JP2000357452A - Manufacture for cold cathode element - Google Patents

Manufacture for cold cathode element

Info

Publication number
JP2000357452A
JP2000357452A JP16795499A JP16795499A JP2000357452A JP 2000357452 A JP2000357452 A JP 2000357452A JP 16795499 A JP16795499 A JP 16795499A JP 16795499 A JP16795499 A JP 16795499A JP 2000357452 A JP2000357452 A JP 2000357452A
Authority
JP
Japan
Prior art keywords
ion beam
negative
amorphous carbon
carbon film
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16795499A
Other languages
Japanese (ja)
Inventor
Takashi Iwasa
孝 岩佐
Junzo Ishikawa
順三 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP16795499A priority Critical patent/JP2000357452A/en
Publication of JP2000357452A publication Critical patent/JP2000357452A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve practicability even at low applied voltage by setting vapor depositing energy of an ion beam in a specific range and depositing it in an ion beam vapor depositing method. SOLUTION: During formation of an amorphous carbon film, a predetermined voltage is applied to each part to generate positive Cs ions from a Cs plasma ion source 8, negative ions are taken out with negative ion taking electrode 12 through a suppressor 9 to generate negative ion beams 17. These are converged through a lens 13. Next, an electron removing body 15 removes electrons contained in the negative ion beams 17, a deflection plate 16 flies only negative ions toward Al made negative plate 2, the amorphous carbon film is formed on the surface of the negative plate 2 in an ion beam vapor depositing method. Depositing energy E of the ion beam used here is set as 150 eV<=E<=1000 eV for suppressing electric insulation of the amorphous carbon film 3, expecting electric field effect to a film surface, forming an ion injection layer on the amorphous carbon film 3, and preventing disturbance of release of electric field from the film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,電界を印加される
ことにより電子を放出する冷陰極素子の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a cold cathode device which emits electrons when an electric field is applied.

【0002】[0002]

【従来の技術】電子放出素子としては熱陰極素子と冷陰
極素子とが知られている。熱陰極素子は真空管に代表さ
れる分野に用いられているが,熱を付与するために集積
化が困難である,といった問題がある。一方,冷陰極素
子は熱を用いないため集積化が可能な素子として,フラ
ットパネルディスプレイ,電圧増幅素子,高周波増幅素
子等への応用が期待されている。
2. Description of the Related Art Hot cathode devices and cold cathode devices are known as electron emitting devices. Hot cathode devices are used in fields typified by vacuum tubes, but have the problem that integration is difficult due to the application of heat. On the other hand, cold cathode devices are expected to be applied to flat panel displays, voltage amplifiers, high frequency amplifiers, and the like as devices that can be integrated because they do not use heat.

【0003】従来,この種の冷陰極素子はスパッタリン
グにより製造されている。
Conventionally, this kind of cold cathode device is manufactured by sputtering.

【0004】[0004]

【発明が解決しようとする課題】しかしながらスパッタ
リングによる冷陰極素子は印加電圧を比較的高めないと
電子を放出しない,つまり電界放出特性が低い,という
問題があった。
However, the cold cathode device by sputtering has a problem that it does not emit electrons unless the applied voltage is relatively increased, that is, the field emission characteristics are low.

【0005】[0005]

【課題を解決するための手段】本発明は,低い印加電圧
によっても十分に電子を放出し得る,実用性の高い冷陰
極素子を得ることが可能な前記製造方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a manufacturing method capable of obtaining a highly practical cold cathode device capable of sufficiently emitting electrons even at a low applied voltage. .

【0006】前記目的を達成するため本発明によれば,
電界を印加されることにより電子を放出する冷陰極素子
を製造するに当り,イオンビームの蒸着エネルギEを1
50eV≦E≦1000eVに設定したイオンビーム蒸
着法を適用して,非晶質炭素膜よりなる冷陰極素子を得
る製造方法が提供される。
According to the present invention, in order to achieve the above object,
In manufacturing a cold cathode device that emits electrons when an electric field is applied, the deposition energy E of the ion beam is set to 1
A manufacturing method for obtaining a cold cathode device made of an amorphous carbon film by applying an ion beam evaporation method set to 50 eV ≦ E ≦ 1000 eV is provided.

【0007】炭素のイオンビーム蒸着法において,その
蒸着エネルギEは,非晶質炭素膜よりなる冷陰極素子の
電界放出特性に影響を与える。そこで,蒸着エネルギE
を前記のように設定すると,優れた電界放出特性を持つ
非晶質炭素膜,つまり冷陰極素子を得ることができる。
In the carbon ion beam deposition method, the deposition energy E affects the field emission characteristics of a cold cathode device made of an amorphous carbon film. Therefore, the deposition energy E
Is set as described above, an amorphous carbon film having excellent field emission characteristics, that is, a cold cathode device can be obtained.

【0008】炭素のイオンビーム蒸着法において,その
イオンビームの蒸着エネルギEがE≒120eVである
とき,非晶質炭素膜のダイヤモンド性が最も高くなる。
この場合,前記膜の電気絶縁性も高くなっていて,膜表
面への電界効果が期待できないことから,放出電界が上
昇傾向となる。この点を考慮して,蒸着エネルギEの下
限値はE=150eVに設定される。一方,蒸着エネル
ギEが1100eVを超える領域では,非晶質炭素膜に
イオン注入層が形成されるため膜による電界放出を期待
できなくなる。この点を考慮して蒸着エネルギEの上限
値はE=1000eVに設定される。
In a carbon ion beam deposition method, when the deposition energy E of the ion beam is E ≒ 120 eV, the diamond property of the amorphous carbon film becomes the highest.
In this case, the electric insulation of the film is also high, and an electric field effect on the film surface cannot be expected, so that the emission electric field tends to increase. In consideration of this point, the lower limit of the deposition energy E is set to E = 150 eV. On the other hand, in a region where the deposition energy E exceeds 1100 eV, an ion implantation layer is formed on the amorphous carbon film, so that field emission from the film cannot be expected. Considering this point, the upper limit value of the deposition energy E is set to E = 1000 eV.

【0009】前記非晶質炭素膜は単体で用いられる外,
例えばSiよりなる冷陰極素子の性能向上を図るべく,
その素子の表面被膜層構成材料としても用いられる。
The amorphous carbon film is used alone,
For example, in order to improve the performance of a cold cathode device made of Si,
It is also used as a constituent material of the surface coating layer of the element.

【0010】[0010]

【発明の実施の形態】図1は陰極ユニット1を示し,そ
の陰極ユニット1はAl製陰極板2と,その表面に形成
された冷陰極素子3とよりなる。その冷陰極素子3は,
イオンビームの蒸着エネルギEを150eV≦E≦10
00eVに設定したイオンビーム蒸着法を適用して形成
された非晶質炭素膜より構成されている。
FIG. 1 shows a cathode unit 1 comprising a cathode plate 2 made of Al and a cold cathode element 3 formed on the surface thereof. The cold cathode device 3 is
When the ion beam deposition energy E is 150 eV ≦ E ≦ 10
It is composed of an amorphous carbon film formed by applying an ion beam evaporation method set to 00 eV.

【0011】炭素のイオンビーム蒸着法において,その
蒸着エネルギEは非晶質炭素膜よりなる冷陰極素子3の
電界放出特性に影響を与える。そこで,蒸着エネルギE
を前記のように設定すると,優れた電界放出特性を持つ
非晶質炭素膜,つまり冷陰極素子3を得ることができ
る。
In the carbon ion beam deposition method, the deposition energy E affects the field emission characteristics of the cold cathode device 3 made of an amorphous carbon film. Therefore, the deposition energy E
Is set as described above, an amorphous carbon film having excellent field emission characteristics, that is, the cold cathode device 3 can be obtained.

【0012】イオンビーム蒸着法においては,正イオン
ビームまたは負イオンビームが用いられる。この場合,
非晶質炭素膜の原子密度は正イオンビーム蒸着法による
もの,負イオンビーム蒸着法によるもの,の順に高くな
る,つまり,導電性はこの順序で強くなり,放出電界は
この順序で低くなる。この原子密度の差は,負イオンの
内部ポテンシャルエネルギ(電子親和力)が正イオンの
それ(電離電圧)よりも低いことに起因する。
In the ion beam evaporation method, a positive ion beam or a negative ion beam is used. in this case,
The atomic density of the amorphous carbon film increases in the order of the positive ion beam evaporation method and the negative ion beam evaporation method, that is, the conductivity increases in this order, and the emission field decreases in this order. This difference in atomic density is due to the fact that the internal potential energy (electron affinity) of negative ions is lower than that of positive ions (ionization voltage).

【0013】以下,具体例について説明する。Hereinafter, a specific example will be described.

【0014】〔I〕負イオンビーム蒸着法による非晶質
炭素膜の形成 図2は公知の超高真空型負イオンビーム蒸着装置(NIAB
NIS:Neutral andIonized Alkaline metal bombardment
type heavy Negative Ion Source)を示す。その装置
は,センタアノードパイプ5,フィラメント6,熱遮蔽
体7等を有するCs(セシウム)プラズマイオン源8
と,サプレッサ9と,高純度高密度炭素よりなるターゲ
ット10を備えたターゲット電極11と,負イオン引出
し電極12と,レンズ13と,マグネット14を有する
電子除去体15と,偏向板16とを備えている。
[I] Formation of Amorphous Carbon Film by Negative Ion Beam Deposition Method FIG. 2 shows a known ultra-high vacuum type negative ion beam deposition apparatus (NIAB).
NIS: Neutral and Ionized Alkaline metal bombardment
type heavy Negative Ion Source). The apparatus comprises a Cs (cesium) plasma ion source 8 having a center anode pipe 5, a filament 6, a heat shield 7, and the like.
And a target electrode 11 having a target 10 made of high-purity high-density carbon, a negative ion extraction electrode 12, a lens 13, an electron remover 15 having a magnet 14, and a deflecting plate 16. ing.

【0015】非晶質炭素膜3(便宜上,冷陰極素子と同
一の符号を用いる)の形成に当っては,(a)図2に示
すように,各部に所定の電圧を印加する,(b)Csプ
ラズマイオン源8によりCsの正イオンを発生させる,
(c)Csの正イオンによりターゲット10をスパッタ
してC等の負イオンを発生させる,(d)サプレッサ9
を介して負イオン引出し電極12により負イオンを引出
して負イオンビーム17を発生させる,(e)レンズ1
3により負イオンビーム17を収束する,(f)電子除
去体15により負イオンビーム17に含まれる電子を除
去する,(g)偏向板16により負イオンのみを陰極板
2に向けて飛行させる,といった方法を採用した。
In forming the amorphous carbon film 3 (for the sake of convenience, the same reference numerals as those of the cold cathode device are used), (a) a predetermined voltage is applied to each part as shown in FIG. ) Generating positive ions of Cs by the Cs plasma ion source 8;
(C) The target 10 is sputtered by positive ions of Cs to generate negative ions such as C. (d) The suppressor 9
Negative ions are extracted by the negative ion extraction electrode 12 through the negative electrode to generate a negative ion beam 17, (e) the lens 1
3, the negative ion beam 17 is converged by (3), the electrons contained in the negative ion beam 17 are removed by the electron remover 15, (g) only the negative ions are made to fly toward the cathode plate 2 by the deflection plate 16, Such a method was adopted.

【0016】図3は負イオンビーム17の質量スペクト
ルを示す。この負イオンビーム17の主たる負イオンは
構成原子数が1であるC- イオンと構成原子数が2であ
るC2 - イオンである。ただし,イオン電流はC- >C
2 - である。
FIG. 3 shows a mass spectrum of the negative ion beam 17. The main negative ions of the negative ion beam 17 are C - ions having 1 constituent atom and C 2 - ions having 2 constituent atoms. However, the ion current is C -> C
2 -.

【0017】表1は負イオンビーム蒸着法による非晶質
炭素膜3の例1〜16における形成条件を示す。例1〜
16の厚さは0.4〜0.8μmであった。
Table 1 shows the conditions for forming the amorphous carbon film 3 in Examples 1 to 16 by the negative ion beam evaporation method. Example 1
16 had a thickness of 0.4 to 0.8 μm.

【0018】[0018]

【表1】 [Table 1]

【0019】次に,例1〜16の略中央部についてラマ
ン分光法による分析を行って,それらが非晶質であるか
否かを調べた。図4は例8の分析結果を示し,波数15
00cm-1付近を中心としたブロードなラマンバンドが観
察される。このことから例8は非晶質であることが判明
した。他の例1〜7,9〜16についても図4と同様の
結果が得られた。
Next, about the center of Examples 1 to 16 was analyzed by Raman spectroscopy to determine whether or not they were amorphous. FIG. 4 shows the analysis result of Example 8, where the wave number 15
A broad Raman band centered around 00 cm -1 is observed. This proved that Example 8 was amorphous. The same results as in FIG. 4 were obtained for the other Examples 1 to 7, and 9 to 16.

【0020】また,例1〜16について,図5に示す方
法で放出電界の測定を行った。即ち,電圧調整可能な電
源18にAl製導電板19を接続し,その導電板19上
に,中央部に縦0.8cm,横0.8cm(0.64cm2
の開口20を有する厚さ150μmのカバーガラス21
を載せ,また,そのカバーガラス21上に陰極ユニット
1の非晶質炭素膜3を載せ,さらに,その陰極板2に電
流計22を接続した。次いで,電源18より導電板19
に所定の電圧を印加して,電流計22により電流を読取
った。そして,測定電流と開口20の面積とから,放出
電流密度(μA/cm2 )を求め,実用性を考慮して,そ
の放出電流密度が8μA/cm2 に達したとき,それに対
応する電圧とカバーガラス21の厚さとから放出電界
(V/μm)を求めた。
In Examples 1 to 16, the emission electric field was measured by the method shown in FIG. That is, an Al conductive plate 19 is connected to a voltage-adjustable power supply 18, and the center of the conductive plate 19 is 0.8 cm long and 0.8 cm wide (0.64 cm 2 ).
150 μm thick cover glass 21 having openings 20
And the amorphous carbon film 3 of the cathode unit 1 was placed on the cover glass 21, and an ammeter 22 was connected to the cathode plate 2. Next, a conductive plate 19 is
, A predetermined voltage was applied, and the current was read by the ammeter 22. Then, from the area of the measured current and the opening 20 determines the emission current density (μA / cm 2), in consideration of practicality, when the emission current density reached 8 .mu.A / cm 2, a voltage corresponding thereto The emission electric field (V / μm) was determined from the thickness of the cover glass 21.

【0021】表2は例1〜16に関する蒸着エネルギE
と放出電界を示す。
Table 2 shows the deposition energy E for Examples 1-16.
And the emission field.

【0022】[0022]

【表2】 [Table 2]

【0023】図6は表2に基づいて蒸着エネルギEと放
出電界との関係をグラフ化したものである。図6から明
らかなように,蒸着エネルギEを150eV≦E≦10
00eVに設定すると,例3〜15のごとく放出電界を
大いに低くした非晶質炭素膜3を得ることができる。例
1,2の場合は蒸着エネルギEがE<150eVであっ
たことに起因して,一方,例16の場合は蒸着エネルギ
EがE>1000eVであったことに起因してそれぞれ
放出電界が高くなっている。
FIG. 6 is a graph showing the relationship between the deposition energy E and the emission electric field based on Table 2. As is apparent from FIG. 6, the deposition energy E is set to 150 eV ≦ E ≦ 10
When it is set to 00 eV, an amorphous carbon film 3 having a much lower emission electric field as in Examples 3 to 15 can be obtained. In the case of Examples 1 and 2, the emission electric field was high because the deposition energy E was E <150 eV, whereas in the case of Example 16, the emission electric field was high because the deposition energy E was E> 1000 eV. Has become.

【0024】この種の冷陰極素子は,フラットパネルデ
ィスプレイ,電圧増幅素子,高周波増幅素子,高精度至
近距離レーダ,磁気センサ,視覚センサ等に応用され
る。
This type of cold cathode device is applied to a flat panel display, a voltage amplifier, a high frequency amplifier, a high-precision close range radar, a magnetic sensor, a visual sensor, and the like.

【0025】[0025]

【発明の効果】本発明によれば,前記のような手段を採
用することによって,低い印加電圧によっても十分に電
子を放出し得る,実用性の高い冷陰極素子を得ることが
可能な製造方法を提供することができる。
According to the present invention, by employing the above-mentioned means, it is possible to obtain a highly practical cold cathode device capable of sufficiently emitting electrons even at a low applied voltage. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】陰極ユニットの断面図である。FIG. 1 is a sectional view of a cathode unit.

【図2】超高真空型負イオンビーム蒸着装置の概略図で
ある。
FIG. 2 is a schematic diagram of an ultra-high vacuum type negative ion beam evaporation apparatus.

【図3】前記装置によるビームスペクトルである。FIG. 3 is a beam spectrum obtained by the apparatus.

【図4】非晶質炭素膜に関するラマン分光法による分析
結果を示すチャートである。
FIG. 4 is a chart showing an analysis result of an amorphous carbon film by Raman spectroscopy.

【図5】放出電界測定方法の説明図である。FIG. 5 is an explanatory diagram of an emission field measurement method.

【図6】蒸着エネルギEと放出電界との関係を示すグラ
フである。
FIG. 6 is a graph showing the relationship between deposition energy E and emission electric field.

【符号の説明】[Explanation of symbols]

1 陰極ユニット 2 陰極板 3 冷陰極素子(非晶質炭素膜) Reference Signs List 1 cathode unit 2 cathode plate 3 cold cathode device (amorphous carbon film)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電界を印加されることにより電子を放出
する冷陰極素子を製造するに当り,イオンビームの蒸着
エネルギEを150eV≦E≦1000eVに設定した
イオンビーム蒸着法を適用して,非晶質炭素膜よりなる
冷陰極素子を得ることを特徴とする冷陰極素子の製造方
法。
When manufacturing a cold cathode device that emits electrons when an electric field is applied, an ion beam deposition method in which an ion beam deposition energy E is set to 150 eV ≦ E ≦ 1000 eV is applied. A method for producing a cold cathode device, comprising obtaining a cold cathode device comprising a crystalline carbon film.
【請求項2】 前記イオンビームは負イオンビームであ
る,請求項1記載の冷陰極素子の製造方法。
2. The method according to claim 1, wherein the ion beam is a negative ion beam.
JP16795499A 1999-06-15 1999-06-15 Manufacture for cold cathode element Pending JP2000357452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16795499A JP2000357452A (en) 1999-06-15 1999-06-15 Manufacture for cold cathode element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16795499A JP2000357452A (en) 1999-06-15 1999-06-15 Manufacture for cold cathode element

Publications (1)

Publication Number Publication Date
JP2000357452A true JP2000357452A (en) 2000-12-26

Family

ID=15859135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16795499A Pending JP2000357452A (en) 1999-06-15 1999-06-15 Manufacture for cold cathode element

Country Status (1)

Country Link
JP (1) JP2000357452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105015093A (en) * 2015-06-18 2015-11-04 镇江华印电路板有限公司 Good stability carbon film plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105015093A (en) * 2015-06-18 2015-11-04 镇江华印电路板有限公司 Good stability carbon film plate

Similar Documents

Publication Publication Date Title
Koenig et al. Application of RF discharges to sputtering
EP2492949B1 (en) Stable cold field emission electron source
Colaleo et al. Diamond-like carbon for the fast timing MPGD
Hasseltine et al. Cesium‐Ion Bombardment of Aluminum Oxide in a Controlled Oxygen Environment
US6861790B1 (en) Electronic element
JPH0456761A (en) Thin film forming device
Probyn A low-energy ion source for the deposition of chromium
JP2003221666A (en) Ionization film-forming method and apparatus
Nakano et al. Fabrication of Mo microcones for volcano-structured double-gate Spindt-type emitter cathodes using triode high power pulsed magnetron sputtering
JP4545864B2 (en) Cold cathode device
JP2000357452A (en) Manufacture for cold cathode element
JP4405027B2 (en) Cold cathode device
JP3685670B2 (en) DC sputtering equipment
JP4104248B2 (en) Method for manufacturing electronic device and electronic device
JP3765358B2 (en) Cold cathode device
KR100303632B1 (en) Cold cathode element
JP4104241B2 (en) Electronic element
JP3793354B2 (en) Cold cathode device
JPH11130589A (en) Deposition of diamond film or diamondlike carbon film and apparatus therefor and cold anode produced by using the same deposition and apparatus
JP2791034B2 (en) Carbon ion beam generation method
Weber Electron bombardment technique for deposition of CdS film transducers
Bowden et al. A low energy ion gun for bombarding small specimens
JPS628409A (en) Formation of transparent conducting metal oxide film
KR100244894B1 (en) E-beam vaporization thin film fabricating system
Rajopadhye et al. Secondary electron emission of sputtered alumina films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070606