JPH11213867A - Cold cathode element - Google Patents
Cold cathode elementInfo
- Publication number
- JPH11213867A JPH11213867A JP1685498A JP1685498A JPH11213867A JP H11213867 A JPH11213867 A JP H11213867A JP 1685498 A JP1685498 A JP 1685498A JP 1685498 A JP1685498 A JP 1685498A JP H11213867 A JPH11213867 A JP H11213867A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- carbon film
- cold cathode
- ion beam
- electrons
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Cold Cathode And The Manufacture (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電界を印加される
ことにより電子を放出する冷陰極素子に関する。The present invention relates to a cold cathode device which emits electrons when an electric field is applied.
【0002】[0002]
【従来の技術】従来、電子放出素子としては熱陰極素子
と冷陰極素子とが知られている。2. Description of the Related Art Conventionally, a hot cathode device and a cold cathode device are known as electron-emitting devices.
【0003】[0003]
【発明が解決しようとする課題】熱陰極素子は真空管に
代表される分野に用いられているが、熱を付与するため
に集積化が困難である、といった問題がある。一方、冷
陰極素子は熱を用いないため集積化が可能な素子とし
て、フラットパネルディスプレイ、電圧増幅素子、高周
波増幅素子等への応用が期待されている。The hot cathode device is used in a field typified by a vacuum tube, but has a problem that it is difficult to integrate it because heat is applied thereto. On the other hand, cold cathode devices are expected to be applied to flat panel displays, voltage amplifiers, high frequency amplifiers, and the like as devices that can be integrated because they do not use heat.
【0004】[0004]
【課題を解決するための手段】本発明は、低い印加電圧
によっても十分に電子を放出することが可能な、実用性
の高い前記冷陰極素子を提供することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide a highly practical cold cathode device capable of sufficiently emitting electrons even at a low applied voltage.
【0005】前記目的を達成するため本発明によれば、
電界を印加されることにより電子を放出する冷陰極素子
であって、X線光電子分光法によるC1S電子の光電子ス
ペクトルの半値幅Hwが、Hw≧1.72eVであるダ
イヤモンド状炭素膜より構成されている冷陰極素子が提
供される。[0005] To achieve the above object, according to the present invention,
A cold-cathode device that emits electrons when an electric field is applied thereto. The cold-cathode device comprises a diamond-like carbon film having a half-value width Hw of a photoelectron spectrum of C 1S electrons determined by X-ray photoelectron spectroscopy, where Hw ≧ 1.72 eV. Cold cathode device is provided.
【0006】ここで、ダイヤモンド状炭素膜とは、その
結晶構造がダイヤモンド単結晶構造ではないが、その性
質がダイヤモンドに近いものを言う。Here, the diamond-like carbon film means a film whose crystal structure is not a diamond single crystal structure but whose properties are close to those of diamond.
【0007】このようなダイヤモンド状炭素膜におい
て、半値幅Hwを前記のように設定すると、そのダイヤ
モンド状炭素膜におけるダイヤモンド性、つまり電気絶
縁性が弱められる一方、グラファイト性、つまり導電性
が強められる。これにより冷陰極素子の放出電界が低め
られるので、低い印加電圧によっても十分に電子を放出
することが可能となる。In such a diamond-like carbon film, when the half width Hw is set as described above, the diamond-like property, that is, the electrical insulation, of the diamond-like carbon film is weakened, while the graphite property, that is, the conductivity is enhanced. . As a result, the emission field of the cold cathode device is reduced, so that electrons can be sufficiently emitted even with a low applied voltage.
【0008】ただし、前記半値幅HwがHw<1.72
eVでは、ダイヤモンド状炭素膜のダイヤモンド性が強
められるため、放出電界が高くなる。However, when the half width Hw is Hw <1.72.
At eV, the diamond property of the diamond-like carbon film is enhanced, and the emission electric field is increased.
【0009】[0009]
【発明の実施の形態】図1は陰極ユニット1を示し、そ
の陰極ユニット1はAl製陰極板2と、その表面に形成
された冷陰極素子3とよりなる。その冷陰極素子3は、
X線光電子分光法(ESCA、XPS)によるC1S電子
の光電子スペクトルの半値幅HwがHw≧1.72eV
であるダイヤモンド状炭素膜より構成されている。FIG. 1 shows a cathode unit 1, which comprises an aluminum cathode plate 2 and a cold cathode device 3 formed on the surface thereof. The cold cathode device 3 is
The half-value width Hw of the photoelectron spectrum of C 1S electron by X-ray photoelectron spectroscopy (ESCA, XPS) is Hw ≧ 1.72 eV.
And a diamond-like carbon film.
【0010】前記半値幅Hwは、図2に示すように、ダ
イヤモンド状炭素膜について、X線光電子分光法による
分析を行い、得られたC1S電子の光電子スペクトル4か
ら求められる。即ち、ピーク値の2分の1におけるスペ
クトルの幅(eV)を半値幅Hwとする。As shown in FIG. 2, the half-value width Hw is obtained from the photoelectron spectrum 4 of the obtained C 1 S electrons obtained by analyzing the diamond-like carbon film by X-ray photoelectron spectroscopy. That is, the width (eV) of the spectrum at half the peak value is defined as the half width Hw.
【0011】ダイヤモンド状炭素膜において、半値幅H
wを前記のように設定すると、そのダイヤモンド状炭素
膜におけるダイヤモンド性、つまり電気絶縁性が弱めら
れる一方、グラファイト性、つまり導電性が強められ
る。これにより冷陰極素子3の放出電界が低められるの
で、低い印加電圧によっても十分に電子を放出すること
が可能となる。In the diamond-like carbon film, the half width H
When w is set as described above, the diamond property of the diamond-like carbon film, that is, the electrical insulation property is weakened, while the graphite property, that is, the conductivity is enhanced. Thus, the emission electric field of the cold cathode device 3 is reduced, so that electrons can be sufficiently emitted even with a low applied voltage.
【0012】ダイヤモンド状炭素膜はスパッタリングま
たはイオンビーム蒸着法により形成される。イオンビー
ム蒸着法においては、正イオンビームまたは負イオンビ
ームが用いられる。この場合、ダイヤモンド状炭素膜の
原子密度は、スパッタリングによるもの、正イオンビー
ム蒸着法によるもの、負イオンビーム蒸着法によるも
の、の順に高くなる、つまり同一の半値幅Hwを有して
いても、導電性は前記順序で強くなり、放出電界は前記
順序で低くなる。The diamond-like carbon film is formed by sputtering or ion beam evaporation. In the ion beam evaporation method, a positive ion beam or a negative ion beam is used. In this case, the atomic density of the diamond-like carbon film becomes higher in the order of those obtained by sputtering, those obtained by positive ion beam evaporation, and those obtained by negative ion beam evaporation, that is, even if they have the same half width Hw, The conductivity increases in the order and the emission field decreases in the order.
【0013】これは次のような理由による。即ち、スパ
ッタリングにおいては、蒸着エネルギが不定であると共
に蒸着粒子サイズもランダムであるため、ダイヤモンド
状炭素膜内に多くの欠陥が生じ、これによりその導電性
が阻害される。一方、正、負イオンビーム蒸着法におい
ては、蒸着エネルギを制御することが可能であるから、
ダイヤモンド状炭素膜内の欠陥の発生を大いに抑制して
高密度化を図ることができる。この効果は、負イオンビ
ーム蒸着法によるダイヤモンド状炭素膜において顕著で
あり、これは負イオンの内部ポテンシャルエネルギ(電
子親和力)が正イオンのそれ(電離電圧)よりも低いこ
とに起因する。This is for the following reason. That is, in sputtering, the deposition energy is indefinite and the deposition particle size is also random, so that many defects are generated in the diamond-like carbon film, thereby inhibiting its conductivity. On the other hand, in the positive and negative ion beam deposition methods, since the deposition energy can be controlled,
The generation of defects in the diamond-like carbon film can be greatly suppressed, and the density can be increased. This effect is remarkable in the diamond-like carbon film formed by the negative ion beam evaporation method, because the internal potential energy (electron affinity) of the negative ions is lower than that of the positive ions (ionization voltage).
【0014】以下、具体例について説明する。Hereinafter, a specific example will be described.
【0015】〔I〕負イオンビーム蒸着法によるダイヤ
モンド状炭素膜の形成 図3は、公知の超高真空型負イオンビーム蒸着装置(NI
ABNIS:Neutral andIonized Alkaline metal bombardmen
t type heavy Negative Ion Source)を示す。その装置
は、センタアノードパイプ5、フィラメント6、熱遮蔽
体7等を有するセシウムプラズマイオン源8と、サプレ
ッサ9と、高純度高密度炭素よりなるターゲット10を
備えたターゲット電極11と、負イオン引出し電極12
と、レンズ13と、マグネット14を有する電子除去体
15と、偏向板16とを有する。 ダイヤモンド状炭素
膜3(便宜上、冷陰極素子と同一の符号を用いる)の形
成に当っては、(a)図3に示すように、各部に所定の
電圧を印加する、(b)セシウムプラズマイオン源8に
よりセシウムの正イオンを発生させる、(c)セシウム
の正イオンによりターゲット10をスパッタして炭素等
の負イオンを発生させる、(d)サプレッサ9を介して
負イオン引出し電極12により負イオンを引出して負イ
オンビーム17を発生させる、(e)レンズ13により
負イオンビーム17を収束する、(f)電子除去体15
により負イオンビーム17に含まれる電子を除去する、
(g)偏向板16により負イオンのみを電極板2に向け
て飛行させる、といった方法を採用した。[I] Formation of Diamond-like Carbon Film by Negative Ion Beam Deposition Method FIG. 3 shows a known ultra-high vacuum type negative ion beam deposition apparatus (NI
ABNIS: Neutral and Ionized Alkaline metal bombardmen
t type heavy Negative Ion Source). The apparatus comprises a cesium plasma ion source 8 having a center anode pipe 5, a filament 6, a heat shield 7, etc., a suppressor 9, a target electrode 11 having a target 10 made of high-purity, high-density carbon, and negative ion extraction. Electrode 12
, A lens 13, an electron removing body 15 having a magnet 14, and a deflecting plate 16. In forming the diamond-like carbon film 3 (for convenience, the same reference numerals as those of the cold cathode device are used), (a) a predetermined voltage is applied to each part as shown in FIG. 3, (b) cesium plasma ion Cesium positive ions are generated by the source 8, (c) a target 10 is sputtered with the cesium positive ions to generate negative ions such as carbon, and (d) negative ions are generated by the negative ion extraction electrode 12 through the suppressor 9. To generate a negative ion beam 17, (e) converge the negative ion beam 17 by the lens 13, (f) electron remover 15
Removes the electrons contained in the negative ion beam 17,
(G) A method was adopted in which only negative ions were caused to fly toward the electrode plate 2 by the deflection plate 16.
【0016】図4は負イオンビーム17の質量スペクト
ルを示す。この負イオンビーム17の主たる負イオンは
構成原子数が1であるC- イオンと構成原子数が2であ
るC2 - イオンである。ただし、イオン電流はC- >C
2 - である。FIG. 4 shows a mass spectrum of the negative ion beam 17. The main negative ions of the negative ion beam 17 are C - ions having 1 constituent atom and C 2 - ions having 2 constituent atoms. However, the ion current is C -> C
2 -.
【0017】表1は負イオンビーム蒸着法によるダイヤ
モンド状炭素膜3の例1〜7における形成条件を示す。
例1〜7の厚さは0.4〜0.8μmであった。Table 1 shows the conditions for forming the diamond-like carbon film 3 in Examples 1 to 7 by the negative ion beam evaporation method.
The thickness of Examples 1 to 7 was 0.4 to 0.8 μm.
【0018】[0018]
【表1】 [Table 1]
【0019】次に、例1〜7についてX線光電子分光法
による分析を行い、得られたC1S電子の光電子スペクト
ル4から半値幅Hwを求めた。Next, Examples 1 to 7 were analyzed by X-ray photoelectron spectroscopy, and the half width Hw was determined from the photoelectron spectrum 4 of the obtained C 1S electrons.
【0020】その後、例1〜7について、図5に示す方
法で、放出電界の測定を行った。即ち、電圧調整可能な
電源18にAl製導電板19を接続し、その導電板19
上に、中央部に縦0.8cm、横0.8cm(0.64c
m2 )の開口20を有する厚さ150μmのカバーガラ
ス21を載せ、また、そのカバーガラス21上に陰極ユ
ニット1のダイヤモンド状炭素膜3を載せ、さらに、そ
の陰極板2に電流計22を接続した。次いで、電源18
より導電板19に所定の電圧を印加して、電流計22に
より電流を読取った。そして、測定電流と開口20の面
積とから、放出電流密度(μA/cm2 )を求め、実用性
を考慮して、その放出電流密度が8μA/cm 2 に達した
とき、それに対応する電圧とカバーガラス21の厚さと
から放出電界(V/μm)を求めた。Then, for Examples 1 to 7, the method shown in FIG.
The emission field was measured by the method. That is, the voltage is adjustable
An Al conductive plate 19 is connected to a power source 18 and the conductive plate 19
On top, 0.8cm in height, 0.8cm in width (0.64c
mTwo150 μm thick cover glass having openings 20)
The cathode 21 is placed on the cover glass 21.
Place the diamond-like carbon film 3 of the knit 1 and further
The ammeter 22 was connected to the cathode plate 2 of. Next, the power supply 18
A predetermined voltage is applied to the conductive plate 19 and the ammeter 22 is
More current was read. Then, the measured current and the surface of the opening 20
From the product, the emission current density (μA / cmTwo) Seeking practicality
And the emission current density is 8 μA / cm TwoReached
When the corresponding voltage and the thickness of the cover glass 21
The emission electric field (V / μm) was obtained from
【0021】表2は例1〜7に関する半値幅Hwと放出
電界を示す。Table 2 shows the half width Hw and the emission field for Examples 1 to 7.
【0022】[0022]
【表2】 [Table 2]
【0023】〔II〕正イオンビーム蒸着法によるダイヤ
モンド状炭素膜の形成 このダイヤモンド状炭素膜3の形成には、図3の装置を
用い、またアルゴンの正イオンによりスパッタを行って
炭素の正イオンを発生させ、さらに負イオン引出し電極
12、レンズ13、偏向板16および陰極板2の極性
を、前記〔I〕の場合(図3参照)と逆に設定した。[II] Formation of Diamond-Like Carbon Film by Positive Ion Beam Deposition Method The diamond-like carbon film 3 is formed by using the apparatus shown in FIG. And the polarities of the negative ion extraction electrode 12, the lens 13, the deflecting plate 16 and the cathode plate 2 were set to be opposite to those of the case [I] (see FIG. 3).
【0024】表3は、正イオンビーム蒸着法によるダイ
ヤモンド状炭素膜3の例1〜5における形成条件を示
す。例1〜5の厚さは0.4〜0.8μmであった。Table 3 shows the conditions for forming the diamond-like carbon film 3 in Examples 1 to 5 by the positive ion beam evaporation method. The thickness of Examples 1 to 5 was 0.4 to 0.8 μm.
【0025】[0025]
【表3】 [Table 3]
【0026】次に、例1〜5について、前記と同様の方
法で半値幅Hwを求め、また前記と同様の方法で、放出
電界の測定を行った。Next, for Examples 1 to 5, the half width Hw was determined by the same method as described above, and the emission electric field was measured by the same method as described above.
【0027】表4は例1〜5に関する半値幅Hwと放出
電界を示す。Table 4 shows the half width Hw and the emission field for Examples 1 to 5.
【0028】[0028]
【表4】 [Table 4]
【0029】〔III 〕スパッタリングによるダイヤモン
ド状炭素膜の形成 このダイヤモンド状炭素膜3の形成には、公知の高周波
スパッタ装置を用いた。[III] Formation of Diamond-like Carbon Film by Sputtering A known high-frequency sputtering device was used to form the diamond-like carbon film 3.
【0030】表5は、スパッタリングによるダイヤモン
ド状炭素膜3の例1〜3における形成条件を示す。例1
〜3の厚さは0.4〜0.8μmであった。Table 5 shows the conditions for forming the diamond-like carbon film 3 by sputtering in Examples 1 to 3. Example 1
The thickness of 33 was 0.4-0.8 μm.
【0031】[0031]
【表5】 [Table 5]
【0032】次に、例1〜3について、前記と同様の方
法で半値幅Hwを求め、また前記と同様の方法で、放出
電界の測定を行った。Next, for Examples 1 to 3, the half width Hw was determined by the same method as described above, and the emission field was measured by the same method as described above.
【0033】表6は例1〜3に関する半値幅Hwと放出
電界を示す。Table 6 shows the half width Hw and the emission electric field for Examples 1 to 3.
【0034】[0034]
【表6】 [Table 6]
【0035】〔IV〕電界放出特性 前記各ダイヤモンド状炭素膜3に関し、表2,4,6に
基づいて半値幅Hwと放出電界との関係をグラフ化した
ところ、図6の結果を得た。図6から明らかなように、
半値幅HwをHw≧1.72eVに設定すると、ダイヤ
モンド状炭素膜3の放出電界を大いに低くすることがで
きる。この場合、ダイヤモンド状炭素膜3の電界放出特
性は、スパッタリングによるもの、正イオンビーム蒸着
法によるもの、負イオンビーム蒸着法によるもの、の順
に高くなることが判る。[IV] Field Emission Characteristics The relationship between the half width Hw and the emission electric field of each of the diamond-like carbon films 3 based on Tables 2, 4 and 6 was obtained. As is clear from FIG.
When the half width Hw is set to Hw ≧ 1.72 eV, the emission electric field of the diamond-like carbon film 3 can be greatly reduced. In this case, it can be seen that the field emission characteristics of the diamond-like carbon film 3 increase in the order of sputtering, positive ion beam evaporation, and negative ion beam evaporation.
【0036】本発明に係る冷陰極素子は、フラットパネ
ルディスプレイ、電圧増幅素子、高周波増幅素子、高精
度至近距離レーダ、磁気センサ、視覚センサ等に応用さ
れる。The cold cathode device according to the present invention is applied to a flat panel display, a voltage amplifying device, a high frequency amplifying device, a high precision close range radar, a magnetic sensor, a visual sensor, and the like.
【0037】[0037]
【発明の効果】本発明によれば、前記のように構成する
ことによって、低い印加電圧によっても十分に電子を放
出することが可能な、実用性の高い冷陰極素子を提供す
ることができる。According to the present invention, a cold cathode device having high practicability and capable of sufficiently emitting electrons even with a low applied voltage can be provided by employing the above-described structure.
【図1】陰極ユニットの断面図である。FIG. 1 is a sectional view of a cathode unit.
【図2】ダイヤモンド状炭素膜に関するX線光電子分光
法によるC1S電子の光電子スペクトルである。FIG. 2 is a photoelectron spectrum of C 1S electrons of a diamond-like carbon film by X-ray photoelectron spectroscopy.
【図3】超高真空型負イオンビーム蒸着装置の概略図で
ある。FIG. 3 is a schematic view of an ultra-high vacuum type negative ion beam evaporation apparatus.
【図4】前記装置によるビームスペクトルである。FIG. 4 is a beam spectrum obtained by the apparatus.
【図5】放出電界測定方法の説明図である。FIG. 5 is an explanatory diagram of an emission field measurement method.
【図6】半値幅と放出電界との関係を示すグラフであ
る。FIG. 6 is a graph showing a relationship between a half width and an emission electric field.
1 陰極ユニット 2 陰極板 3 冷陰極素子(ダイヤモンド状炭素膜) Reference Signs List 1 cathode unit 2 cathode plate 3 cold cathode device (diamond-like carbon film)
Claims (3)
する冷陰極素子であって、X線光電子分光法によるC1S
電子の光電子スペクトルの半値幅Hwが、Hw≧1.7
2eVであるダイヤモンド状炭素膜より構成されている
ことを特徴とする冷陰極素子。1. A cold cathode device that emits electrons when an electric field is applied thereto, comprising: a C 1S element by X-ray photoelectron spectroscopy.
The half-value width Hw of the photoelectron spectrum of electrons is Hw ≧ 1.7.
A cold cathode device comprising a diamond-like carbon film of 2 eV.
ム蒸着法により形成された、請求項1記載の冷陰極素
子。2. The cold cathode device according to claim 1, wherein said diamond-like carbon film is formed by an ion beam evaporation method.
ビームを用いるイオンビーム蒸着法により形成された、
請求項1記載の冷陰極素子。3. The method according to claim 1, wherein the diamond-like carbon film is formed by an ion beam evaporation method using a negative ion beam.
The cold cathode device according to claim 1.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1685498A JP3765358B2 (en) | 1998-01-29 | 1998-01-29 | Cold cathode device |
US09/237,844 US6268686B1 (en) | 1998-01-29 | 1999-01-27 | Cold cathode element |
KR1019990002830A KR100303632B1 (en) | 1998-01-29 | 1999-01-29 | Cold cathode element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1685498A JP3765358B2 (en) | 1998-01-29 | 1998-01-29 | Cold cathode device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11213867A true JPH11213867A (en) | 1999-08-06 |
JP3765358B2 JP3765358B2 (en) | 2006-04-12 |
Family
ID=11927814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1685498A Expired - Fee Related JP3765358B2 (en) | 1998-01-29 | 1998-01-29 | Cold cathode device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3765358B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001202870A (en) * | 2000-01-14 | 2001-07-27 | Honda Motor Co Ltd | Cold cathode element |
-
1998
- 1998-01-29 JP JP1685498A patent/JP3765358B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001202870A (en) * | 2000-01-14 | 2001-07-27 | Honda Motor Co Ltd | Cold cathode element |
JP4545864B2 (en) * | 2000-01-14 | 2010-09-15 | 本田技研工業株式会社 | Cold cathode device |
Also Published As
Publication number | Publication date |
---|---|
JP3765358B2 (en) | 2006-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Konstantinidis et al. | Transport of ionized metal atoms in high-power pulsed magnetron discharges assisted by inductively coupled plasma | |
EP0938739A1 (en) | Carbon cone and carbon whisker field emitters | |
JP2010520581A (en) | Device for field emission of particles and manufacturing method | |
Roy et al. | Emission properties of explosive field emission cathodes | |
Prewett et al. | Characteristics of a gallium liquid metal field emission ion source | |
Pajdarová et al. | Plasma parameters in positive voltage pulses of bipolar HiPIMS discharge determined by Langmuir probe with a sub-microsecond time resolution | |
Hasseltine et al. | Cesium‐Ion Bombardment of Aluminum Oxide in a Controlled Oxygen Environment | |
US6861790B1 (en) | Electronic element | |
Le Pimpec et al. | Vacuum breakdown limit and quantum efficiency obtained for various technical metals using dc and pulsed voltage sources | |
JP2003221666A (en) | Ionization film-forming method and apparatus | |
JP4545864B2 (en) | Cold cathode device | |
JP3765358B2 (en) | Cold cathode device | |
Levi-Setti et al. | Secondary ion imaging in the scanning ion microscope | |
JP4405027B2 (en) | Cold cathode device | |
JP4104248B2 (en) | Method for manufacturing electronic device and electronic device | |
JPS62140332A (en) | Field emission cathode | |
Abe et al. | Comparison of plasma characteristics of high-power pulsed sputtering glow discharge and hollow-cathode discharge | |
KR100303632B1 (en) | Cold cathode element | |
JP4104241B2 (en) | Electronic element | |
JP3793354B2 (en) | Cold cathode device | |
JP2000357452A (en) | Manufacture for cold cathode element | |
Yahya et al. | Effect of Electrodes Separation in DC Plasma Sputtering on Morphology of Silver Coated Samples | |
RU2581835C1 (en) | Controlled emitting unit of electronic devices with autoelectronic emission and x-ray tube with said unit | |
Shandrikov et al. | Modified residual gas analyzer for measuring the ion mass-to-charge composition of a repetitively pulsed plasma | |
Bowden et al. | A low energy ion gun for bombarding small specimens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050614 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060118 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100203 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100203 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110203 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110203 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120203 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130203 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130203 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140203 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |