JP4545864B2 - Cold cathode device - Google Patents

Cold cathode device Download PDF

Info

Publication number
JP4545864B2
JP4545864B2 JP2000010225A JP2000010225A JP4545864B2 JP 4545864 B2 JP4545864 B2 JP 4545864B2 JP 2000010225 A JP2000010225 A JP 2000010225A JP 2000010225 A JP2000010225 A JP 2000010225A JP 4545864 B2 JP4545864 B2 JP 4545864B2
Authority
JP
Japan
Prior art keywords
amorphous carbon
cold cathode
carbon film
atomic
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000010225A
Other languages
Japanese (ja)
Other versions
JP2001202870A (en
Inventor
孝 岩佐
順三 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000010225A priority Critical patent/JP4545864B2/en
Publication of JP2001202870A publication Critical patent/JP2001202870A/en
Application granted granted Critical
Publication of JP4545864B2 publication Critical patent/JP4545864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Cold Cathode And The Manufacture (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電界を印加されることにより電子を放出する冷陰極素子に関する。
【0002】
【従来の技術】
従来、電子放出素子としては熱陰極素子と冷陰極素子とが知られている。
【0003】
【発明が解決しようとする課題】
熱陰極素子は真空管に代表される分野に用いられているが、熱を付与するために集積化が困難である、といった問題がある。一方、冷陰極素子は熱を用いないため集積化が可能な素子として、フラットパネルディスプレイ、電圧増幅素子、高周波増幅素子等への応用が期待されている。
【0004】
【課題を解決するための手段】
本発明は、低い印加電圧によっても十分に電子を放出することが可能な、実用性の高い前記冷陰極素子を提供することを目的とする。
【0005】
前記目的を達成するため本発明によれば、電界を印加されることにより電子を放出する冷陰極素子であって、Csを分散状態で含有させた非晶質炭素膜であり且つそのCs含有量が0.1原子%≦Cs≦1.8原子%である非晶質炭素膜より構成され、前記非晶質炭素膜に含まれているCsのXPS半値幅wが w≧1.75eVである冷陰極素子が提供される。
【0006】
Csは原子半径(2.62Å)の大きな元素であるため、母相となる非晶質炭素膜(Cの原子半径:0.77Å)に対しその構造を乱す働きをする。その乱れによっては局所的に高密度化させることが可能となる。しかしながら、Cs含有量が多すぎる(Cs>1.8原子%)とCsは単体で安定化し、母相に対する構造の乱れ度合が小さくなる(相互作用が小さい)。逆にCs含有量が少ない(Cs<0.1原子%)場合、Cs自体の影響力が弱くなる。CsのXPS半値幅wはCsの存在状態の安定度(居心地の良否)を示す指標となり、その半値幅wがw≧1.75eVと広い場合、もっとも母相に対して影響を及ぼしていると考えられる。この場合、膜は高密度化されていることになるため、過剰電子を生じ、その結果、低い印加電圧によっても高電界放出化が可能となる。
【0007】
前記非晶質炭素膜は単体で用いられる外、例えばSiよりなる冷陰極素子の性能向上を図るべく、その素子の表面被膜層構成材料としても用いられる。
【0008】
【発明の実施の形態】
図1は陰極ユニット1を示し、その陰極ユニット1はAl製陰極板2と、その表面に形成された冷陰極素子3とよりなる。その冷陰極素子3は、Cs含有量が0.1原子%≦Cs≦1.8原子%である非晶質炭素膜より構成され、そのCsのXPS半値幅wはw≧1.75eVである。
【0009】
Csは原子半径(2.62Å)の大きな元素であるため、母相となる非晶質炭素膜(Cの原子半径:0.77Å)に対しその構造を乱す働きをする。その乱れによっては局所的に高密度化させることが可能となる。しかしながら、Cs含有量が多すぎる(Cs>1.8原子%)とCsは単体で安定化し、母相に対する構造の乱れ度合が小さくなる(相互作用が小さい)。逆にCs含有量が少ない(Cs<0.1原子%)場合、Cs自体の影響力が弱くなる。CsのXPS半値幅wはCsの存在状態の安定度(居心地の良否)を示す指標となり、その半値幅wがw≧1.75eVと広い場合、もっとも母相に対して影響を及ぼしていると考えられる。この場合、膜は高密度化されていることになるため、過剰電子を生じ、その結果、低い印加電圧によっても高電界放出化が可能となる。
【0010】
さらに、Csは非晶質炭素膜内だけでなく、その表面にも多数点在する。この場合、Csが活性であることから、膜表面のCsは空気中の酸素と化合して安定な酸化物となる。その結果、膜表面の多数のCs酸化物は多数の電気絶縁性ポイントを形成するので、膜表面に電界を印加すると、それら電気絶縁性ポイントを除いた部分に電界が集中し、これによっても冷陰極素子3の電界放出特性の向上が図られる。
【0011】
非晶質炭素膜はイオンビーム蒸着法により形成され、その形成に際し、入射イオンとしてCsイオンを用い、また形成条件を調整することによってCsを非晶質炭素膜に均一に含有させることが可能となる。イオンビーム蒸着法においては、正イオンビームまたは負イオンビームが用いられる。この場合、非晶質炭素膜の原子密度は正イオンビーム蒸着法によるもの、負イオンビーム蒸着法によるもの、の順に高くなる、つまり、導電性はこの順序で強くなり、放出電界はこの順序で低くなる。この原子密度の差は、負イオンの内部ポテンシャルエネルギ(電子親和力)が正イオンのそれ(電離電圧)よりも低いことに起因する。
【0012】
以下、具体例について説明する。
〔負イオンビーム蒸着法による非晶質炭素膜の形成〕
図2は公知の超高真空型負イオンビーム蒸着装置(NIABNIS:Neutral and Ionized
Alkaline metal bombardment type heavy Negative Ion Source)を示す。その装置は、センタアノードパイプ5、フィラメント6、熱遮蔽体7等を有するCsプラズマイオン源8と、サプレッサ9と、高純度高密度炭素よりなるターゲット10を備えたターゲット電極11と、負イオン引出し電極12と、レンズ13と、マグネット14を有する電子除去体15と、偏向板16とを備えている。
【0013】
非晶質炭素膜3(便宜上、冷陰極素子と同一の符号を用いる)の形成に当っては、(a)図2に示すように、各部に所定の電圧を印加する、(b)Csプラズマイオン源8によりCsの正イオンを発生させる、(c)Csの正イオンによりターゲット10をスパッタしてC等の負イオンを発生させる、(d)サプレッサ9を介して負イオン引出し電極12により負イオンを引出して負イオンビーム17を発生させる、(e)レンズ13により負イオンビーム17を収束する、(f)電子除去体15により負イオンビーム17に含まれる電子を除去する、(g)偏向板16により負イオンのみを陰極板2に向けて飛行させる、といった方法を採用した。
【0014】
図3は負イオンビーム17の質量スペクトルを示す。この負イオンビーム17の主たる負イオンは構成原子数が1であるC- イオンと構成原子数が2である
2 - イオンである。ただし、イオン電流はC- >C2 - である。
【0015】
前記方法により得られた非晶質炭素膜3の例1〜6について、図4に示す方法で放出電界の測定を行った。即ち、電圧調整可能な電源18にAl製導電板19を接続し、その導電板19上に、中央部に縦0.8cm、横0.8cm(0.64cm2 )の開口20を有する厚さ150μmのカバーガラス21を載せ、また、そのカバーガラス21上に陰極ユニット1の非晶質炭素膜3を載せ、さらに、その陰極板2に電流計22を接続した。次いで、電源18より導電板19に所定の電圧を印加して、電流計22により電流を読取った。そして、測定電流と開口20の面積とから、放出電流密度(μA/cm2 )を求め、実用性を考慮して、その放出電流密度が8μA/cm2 に達したとき、それに対応する電圧とカバーガラス21の厚さとから放出電界(V/μm)を求めた。
【0016】
表1は例1〜6に関するCs含有量、XPS半値幅w、放出電界、非晶質炭素膜の形成条件を示す。
【0017】
【表1】

Figure 0004545864
【0018】
表1から明らかなように、例3〜5のごとく、Cs含有量を0.1原子%≦Cs≦1.8原子%に、またCsのXPS半値幅wをw≧1.75eVにそれぞれ設定すると、非晶質炭素膜3の放出電界を大いに低くすることができる。なお、XPS半値幅wがw≧2.0eVの状態は、Cs含有量の増加を意味し、その場合前記のように個々に安定化するため、前記のような膜形成方法においては起こりえない。
【0019】
この種の冷陰極素子は、フラットパネルディスプレイ、電圧増幅素子、高周波増幅素子、高精度至近距離レーダ、磁気センサ、視覚センサ等に応用される。
【0020】
【発明の効果】
本発明によれば、前記のように構成することによって、低い印加電圧によっても十分に電子を放出することが可能な、実用性の高い冷陰極素子を提供することができる。
【図面の簡単な説明】
【図1】 陰極ユニットの断面図である。
【図2】 超高真空型負イオンビーム蒸着装置の概略図である。
【図3】 前記装置によるビームスペクトルである。
【図4】 放出電界測定方法の説明図である。
【符号の説明】
1 陰極ユニット
2 陰極板
3 冷陰極素子(非晶質炭素膜)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cold cathode device that emits electrons when an electric field is applied.
[0002]
[Prior art]
Conventionally, a hot cathode device and a cold cathode device are known as electron-emitting devices.
[0003]
[Problems to be solved by the invention]
The hot cathode element is used in a field represented by a vacuum tube, but has a problem that it is difficult to integrate in order to apply heat. On the other hand, cold cathode devices are expected to be applied to flat panel displays, voltage amplification devices, high frequency amplification devices and the like as devices that can be integrated because they do not use heat.
[0004]
[Means for Solving the Problems]
An object of the present invention is to provide the cold cathode device with high practicality capable of sufficiently emitting electrons even with a low applied voltage.
[0005]
In order to achieve the above object, according to the present invention, there is provided a cold cathode device that emits electrons when an electric field is applied, the amorphous carbon film containing Cs in a dispersed state, and the Cs content thereof. Is made of an amorphous carbon film with 0.1 atomic% ≦ Cs ≦ 1.8 atomic%, and the XPS half-value width w of Cs contained in the amorphous carbon film is w ≧ 1.75 eV. A cold cathode device is provided.
[0006]
Since Cs is an element having a large atomic radius (2.62 Å), it acts to disturb the structure of the amorphous carbon film (C atomic radius: 0.77 Å) serving as a parent phase. Depending on the disturbance, the density can be increased locally. However, if the Cs content is too high (Cs> 1.8 atomic%), Cs is stabilized as a single substance, and the degree of structural disorder with respect to the parent phase is reduced (the interaction is small). Conversely, when the Cs content is small (Cs <0.1 atomic%), the influence of Cs itself is weakened. The XPS half-value width w of Cs is an index indicating the stability (goodness of comfort) of the presence state of Cs. Conceivable. In this case, since the film is densified, excess electrons are generated, and as a result, high field emission can be achieved even with a low applied voltage.
[0007]
In addition to being used alone, the amorphous carbon film is also used as a constituent material for the surface coating layer of the cold cathode element made of Si, for example.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a cathode unit 1, which comprises an Al cathode plate 2 and a cold cathode element 3 formed on the surface thereof. The cold cathode element 3 is composed of an amorphous carbon film having a Cs content of 0.1 atomic% ≦ Cs ≦ 1.8 atomic%, and the XPS half-value width w of the Cs is w ≧ 1.75 eV. .
[0009]
Since Cs is an element having a large atomic radius (2.62 Å), it acts to disturb the structure of the amorphous carbon film (C atomic radius: 0.77 Å) serving as a parent phase. Depending on the disturbance, the density can be increased locally. However, if the Cs content is too high (Cs> 1.8 atomic%), Cs is stabilized as a single substance, and the degree of structural disorder with respect to the parent phase is reduced (the interaction is small). Conversely, when the Cs content is small (Cs <0.1 atomic%), the influence of Cs itself is weakened. The XPS half-value width w of Cs is an index indicating the stability (goodness of comfort) of the presence state of Cs. Conceivable. In this case, since the film is densified, excess electrons are generated, and as a result, high field emission can be achieved even with a low applied voltage.
[0010]
Furthermore, many Cs are scattered not only in the amorphous carbon film but also on the surface thereof. In this case, since Cs is active, Cs on the film surface combines with oxygen in the air to form a stable oxide. As a result, a large number of Cs oxides on the film surface form a large number of electrically insulating points. Therefore, when an electric field is applied to the film surface, the electric field concentrates on the portion other than the electrically insulating points, which also causes cooling. The field emission characteristics of the cathode element 3 can be improved.
[0011]
The amorphous carbon film is formed by an ion beam deposition method. In forming the amorphous carbon film, Cs ions can be used as incident ions, and Cs can be uniformly contained in the amorphous carbon film by adjusting the formation conditions. Become. In the ion beam deposition method, a positive ion beam or a negative ion beam is used. In this case, the atomic density of the amorphous carbon film increases in the order of positive ion beam evaporation and negative ion beam evaporation, that is, the conductivity increases in this order, and the emission electric field increases in this order. Lower. This difference in atomic density is attributed to the fact that the internal potential energy (electron affinity) of negative ions is lower than that of positive ions (ionization voltage).
[0012]
Hereinafter, specific examples will be described.
[Formation of amorphous carbon film by negative ion beam evaporation method]
Fig. 2 shows a known ultra-high vacuum negative ion beam deposition system (NIABNIS: Neutral and Ionized).
Alkaline metal bombardment type heavy Negative Ion Source). The apparatus includes a Cs plasma ion source 8 having a center anode pipe 5, a filament 6, a heat shield 7 and the like, a suppressor 9, a target electrode 11 having a target 10 made of high-purity high-density carbon, and negative ion extraction. An electrode 12, a lens 13, an electron removing body 15 having a magnet 14, and a deflection plate 16 are provided.
[0013]
In forming the amorphous carbon film 3 (for the sake of convenience, the same reference numeral as that of the cold cathode element is used), (a) a predetermined voltage is applied to each part as shown in FIG. 2, (b) Cs plasma Cs positive ions are generated by the ion source 8. (c) The target 10 is sputtered by the Cs positive ions to generate negative ions such as C. (d) The negative ions are extracted by the negative ion extraction electrode 12 through the suppressor 9. Ions are extracted to generate a negative ion beam 17, (e) the negative ion beam 17 is converged by the lens 13, (f) electrons contained in the negative ion beam 17 are removed by the electron removing body 15, and (g) deflection. A method is adopted in which only negative ions are caused to fly toward the cathode plate 2 by the plate 16.
[0014]
FIG. 3 shows a mass spectrum of the negative ion beam 17. The main negative ions of the negative ion beam 17 are C ions having 1 constituent atom and C 2 ions having 2 constituent atoms. However, the ion current is C > C 2 .
[0015]
With respect to Examples 1 to 6 of the amorphous carbon film 3 obtained by the above method, the emission electric field was measured by the method shown in FIG. That is, an Al conductive plate 19 is connected to a voltage-adjustable power source 18, and a thickness of 0.8 cm in length and 0.8 cm in width (0.64 cm 2 ) in the center is formed on the conductive plate 19. A cover glass 21 of 150 μm was placed, the amorphous carbon film 3 of the cathode unit 1 was placed on the cover glass 21, and an ammeter 22 was connected to the cathode plate 2. Next, a predetermined voltage was applied from the power source 18 to the conductive plate 19, and the current was read by the ammeter 22. Then, from the area of the measured current and the opening 20 determines the emission current density (μA / cm 2), in consideration of practicality, when the emission current density reached 8 .mu.A / cm 2, a voltage corresponding thereto The emission electric field (V / μm) was determined from the thickness of the cover glass 21.
[0016]
Table 1 shows the Cs content, XPS half width w, emission electric field, and amorphous carbon film formation conditions for Examples 1-6.
[0017]
[Table 1]
Figure 0004545864
[0018]
As is clear from Table 1, as in Examples 3 to 5, the Cs content was set to 0.1 atomic% ≦ Cs ≦ 1.8 atomic%, and the XPS half-value width w of Cs was set to w ≧ 1.75 eV. Then, the emission electric field of the amorphous carbon film 3 can be greatly reduced. It should be noted that a state where the XPS half-value width w is w ≧ 2.0 eV means an increase in the Cs content. In this case, since it is individually stabilized as described above, it cannot occur in the film forming method as described above. .
[0019]
This type of cold cathode device is applied to a flat panel display, a voltage amplification device, a high frequency amplification device, a high-precision close-range radar, a magnetic sensor, a visual sensor, and the like.
[0020]
【The invention's effect】
According to the present invention, by configuring as described above, it is possible to provide a highly practical cold cathode device capable of sufficiently emitting electrons even with a low applied voltage.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a cathode unit.
FIG. 2 is a schematic view of an ultra-high vacuum type negative ion beam deposition apparatus.
FIG. 3 is a beam spectrum obtained by the apparatus.
FIG. 4 is an explanatory diagram of an emission electric field measurement method.
[Explanation of symbols]
1 Cathode unit 2 Cathode plate 3 Cold cathode element (amorphous carbon film)

Claims (2)

電界を印加されることにより電子を放出する冷陰極素子であって、
Csを分散状態で含有させた非晶質炭素膜であり且つそのCs含有量が 0.1原子%≦Cs≦1.8原子%である非晶質炭素膜より構成され、
前記非晶質炭素膜に含まれているCsのXPS半値幅wが w≧1.75eVであることを特徴とする冷陰極素子。
A cold cathode device that emits electrons when an electric field is applied,
An amorphous carbon film containing Cs in a dispersed state and having an Cs content of 0.1 atomic% ≦ Cs ≦ 1.8 atomic%,
The cold cathode device, wherein an XPS half-value width w of Cs contained in the amorphous carbon film is w ≧ 1.75 eV.
前記非晶質炭素膜は、負イオンビームを用いるイオンビーム蒸着法により形成された、請求項1記載の冷陰極素子。  The cold cathode device according to claim 1, wherein the amorphous carbon film is formed by an ion beam deposition method using a negative ion beam.
JP2000010225A 2000-01-14 2000-01-14 Cold cathode device Expired - Fee Related JP4545864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000010225A JP4545864B2 (en) 2000-01-14 2000-01-14 Cold cathode device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000010225A JP4545864B2 (en) 2000-01-14 2000-01-14 Cold cathode device

Publications (2)

Publication Number Publication Date
JP2001202870A JP2001202870A (en) 2001-07-27
JP4545864B2 true JP4545864B2 (en) 2010-09-15

Family

ID=18538260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000010225A Expired - Fee Related JP4545864B2 (en) 2000-01-14 2000-01-14 Cold cathode device

Country Status (1)

Country Link
JP (1) JP4545864B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4405027B2 (en) * 2000-03-01 2010-01-27 本田技研工業株式会社 Cold cathode device
JP3535871B2 (en) 2002-06-13 2004-06-07 キヤノン株式会社 Electron emitting device, electron source, image display device, and method of manufacturing electron emitting device
JP4154356B2 (en) 2003-06-11 2008-09-24 キヤノン株式会社 Electron emitting device, electron source, image display device, and television
JP4667031B2 (en) 2004-12-10 2011-04-06 キヤノン株式会社 Manufacturing method of electron-emitting device, and manufacturing method of electron source and image display device using the manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140044A (en) * 1997-07-18 1999-02-12 Canon Inc Electron emitting element, electron source, image display device, and manufacture thereof
JPH11213867A (en) * 1998-01-29 1999-08-06 Honda Motor Co Ltd Cold cathode element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140044A (en) * 1997-07-18 1999-02-12 Canon Inc Electron emitting element, electron source, image display device, and manufacture thereof
JPH11213867A (en) * 1998-01-29 1999-08-06 Honda Motor Co Ltd Cold cathode element

Also Published As

Publication number Publication date
JP2001202870A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
US6087765A (en) Electron emissive film
Lim et al. Work function of MgO single crystals from ion-induced secondary electron emission coefficient
JPH0132627B2 (en)
Prewett et al. Characteristics of a gallium liquid metal field emission ion source
Roy et al. Emission properties of explosive field emission cathodes
US4994711A (en) High brightness solid electrolyte ion source
Mair et al. Gallium‐field‐ion emission from liquid point anodes
JP4545864B2 (en) Cold cathode device
EP1302964A1 (en) Field-enhanced MIS/MIM electron emitters
US6861790B1 (en) Electronic element
JP2556364B2 (en) Vacuum deposition equipment
Levi-Setti et al. Secondary ion imaging in the scanning ion microscope
JP4104248B2 (en) Method for manufacturing electronic device and electronic device
JP4405027B2 (en) Cold cathode device
Nakano et al. Fabrication of Mo microcones for volcano-structured double-gate Spindt-type emitter cathodes using triode high power pulsed magnetron sputtering
JP3793354B2 (en) Cold cathode device
CN112599397B (en) Storage type ion source
JP4104241B2 (en) Electronic element
JP3765358B2 (en) Cold cathode device
KR100303632B1 (en) Cold cathode element
Driesel et al. In situ HVTEM observation of the tip shape of tin liquid metal ion sources
Khamdokhov et al. Field-Emission Cathodes Based on Microchannel Plates
JP2000357452A (en) Manufacture for cold cathode element
JP2002539580A (en) Field emission device and method of use
Takeuchi et al. Metal-free and gasless space charge compensation of low energy ion beam by using surface-carbonized silicon field emitter array

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091021

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140709

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees