは異なる形状で前記ガス抜き孔の開口面積以上の大きさの封止断面部を有する弾性体とを具備し、
前記弾性体は前記ガス抜き孔に挿入され、前記弾性体の前記封止断面部が前記ガス抜き孔の内面と圧縮状態で接していることを特徴とするものである。
【0009】
非水電解質二次電池、特に環状カーボネートあるいは鎖状カーボネートを含む非水電解質を用いる二次電池では、満充電もしくは満充電に近い状態において、高温環境下(例えば90℃程度)におかれると、非水電解質中のカーボネート類と高酸化状態にある正極とが反応して炭酸ガスなどの分解生成物を生じる。発生したガスによる内圧上昇と電池膨れとを抑制するためには、発生したガスを外部に逃がす機構を設ける必要がある。
【0010】
一方で、二次電池に含まれる非水電解質や負極は水分と反応性を有するため、空気中の湿分がセル内に入り込むことを極力抑制する必要がある。
【0011】
これらを両立させるために、封口板にガス抜き孔を開口し、このガス抜き孔をゴム製の栓で封止することにより通常は外部からの湿分の侵入を防止し、発生したガスで外装缶内の圧力が上昇した場合にだけ封止状態が解除され、ガス抜き孔からガスを外部に放出させる機構が提案されている。しかしながら、ゴム状高分子などの弾性材料は一般に温度上昇に伴って体積膨張するため、通常の使用条件つまり室温付近での封止性を良くする目的できつく栓をすると、高温状態ではさらに栓がきつくなり、外装缶内の圧力上昇時に所期の圧力逃がし機構が働かない場合があり、作動が不安定になるという問題がある。
【0012】
本発明では、外装缶または封口板に開口されたガス抜き孔に挿入する弾性体として、ガス抜き孔とは異なる形状でガス抜き孔の開口面積以上の大きさの封止断面部を有するものを使用する。この封止断面部は、ガス抜き孔の内面と圧縮状態で接触するため、弾性体とガス抜き孔内面との間に十分な反発弾性力を生じさせることができ、弾性体によりガス抜き孔の封止を行なうことができる。このため、通常使用時の外部からの湿分の侵入を充分抑制することができる。また、高温条件下でガス発生を生じる際、弾性体が熱膨張するが、ガス抜き孔と封止断面部の形状が異なるために封止断面部の圧縮状態が均等でなく、相対的に弱い部分を確保することができることから、高温状態で内部圧力が上昇した場合の圧力逃がしを再現性よく行うことができる。
【0013】
また、封止断面部の自由状態での最小差し渡し長さを、ガス抜き孔の最大差し渡し長さよりも長くすることによって、弾性体がガス抜き孔から抜け落ちてしまうのを防止することができると共に、電池膨れのばらつきを小さくすることができる。
【0014】
以下、本発明に係る非水電解質二次電池の一例を図1〜図4を参照して説明する。
【0015】
図1は、本発明に係る非水電解質二次電池の一実施形態である角形非水電解質二次電池を示す部分分解斜視図で、図2は、図1の二次電池の要部を示す断面図で、図3は、図2におけるIII−III線に沿う断面図である。
【0016】
矩形筒状の外装缶1は、正極端子を兼ね、例えばアルミニウムやアルミニウム合金のような金属から形成されている。この外装缶1内には、正極と負極とがその間にセパレータを介在して偏平形状に捲回された電極群2が収納されている。
非水電解液は、外装缶1内に収容されている。絶縁板3は、電極群2上に配置されている。正極端子を兼ねる金属製(例えば、アルミニウム、アルミニウム合金)の封口板4は、外装缶1の開口部に例えばレーザ溶接により取り付けられている。帽子形状の負極端子5は、封口板4に絶縁材料6を介して取り付けられている。
【0017】
正極集電タブ7は、一端が電極群2の正極に接続され、かつ他端が封口板4の下面に接続されている。また、負極集電タブ8は、一端が電極群2の負極に接続され、かつ他端が負極端子5に接続されている。
【0018】
封口板4の一部は円形に窪んでおり、この窪み部9内に円形のガス抜き孔10が開口されている。弾性体11は、周面(曲面)の一部を切り欠くことにより周面の一部に平面領域11aを設けた円錐台構造をしている。この弾性体11の大径面12aは、ガス抜き孔10の開口面積よりも大きな面積を持つ。一方、小径面12bは、ガス抜き孔10の開口面積よりも小さい面積を持つ。このような弾性体11をガス抜き孔10に、大径面12aが封口板4の窪み部9内に位置し、かつ小径面12bが封口板4の内面側に位置するように挿入すると、ガス抜き孔10の開口面積以上の大きさを持つ封止断面部が、ガス抜き孔10の内面と圧縮状態で接し、その結果、ガス抜き孔10が封止される。この封止断面部は、自由状態(ガス抜き孔10に挿入されていない状態)での最小差し渡し長さDが、ガス抜き孔10の直径よりも長いことが望ましい。これにより、電池膨れのばらつきを抑制することができると共に、特に封口板4に窪み部9を設けた際に弾性体11がガス抜き孔10から外装缶1内に抜け落ちるのを防止することが可能になる。弾性体11を形成する弾性材料には、非水電解質に対する耐膨潤性の高いものを使用することが望ましい。このような弾性材料としては、例えば、エチレン-ポリエチレン-ジエン共重合体(EPDM)ゴム等を挙げることができる。
【0019】
弾性体11はガス抜き孔10に挿入された後、外装缶1内部の圧力が上昇した際に押し出されることがないように背板13で封口板4に固定される。背板13は例えばアルミニウム薄板により構成することができ、封口板4との間に隙間を残した形状で多点溶接することでガス拡散経路を確保することができる。
【0020】
なお、前述した図1〜図3では、封口板4に窪み部9を設けた例を説明したが、封口板4には、窪み部9が設けられていない平板を用いても良い。
【0021】
以上説明した図1〜図3に示す非水電解質二次電池によれば、通常時には、ガス抜き孔10の開口面積以上の面積を有する封止断面部が圧縮状態でガス抜き孔10の内面に接しているため、ガス抜き孔10からの湿分の侵入を十分に抑制することができる。この二次電池を充電状態で高温環境下に保管すると、非水電解質の酸化分解等によりガスが発生し、また、弾性体11に熱膨張を生じるが、封止断面部の圧縮状態にばらつきがあって相対的に弱い箇所が存在しているため、この弱い箇所からガスが外部に漏れ出すように抜け、外装缶1の膨れを抑えることができる。
【0022】
以下、正極、負極、セパレータ及び非水電解質について説明する。
【0023】
1)正極
この正極に含まれる正極活物質としては、種々の酸化物、例えば二酸化マンガン、リチウムマンガン複合酸化物、リチウム含有ニッケル酸化物、リチウム含有コバルト酸化物、リチウム含有ニッケルコバルト酸化物、リチウム含有鉄酸化物、リチウムを含むバナジウム酸化物や、二硫化チタン、二硫化モリブデンなどのカルコゲン化合物などを挙げることができる。
【0024】
2)負極
この負極に含まれる活物質としては、例えば、リチウムイオンを吸蔵・放出する炭素質物またはカルコゲン化合物を含むもの、軽金属からなるもの等を挙げることができる。
【0025】
リチウムイオンを吸蔵・放出する炭素質物としては、例えば、コークス、炭素繊維、熱分解気相炭素物、黒鉛、樹脂焼成体、メソフェーズピッチ系炭素繊維またはメソフェーズ球状カーボンの焼成体などを挙げることができる。中でも、2500℃以上で黒鉛化したメソフェーズピッチ系炭素繊維またはメソフェーズ球状カーボンが電極容量が高くなるため好ましい。
【0026】
リチウムイオンを吸蔵・放出するカルコゲン化合物としては、例えば、二硫化チタン(TiS)、二硫化モリブデン(MoS)、セレン化ニオブ(NbSe)などを挙げることができる。
【0027】
軽金属としては、例えば、アルミニウム、アルミニウム合金、リチウム金属、リチウム合金などを挙げることができる。
【0028】
3)セパレータ
セパレータは、例えば不織布、ポリプロピレン微多孔フィルム、ポリエチレン微多孔フィルム、ポリエチレン−ポリプロピレン微多孔積層フィルム等を使用することができる。
【0029】
4)非水電解質
非水電解質としては、液状の非水電解質(いわゆる非水電解液)、ゲル状非水電解質、固体非水電解質等を使用することができる。非水電解液は、非水溶媒と、この非水溶媒に溶解される電解質(例えば、リチウム塩)とを含むものである。
【0030】
非水溶媒としては、例えば、プロピレンカーボネート(PC)やエチレンカーボネート(EC)などの環状カーボネート、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)やジエチルカーボネート(DEC)などの鎖状カーボネート、1,2−ジメトキシエタン(DME)やジエトキシエタン(DEE)などの鎖状エーテル、テトラヒドロフラン(THF)や2−メチルテトラヒドロフラン(2−MeTHF)などの環状エーテルやクラウンエーテル、γ−ブチロラクトン(γ−BL)などの脂肪酸エステル、アセトニトリル(AN)などの窒素化合物、スルホラン(SL)やジメチルスルホキシド(DMSO)などの硫黄化合物などを挙げることができる。非水溶媒の種類は、1種類または2種類以上にすることができる。
【0031】
中でも、EC、PC及びγ−BLから選ばれる少なくとも1種からなるものや、EC、PC及びγ−BLから選ばれる少なくとも1種とDMC、MEC、DEC、DME、DEE、THF、2−MeTHF及びANから選ばれる少なくとも1種からなる混合溶媒を用いることが望ましい。特に負極にリチウムイオンを吸蔵・放出する炭素質物を含むものを用いる場合には、二次電池のサイクル寿命を向上させる観点から、ECとPCとγ−BL、ECとPCとMEC、ECとPCとDEC、ECとPCとDEE、ECとAN、ECとMEC、PCとDMC、PCとDECまたはECとDECからなる混合溶媒を用いることが望ましい。
【0032】
電解質としては、例えば、過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LIPF)、四フッ化硼酸リチウム(LiBF)、六フッ化砒酸リチウム(LiAsF)、トリフルオロメタスルホン酸リチウム(LiCFSO)、四塩化アルミニウムリチウム(LiAlCl)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CFSO]などのリチウム塩を挙げることができる。中でもLIPF、LiBF、LiN(CFSOを用いると、導電性や安全性が向上されるために好ましい。
【0033】
電解質の非水溶媒に対する溶解量は、0.5モル/L〜2モル/Lの範囲にすることが好ましい。
【0034】
【実施例】
以下、本発明の実施例を前述した図面を参照して詳細に説明する。
【0035】
(実施例1)
<電極群の作製と非水電解液の調製>
活物質としてコバルト酸リチウムを含むスラリーを集電体であるアルミニウム箔に塗着し、乾燥し、プレスすることにより正極を作製した。一方、活物質としてグラファイト系炭素材料を含むスラリーを集電体である銅箔に塗着し、乾燥し、プレスすることにより負極を作製した。正極と負極とをその間にセパレータを介在させて偏平形状に捲回することにより電極群2を作製した。また、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)を体積比で1:2で混合した非水溶媒に、LiPF6を1mol/Lの濃度で溶解させることにより非水電解液を調製した。
【0036】
<封口部材の組立て>
矩形のアルミニウム板(厚さが1.0mm)の一部にプレス加工により円形の窪み部9を形成し、この窪み部9内に円形(直径が1.0mm)のガス抜き孔10を開口することにより、封口板4を得た。大径面12aの直径が1.4mmで、小径面12bの直径が0.8mmで、かつ高さが2.0mmの円錐台形状のEPDMゴムを用意し、この曲面の一部を切り欠いて大径面側における幅が9.0mmの平面領域11aを設けることにより、弾性体11を用意した。この弾性体11の大径面12aの面積は、ガス抜き孔10の開口面積よりも大きく、かつ小径面12bの面積は、ガス抜き孔10の開口面積よりも小さい。この弾性体11を大径面12aを上にしてガス抜き孔10内に挿入すると、ガス抜き孔10の開口面積以上の断面積を有する箇所(封止断面部)がガス抜き孔10の内面に圧縮状態で接し、ガス抜き孔10を弾性体11により封止できた。この封止断面部の自由状態での最小差し渡し長さDは、1.1mm〜1.4mmで、ガス抜き孔10の直径(最大差し渡し長さ)よりも大きかった。
【0037】
矩形のアルミニウム板からなる背板13を用意し、封口板4の窪み部9を背板13で覆い、スポット溶接により固定した。封口板4と背板13との非溶接部は、ガス抜き通路として機能することができる。
【0038】
<電池組立て>
正極端子を兼ねるアルミニウム角型缶(外装缶)1に電極群2を収納した後、非水電解液を2g注入した。正極の集電タブ7を封口板4に溶接し、また、負極の集電タブ8を負極端子5に溶接した。封口板4を外装缶1にレーザ溶接することにより、外形寸法(高さ40mm、幅30mm)で、4.2V定電流・定電圧充電後の電池厚さが5.2mmで、0.2C放電容量が630mAhの角形非水電解質二次電池を組み立てた。
【0039】
かかる電池を10個作製し、4.2V定電流・定電圧充電(定電流値630mA、充電時間3時間)した後、90℃の恒温槽中に五日間貯蔵し、貯蔵終了直後の膨れ量(貯蔵後の電池厚さから貯蔵前の電池厚さを差し引いた値)を測定し、電池10個についての平均を求め、その結果を下記表1に示す。また、下記(1)式より膨れの変動係数(%)を求め、その結果を下記表1に併記する。
【0040】
膨れの変動係数(%)=(σ/Ave.)×100 (1)
但し、σは膨れ量ばらつきの標準偏差で、Ave.は膨れ量の平均値である。
【0041】
(実施例2)
ガス抜き孔の形状を楕円(長径が1.1mmで、短径が1.0mm)に変更した。また、大径面の直径が1.4mmで、小径面の直径が0.8mmで、かつ高さが2.0mmのEPDM製の円錐台を弾性体として用意した。封止断面部の自由状態での最小差し渡し長さDは、1.15mm〜1.4mmで、ガス抜き孔の長径(最大差し渡し長さ)よりも大きかった。その他の構成は前述した実施例1と同様な角形非水電解質二次電池を組み立て、実施例1で説明したのと同様にして膨れ量の平均値と膨れの変動係数を求め、その結果を下記表1に示す。
【0042】
(実施例3)
弾性体11の切り欠き部(平面領域11a)の大径面側における幅を10mmに拡大することにより、封止断面部の自由状態での最小差し渡し長さDを0.9mm〜0.99mmとガス抜き孔10の直径(最大差し渡し長さ)よりも小さくすること以外は、前述した実施例1で説明したのと同様な構成の角形非水電解質二次電池を組み立て、実施例1で説明したのと同様にして膨れ量の平均値と膨れの変動係数を求め、その結果を下記表1に示す。
【0043】
(比較例1)
弾性体11に切り欠き部(平面領域11a)を設けなかったこと以外は、前述した実施例1で説明したのと同様な構成の角形非水電解質二次電池を組み立て、実施例1で説明したのと同様にして膨れ量の平均値と膨れの変動係数を求め、その結果を下記表1に示す。
【0044】
(比較例2)
弾性体として平板状ゴムを用い、この平板状ゴムを背板で封口板に圧着すること以外は、前述した実施例1で説明したのと同様な構成の角形非水電解質二次電池を組み立て、実施例1で説明したのと同様にして膨れ量の平均値と膨れの変動係数を求め、その結果を下記表1に示す。
【0045】
【表1】

Figure 0004550367
【0046】
表1から明らかなように、ガス抜き孔とは異なる形状でガス抜き孔の開口面積以上の面積の封止断面部を有する弾性体を用いる実施例1〜3の二次電池は、充電高温貯蔵時の膨れが比較例1〜2に比較して小さいことがわかる。特に、封止断面部の最小差し渡し長さがガス抜き孔の最大差し渡し長さよりも大きい実施例1〜2の二次電池は、膨れ度合いのばらつきを示す膨れの変動係数が10%台と小さかった。
【0047】
これに対し、封止断面部の形状がガス抜き孔と同じである比較例1の二次電池と、ガス抜き孔に平板状ゴムを圧着させた構成の比較例2の二次電池は、膨れ量が大きく、そのばらつきも大きかった。
【0048】
【発明の効果】
以上詳述したように本発明によれば、高温貯蔵時の外装缶の膨れが抑制された非水電解質二次電池を提供することができる。
【図面の簡単な説明】
【図1】 本発明に係る非水電解質二次電池の一実施形態である角形非水電解質二次電池を示す部分分解斜視図。
【図2】 図1の二次電池の要部を示す断面図。
【図3】 図2におけるIII−III線に沿う断面図。
【符号の説明】
1…外装缶、2…電極群、4…封口板、5…負極端子、6…絶縁部材、9…窪み部、10…ガス抜き孔、11…弾性体、12a…大径面、12b…小径面、13…背板。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
Nonaqueous electrolyte secondary batteries, such as lithium ion secondary batteries, have a higher operating voltage than conventional alkaline storage batteries and lead storage batteries, and are practically used for both energy density by weight and energy density by volume. Since it is the largest, demand has increased greatly in recent years.
[0003]
However, as a reverse of the fact that a high operating voltage can be obtained, when the electrode in the charged state is placed in a remarkably abnormal high temperature environment, the electrolyte and the oxidized positive electrode or the electrolyte and the reduced negative electrode are slightly However, since the reaction occurs, the internal pressure of the outer can rises due to the generated gas, causing the problem that the outer can expands and deforms. Usually, since a battery is stored in a plastic case or the like and incorporated in a portable device as a battery pack, if the outer can is deformed, the outer shape of the portable device is distorted, resulting in a problem that the appearance of the device is impaired.
[0004]
Japanese Patent Application Laid-Open No. 2000-268811 has a support member fixed as a sealing plug for a liquid filling hole of a sealing lid of a sealed battery in a state of covering the liquid filling hole on the surface of the sealing lid, and has elasticity. It is described that a material made of a material and composed of a press-fitting member supported by the support member in a state of being press-fitted into the liquid injection hole is described.
[0005]
[Patent Document 1]
JP 2000-268811 A (Claims)
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a nonaqueous electrolyte secondary battery in which swelling of an outer can in a high temperature environment is suppressed.
[0007]
[Means for Solving the Problems]
Nonaqueous electrolyte secondary battery according to the present invention, an outer can,
An electrode group housed in the outer can and including a positive electrode and a negative electrode;
A non-aqueous electrolyte held in the electrode group;
A sealing plate disposed at the opening of the outer can;
A vent hole opened in the outer can or the sealing plate;
An elastic body having a sealing cross-section having a shape different from the vent hole and having an area larger than the opening area of the vent hole;
The elastic body is inserted into the gas vent hole, and the entire peripheral surface of the sealing cross section of the elastic body is in contact with the inner surface of the gas vent hole in a compressed state.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
A non-aqueous electrolyte secondary battery according to the present invention includes an outer can, an electrode group that is housed in the outer can and includes a positive electrode and a negative electrode, a non-aqueous electrolyte that is held in the electrode group, and an opening of the outer can. A sealing cross section having a shape different from that of the gas vent hole and a size larger than the opening area of the gas vent hole. An elastic body having
The elastic body is inserted into the gas vent hole, and the sealing cross section of the elastic body is in contact with the inner surface of the gas vent hole in a compressed state.
[0009]
In a non-aqueous electrolyte secondary battery, particularly a secondary battery using a non-aqueous electrolyte containing a cyclic carbonate or a chain carbonate, when placed in a high temperature environment (for example, about 90 ° C.) in a fully charged state or nearly full charged state, The carbonates in the nonaqueous electrolyte react with the positive electrode in a highly oxidized state to produce decomposition products such as carbon dioxide. In order to suppress an increase in internal pressure and battery swelling due to the generated gas, it is necessary to provide a mechanism for releasing the generated gas to the outside.
[0010]
On the other hand, since the nonaqueous electrolyte and the negative electrode included in the secondary battery have reactivity with moisture, it is necessary to suppress moisture in the air from entering the cell as much as possible.
[0011]
In order to achieve both of these, a gas vent hole is opened in the sealing plate, and the gas vent hole is sealed with a rubber stopper to prevent moisture from entering from the outside and A mechanism has been proposed in which the sealed state is released only when the pressure in the can rises, and the gas is released to the outside through the vent hole. However, elastic materials such as rubber-like polymers generally expand in volume as the temperature rises. Therefore, if the stopper is used for the purpose of improving the sealing performance under normal use conditions, that is, near room temperature, the stopper will further open at high temperatures. There is a problem that the desired pressure relief mechanism may not work when the pressure in the outer can rises, and the operation becomes unstable.
[0012]
In the present invention, the elastic body inserted into the gas vent hole opened in the outer can or the sealing plate has a shape different from that of the gas vent hole and has a sealing cross section larger than the opening area of the gas vent hole. use. Since this sealing cross section is in contact with the inner surface of the gas vent hole in a compressed state, a sufficient repulsive elastic force can be generated between the elastic body and the inner surface of the gas vent hole. Sealing can be performed. For this reason, the penetration | invasion of the moisture from the outside at the time of normal use can fully be suppressed. In addition, when gas is generated under high temperature conditions, the elastic body thermally expands. However, because the shapes of the gas vent hole and the sealing cross section are different, the compression state of the sealing cross section is not uniform and is relatively weak. Since the portion can be secured, the pressure relief when the internal pressure increases in a high temperature state can be performed with good reproducibility.
[0013]
In addition, by making the minimum passing length in the free state of the sealing cross section longer than the maximum passing length of the gas vent hole, it is possible to prevent the elastic body from falling out of the gas vent hole, Variations in battery swelling can be reduced.
[0014]
Hereinafter, an example of the non-aqueous electrolyte secondary battery according to the present invention will be described with reference to FIGS.
[0015]
FIG. 1 is a partially exploded perspective view showing a prismatic nonaqueous electrolyte secondary battery which is an embodiment of a nonaqueous electrolyte secondary battery according to the present invention, and FIG. 2 shows a main part of the secondary battery of FIG. FIG. 3 is a cross-sectional view taken along line III-III in FIG.
[0016]
The rectangular tubular outer can 1 also serves as a positive electrode terminal and is made of a metal such as aluminum or an aluminum alloy. Housed in the outer can 1 is an electrode group 2 in which a positive electrode and a negative electrode are wound in a flat shape with a separator interposed therebetween.
The nonaqueous electrolytic solution is accommodated in the outer can 1. The insulating plate 3 is disposed on the electrode group 2. A metal (for example, aluminum or aluminum alloy) sealing plate 4 also serving as a positive electrode terminal is attached to the opening of the outer can 1 by, for example, laser welding. The hat-shaped negative electrode terminal 5 is attached to the sealing plate 4 via an insulating material 6.
[0017]
The positive electrode current collecting tab 7 has one end connected to the positive electrode of the electrode group 2 and the other end connected to the lower surface of the sealing plate 4. The negative electrode current collecting tab 8 has one end connected to the negative electrode of the electrode group 2 and the other end connected to the negative electrode terminal 5.
[0018]
A part of the sealing plate 4 is recessed in a circular shape, and a circular gas vent hole 10 is opened in the recessed portion 9. The elastic body 11 has a truncated cone structure in which a part of the peripheral surface is provided with a flat region 11a by cutting out a part of the peripheral surface (curved surface). The large diameter surface 12 a of the elastic body 11 has an area larger than the opening area of the gas vent hole 10. On the other hand, the small diameter surface 12 b has an area smaller than the opening area of the gas vent hole 10. When such an elastic body 11 is inserted into the gas vent hole 10 so that the large-diameter surface 12a is positioned in the recess 9 of the sealing plate 4 and the small-diameter surface 12b is positioned on the inner surface side of the sealing plate 4, A sealing cross section having a size larger than the opening area of the vent hole 10 contacts the inner surface of the gas vent hole 10 in a compressed state, and as a result, the gas vent hole 10 is sealed. It is desirable that the sealing section has a minimum passing length D in a free state (a state in which it is not inserted into the gas vent hole 10) longer than the diameter of the gas vent hole 10. As a result, variations in battery swelling can be suppressed, and it is possible to prevent the elastic body 11 from falling out of the vent hole 10 into the outer can 1, particularly when the recess 9 is provided in the sealing plate 4. become. As the elastic material forming the elastic body 11, it is desirable to use a material having high resistance to swelling with respect to the non-aqueous electrolyte. Examples of such an elastic material include ethylene-polyethylene-diene copolymer (EPDM) rubber.
[0019]
After the elastic body 11 is inserted into the vent hole 10, it is fixed to the sealing plate 4 with the back plate 13 so as not to be pushed out when the pressure inside the outer can 1 rises. The back plate 13 can be made of, for example, an aluminum thin plate, and a gas diffusion path can be secured by performing multi-point welding with a shape leaving a gap between the back plate 13 and the sealing plate 4.
[0020]
In addition, although the example which provided the hollow part 9 in the sealing board 4 was demonstrated in FIGS. 1-3 mentioned above, the flat plate in which the hollow part 9 is not provided may be used for the sealing board 4. FIG.
[0021]
According to the non-aqueous electrolyte secondary battery shown in FIG. 1 to FIG. 3 described above, the sealing cross section having an area equal to or larger than the opening area of the gas vent hole 10 is normally compressed on the inner surface of the gas vent hole 10. Since they are in contact with each other, the intrusion of moisture from the vent hole 10 can be sufficiently suppressed. When the secondary battery is stored in a high temperature environment in a charged state, gas is generated due to oxidative decomposition of the nonaqueous electrolyte, and thermal expansion occurs in the elastic body 11, but there is a variation in the compression state of the sealed cross section. In addition, since there is a relatively weak spot, the gas can escape from the weak spot so as to leak to the outside, and swelling of the outer can 1 can be suppressed.
[0022]
Hereinafter, the positive electrode, the negative electrode, the separator, and the nonaqueous electrolyte will be described.
[0023]
1) Positive electrode The positive electrode active material contained in this positive electrode includes various oxides such as manganese dioxide, lithium manganese composite oxide, lithium-containing nickel oxide, lithium-containing cobalt oxide, lithium-containing nickel cobalt oxide, and lithium-containing materials. Examples thereof include iron oxide, vanadium oxide containing lithium, and chalcogen compounds such as titanium disulfide and molybdenum disulfide.
[0024]
2) Negative electrode Examples of the active material contained in the negative electrode include those containing carbonaceous materials or chalcogen compounds that absorb and release lithium ions, and those made of light metals.
[0025]
Examples of the carbonaceous material that occludes / releases lithium ions include coke, carbon fiber, pyrolytic vapor phase carbonaceous material, graphite, resin fired body, mesophase pitch carbon fiber, and mesophase spherical carbon fired body. . Among these, mesophase pitch-based carbon fiber or mesophase spherical carbon graphitized at 2500 ° C. or higher is preferable because the electrode capacity increases.
[0026]
Examples of chalcogen compounds that occlude and release lithium ions include titanium disulfide (TiS 2 ), molybdenum disulfide (MoS 2 ), and niobium selenide (NbSe).
[0027]
Examples of the light metal include aluminum, aluminum alloy, lithium metal, and lithium alloy.
[0028]
3) As the separator separator, for example, a nonwoven fabric, a polypropylene microporous film, a polyethylene microporous film, a polyethylene-polypropylene microporous laminated film, or the like can be used.
[0029]
4) Nonaqueous electrolyte As the nonaqueous electrolyte, a liquid nonaqueous electrolyte (so-called nonaqueous electrolyte), a gel nonaqueous electrolyte, a solid nonaqueous electrolyte, or the like can be used. The nonaqueous electrolytic solution includes a nonaqueous solvent and an electrolyte (for example, lithium salt) dissolved in the nonaqueous solvent.
[0030]
Examples of the non-aqueous solvent include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC), Chain ethers such as 2-dimethoxyethane (DME) and diethoxyethane (DEE), cyclic ethers and crown ethers such as tetrahydrofuran (THF) and 2-methyltetrahydrofuran (2-MeTHF), γ-butyrolactone (γ-BL) And fatty acid esters such as acetonitrile, nitrogen compounds such as acetonitrile (AN), sulfur compounds such as sulfolane (SL) and dimethyl sulfoxide (DMSO), and the like. The type of the non-aqueous solvent can be one type or two or more types.
[0031]
Among these, at least one selected from EC, PC and γ-BL, at least one selected from EC, PC and γ-BL, and DMC, MEC, DEC, DME, DEE, THF, 2-MeTHF, and It is desirable to use a mixed solvent consisting of at least one selected from AN. In particular, when a negative electrode containing a carbonaceous material that occludes / releases lithium ions is used, EC and PC and γ-BL, EC and PC and MEC, and EC and PC from the viewpoint of improving the cycle life of the secondary battery. And DEC, EC and PC and DEE, EC and AN, EC and MEC, PC and DMC, PC and DEC or EC and DEC are preferably used.
[0032]
As the electrolyte, for example, lithium perchlorate (LiClO 4), lithium hexafluorophosphate (LIPF 6), tetrafluoride lithium borate (LiBF 4), hexafluoro arsenate lithium (LiAsF 6), trifluoroacetic meta sulfonic Examples include lithium salts such as lithium acid lithium (LiCF 3 SO 3 ), lithium aluminum tetrachloride (LiAlCl 4 ), and lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ]. Among these, LIPF 6 , LiBF 4 , and LiN (CF 3 SO 2 ) 2 are preferable because conductivity and safety are improved.
[0033]
The amount of electrolyte dissolved in the non-aqueous solvent is preferably in the range of 0.5 mol / L to 2 mol / L.
[0034]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings described above.
[0035]
Example 1
<Preparation of electrode group and preparation of non-aqueous electrolyte>
A slurry containing lithium cobaltate as an active material was applied to an aluminum foil as a current collector, dried and pressed to produce a positive electrode. On the other hand, a slurry containing a graphite-based carbon material as an active material was applied to a copper foil as a current collector, dried, and pressed to prepare a negative electrode. The electrode group 2 was produced by winding the positive electrode and the negative electrode in a flat shape with a separator interposed therebetween. Further, a nonaqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a nonaqueous solvent in which ethylene carbonate (EC) and methyl ethyl carbonate (MEC) were mixed at a volume ratio of 1: 2.
[0036]
<Assembly of sealing member>
A circular depression 9 is formed in a part of a rectangular aluminum plate (thickness: 1.0 mm) by pressing, and a circular (diameter 1.0 mm) gas vent hole 10 is opened in the depression 9. Thus, a sealing plate 4 was obtained. Prepare a frustoconical EPDM rubber with a diameter of the large diameter surface 12a of 1.4 mm, a diameter of the small diameter surface 12b of 0.8 mm and a height of 2.0 mm, and cut out a part of this curved surface. The elastic body 11 was prepared by providing the planar region 11a having a width of 9.0 mm on the large diameter surface side. The area of the large diameter surface 12 a of the elastic body 11 is larger than the opening area of the gas vent hole 10, and the area of the small diameter surface 12 b is smaller than the opening area of the gas vent hole 10. When the elastic body 11 is inserted into the gas vent hole 10 with the large-diameter surface 12a facing up, a portion (sealed cross section) having a cross-sectional area larger than the opening area of the gas vent hole 10 is formed on the inner surface of the gas vent hole 10. The gas vent hole 10 was sealed with the elastic body 11 in contact with each other in a compressed state. The minimum passing length D in the free state of the sealed cross section was 1.1 mm to 1.4 mm, which was larger than the diameter (maximum passing length) of the gas vent hole 10.
[0037]
A back plate 13 made of a rectangular aluminum plate was prepared, and the recess 9 of the sealing plate 4 was covered with the back plate 13 and fixed by spot welding. The non-welded portion between the sealing plate 4 and the back plate 13 can function as a gas vent passage.
[0038]
<Battery assembly>
After the electrode group 2 was housed in an aluminum square can (exterior can) 1 serving also as a positive electrode terminal, 2 g of a nonaqueous electrolyte was injected. The positive current collecting tab 7 was welded to the sealing plate 4, and the negative current collecting tab 8 was welded to the negative electrode terminal 5. The sealing plate 4 is laser welded to the outer can 1 so that the outer dimensions (height 40 mm, width 30 mm), the battery thickness after charging with 4.2 V constant current / constant voltage is 5.2 mm, and the discharge is 0.2 C. A prismatic nonaqueous electrolyte secondary battery with a capacity of 630 mAh was assembled.
[0039]
Ten such batteries were prepared, charged with 4.2 V constant current / constant voltage (constant current value 630 mA, charging time 3 hours), then stored in a thermostat at 90 ° C. for 5 days, and the swelling amount immediately after the end of storage ( The value obtained by subtracting the battery thickness before storage from the battery thickness after storage) was measured, the average of 10 batteries was determined, and the results are shown in Table 1 below. Further, the coefficient of variation (%) of swelling is obtained from the following equation (1), and the result is also shown in Table 1 below.
[0040]
Coefficient of variation of swelling (%) = (σ / Ave.) × 100 (1)
Where σ is the standard deviation of the bulge amount variation, and Ave. is the average value of the bulge amount.
[0041]
(Example 2)
The shape of the vent hole was changed to an ellipse (the major axis was 1.1 mm and the minor axis was 1.0 mm). Further, an EPDM truncated cone having a large diameter surface of 1.4 mm, a small diameter surface of 0.8 mm, and a height of 2.0 mm was prepared as an elastic body. The minimum passing length D in the free state of the sealed cross section was 1.15 mm to 1.4 mm, which was larger than the major diameter (maximum passing length) of the gas vent hole. As for other configurations, a rectangular nonaqueous electrolyte secondary battery similar to that in Example 1 described above was assembled, and the average value of the amount of swelling and the coefficient of variation of swelling were obtained in the same manner as described in Example 1, and the results are shown below. Table 1 shows.
[0042]
(Example 3)
By enlarging the width of the cutout portion (planar region 11a) of the elastic body 11 on the large-diameter surface side to 10 mm, the minimum passing length D in the free state of the sealing cross section is 0.9 mm to 0.99 mm. A rectangular nonaqueous electrolyte secondary battery having the same configuration as that described in Example 1 was assembled except that the diameter of the gas vent hole 10 was smaller than the diameter (maximum passing length). In the same manner as above, the average value of the amount of swelling and the coefficient of variation of swelling are obtained, and the results are shown in Table 1 below.
[0043]
(Comparative Example 1)
A rectangular nonaqueous electrolyte secondary battery having the same configuration as that described in Example 1 was assembled except that the cutout portion (planar region 11a) was not provided in the elastic body 11, and was described in Example 1. In the same manner as above, the average value of the amount of swelling and the coefficient of variation of swelling are obtained, and the results are shown in Table 1 below.
[0044]
(Comparative Example 2)
Using a flat rubber as an elastic body, except that this flat rubber is pressure-bonded to the sealing plate with a back plate, a rectangular non-aqueous electrolyte secondary battery having the same configuration as described in Example 1 is assembled. The average value of the amount of swelling and the coefficient of variation of swelling are determined in the same manner as described in Example 1, and the results are shown in Table 1 below.
[0045]
[Table 1]
Figure 0004550367
[0046]
As is clear from Table 1, the secondary batteries of Examples 1 to 3 using an elastic body having a sealing cross-section having a shape different from that of the vent hole and having an area larger than the opening area of the vent hole are charged and stored at high temperature. It turns out that the swelling of time is small compared with Comparative Examples 1-2. In particular, in the secondary batteries of Examples 1 and 2 in which the minimum passing length of the sealing cross section is larger than the maximum passing length of the gas vent hole, the fluctuation coefficient of the swelling indicating the degree of swelling is as small as 10%. .
[0047]
On the other hand, the secondary battery of Comparative Example 1 in which the shape of the sealing cross section is the same as that of the gas vent hole and the secondary battery of Comparative Example 2 having a configuration in which a flat rubber is pressure-bonded to the gas vent hole are swollen. The amount was large and the variation was large.
[0048]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery in which swelling of the outer can at the time of high-temperature storage is suppressed.
[Brief description of the drawings]
FIG. 1 is a partially exploded perspective view showing a prismatic nonaqueous electrolyte secondary battery which is an embodiment of a nonaqueous electrolyte secondary battery according to the present invention.
2 is a cross-sectional view showing a main part of the secondary battery of FIG. 1;
3 is a cross-sectional view taken along line III-III in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Exterior can, 2 ... Electrode group, 4 ... Sealing plate, 5 ... Negative electrode terminal, 6 ... Insulating member, 9 ... Depression part, 10 ... Degassing hole, 11 ... Elastic body, 12a ... Large diameter surface, 12b ... Small diameter Surface, 13 ... back plate.

Claims (3)

外装缶と、
前記外装缶内に収納され、正極及び負極を含む電極群と、
前記電極群に保持される非水電解質と、
前記外装缶の開口部に配置される封口板と、
前記外装缶または前記封口板に開口されたガス抜き孔と、
前記ガス抜き孔とは異なる形状で前記ガス抜き孔の開口面積以上の面積を有する封止断面部を有する弾性体とを具備し、
前記弾性体は前記ガス抜き孔に挿入され、前記弾性体の前記封止断面部の周面全体が前記ガス抜き孔の内面と圧縮状態で接していることを特徴とする非水電解質二次電池。
An outer can,
An electrode group housed in the outer can and including a positive electrode and a negative electrode;
A non-aqueous electrolyte held in the electrode group;
A sealing plate disposed in the opening of the outer can;
A vent hole opened in the outer can or the sealing plate;
An elastic body having a sealing cross-section having an area larger than the opening area of the gas vent hole in a shape different from the gas vent hole;
The non-aqueous electrolyte secondary battery, wherein the elastic body is inserted into the gas vent hole, and the entire peripheral surface of the sealing cross section of the elastic body is in contact with the inner surface of the gas vent hole in a compressed state. .
前記封止断面部の最小差し渡し長さは、前記ガス抜き孔の最大差し渡し長さよりも長いことを特徴とする請求項1記載の非水電解質二次電池。  The nonaqueous electrolyte secondary battery according to claim 1, wherein a minimum passing length of the sealing cross section is longer than a maximum passing length of the gas vent hole. 前記弾性体は、周面の一部を切り欠くことにより前記周面の一部に平面領域を設けた円錐台構造を有し、前記弾性体の一方の端面が前記ガス抜き孔の前記開口面積よりも大きな面積を持つ大径面で、かつ前記弾性体の他方の端面が前記ガス抜き孔の前記開口面積よりも小さい面積を持つ小径面であることを特徴とする請求項1または2記載の非水電解質二次電池。The elastic body has a truncated cone structure in which a part of the peripheral surface is provided with a planar region by cutting out a part of the peripheral surface, and one end surface of the elastic body has the opening area of the gas vent hole 3. The large-diameter surface having a larger area, and the other end surface of the elastic body is a small-diameter surface having an area smaller than the opening area of the vent hole . Non-aqueous electrolyte secondary battery.
JP2003085180A 2003-03-26 2003-03-26 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4550367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003085180A JP4550367B2 (en) 2003-03-26 2003-03-26 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085180A JP4550367B2 (en) 2003-03-26 2003-03-26 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004296192A JP2004296192A (en) 2004-10-21
JP4550367B2 true JP4550367B2 (en) 2010-09-22

Family

ID=33400163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085180A Expired - Fee Related JP4550367B2 (en) 2003-03-26 2003-03-26 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4550367B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102173031B1 (en) * 2017-07-04 2020-11-02 주식회사 엘지화학 Rechargeable battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220272U (en) * 1988-07-26 1990-02-09
JP2000133234A (en) * 1998-10-22 2000-05-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2000268811A (en) * 1999-03-17 2000-09-29 Sanyo Electric Co Ltd Sealed battery, sealing plug for sealed battery, and method of sealing injection hole
JP2001513591A (en) * 1997-08-06 2001-09-04 ブサック+シャンバン ゲー・エム・ベー・ハー ウント コー Sealed valve
JP2002289172A (en) * 2001-03-28 2002-10-04 Nec Tokin Corp Sealing plug and closed type storage device using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220272U (en) * 1988-07-26 1990-02-09
JP2001513591A (en) * 1997-08-06 2001-09-04 ブサック+シャンバン ゲー・エム・ベー・ハー ウント コー Sealed valve
JP2000133234A (en) * 1998-10-22 2000-05-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JP2000268811A (en) * 1999-03-17 2000-09-29 Sanyo Electric Co Ltd Sealed battery, sealing plug for sealed battery, and method of sealing injection hole
JP2002289172A (en) * 2001-03-28 2002-10-04 Nec Tokin Corp Sealing plug and closed type storage device using it

Also Published As

Publication number Publication date
JP2004296192A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
US7378185B2 (en) Prismatic lithium secondary battery having a porous heat resistant layer
US7972717B2 (en) Battery
JP2010033949A (en) Battery
JP2005011540A (en) Nonaqueous electrolyte secondary battery
JP4580699B2 (en) Nonaqueous electrolyte secondary battery
JP3735937B2 (en) Terminal cap and cylindrical non-aqueous secondary battery using them
JP3583592B2 (en) Thin rechargeable battery
JP2005302382A (en) Nonaqueous electrolyte secondary battery pack
JP4455008B2 (en) Nonaqueous electrolyte secondary battery
JP2004228019A (en) Nonaqueous electrolyte secondary battery
JP3579227B2 (en) Thin rechargeable battery
JP2002042865A (en) Thin-type nonaqueous electrolyte secondary battery
JP2003059462A (en) Nonaqueous secondary battery
JP2004355977A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP4550367B2 (en) Nonaqueous electrolyte secondary battery
JP2003100278A (en) Nonaqueous electrolyte secondary battery
JP2006004878A (en) Battery
JPH11162436A (en) Thin secondary battery
JP4834284B2 (en) Nonaqueous electrolyte secondary battery
JP2004253159A (en) Nonaqueous electrolyte secondary battery
JP4191969B2 (en) Nonaqueous electrolyte secondary battery
JP2005209395A (en) Nonaqueous electrolytic solution secondary battery
JP4420484B2 (en) Sealed battery
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JPH1140199A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees