JP4546760B2 - 一体化されたブリッジを備えたタービンブレード - Google Patents

一体化されたブリッジを備えたタービンブレード Download PDF

Info

Publication number
JP4546760B2
JP4546760B2 JP2004138380A JP2004138380A JP4546760B2 JP 4546760 B2 JP4546760 B2 JP 4546760B2 JP 2004138380 A JP2004138380 A JP 2004138380A JP 2004138380 A JP2004138380 A JP 2004138380A JP 4546760 B2 JP4546760 B2 JP 4546760B2
Authority
JP
Japan
Prior art keywords
channel
bridge
side wall
airfoil
trailing edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004138380A
Other languages
English (en)
Other versions
JP2005030387A5 (ja
JP2005030387A (ja
Inventor
チン−パン・リー
リチャード・クレイ・ハウベルト
ハーヴェイ・マイケル・マクリン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2005030387A publication Critical patent/JP2005030387A/ja
Publication of JP2005030387A5 publication Critical patent/JP2005030387A5/ja
Application granted granted Critical
Publication of JP4546760B2 publication Critical patent/JP4546760B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/182Transpiration cooling
    • F01D5/184Blade walls being made of perforated sheet laminae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、一般にガスタービンエンジンに関し、より具体的には、そのタービンブレード冷却に関する。
ガスタービンエンジンにおいて、空気が多段圧縮機内で圧縮され、燃料と混合されて燃焼器内で高温の燃焼ガスを発生する。ガスは、圧縮機を駆動する高圧タービン(HPT)を通って排出され、典型的には低圧タービン(LPT)が後続して、通常はエンジンの上流側端部においてファンを駆動することにより出力を発生する。このターボファン構成は、商用又は軍用航空機に動力を供給するのに使用される。
エンジン性能又はエンジン効率は、エネルギーを抽出するHPTに対して排出される燃焼ガスの最高許容作動温度を上昇させることによって改善することができる。更に、超音速ビジネスジェット機における1つの例示的な商用用途及び長距離攻撃機などの例示的な軍事用途において、エンジンは、その航続時間及び距離を増大させるために継続的に開発されている。
タービン入口温度が上昇し、及び対応する航続時間が長くなるにつれて、高圧タービンロータブレードのような高温のエンジン部品を冷却する必要性が増すことになる。第1段ロータブレードは、燃焼器から最も高温の燃焼ガスを受けるので、現在では、高温での強度及び耐久性が増強された先端技術水準の超合金材料を用いて製造される。これらのブレードは、作動中の対応する熱負荷の差異に対して、ブレードの種々の部分を様々に冷却するために、無数の異なる冷却機能から構成することができる。
第1段タービンブレードのための現在知られている冷却構成は、今のところ好適なブレードの有効寿命を得るために最高許容タービン入力温度を制限している。その結果、超合金ブレードは、ガスタービンエンジン内の過酷な高温環境下でその強度及び寿命性能を最大にするために、典型的には一方向凝固材料又は単結晶材料として製造される。
ブレード内に見られる複雑な冷却構成は、典型的には1つ又はそれ以上のセラミックコアが利用される一般的な鋳造技術で製造されている。ブレード鋳造において好適な歩留りを達成して競争力のあるコストを維持するためには、従来の鋳造法の能力ではロータブレード内の冷却回路の複雑さが限定される。
米国特許第 5156526号明細書 米国特許第 5165852号明細書 米国特許第 5356265号明細書 米国特許第 5387085号明細書 米国特許第 5591007号明細書 米国特許第 5660524号明細書 米国特許第 5690472号明細書 米国特許第 5813835号明細書 米国特許第 5967752号明細書 米国特許第 6168381号明細書 米国特許第 6183198号明細書 米国特許第 6254334号明細書 米国特許第 6402470号明細書 米国特許第 6514042号明細書 米国特許第 6416284号明細書 米国特許第 5927946号明細書
従って、ガスタービンエンジン内における温度及び航続時間を更に高めるために、改善されたタービンロータブレードの冷却構成を提供することが望ましい。
タービンブレードは、ダブテールに一体的に結合された中空エーロフォイルを含む。このエーロフォイルは、エーロフォイル前縁の後方に流路を形成する有孔の第1のブリッジを含む。第2のブリッジは、第1のブリッジから後方へ離間して配置され、エーロフォイル後縁の手前でエーロフォイル正圧側壁から延びる。第3のブリッジは、正圧側壁及び第2のブリッジに結合された相対する端部を有し、前縁流路のための供給流路を第1のブリッジと共に形成し、ルーバ流路を第2のブリッジと共に形成する。該ルーバ流路は、第2のブリッジに沿って正圧側壁にある遠位端まで後方へ延びる。
次に、本発明の好ましい例示的な実施形態に従って添付図面を参照しながら、本発明をその更なる目的及び利点と共に以下により具体的に説明する。
図1には、ガスタービンエンジンにおける燃焼器の直ぐ下流にある高圧タービン内で使用するための例示的な第1段タービンロータブレード10が示されている。このブレードは、航空機用ガスタービンエンジン構成、或いは非航空機用のガスタービンエンジン派生物で使用することができる。
ブレードは、共通プラットフォーム16に共に結合された支持ダブテール14からスパン外方に半径方向で延びる中空エーロフォイル12を含む。ダブテールは、タービンロータディスク(図示せず)の周囲の対応するダブテールスロット内にブレードを装着するダブテールローブ又はタングを含む任意の従来構成とすることができる。ダブテールは、シャンクにより一体的なプラットフォームに結合される。
エーロフォイル12は、凹状正圧側壁18と、横方向又は周方向に相対する凸状負圧側壁20とを含む。これらの2つの側壁は、軸方向又は翼弦方向に相対する前縁22と後縁24で互いに結合され、且つ間隔を置いて配置されている。エーロフォイルの各側壁と前縁並びに後縁は、内側根元26から外側先端28までスパンにわたって半径方向に延びる。ダブテールは、作動中にエーロフォイルの周囲を流れる燃焼ガスに対して半径方向内側の境界を形成するエーロフォイル根元に配置されるプラットフォームでエーロフォイルと一体的に結合される。
図2乃至図4は、図1に示すエーロフォイルにおける、それぞれ根元近傍、スパン中央又はピッチ区域、及びエーロフォイル先端近傍の3つの半径方向断面図を表す。例えば、図1及び図2に示すように、エーロフォイルは、前縁22から後ろ又は後方に離間した有孔の第1のコールドブリッジ30を更に含み、この第1のコールドブリッジ30は、正圧側壁18と負圧側壁20とに一体的に結合される対向する横方向端部を有して、前縁の後方で半径方向スパンに延び且つ両側壁及び第1のブリッジの周囲部分によって横方向に境界付けられた前縁流路32を形成する。
第1のブリッジは、衝突孔34の列を含み、圧縮機(図示せず)から抽気される圧縮空気36がこの衝突孔を通って送られてブレードを冷却する。空気は、最初にエーロフォイル前縁の内側又は裏側に衝突してこれを冷却し、次いで使用済みの衝突空気が、従来構成の2つの側壁に沿って外方に放射状に延びた複数列のシャワーヘッド孔及びギル孔38を介して前縁流路32から排出される。
エーロフォイルは更に、第1のブリッジ30の後方で半径方向スパンに延び、且つ後方に離間して配置された無孔の第2のコールドブリッジ40を含む。第2のブリッジ40は、負圧側壁20から一体的且つ翼弦方向後方に延び、後縁24の前又は直前で正圧側壁18と一体的に結合して、第2のブリッジと負圧側壁との間で横方向に第1の蛇行流路42を形成する。
無孔の第3のコールドブリッジ44が、第1のブリッジ30と第2のブリッジ40との間に半径方向スパンで延びて、相対する横方向端部において正圧側壁18及び第2のブリッジ40に一体的に結合されている。第3のブリッジ44は、第1のブリッジ30と共に、半径方向スパンに延びる供給流路46を形成して、第1のブリッジの衝突孔を介して加圧空気36を導き、エーロフォイル前縁の裏側を衝突冷却する。第3のブリッジ44はまた、第2のブリッジ40と共に、第2のブリッジに沿って正圧側壁18にある遠位端まで軸方向後方に延びるギル又はルーバ流路48を形成する。
このようにして、3つのコールドブリッジ30、40、44は、作動中にエーロフォイルの冷却を向上させる新規の構成で一体化された対応する流路を形成する。図に示すエーロフォイルの種々の冷却流路は、エーロフォイル内面に沿って延びる種々の形状のタービュレータ(図示せず)を含み、従来の方式で熱伝達を高めるために必要に応じて冷却空気流を流動させることになる。しかしながら、一体化された3つのブリッジ構成により、限られた冷却空気の冷却効率が向上する。
図2に示すように、負圧側壁20は、第2のブリッジ40に隣接する供給流路46と流体連通して配置されたフィルム冷却孔50の列を含む。第3のブリッジ44は、図示した半径方向平面において、供給流路46の内側にアーチ状又は湾曲した凸形であり、これに対応して供給流路46は、冷却空気36を横方向に導きフィルム冷却孔50から排出させるために、ほぼC字形に湾曲した凹形である。供給流路46のこの特異な構成によって、供給流路46を通して送られている流れが冷却を向上させるため負圧側壁20に近接して導かれると共に、空気はまた、前縁の裏側を衝突冷却するために衝突孔34を通じて排出される。
反対側の正圧側壁18では、エーロフォイルは、第2のブリッジ40の遠位端に隣接した半径方向に細長い出口スロット52を含み、この出口スロットは、冷却空気の半径方向に連続的なフィルムを排出するためルーバ流路48の排出端と流体連通して配置される。ルーバ流路48の特定の利点は、低温の第2のブリッジ40を正圧側壁18の隣接する部分から隔てることであり、ルーバ流路を通って出口スロット52から排出される冷却空気36の軸方向流により正圧側壁裏側の冷却が行われることである。
ルーバ流路の軸方向前方部分は、ピン54のメッシュパターンに冷却空気を供給するために半径方向スパンで開いて延びており、このピン54は、互いに離間して配置され、相対する横方向端部において第2のブリッジ40と出口スロット52の前方の正圧側壁18とに一体的に結合される。メッシュピン54は、例えば円形又は四角形といった、どのような好適な形状であってもよく、低温の第2のブリッジ40と高温の正圧側壁との間に局部的に曲がりくねった、又は蛇行した冷却通路を形成する。このようにして、冷却空気をメッシュピン54間を通して軸方向に送出して共通の半径方向スロット52から集合的に排出させて、エーロフォイルの薄い後縁部分を保護するために正圧側壁の後方部分に沿って連続的な半径方向フィルム冷却を行うことができる。
図1に示すように、供給流路46は、ダブテール14を貫通してブレード根元まで延びる第1の入口56を含む。ルーバ流路48は、第1の入口56の後方でダブテールを貫通して延びる第2の入口58を含み、これはルーバ流路の開放された前方端部に冷却空気36を供給する。更に、第1の蛇行流路42は、第2の入口の後方でダブテールを貫通して延びる第3の入口60を含む。これらの3つのダブテール入口は、冷却空気の独立した部分を対応する冷却回路に供給する。
図1乃至図4に集合的に示すように、エーロフォイルはまた、好ましくは傾斜段状の第2の蛇行流路62を含み、この第2の蛇行流路は、第2の入口58から冷却空気を受けるルーバ流路(48)の半径方向に開いた前方部分と流体連通して該ルーバ流路48の外側又は上方に配置される。第2の蛇行流路は、エーロフォイルの半径方向又はスパン方向軸線に対して斜めに配置された対応する傾斜ブリッジによって形成される。
傾斜ブリッジを備えた第2の蛇行流路62に空間をもたせるために、傾斜ブリッジは、エーロフォイル先端28の半径方向スパンの下で好適に終端する第1の蛇行流路42を越えて上方にある後方部分に配置される。図4は、傾斜ブリッジを備えた第2の蛇行流路62を通るエーロフォイルの半径方向の断面であって、傾斜ブリッジの下方に置かれた第1の蛇行流路は隠れて見えない。
傾斜した第2の蛇行流路62をブレード先端近傍に組み込む特定の利点は、エーロフォイル先端領域の冷却効率が付加されることである。より具体的には、図1に示す第1の蛇行流路42は、好ましくは3つの流れ反転レッグと、これらの間の2つの対応する半径方向の分割ブリッジとからなる。更に、第2の蛇行流路62は、好ましくは3つの流れ反転レッグと、これらの間の2つの対応する斜めの、又は傾斜した分割ブリッジとからなる。
このようにして、エーロフォイルの翼弦中央領域から後縁領域までの局部的な蛇行冷却は、根元から半径方向外方に向かって提供され、翼弦中央領域にあるエーロフォイルのスパン中央領域を越えて、後縁近傍のエーロフォイル先端まで移行して終端する。これに対応して傾斜段を備えた第2の蛇行流路62は、第1の蛇行冷却回路を補うために、その上方で且つエーロフォイル先端の下方で蛇行冷却を提供する。
図1に示すように、エーロフォイルは更に、薄いスクイーラ先端又はリブを形成する、正圧側壁及び負圧側壁の周囲拡大部の陥凹フロアによって形成される陥凹又は中空先端キャップ64を含む。先端キャップ64は、共通の第2の蛇行流路62を介して前縁流路32、供給流路46、及びルーバ流路48と流体連通して半径方向に貫通して配置された複数のフロア孔66を有する。
このように、これらの冷却回路には、従来のフィルム冷却孔に加えて、エーロフォイルの正圧側壁及び負圧側壁を貫通して従来のフィルム冷却孔と共に用いることができる追加の出口が設けられる。使用済み冷却空気は、複数の流路から排出され、冷却を向上させるため他の従来方法で先端キャップ64に供給される。
図1に示すエーロフォイルの後縁領域の冷却は、好ましくは2つの形態の排出孔によって行われる。外側後縁スロット68の列が、第1の蛇行流路42の最後のレッグと流体連通して配置される。後縁スロット68は、正圧側壁18を斜めに貫通して、実質的に後縁24の手前又は直前の正圧側壁で終端している。これにより、エーロフォイルの空気力学的効率を増大させるために、従来方式で後縁24を極めて薄くすることが可能になる。
しかしながら、外側後縁スロット68は、好ましくはエーロフォイル根元の直ぐ上からエーロフォイル先端の直ぐ下まで後縁の大部分にわたって配置され、一方、短い列の内側後縁孔70は、第1の蛇行流路42の最後のレッグの下方部分と流体連通して配置される。図1に示す3つの例示的な内側後縁孔70は、図2に示すように正圧側壁18と負圧側壁20との間で翼弦方向に延び、エーロフォイルの2つの相対する側壁の間でほぼ平行に後縁24を貫通して終端する。
ブレード根元近傍の後縁24は、貫通して延びる後縁孔70を収容するのに好適な厚さであり、これに対応してプラットフォーム16との結合部においてエーロフォイルの強度が増大する。しかしながら、エーロフォイルは、後縁孔70の上方ではより薄く作られており、正圧側後縁冷却スロット68の使用に移行する。
後縁出口に供給される空気は、3つのレッグを備えた蛇行流路42の最後のレッグから得られるので、空気は蛇行流路の最初のレッグを通過する間に加熱されている。従って、図1に示すように、第1の蛇行流路42の前方レッグ内に補給孔72を含み、第3の入口60からの空気の一部分を第1の蛇行流路42の最後のレッグに直接バイパスさせるのが望ましい。このようにして、比較的冷たい空気を蛇行流路の最後のレッグに直接供給して使用済み空気と混合し、要求通りに後縁冷却性能を向上させることができる。
図1において、傾斜段を備えた蛇行流路62は、先端キャップ64の直ぐ下に配置されている。図5に示す別の構成においては、エーロフォイルは、先端キャップから半径方向内方に離間して配置され、且つほぼ平行に後縁24まで後方へ延びる軸方向外側ブリッジ74を追加的に含むことができる。外側ブリッジ74は先端流路76を形成し、該先端流路76は第2の蛇行流路62と流体連通して配置されており、先端流路の後方端部に形成され、好ましくは後縁スロット68と同様に後縁のエーロフォイル正圧側手前で終端する排出孔を通じて空気が排出される。
このように、エーロフォイル先端は、第2の蛇行流路から排出される使用済み空気により先端フロア専用の裏側冷却を提供する軸方向先端流路76を導入することにより更に冷却される。
3つのコールドブリッジ30、40、44を組み込むことは、効率の向上をもたらす二重壁冷却を提供する冷却回路32、42、46、48を組み込むことに相当する。また、これらのコールドブリッジ構成は、流路又は空洞において対応するセラミックコアを使用する従来のエーロフォイル鋳造が可能である。前縁流路及び対応する後縁流路は、1個のコア又は2個の別個の単純コアで形成することができる。前縁流路と後縁流路の間の中間流路又は回路は、独立したコアで形成することができる。次いで、これらの2つ又は3つのコアは、従来のロストワックス鋳造において互いに組み立てることができる。
上述のコールドブリッジ構成を組み込むことにより、製造コストを抑えるのに相応しい鋳造歩留りが得られることになる。第2のコールドブリッジ40は、ほぼキャンバーラインに沿ってエーロフォイルの中心に配置され、作動中に低いバルク温度を有する強力な中央支持体を与える。前縁は、対応する性能利点を有する従来の構成の第1のコールドブリッジ30を用いる。
第3のコールドブリッジ44は、第1及び第2のコールドブリッジ30、40によって形成される冷却回路を組み込み、且つ負圧側壁の冷却を高めるために好ましい凸形状を有する。これに対し、ルーバ流路48のメッシュピン54は、作動中に加わる比較的高い熱負荷に抗して相対する正圧側壁の冷却を局部的に増強する。
ピン54のバンク又は列は、横断する空気ジェットの相互作用に起因して、ピンの周りに排出される冷却空気内に高度な乱流を生成する。更に、ピン自体も、高温の正圧側壁から比較的低温の第2のブリッジ40に熱を伝達して、高効率の熱交換器を形成する。ルーバ流路のメッシュピンの共通出口スロット52は、そのスパン限度内で半径方向全体を覆うフィルム冷却空気を供給し、これに対応して、出口スロットの下流側から後縁に向けてより高い冷却フィルム効率をもたらす。
傾斜した3つの経路を備えた蛇行流路62は、複数のターン部で該流路を流れる冷却空気の強い乱流を生じさせ、エーロフォイルの外側スパンを効率的に冷却して、エーロフォイルの外側の高温燃焼ガスの半径方向移動によるエーロフォイルの過熱を防止する。
後縁は、好ましくは2つのタイプの後縁出口68、70により提供される二重冷却構成を含み、後縁自体を分割する中央孔70を備えた根元近傍の後縁の強度を維持し、中央孔の上方にある正圧側出口スロット68は、後縁の大部分にわたる空気力学的利点を維持する。
図1及び図5に示す2つの実施形態において示される第2の蛇行流路62の斜めの又は傾斜したブリッジの特定の利点は、ストライプモードの側壁パネル振動及びより高次の複雑なパネル振動モードを低減又は防止するために、これらのブリッジによって追加的な構造的剛性が得られることである。更に、図5の実施形態においては、追加的な水平方向の外側ブリッジ74を導入することにより、エーロフォイル先端領域の剛性が更に増大し、これらのモードの振動応答性が低減される。
本発明の好ましく例示的なものとみなされる実施形態について本明細書で説明してきた。なお、特許請求の範囲に記載された符号は、理解容易のためであってなんら発明の技術的範囲を実施例に限縮するものではない。
多数のブリッジと冷却流路とを有する例示的な高圧タービンロータブレードの軸方向断面図。 図1の線2−2に沿ったブレードエーロフォイルの根元近傍における半径方向断面図。 図1の線3−3に沿ったブレードエーロフォイルのピッチ又はスパン中央近傍における半径方向断面図。 図1の線4−4に沿ったブレードエーロフォイルのブレード先端近傍における半径方向断面図。 図1に示したのとは別の実施形態によるエーロフォイルの半径方向外側先端領域の断面図。
符号の説明
10 タービンロータブレード
12 中空エーロフォイル
14 ダブテール
22 前縁
24 後縁
30 第1のコールドブリッジ
32 前縁流路
40 第2のコールドブリッジ
46 供給流路
48 ルーバ流路

Claims (8)

  1. 根元(26)から先端(28)までスパンで延び、翼弦方向に相対する前縁(22)と後縁(24)とにおいて互いに結合された、凹状の正圧側壁(18)と、横方向に相対する凸状側壁(20)とを含む中空エーロフォイル(12)と、
    前記根元において前記エーロフォイルに一体的に結合されたダブテール(14)と、
    を備えるタービンブレード(10)であって
    前記エーロフォイルが更に、前記前縁の後方に離間して配置され、且つ前記正圧及び負圧側壁(18、20)に一体的に結合されて両側壁間に前縁流路(32)を形成する有孔の第1のブリッジ(30)を含み、
    前記エーロフォイルが更に、前記第1のブリッジの後方に離間して配置され、前記負圧側壁(20)の翼弦方向後部から一体的に延びて前記後縁(24)の前方で前記正圧側壁(18)と一体的に結合されて、前記正圧側壁に隣接する第1の蛇行流路(42)を形成する無孔の第2のコールドブリッジ(40)を含み、
    前記エーロフォイルが更に、前記第1及び第2のブリッジ(30、40)の間に配置され、相対する両端部において前記正圧側壁(18)と前記第2のブリッジ(40)とに凸状輪郭で一体的に結合されて、前記第1のブリッジを通って空気(36)を送るための凹状の供給流路(46)を前記第1のブリッジ(30)と共に形成し、且つ軸方向後方へ前記正圧側壁(18)にある遠位端まで延びるルーバ流路(48)を前記第2のブリッジ(40)と共に形成する無孔の第3のブリッジ(44)を更に含み、
    前記タービンブレード(10)は更に、
    前記前縁流路(32)と供給流路(46)とルーバ流路(48)とに流体連通して配置された複数のフロア貫通孔(66)を有する陥凹先端キャップ(64)と、
    前記ルーバ流路(48)の上方でこれと流体連通して配置された傾斜段状の第2の蛇行流路(62)と、
    前記第2の蛇行流路(62)と流体連通して配置された先端流路(76)を形成して、前記後縁(24)における対応する排出孔を介して空気を排出させるために、前記先端キャップ(64)から内方に離間して配置された外側ブリッジ(74)と、
    前記第1の蛇行流路(42)と流体連通して配置され、且つ前記後縁の前方の前記エーロフォイル正圧側壁(18)上で終端している外側後縁スロット(68)の列と、
    前記第1の蛇行流路(42)と流体連通して配置され、且つ前記正圧側壁(18)と負圧側壁(20)との間で翼弦方向に延び、前記後縁を貫通して終端する内側後縁孔(70)の列と
    を含むことを特徴とするタービンブレード(10)。
  2. 前記正圧側壁(18)が、前記第2のブリッジ(40)の前記遠位端に隣接し、前記ルーバ流路(48)と流体連通して配置された細長い出口スロット(52)を含むことを特徴とする請求項1に記載のブレード。
  3. 前記供給流路(46)が、前記ダブテール(14)を貫通して延びる第1の入口(56)を含み、前記ルーバ流路(48)が、前記第1の入口の後方で前記ダブテールを貫通して延びる第2の入口(58)を含み、前記第1の蛇行流路(42)が前記第2の入口の後方で前記ダブテールを貫通して延びる第3の入口(60)を含むことを特徴とする請求項2に記載のブレード。
  4. 前記負圧側壁(20)が、前記第2のブリッジ(40)に隣接する前記供給流路(46)と流体連通して配置されたフィルム冷却孔(50)の列を含み、前記第3のブリッジ(44)が、前記空気を前記フィルム冷却孔(50)へ導くために前記供給流路(46)の内部で凸状であることを特徴とする請求項1に記載のブレード。
  5. 前記ルーバ流路(48)が、前記正圧側壁を局部的に蛇行メッシュ冷却するために、互いに離間して配置され、相対する両端部において前記第2のブリッジ(40)と前記出口スロット(52)の前方の前記正圧側壁(18)とに一体的に結合されたメッシュパターンのピン(54)を含むことを特徴とする請求項4に記載のブレード。
  6. 前記第2の蛇行流路(62)前記第1の蛇行流路(42)の上方の後方部分に配置されたことを特徴とする請求項1に記載のブレード。
  7. 前記第1の蛇行流路(42)が3つの流れ反転用レッグからなり、且つ前記第2の蛇行流路(62)が3つの流れ反転用レッグからなり、
    前記第1の蛇行流路(42)が、前記第3の入口(60)と流体連通して配置された補給孔(72)をその最後のレッグ内に含むことを特徴とする請求項1に記載のブレード。
  8. 燃焼器と、該燃焼器の下流にある高圧タービンと、該高圧タービン内に設けられた請求項1乃至7のいずれか1項に記載のブレードとを有することを特徴とするガスタービンエンジン。
JP2004138380A 2003-07-09 2004-05-07 一体化されたブリッジを備えたタービンブレード Expired - Fee Related JP4546760B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/616,023 US6832889B1 (en) 2003-07-09 2003-07-09 Integrated bridge turbine blade

Publications (3)

Publication Number Publication Date
JP2005030387A JP2005030387A (ja) 2005-02-03
JP2005030387A5 JP2005030387A5 (ja) 2007-06-21
JP4546760B2 true JP4546760B2 (ja) 2010-09-15

Family

ID=33452671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004138380A Expired - Fee Related JP4546760B2 (ja) 2003-07-09 2004-05-07 一体化されたブリッジを備えたタービンブレード

Country Status (4)

Country Link
US (1) US6832889B1 (ja)
EP (1) EP1496204B1 (ja)
JP (1) JP4546760B2 (ja)
DE (1) DE602004000633T2 (ja)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6981840B2 (en) * 2003-10-24 2006-01-03 General Electric Company Converging pin cooled airfoil
US6984103B2 (en) * 2003-11-20 2006-01-10 General Electric Company Triple circuit turbine blade
DE102004002327A1 (de) * 2004-01-16 2005-08-04 Alstom Technology Ltd Gekühlte Schaufel für eine Gasturbine
US7270515B2 (en) * 2005-05-26 2007-09-18 Siemens Power Generation, Inc. Turbine airfoil trailing edge cooling system with segmented impingement ribs
US7296972B2 (en) * 2005-12-02 2007-11-20 Siemens Power Generation, Inc. Turbine airfoil with counter-flow serpentine channels
US7296973B2 (en) * 2005-12-05 2007-11-20 General Electric Company Parallel serpentine cooled blade
US7293961B2 (en) * 2005-12-05 2007-11-13 General Electric Company Zigzag cooled turbine airfoil
US7507073B2 (en) * 2006-02-24 2009-03-24 General Electric Company Methods and apparatus for assembling a steam turbine bucket
US20100247328A1 (en) * 2006-06-06 2010-09-30 United Technologies Corporation Microcircuit cooling for blades
US7549843B2 (en) * 2006-08-24 2009-06-23 Siemens Energy, Inc. Turbine airfoil cooling system with axial flowing serpentine cooling chambers
US7625178B2 (en) * 2006-08-30 2009-12-01 Honeywell International Inc. High effectiveness cooled turbine blade
US20080085193A1 (en) * 2006-10-05 2008-04-10 Siemens Power Generation, Inc. Turbine airfoil cooling system with enhanced tip corner cooling channel
US7530789B1 (en) * 2006-11-16 2009-05-12 Florida Turbine Technologies, Inc. Turbine blade with a serpentine flow and impingement cooling circuit
US8591189B2 (en) * 2006-11-20 2013-11-26 General Electric Company Bifeed serpentine cooled blade
US7645122B1 (en) * 2006-12-01 2010-01-12 Florida Turbine Technologies, Inc. Turbine rotor blade with a nested parallel serpentine flow cooling circuit
US7762774B2 (en) 2006-12-15 2010-07-27 Siemens Energy, Inc. Cooling arrangement for a tapered turbine blade
US7731481B2 (en) * 2006-12-18 2010-06-08 United Technologies Corporation Airfoil cooling with staggered refractory metal core microcircuits
US7670113B1 (en) 2007-05-31 2010-03-02 Florida Turbine Technologies, Inc. Turbine airfoil with serpentine trailing edge cooling circuit
US7836703B2 (en) * 2007-06-20 2010-11-23 General Electric Company Reciprocal cooled turbine nozzle
US8016563B1 (en) * 2007-12-21 2011-09-13 Florida Turbine Technologies, Inc. Turbine blade with tip turn cooling
FR2933884B1 (fr) * 2008-07-16 2012-07-27 Snecma Procede de fabrication d'une piece d'aubage.
US8408866B2 (en) * 2008-11-17 2013-04-02 Rolls-Royce Corporation Apparatus and method for cooling a turbine airfoil arrangement in a gas turbine engine
US8167558B2 (en) * 2009-01-19 2012-05-01 Siemens Energy, Inc. Modular serpentine cooling systems for turbine engine components
US8061990B1 (en) * 2009-03-13 2011-11-22 Florida Turbine Technologies, Inc. Turbine rotor blade with low cooling flow
US8123481B1 (en) * 2009-06-17 2012-02-28 Florida Turbine Technologies, Inc. Turbine blade with dual serpentine cooling
CN102182518B (zh) * 2011-06-08 2013-09-04 河南科技大学 一种涡轮冷却叶片
US8840370B2 (en) 2011-11-04 2014-09-23 General Electric Company Bucket assembly for turbine system
CA2874618A1 (en) * 2012-05-31 2013-12-05 General Electric Company Airfoil cooling circuit and corresponding airfoil
FR2995342B1 (fr) * 2012-09-13 2018-03-16 Safran Aircraft Engines Aube refroidie de turbine haute pression
US9447692B1 (en) * 2012-11-28 2016-09-20 S&J Design Llc Turbine rotor blade with tip cooling
US8920123B2 (en) 2012-12-14 2014-12-30 Siemens Aktiengesellschaft Turbine blade with integrated serpentine and axial tip cooling circuits
US9995149B2 (en) * 2013-12-30 2018-06-12 General Electric Company Structural configurations and cooling circuits in turbine blades
US10307817B2 (en) * 2014-10-31 2019-06-04 United Technologies Corporation Additively manufactured casting articles for manufacturing gas turbine engine parts
US10040115B2 (en) * 2014-10-31 2018-08-07 United Technologies Corporation Additively manufactured casting articles for manufacturing gas turbine engine parts
EP3029414A1 (de) * 2014-12-01 2016-06-08 Siemens Aktiengesellschaft Turbinenschaufel, Verfahren zu ihrer Herstellung und Verfahren zum Ermitteln der Lage eines beim Gießen einer Turbinenschaufel verwendeten Gusskerns
US10443398B2 (en) 2015-10-15 2019-10-15 General Electric Company Turbine blade
US10370978B2 (en) 2015-10-15 2019-08-06 General Electric Company Turbine blade
US10208605B2 (en) 2015-10-15 2019-02-19 General Electric Company Turbine blade
US10174620B2 (en) 2015-10-15 2019-01-08 General Electric Company Turbine blade
US9950358B2 (en) 2015-11-19 2018-04-24 General Electric Company Compositions for cores used in investment casting
US10060269B2 (en) 2015-12-21 2018-08-28 General Electric Company Cooling circuits for a multi-wall blade
US10119405B2 (en) 2015-12-21 2018-11-06 General Electric Company Cooling circuit for a multi-wall blade
GB201610783D0 (en) 2016-06-21 2016-08-03 Rolls Royce Plc Trailing edge ejection cooling
US10208608B2 (en) * 2016-08-18 2019-02-19 General Electric Company Cooling circuit for a multi-wall blade
US10208607B2 (en) 2016-08-18 2019-02-19 General Electric Company Cooling circuit for a multi-wall blade
US10227877B2 (en) 2016-08-18 2019-03-12 General Electric Company Cooling circuit for a multi-wall blade
US10267162B2 (en) 2016-08-18 2019-04-23 General Electric Company Platform core feed for a multi-wall blade
US10221696B2 (en) 2016-08-18 2019-03-05 General Electric Company Cooling circuit for a multi-wall blade
US10450950B2 (en) * 2016-10-26 2019-10-22 General Electric Company Turbomachine blade with trailing edge cooling circuit
US10815800B2 (en) 2016-12-05 2020-10-27 Raytheon Technologies Corporation Radially diffused tip flag
US10989056B2 (en) 2016-12-05 2021-04-27 Raytheon Technologies Corporation Integrated squealer pocket tip and tip shelf with hybrid and tip flag core
US10563521B2 (en) 2016-12-05 2020-02-18 United Technologies Corporation Aft flowing serpentine cavities and cores for airfoils of gas turbine engines
US10465529B2 (en) 2016-12-05 2019-11-05 United Technologies Corporation Leading edge hybrid cavities and cores for airfoils of gas turbine engine
US11015529B2 (en) * 2016-12-23 2021-05-25 General Electric Company Feature based cooling using in wall contoured cooling passage
KR101901682B1 (ko) 2017-06-20 2018-09-27 두산중공업 주식회사 제이 타입 캔틸레버드 베인 및 이를 포함하는 가스터빈
US20190060982A1 (en) 2017-08-29 2019-02-28 General Electric Company Carbon fibers in ceramic cores for investment casting
FR3079262B1 (fr) * 2018-03-23 2022-07-22 Safran Helicopter Engines Aube fixe de turbine a refroidissement par impacts de jets d'air
US10907479B2 (en) * 2018-05-07 2021-02-02 Raytheon Technologies Corporation Airfoil having improved leading edge cooling scheme and damage resistance
US10941663B2 (en) 2018-05-07 2021-03-09 Raytheon Technologies Corporation Airfoil having improved leading edge cooling scheme and damage resistance
US10787932B2 (en) * 2018-07-13 2020-09-29 Honeywell International Inc. Turbine blade with dust tolerant cooling system
WO2020018815A1 (en) * 2018-07-18 2020-01-23 Poly6 Technologies, Inc. Articles and methods of manufacture
US10767492B2 (en) 2018-12-18 2020-09-08 General Electric Company Turbine engine airfoil
US11499433B2 (en) 2018-12-18 2022-11-15 General Electric Company Turbine engine component and method of cooling
US11566527B2 (en) 2018-12-18 2023-01-31 General Electric Company Turbine engine airfoil and method of cooling
US11174736B2 (en) 2018-12-18 2021-11-16 General Electric Company Method of forming an additively manufactured component
US11352889B2 (en) 2018-12-18 2022-06-07 General Electric Company Airfoil tip rail and method of cooling
US10844728B2 (en) 2019-04-17 2020-11-24 General Electric Company Turbine engine airfoil with a trailing edge
CN111022127B (zh) * 2019-11-29 2021-12-03 大连理工大学 一种涡轮叶片尾缘曲线式排气劈缝结构
US11629601B2 (en) * 2020-03-31 2023-04-18 General Electric Company Turbomachine rotor blade with a cooling circuit having an offset rib
US11220912B2 (en) * 2020-04-16 2022-01-11 Raytheon Technologies Corporation Airfoil with y-shaped rib
US11814965B2 (en) 2021-11-10 2023-11-14 General Electric Company Turbomachine blade trailing edge cooling circuit with turn passage having set of obstructions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387085A (en) * 1994-01-07 1995-02-07 General Electric Company Turbine blade composite cooling circuit
US5967752A (en) * 1997-12-31 1999-10-19 General Electric Company Slant-tier turbine airfoil
US6254334B1 (en) * 1999-10-05 2001-07-03 United Technologies Corporation Method and apparatus for cooling a wall within a gas turbine engine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156526A (en) * 1990-12-18 1992-10-20 General Electric Company Rotation enhanced rotor blade cooling using a single row of coolant passageways
US5165852A (en) * 1990-12-18 1992-11-24 General Electric Company Rotation enhanced rotor blade cooling using a double row of coolant passageways
US5813835A (en) * 1991-08-19 1998-09-29 The United States Of America As Represented By The Secretary Of The Air Force Air-cooled turbine blade
US5690472A (en) * 1992-02-03 1997-11-25 General Electric Company Internal cooling of turbine airfoil wall using mesh cooling hole arrangement
US5660524A (en) * 1992-07-13 1997-08-26 General Electric Company Airfoil blade having a serpentine cooling circuit and impingement cooling
US5356265A (en) * 1992-08-25 1994-10-18 General Electric Company Chordally bifurcated turbine blade
US5591007A (en) * 1995-05-31 1997-01-07 General Electric Company Multi-tier turbine airfoil
US5927946A (en) * 1997-09-29 1999-07-27 General Electric Company Turbine blade having recuperative trailing edge tip cooling
US6183198B1 (en) * 1998-11-16 2001-02-06 General Electric Company Airfoil isolated leading edge cooling
US6168381B1 (en) * 1999-06-29 2001-01-02 General Electric Company Airfoil isolated leading edge cooling
US6402470B1 (en) * 1999-10-05 2002-06-11 United Technologies Corporation Method and apparatus for cooling a wall within a gas turbine engine
US6416284B1 (en) * 2000-11-03 2002-07-09 General Electric Company Turbine blade for gas turbine engine and method of cooling same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387085A (en) * 1994-01-07 1995-02-07 General Electric Company Turbine blade composite cooling circuit
US5967752A (en) * 1997-12-31 1999-10-19 General Electric Company Slant-tier turbine airfoil
US6254334B1 (en) * 1999-10-05 2001-07-03 United Technologies Corporation Method and apparatus for cooling a wall within a gas turbine engine

Also Published As

Publication number Publication date
DE602004000633D1 (de) 2006-05-24
DE602004000633T2 (de) 2007-05-03
US20050008487A1 (en) 2005-01-13
EP1496204A1 (en) 2005-01-12
US6832889B1 (en) 2004-12-21
JP2005030387A (ja) 2005-02-03
EP1496204B1 (en) 2006-04-12

Similar Documents

Publication Publication Date Title
JP4546760B2 (ja) 一体化されたブリッジを備えたタービンブレード
JP4576177B2 (ja) 収束ピン冷却式翼形部
JP5325664B2 (ja) クロスフロータービンエアフォイル
US6099252A (en) Axial serpentine cooled airfoil
EP1445424B1 (en) Hollow airfoil provided with an embedded microcircuit for tip cooling
US5690473A (en) Turbine blade having transpiration strip cooling and method of manufacture
JP4341248B2 (ja) クロスオーバ冷却式の翼形部後縁
JP4801513B2 (ja) ターボ機械の可動な翼のための冷却回路
US7147432B2 (en) Turbine shroud asymmetrical cooling elements
JP4509263B2 (ja) 側壁インピンジメント冷却チャンバーを備えた後方流動蛇行エーロフォイル冷却回路
US7296972B2 (en) Turbine airfoil with counter-flow serpentine channels
JP6132546B2 (ja) タービンロータブレードのプラットフォームの冷却
EP1544411A2 (en) Turbine blade frequency tuned pin bank
JPH11294101A (ja) 後方流動多段エ―ロフォイル冷却回路
JP2005299638A (ja) 熱シールド型タービン翼形部
JP2005180422A (ja) 二種冷却媒体式タービンブレード
EP1088964A2 (en) Slotted impingement cooling of airfoil leading edge
JP2001020702A (ja) 翼形部の隔離前縁冷却
JP2004308658A (ja) エーロフォイルの冷却方法とその装置
JP2001214707A (ja) 勾配付きフイルム冷却を備えるタービンノズル
JP2006283762A (ja) テーパ形状の後縁部ランドを有するタービンエーロフォイル
JP2003106101A (ja) ガスタービンエンジン用のタービン翼形部
JPH11193701A (ja) タービン翼
JP4137508B2 (ja) リフレッシュ用孔のメータリング板を備えるタービン翼形部
JP2003322003A (ja) 後方に流れる単一の3経路蛇行冷却回路を有するタービン翼形部

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees