JP4544853B2 - Method for producing flame retardant sealing material - Google Patents

Method for producing flame retardant sealing material Download PDF

Info

Publication number
JP4544853B2
JP4544853B2 JP2003413831A JP2003413831A JP4544853B2 JP 4544853 B2 JP4544853 B2 JP 4544853B2 JP 2003413831 A JP2003413831 A JP 2003413831A JP 2003413831 A JP2003413831 A JP 2003413831A JP 4544853 B2 JP4544853 B2 JP 4544853B2
Authority
JP
Japan
Prior art keywords
elastic sheet
flame
foam
raw material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003413831A
Other languages
Japanese (ja)
Other versions
JP2005171102A (en
Inventor
正史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Rogers Inoac Corp
Original Assignee
Inoac Corp
Rogers Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp, Rogers Inoac Corp filed Critical Inoac Corp
Priority to JP2003413831A priority Critical patent/JP4544853B2/en
Priority to TW093137114A priority patent/TWI363079B/en
Priority to CNB2004101003111A priority patent/CN100393805C/en
Priority to KR1020040104154A priority patent/KR101133148B1/en
Publication of JP2005171102A publication Critical patent/JP2005171102A/en
Priority to HK05108548A priority patent/HK1074456A1/en
Application granted granted Critical
Publication of JP4544853B2 publication Critical patent/JP4544853B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/82Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0847Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers
    • C08G18/0852Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers the solvents being organic
    • C08G18/0857Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers the solvents being organic the solvent being a polyol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/12Hydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Description

この発明は、難燃性シール材の製造方法に関し、更に詳細には、優れたシール性および難燃性を併有し、高温雰囲気等の過酷な環境下で使用されたり、発熱性の高い電子機器や精密機器等に好適に使用し得る難燃性シール材の製造方法に関するものである。 The present invention relates to a method for producing a flame-retardant sealing material . More specifically, the present invention has both excellent sealing properties and flame retardancy, and is used in a severe environment such as a high-temperature atmosphere or a highly exothermic electron. The present invention relates to a method for producing a flame-retardant sealing material that can be suitably used for equipment, precision equipment, and the like.

携帯電話、テレビ、その他コンピュータのディスプレイ等の電気機器には、液晶等の表示部、マイク部、その他スピーカー部等の入出力部が配設されている。このような入出力部は、電気機器筐体が外部に対して開口した部位に設けられており、例えば液晶の場合、この開口部と液晶との僅かな隙間から、ゴミの侵入、液晶表示に用いられるバックライトの光漏れおよび筐体に対するガタつき等を防止するためのシール材が液晶の周縁と筐体との間に配設されている。そして近年の携帯電話等の高機能化および軽量化の要請から、このようなシール材についても小さく、薄いものが要求されるようになっており、このようなシール材を構成する素材としては、薄くても充分にシール材としての役割を果たすべく優れた柔軟性を有して低硬度なポリウレタン発泡体が好適である。更にポリウレタン発泡体は、材質的なヘタリや発生ガス(移行性)が少ないため、電気機器筐体内に設置されるシール材用途に好適に使用し得る。   A display unit such as a liquid crystal display, a microphone unit, and other input / output units such as a speaker unit are provided in an electric device such as a mobile phone, a television, and other computer displays. Such an input / output unit is provided in a portion where the electrical equipment casing is open to the outside. For example, in the case of liquid crystal, a small gap between the opening and the liquid crystal causes intrusion of dust and liquid crystal display. A sealing material for preventing light leakage of the backlight used and rattling of the casing is disposed between the periphery of the liquid crystal and the casing. And in recent years, due to the demand for higher functionality and weight reduction of mobile phones and the like, such sealing materials are also required to be small and thin, and as a material constituting such sealing materials, A low-hardness polyurethane foam having an excellent flexibility to play a role as a sealing material even if it is thin is suitable. Furthermore, polyurethane foams can be suitably used for sealing materials installed in electrical equipment casings because of less material settling and gas generation (migration).

しかしポリウレタン発泡体からなるシール材は、シール材としての特性は良好である一方、有機体であり、また高い比表面積を有し、更にはその形状を薄いシート状とするため、機器作動時の発熱で高温となる可能性のある電気・電子機器筐体に組込まれた際の難燃性が問題となっている。これに対して、一般的にシール材の原料中に、(1)有機臭素化合物、有機塩素化合物といったハロゲン系難燃剤、(2)有機リン系化合物、(3)三酸化アンチモンまたは(4)金属水酸化物等の難燃剤を1種類または2種類以上併用することで、難燃化する方法が広く採用されていた。   However, while the sealing material made of polyurethane foam has good properties as a sealing material, it is an organic material, has a high specific surface area, and further has a thin sheet shape. There is a problem with flame retardancy when it is assembled in an electric / electronic device casing that may become high temperature due to heat generation. On the other hand, generally, (1) halogenated flame retardants such as organic bromine compounds and organic chlorine compounds, (2) organic phosphorus compounds, (3) antimony trioxide or (4) metals A method of making flame retardant by using one or more flame retardants such as hydroxides in combination has been widely adopted.

しかし、(1)〜(4)の夫々の物質を使用した場合、以下の問題が指摘される。すなわち、
(1)ハロゲン系化合物は燃焼に際して、環境負荷の大きいハロゲン化物が発生するため、難燃剤として使用は望ましくない。
(2)有機リン系化合物を難燃剤として使用した場合、人体に対する毒性も強いため充分な安全性の確保が困難であり、また得られるポリウレタン発泡体の強度劣化や移行性等の問題や、ポリウレタン発泡体の生成時における反応阻害といった悪影響を与える場合も考えられる。
(3)三酸化アンチモンについては、(1)の環境負荷性と、(2)の有害性の双方が確認されているため、やはり使用に適さない。
(4)水酸化アルミニウムや水酸化マグネシウム等の金属水酸化物を難燃剤として使用する場合、前述した環境的および人体的な問題は殆どなく、安全なシール材の製造が可能となるが、その一方で、例えばUL94(弱電関係のパッキン材・防音材)に規定される難燃性を達成するためには、ポリウレタン発泡体の原料中に大量の金属水酸化物を混合する必要がある。この場合、本来ポリウレタン発泡体が発現する低い硬度等のシール材として有益な物性が損なわれてしまう。なおUL94に規定される難燃性は、図5に示すような実験装置40によって実施されるブンゼンまたはチリルバーナー44の直火に対する試験片(金網42上に載置)の燃焼距離および時間等によって評価され、HBF規格の場合、(1)100mm間の燃焼速度が40mm/分を越えないこと、または(2)炎やグローが125mmマークに達する前に消えること、の何れか片方が達成されているか、否かによって評価が実施される。
However, when the substances (1) to (4) are used, the following problems are pointed out. That is,
(1) Halogen compounds are not suitable for use as flame retardants because they generate halides with a large environmental load upon combustion.
(2) When an organophosphorus compound is used as a flame retardant, it is difficult to ensure sufficient safety because it is highly toxic to the human body, and problems such as strength deterioration and migration of the resulting polyurethane foam, polyurethane There may be a case where an adverse effect such as reaction inhibition at the time of foam formation is given.
(3) Antimony trioxide is not suitable for use because both the environmental impact of (1) and the harmfulness of (2) have been confirmed.
(4) When a metal hydroxide such as aluminum hydroxide or magnesium hydroxide is used as a flame retardant, there are almost no environmental and human problems mentioned above, and a safe sealing material can be produced. On the other hand, in order to achieve the flame retardancy prescribed in, for example, UL94 (a weak electric-related packing material / soundproof material), it is necessary to mix a large amount of metal hydroxide in the raw material of the polyurethane foam. In this case, physical properties that are useful as a sealing material such as low hardness, which is inherently exhibited by the polyurethane foam, are impaired. In addition, the flame retardance prescribed | regulated to UL94 is evaluated by the combustion distance, time, etc. of the test piece (mounted on the metal net 42) with respect to the direct fire of the Bunsen or the chillyl burner 44 implemented by the experimental apparatus 40 as shown in FIG. In the case of the HBF standard, either (1) the burning speed between 100 mm does not exceed 40 mm / min, or (2) the flame or glow disappears before reaching the 125 mm mark, has been achieved. Evaluation is carried out depending on whether or not.

前記課題を克服し、所期の目的を達成するため、本発明に係る難燃性シール材の製造方法
リオール100重量部に対して、固形成分として平均粒径を10〜100μmの範囲に設定した金属水酸化物のみを25〜50重量部の範囲で混合すると共に、イソシアネートと反応し得る物質であるポリオールを溶媒として予め希釈して、整泡剤の含有率が30〜70重量%の範囲になるよう設定した副原料および金属触媒を混合した液状混合物と、イソシアネートと、造泡用気体とを混合してメカニカルフロス法により発泡体原料を得て、
前記発泡体原料を、供給ロールから送り出された基材フィルム上に供給し、
前記基材フィルム上に供給された発泡体原料を、得られる弾性シートの厚みが0.3〜3.0mmの範囲になるように製品厚制御手段によって調整し、
前記発泡体原料を加熱することで反応・硬化させて、基材フィルム上に弾性シートを形成し、
製品回収ロールで基材フィルムと共に弾性シートを巻き取り回収し、
前記弾性シートの厚みを0.3〜3.0mmの範囲で設定すると共に、該弾性シートの密度を240〜500kg/mの範囲に設定することで、25%圧縮荷重(25%CLD)を0.03MPa以下とし、該弾性シートにおけるアセトンに溶解し得る物質の含有量を、5.0重量%以下にすることで、UL94に規定される難燃性がHBF規格を達成した難燃性シール材を得ることを特徴とする。
In order to overcome the above-mentioned problems and achieve the intended purpose, a method for producing a flame-retardant sealing material according to the present invention includes :
Against Po polyol 100 parts by weight, only the metal hydroxide obtained by setting the average particle size in the range of 10~100μm as a solid component with mixing in the range of 25 to 50 parts by weight, a material capable of reacting with an isocyanate Diluted in advance with a polyol as a solvent, mixed a liquid mixture in which the auxiliary material and metal catalyst were set so that the content of the foam stabilizer is in the range of 30 to 70% by weight, isocyanate, and foaming gas To obtain a foam material by mechanical flossing,
The foam raw material is supplied onto a base film fed from a supply roll,
The foam raw material supplied on the base film is adjusted by the product thickness control means so that the thickness of the elastic sheet obtained is in the range of 0.3 to 3.0 mm,
By reacting and curing the foam raw material, an elastic sheet is formed on the base film,
The product recovery roll winds and collects the elastic sheet together with the base film,
By setting the thickness of the elastic sheet in a range of 0.3 to 3.0 mm and setting the density of the elastic sheet in a range of 240 to 500 kg / m 3 , a 25% compression load (25% CLD) is set. The flame retardant seal in which the flame retardancy specified in UL94 achieves the HBF standard by setting the content of the substance that can be dissolved in acetone in the elastic sheet to 5.0 wt% or less. It is characterized by obtaining materials.

以上に説明した如く、ポリオール100重量部に対して、平均粒径を10〜100μmの範囲に設定した金属水酸化物を25〜50重量部の範囲で混合すると共に、イソシアネートと反応し得る物質であるポリオールを溶媒として予め希釈して、整泡剤の含有率が30〜70重量%の範囲になるよう設定した副原料および金属触媒を混合した混合物と、イソシアネートと、造泡用気体とを混合してメカニカルフロス法により得られる弾性シートからなる難燃性シール材によれば、弾性シートの厚みを0.3〜3.0mmの範囲に設定すると共に、該弾性シートの密度を240〜500kg/mの範囲に設定することで、25%圧縮荷重(25%CLD)を0.03MPa以下とし、弾性シートにおけるアセトンに溶解し得る物質の含有量を、5.0重量%以下にすることで、UL94に規定される難燃性がHBF規格を達成し得る。すなわち、本発明に係る製造方法で得られる難燃性シール材によれば、UL94に規定されるHBF規格を達成する難燃性と、25%圧縮荷重が0.03MPa以下となるシール性とを併有し得る。また、難燃性シール材の製造方法によれば、長尺物として連続的に難燃性シール材を製造可能であるため、その製造コストを大きく低減し得る。

As described above, a metal hydroxide having an average particle size set in a range of 10 to 100 μm is mixed in a range of 25 to 50 parts by weight with respect to 100 parts by weight of a polyol, and a substance capable of reacting with an isocyanate. Diluting a certain polyol in advance as a solvent, mixing a mixture of secondary materials and metal catalyst set so that the content of the foam stabilizer is in the range of 30 to 70% by weight, mixing isocyanate and foaming gas According to the flame-retardant sealing material comprising an elastic sheet obtained by the mechanical floss method, the elastic sheet has a thickness of 0.3 to 3.0 mm and a density of the elastic sheet of 240 to 500 kg / by setting the range of m 3, 25% compressive load of (25% CLD) not more than 0.03 MPa, the content of a substance capable of dissolving in acetone in the elastic sheet, 5.0 By the following amount%, flame retardancy as specified in UL94 can achieve a HBF standards. That is, according to the flame-retardant sealing material obtained by the production method according to the present invention , the flame retardancy that achieves the HBF standard defined in UL94 and the sealing property that the 25% compression load is 0.03 MPa or less. Can have both. Moreover, according to the manufacturing method of a flame-retardant sealing material, since a flame-retardant sealing material can be continuously manufactured as a long thing, the manufacturing cost can be reduced significantly.

次に、本発明に係る難燃性シール材につき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。本願の発明者は、加熱で揮発して可燃ガス成分となり、難燃性を阻害する未反応モノマーや低分子オリゴマー等の含有量が非常に少ないポリウレタン発泡体を材質とし、同じく揮発性の高い低分子物質であるアミン触媒の使用を回避し得るメカニカルフロス法を採用し、かつ発泡体製造に不可欠な整泡剤に関する揮発を抑制することで製造されるシール材が、金属水酸化物の混合量を低減しつつ、充分な難燃性とシール性とを達成し得ることを知見したものである。   Next, the flame-retardant sealing material according to the present invention will be described below with reference to the accompanying drawings by way of preferred examples. The inventor of the present application uses a polyurethane foam having a very low content of unreacted monomers and low-molecular oligomers, etc., which volatilizes by heating to become a combustible gas component and inhibits flame retardancy, and is also highly volatile low The sealing material manufactured by adopting a mechanical floss method that can avoid the use of amine catalyst, which is a molecular substance, and suppressing volatilization related to foam stabilizers essential for foam production is the amount of metal hydroxide mixed It has been found that sufficient flame retardancy and sealing performance can be achieved while reducing the above.

なお本発明において、難燃性シール材の特徴的な物性である難燃性およびシール性は、夫々UL94に規定されるHBF規格(前述[0004])および25%圧縮荷重(以下、25%CLDと云う)によって規定されている。そして難燃性についてはHBF規格を達成するか否か、シール性については柔軟性を示す25%CLDが0.03MPa以下となるか、によって夫々評価している。   In the present invention, the flame retardancy and sealability, which are characteristic physical properties of the flame retardant sealing material, are HBF standard (described above [0004]) and 25% compression load (hereinafter referred to as 25% CLD) defined in UL94, respectively. )). The flame retardancy is evaluated by whether or not the HBF standard is achieved, and the sealability is evaluated by whether or not 25% CLD indicating flexibility is 0.03 MPa or less.

難燃性シール材10は、図1に示す如く、所要のクッション性、シール性、柔軟性および形状追従性等の各物性を達成する発泡体の弾性シート12と、この弾性シート12の片面に積層され、難燃性シール材10の構造的強度を向上させる基材フィルム14とから基本的に構成される。そしてこの弾性シート12は公知であるメカニカルフロス法より、具体的には主原料であるポリオールおよびイソシアネートと、整泡剤および難燃剤である金属水酸化物16等の副原料と、造泡用気体とを混合することで発泡体原料Mとされ、この原料Mをシート状に成形することで製造される。すなわち弾性シート12内部には、金属水酸化物16が均質に分散された状態となっている(図1参照)。このメカニカルフロス法についての内容および各原料等については、例えば特公昭53−8735号公報に詳細にその内容が記載されている。   As shown in FIG. 1, the flame-retardant sealing material 10 includes a foamed elastic sheet 12 that achieves required physical properties such as cushioning properties, sealing properties, flexibility, and shape followability, and one surface of the elastic sheet 12. It is basically composed of a base film 14 that is laminated and improves the structural strength of the flame-retardant sealing material 10. The elastic sheet 12 is made of a known mechanical floss method, specifically, polyols and isocyanates as main raw materials, auxiliary raw materials such as a metal stabilizer 16 as a foam stabilizer and a flame retardant, and a foaming gas. Is made into a foam raw material M, and the raw material M is manufactured by molding into a sheet shape. That is, the metal hydroxide 16 is uniformly dispersed in the elastic sheet 12 (see FIG. 1). The contents of the mechanical floss method and the raw materials are described in detail in, for example, Japanese Patent Publication No. 53-8735.

このようにして得られる弾性シート12に求められる各物性値は、シール性に関する柔軟性の指標として採用される(1)25%CLDが0.03MPa以下、そしてシール性および難燃性の双方に関係する指標である(2)密度が240〜500kg/m3、(3)厚みが0.3〜3.0mmとされる。ここで(1)25%CLDが0.03MPaを越えると、柔軟性に劣り充分なシール性が発現されなくなる。また(2)密度が240kg/m3未満であると、弾性シート12が、所謂疎な状態となるため空気との接触面積が大きくなり、難燃性がHBF規格を達成し得なくなり、一方500kg/m3を越えると、25%CLDも増大するためシール性が悪化する。そして(3)厚みが0.3mm未満であると、充分なシール性を発現することが困難となるほか、直火に対する着火性が高くなり、UL94に規定されるHBF規格が達成されなくなってしまう。一方3.0mmを超える場合には厚過ぎて、携帯電話等の設置スペースに制限のある製品への組み込みが不可能となってしまう。 Each physical property value required for the elastic sheet 12 thus obtained is employed as an index of flexibility related to sealing properties. (1) 25% CLD is 0.03 MPa or less, and both sealing properties and flame retardancy (2) Density, which is a related index, is 240 to 500 kg / m 3 , and (3) thickness is 0.3 to 3.0 mm. Here, (1) If the 25% CLD exceeds 0.03 MPa, the flexibility is inferior and sufficient sealing performance is not exhibited. Further, (2) if the density is less than 240 kg / m 3 , the elastic sheet 12 is in a so-called sparse state, so that the contact area with the air becomes large, and the flame retardance cannot achieve the HBF standard, while 500 kg If it exceeds / m 3 , the 25% CLD also increases and the sealing performance deteriorates. (3) If the thickness is less than 0.3 mm, it becomes difficult to exhibit sufficient sealing properties, and the ignitability against direct fire is increased, and the HBF standard defined in UL94 cannot be achieved. . On the other hand, when it exceeds 3.0 mm, it is too thick, and it becomes impossible to incorporate it into a product with limited installation space such as a mobile phone.

そして難燃性シール材10の(4)UL94に規定されるHBF規格を達成する難燃性は発泡体原料Mに対し、難燃剤である金属水酸化物16を所定量混合すると共に、整泡剤の希釈用の溶媒としてポリオールのようにイソシアネートと反応し得る物質を用いることで達成される。弾性シート12を製造するに際して使用される主原料は、前述した如く、通常のポリウレタン発泡体と同様のポリオールおよびイソシアネートであり、これに必要に応じて、発泡剤、整泡剤、架橋剤、可塑剤および/または触媒の如き各種副原料が所要量添加される。ここでポリオールおよびイソシアネートについては、夫々20〜45重量%および25〜35重量%程度に設定され、副原料である整泡剤は2〜3重量%、架橋剤は8〜15重量%、触媒が3〜5重量%程度に設定される。なおメカニカルフロス法に用いられる不活性ガス等の造泡用気体の混合割合は、各原料の総体積100に対して、50〜200体積%程度が好適である。   The flame retardancy that achieves the HBF standard defined in (4) UL94 of the flame retardant sealing material 10 is mixed with a predetermined amount of a metal hydroxide 16 that is a flame retardant, and foam control. This is achieved by using a substance capable of reacting with isocyanate such as polyol as a solvent for diluting the agent. As described above, the main raw materials used for producing the elastic sheet 12 are the same polyols and isocyanates as those of ordinary polyurethane foams. If necessary, foaming agents, foam stabilizers, cross-linking agents, plastics are used. The required amounts of various auxiliary materials such as agents and / or catalysts are added. Here, the polyol and isocyanate are set to about 20 to 45% by weight and 25 to 35% by weight, respectively, the foam stabilizer as the auxiliary material is 2 to 3% by weight, the crosslinking agent is 8 to 15% by weight, the catalyst is It is set to about 3 to 5% by weight. In addition, about 50-200 volume% is suitable for the mixing ratio of gas for foaming, such as an inert gas used for a mechanical froth method, with respect to the total volume 100 of each raw material.

金属水酸化物16としては、公知の水酸化アルミニウムや水酸化マグネシウム等の、熱が加わることにより構造内の水酸基(−OH)が解離して水が発生する物質が使用される。そしてその混合量は、主原料であるポリオール100重量部に対して、25〜50重量部、好ましくは30〜35重量部に設定される。この量が25重量部未満の場合には所望の難燃性が達成されず、一方50重量部を越えると硬くなったり脆性が発現してシール性に問題が発生する。また金属水酸化物16については、その平均粒径が10〜100μm、好ましくは20〜60μmの範囲に設定される。この値が10μm未満の場合、発泡体原料Mの粘度が高くなったり、発泡体原料M内の含水率が高くなって水とイソシアネートとの反応による発泡反応が生起されるため、メカニカルフロス法による好適な弾性シート12の製造が困難となる。一方100μmを越えると、発泡体原料Mに対して混合された際に沈降し易くなるため好適な分散が困難となり、部位により難燃性が異なったり、製造時間に制限が発生して好適な生産が阻害されることになる。   As the metal hydroxide 16, a substance such as known aluminum hydroxide or magnesium hydroxide, which generates water by dissociation of a hydroxyl group (—OH) in the structure when heated, is used. The mixing amount is set to 25 to 50 parts by weight, preferably 30 to 35 parts by weight with respect to 100 parts by weight of the polyol which is the main raw material. If this amount is less than 25 parts by weight, the desired flame retardancy will not be achieved, while if it exceeds 50 parts by weight, it will become hard or brittle, resulting in problems with sealing properties. Moreover, about the metal hydroxide 16, the average particle diameter is set to the range of 10-100 micrometers, Preferably it is 20-60 micrometers. When this value is less than 10 μm, the viscosity of the foam raw material M is increased, or the water content in the foam raw material M is increased to cause a foaming reaction due to the reaction between water and isocyanate. Production of a suitable elastic sheet 12 becomes difficult. On the other hand, if it exceeds 100 μm, it becomes easy to settle when mixed with the foam raw material M, so that it becomes difficult to disperse suitably. Will be inhibited.

副原料の1つである整泡剤については、代表的なシリコーン系物質等の公知のものが使用される。この整泡剤の使用は、メカニカルフロス法によるポリウレタン発泡体の製造上必要不可欠であるが、その低分子性故に燃え易い物質の一つであるため、難燃性の達成を阻害する要素となっている。またシリコーン系物質の如き整泡剤は、そのままで使用するとその粘度が非常に高いため希釈して使用されるが、その希釈用の溶媒として、例えばポリウレタン発泡体の原料であるポリオール類等のイソシアネートと反応し得る物質を使用することが好ましい。   As the foam stabilizer, which is one of the auxiliary materials, known ones such as typical silicone substances are used. The use of this foam stabilizer is indispensable for the production of polyurethane foams by the mechanical floss method, but it is one of the flammable substances due to its low molecular weight, so it becomes an element that hinders the achievement of flame retardancy. ing. In addition, foam stabilizers such as silicone substances are used because they have a very high viscosity when used as they are, and as dilution solvents, for example, isocyanates such as polyols, which are raw materials for polyurethane foams, are used. It is preferred to use a substance that can react with.

この場合、希釈用の溶媒中に分散する整泡剤は、希釈媒体であるポリオールが弾性シート12の主原料であるイソシアネートと反応して形成されるポリウレタンの分子内に取り込まれた状態となるため、難燃化の阻害要因となる揮発が防止されることになる。また整泡剤の希釈用の溶媒の使用量は、整泡剤の含有率が30〜70重量%の範囲となるように設定される。この数値が30重量%未満であると、整泡剤としての役割が乏しくなってしまう。一方70重量%を越えると、整泡剤使用時の粘度が高くなってしまい好適な製造がなされなくなってしまう。   In this case, the foam stabilizer dispersed in the solvent for dilution is in a state in which the polyol as a dilution medium is incorporated into the polyurethane molecule formed by reacting with the isocyanate as the main raw material of the elastic sheet 12. Volatilization, which is an impediment to flame retardancy, is prevented. Moreover, the usage-amount of the solvent for dilution of a foam stabilizer is set so that the content rate of a foam stabilizer may become the range of 30 to 70 weight%. If this value is less than 30% by weight, the role as a foam stabilizer is poor. On the other hand, if it exceeds 70% by weight, the viscosity at the time of using the foam stabilizer becomes high and suitable production cannot be performed.

また一般にシリコーン系物質等の整泡剤を希釈する溶媒としては、アルキルベンゼン類等の常温で粘性が低く液状である低沸点物質が好適に使用されている。しかしこのような物質は容易に揮発して難燃性を損なうものである。更にこのような難燃性を損なう低い温度での揮発する物質については、この希釈用の溶媒だけでなく、主原料であるポリオールの合成時に使用されるモノマーや酸化防止剤等といった多種多様な物質が当てはまる。そこでUL94に規定される難燃性がHBF規格を達成するための条件として、弾性シート12におけるアセトンに溶解し得る物質(以下、アセトン被溶解物質と云う)の含有量が定義されている。そして本発明においてこのアセトン被溶解物質の含有量は、5.0重量%以下とされている。この値が5.0重量%を越えると、金属水酸化物16の混合量や、整泡剤についての条件を満たした場合であっても、UL94に規定される難燃性においてHBF規格を達成しないことが確認されている。このアセトンに溶解し得る物質の含有量は、例えば弾性シート12からのアセトン抽出率で測定され、実際の測定方法の一例を後述([0023])の実験例に挙げる。なお整泡剤の希釈用の溶媒としてアルキルベンゼン類等の低沸点物質を使用した場合、これらが弾性シート12内のポリウレタン構造外に遊離した形で存在することになって、所謂移行性が顕在化する問題もある。従って希釈用の溶媒として、ポリオール類等のイソシアネートと反応し得る物質を使用することにより、前述の移行性も大きく抑制し得る効果も期待できる。   Moreover, generally as a solvent which dilutes foam stabilizers, such as a silicone type substance, the low boiling point substance which is a liquid with a low viscosity at normal temperature, such as alkylbenzenes, is used suitably. However, such materials easily volatilize and impair flame retardancy. Furthermore, with regard to substances that volatilize at low temperatures that impair flame retardancy, not only the solvent for dilution, but also a wide variety of substances such as monomers and antioxidants used in the synthesis of the main raw material polyol. Is true. Therefore, the content of a substance that can be dissolved in acetone (hereinafter referred to as acetone-dissolved substance) in the elastic sheet 12 is defined as a condition for the flame retardancy specified in UL94 to achieve the HBF standard. In the present invention, the content of the acetone-dissolved substance is 5.0% by weight or less. When this value exceeds 5.0% by weight, the HBF standard is achieved in the flame retardancy specified in UL94 even when the amount of the metal hydroxide 16 and the condition for the foam stabilizer are satisfied. It has been confirmed not to. The content of the substance that can be dissolved in acetone is measured by, for example, the acetone extraction rate from the elastic sheet 12, and an example of an actual measurement method will be described in an experimental example described later ([0023]). In addition, when low boiling point substances such as alkylbenzenes are used as a solvent for diluting the foam stabilizer, these are present in a free form outside the polyurethane structure in the elastic sheet 12, and so-called migration becomes obvious. There is also a problem to do. Therefore, the use of a substance capable of reacting with an isocyanate such as polyols as a solvent for dilution can also be expected to have the effect of greatly suppressing the above-described migration.

基材フィルム14は、前述の如く、難燃性シール材10の構造的強度を向上させて製品のハンドリング性等を良好にするべく、弾性シート12に対して一体的に積層される部材である。この基材フィルム14は、後述([0017])の製造方法に記載の如く、製造装置30における発泡体原料Mの移送媒体としての役割も担う。従って基材フィルム14には、ロール機構32によって掛けられる張力に対抗し得る物理的強度と、発泡体原料Mを反応・硬化させるためにトンネル式加熱炉38で加えられる熱に対する耐性とを備える、例えばPETの如き熱収縮に優れる各種樹脂の使用が好ましく、またその厚みは材質によって変動するが、数十〜500μm、好適には25〜125μm程度に設定される。この程度の厚みであれば、弾性シート12に積層されていても、難燃性シール材10のシール性に悪影響を与えることはない。なお後述([0017])する如く、例えば成形型を使用して難燃性シール材10を成形する場合、基材フィルム14は不要となり、図2に示すような難燃性シール材10が得られる。   As described above, the base film 14 is a member that is integrally laminated with the elastic sheet 12 in order to improve the structural strength of the flame retardant sealing material 10 and improve the handling properties of the product. . The base film 14 also serves as a transfer medium for the foam material M in the manufacturing apparatus 30 as described in the manufacturing method described later ([0017]). Therefore, the base film 14 has physical strength capable of resisting the tension applied by the roll mechanism 32 and resistance to heat applied in the tunnel heating furnace 38 in order to react and cure the foam raw material M. For example, it is preferable to use various resins such as PET that are excellent in heat shrinkage, and the thickness varies depending on the material, but is set to several tens to 500 μm, preferably about 25 to 125 μm. If it is this thickness, even if laminated | stacked on the elastic sheet 12, it does not have a bad influence on the sealing performance of the flame-retardant sealing material 10. FIG. As will be described later ([0017]), for example, when the flame-retardant sealing material 10 is molded using a mold, the base film 14 is not necessary, and the flame-retardant sealing material 10 as shown in FIG. 2 is obtained. It is done.

(製造方法の一例)
次に、本実施例に係る難燃性シール材の好適な製造装置の一例と、該製造装置を用いた製造方法を以下説明する。難燃性シール材10の製造は、図3に示すように原料準備工程S1、原料供給・成形工程S2、加熱工程S3および最終工程S4から基本的に構成され、図4に示す製造装置30により好適に製造される。この製造装置30は、主原料、各種副原料、金属水酸化物16および造泡用気体等を混合してメカニカルフロス法によるポリウレタン発泡体の発泡体原料Mを得る混合部31と、この発泡体原料Mの移送媒体としての役割を果たし、PETフィルム等で構成される基材フィルム14を図示しない駆動源により駆動する供給ロール32a、製品回収ロール32bからなるロール機構32と、基材フィルム14上に原料Mを供給する吐出ノズル34と、その下流側で原料Mを所定の厚みのシート状とするナイフコーター等の製品厚制御手段36と、その下流側に設けられるトンネル式加熱炉38とから基本的に構成される。なおここでは平面上で発泡体原料Mを反応・硬化させているが、前述の特公昭53−8735号公報に記載の如く、所要の成形型内や、離型紙等の上で反応・硬化させてもよい。
(Example of manufacturing method)
Next, an example of a suitable manufacturing apparatus for the flame-retardant sealing material according to the present embodiment and a manufacturing method using the manufacturing apparatus will be described below. As shown in FIG. 3, the production of the flame-retardant sealing material 10 basically comprises a raw material preparation step S1, a raw material supply / forming step S2, a heating step S3 and a final step S4. It is preferably manufactured. The manufacturing apparatus 30 includes a mixing unit 31 for mixing a main raw material, various auxiliary raw materials, a metal hydroxide 16 and a foaming gas to obtain a foam raw material M of a polyurethane foam by a mechanical floss method, and the foam. A roll mechanism 32 composed of a supply roll 32a and a product recovery roll 32b that serves as a transfer medium for the raw material M and is driven by a drive source (not shown) that is configured by a PET film or the like, and on the base film 14 A discharge nozzle 34 for supplying the raw material M, a product thickness control means 36 such as a knife coater which forms the raw material M in a sheet shape downstream thereof, and a tunnel heating furnace 38 provided downstream thereof. Basically composed. Here, the foam raw material M is reacted and cured on a flat surface, but as described in the above-mentioned Japanese Patent Publication No. 53-8735, it is reacted and cured in a required mold or on release paper. May be.

ロール機構32は、基本的に基材フィルム14に張力を掛けつつ製造ラインに供給し、かつ得られる難燃性シール材10を回収する機構である。そして供給ロール32aには、基材フィルム14が巻き付けられ、制御下に送出されるものである。吐出ノズル34は、移送される基材フィルム14上に発泡体原料Mを制御下に供給するもので、一端が混合部31に接続されている。混合部31で実施される原料準備工程S1は、製造すべき難燃性シール材10をなす弾性シート12の発泡体原料Mを、主原料および各種副原料等から従来公知の方法によって準備・混合する工程である。また製品厚制御手段36は、基材フィルム14上に吐出供給された発泡体原料Mを所定の厚み(0.3〜3.0mm([0010]参照))とのシート状物とするものである。そしてこの部分を通過することで、原料供給・成形工程S2が完了する。そしてトンネル式加熱炉38は、所定の厚みとされた発泡体原料Mに制御下で加熱を施して反応・硬化を進行させて難燃性シール材10とする部分であり、ここを発泡体原料Mが通過することで加熱工程S3が完了する。最終的な工程である最終工程S4では、これまでの各工程S1〜S3を経ることで製造された難燃性シール材10の長尺物を得ると共に、必要に応じて最終製品である所定のシール材形状に打ち抜き、更に最終検査等を実施しされる。なお、最終検査を実施しつつつ製品回収ロール32bにより巻き取り回収して、そのままの形で出荷してもよい。このような製造形態においては、難燃性シール材10を、例えば5m以上の長尺物として連続的に製造可能であるため、その製造コストを大きく低減し得る。   The roll mechanism 32 is basically a mechanism that supplies the production line while applying tension to the base film 14 and collects the obtained flame-retardant sealing material 10. And the base film 14 is wound around the supply roll 32a, and it sends out under control. The discharge nozzle 34 supplies the foam raw material M under control onto the substrate film 14 to be transferred, and one end is connected to the mixing unit 31. The raw material preparation step S1 performed in the mixing unit 31 prepares and mixes the foam raw material M of the elastic sheet 12 forming the flame-retardant sealing material 10 to be manufactured from a main raw material and various auxiliary raw materials by a conventionally known method. It is a process to do. Moreover, the product thickness control means 36 makes the foam raw material M discharged and supplied onto the base film 14 into a sheet-like material having a predetermined thickness (0.3 to 3.0 mm (see [0010])). is there. And by passing this part, raw material supply and shaping | molding process S2 is completed. The tunnel-type heating furnace 38 is a part that heats the foam raw material M having a predetermined thickness under control to cause the reaction / curing to proceed to form the flame retardant sealing material 10, which is the foam raw material. Heating process S3 is completed because M passes. In the final step S4, which is the final step, a long product of the flame-retardant sealing material 10 manufactured through the respective steps S1 to S3 is obtained, and a predetermined product that is a final product is obtained as necessary. It is punched into the shape of the sealing material, and further final inspection is carried out. Note that the product may be wound and collected by the product collection roll 32b while being subjected to the final inspection, and shipped as it is. In such a manufacturing form, since the flame-retardant sealing material 10 can be continuously manufactured as a long object of, for example, 5 m or more, the manufacturing cost can be greatly reduced.

(実験例)
以下に、本発明に係る難燃性シール材を、以下の表1(実施例1〜8)および表2(比較例1〜8)に記載する条件の発泡体原料から製造しその難燃性およびシール性等について評価した実験例を示す。
(Experimental example)
Below, the flame-retardant sealing material which concerns on this invention is manufactured from the foam raw material of the conditions described in the following Table 1 (Examples 1-8) and Table 2 (Comparative Examples 1-8), and the flame retardance is produced. An experimental example in which sealing performance and the like are evaluated is shown.

ポリエーテルポリオール(平均分子量3000、水酸基価43.0)100重量部に対して、金属触媒(スタナスオクトエート)0.1重量部と、整泡剤3重量部(シリコーン系物質;希釈用の溶媒を含む)と、所要の重量部に設定された(表1および表2参照)金属水酸化物16とから混合物を得て、ここに0.1NL/分の流量で窒素(造泡用気体)と、イソシアネートインデックスが0.9〜1.1となるように設定されたポリイソシアネート(クルードMDI、NCO含有量:31%)とを混合・剪断して発泡体原料Mを得る。そしてこの発泡体原料Mをロール機構32上に張力を掛けられた状態で供給ロール32aから連続的に供給されている所要厚みの基材フィルム(PET製)上に吐出ノズル34から、弾性シート12の完成時密度が表1および表2に記載の数値となるように供給し、かつ製品厚制御手段36により表1および表2に記載の厚みとなるようにする。そしてトンネル式加熱炉内で条件150℃〜200℃、1〜3分間の加熱が実施して、発泡体原料Mの反応および硬化が進行させて弾性シート12からなる難燃性シール材を得て、製品回収ロール32bで回収する。 For 100 parts by weight of polyether polyol (average molecular weight 3000, hydroxyl value 43.0), 0.1 part by weight of metal catalyst (stannas octoate) and 3 parts by weight of foam stabilizer (silicone substance; for dilution) A solvent) and a metal hydroxide 16 set to the required parts by weight (see Tables 1 and 2), and a mixture of nitrogen (foaming gas) at a flow rate of 0.1 NL / min. ) and, set polyisocyanates as isocyanate index is 0.9 to 1.1 (crude MDI, NCO content: 31%) as mixing and shearing to the foam raw material M and a. The foam raw material M is applied to the elastic sheet 12 from the discharge nozzle 34 onto a base film (made of PET) having a required thickness that is continuously supplied from the supply roll 32 a while being tensioned on the roll mechanism 32. Is supplied so that the density at the time of completion becomes the numerical values described in Tables 1 and 2, and the thicknesses described in Tables 1 and 2 are set by the product thickness control means 36. Then, heating is carried out for 1 to 3 minutes under conditions of 150 ° C. to 200 ° C. in a tunnel-type heating furnace, and the reaction and curing of the foam raw material M proceeds to obtain a flame-retardant sealing material made of the elastic sheet 12. The product is collected by the product collection roll 32b.

使用した金属水酸化物16および整泡剤は、以下の通りである。
・金属水酸化物:水酸化アルミニウム(商品名 ハイジライトH−21(平均粒径25μm);昭和電工製)
・整泡剤:
(A)商品名 L−5617;OSI製(ポリジメチルシロキサンおよびポリオキシアルキレンをポリオールを希釈用の溶媒として50重量%とした物質。
(B)商品名 L−5614;OSI製(ポリジメチルシロキサンおよびポリオキシアルキレンをアルキルベンゼンを希釈用の溶媒として50重量%とした物質。
The used metal hydroxide 16 and foam stabilizer are as follows.
・ Metal hydroxide: Aluminum hydroxide (trade name Heidilite H-21 (average particle size 25 μm); Showa Denko)
・ Foam stabilizer:
(A) Product name L-5617; manufactured by OSI (a material containing polydimethylsiloxane and polyoxyalkylene as a solvent for diluting to 50% by weight).
(B) Trade name L-5614; OSI (substance made of polydimethylsiloxane and polyoxyalkylene with 50% by weight of alkylbenzene as a solvent for dilution.

そして表1および表2の内容に従って製造された実施例1〜8および比較例1〜8に係る難燃性シール材から、基材フィルムを剥がして所要の厚み×150mm×50mmの難燃性に係る試験片、所要の厚み×φ50mmの25%CLDに係る試験片および1gのアセトン被溶解物質(アセトン抽出率)に係る試験片を夫々得て、これらについて25%CLD(MPa)およびアセトン被溶解物資の含有量に関してアセトン抽出率(%)を夫々測定し、UL94に規定される難燃性がHBF規格を○:達成する、×:達成しないで評価した。ここから本発明に係る難燃性シール材としての適否を○:適合、×:不適で評価した。なおアセトン抽出率に関係し、アルキルベンゼンを含有するか否かについても、有、無で評価した。なお測定方法・条件等は以下の通りである。   And from the flame-retardant sealing materials according to Examples 1 to 8 and Comparative Examples 1 to 8 produced according to the contents of Table 1 and Table 2, the base film is peeled off to obtain flame retardance of required thickness × 150 mm × 50 mm. A test piece of 25% CLD having a required thickness × φ50 mm and a test piece of 1 g of acetone-dissolved substance (acetone extraction rate) were obtained, and 25% CLD (MPa) and acetone-dissolved were obtained. The acetone extraction rate (%) was measured with respect to the content of each of the materials, and the flame retardancy specified in UL94 was evaluated as ◯: Achieving the HBF standard, X: Not achieved. From here, the suitability as a flame-retardant sealing material according to the present invention was evaluated as ◯: conformity, x: unsuitable. In addition, in relation to the acetone extraction rate, whether or not alkylbenzene was contained was also evaluated with and without. Measurement methods and conditions are as follows.

(測定方法・条件)
・密度:JIS K 6401に基づいて測定。
・難燃性:UL94に規定されるHBF規格によって評価。
・アセトン被溶解物資の含有量(アセトン抽出率):試験片の重量をA(ここでは1g)とし、これをソックスレー抽出器を用いてアセトンを溶媒として3時間加熱環流して抽出を行ない、この抽出物を乾燥して重量をBとして下記の式から算出する。
:アセトン被溶解物資の含有量(アセトン抽出率)=B/A(1)×100(%)
・アルキルベンゼンの含有:上記の抽出物をGC-MS(商品名 QP−5000;島津製作所製)によりスペクトル分析を実施することで評価。
(Measurement method / conditions)
Density: Measured based on JIS K 6401.
・ Flame retardance: Evaluated according to HBF standard defined in UL94.
-Content of acetone-dissolved material (acetone extraction rate): The weight of the test piece is set to A (here 1 g), and this is extracted by heating and refluxing with acetone as a solvent for 3 hours using a Soxhlet extractor. The extract is dried and the weight is calculated as B from the following formula.
: Content of acetone dissolved substance (acetone extraction rate) = B / A (1) × 100 (%)
-Alkylbenzene content: The above-mentioned extract was evaluated by performing spectral analysis using GC-MS (trade name QP-5000; manufactured by Shimadzu Corporation).

(結果)
結果を下記各表に併せて記載する。この表1および表2から、各物性値等を本発明で設定した範囲内とすることで、難燃性とシール性とを併有した難燃性シール材が得られることが確認された。

Figure 0004544853
Figure 0004544853
(result)
The results are listed in the following tables. From Table 1 and Table 2, it was confirmed that a flame-retardant sealing material having both flame retardancy and sealing performance can be obtained by setting each physical property value and the like within the range set in the present invention.
Figure 0004544853
Figure 0004544853

本発明の好適な実施例に係る難燃性シール材を一部切り欠いて示す概略斜視図である。1 is a schematic perspective view showing a flame-retardant sealing material according to a preferred embodiment of the present invention with a part cut away. 基材フィルムを備えない難燃性シール材を示す概略斜視図である。It is a schematic perspective view which shows the flame-retardant sealing material which is not provided with a base film. 実施例に係る難燃性シール材の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the flame-retardant sealing material which concerns on an Example. 実施例に係る難燃性シール材を製造する製造装置の一例である。It is an example of the manufacturing apparatus which manufactures the flame-retardant sealing material which concerns on an Example. UL94に規定される難燃性試験を実施する実験装置の、(a)全体を示す概略斜視図と、(b)試験片近傍を示す拡大図である。It is the schematic perspective view which shows (a) whole, and (b) the enlarged view which shows the test piece vicinity of the experimental apparatus which implements the flame retardance test prescribed | regulated to UL94.

符号の説明Explanation of symbols

10 難燃性シール材
12 弾性シート
14 基材フィルム
16 金属水酸化物
M 発泡体原料
DESCRIPTION OF SYMBOLS 10 Flame-retardant sealing material 12 Elastic sheet 14 Base film 16 Metal hydroxide M Foam raw material

Claims (1)

ポリオール100重量部に対して、固形成分として平均粒径を10〜100μmの範囲に設定した金属水酸化物のみを25〜50重量部の範囲で混合すると共に、イソシアネートと反応し得る物質であるポリオールを溶媒として予め希釈して、整泡剤の含有率が30〜70重量%の範囲になるよう設定した副原料および金属触媒を混合した液状混合物と、イソシアネートと、造泡用気体とを混合してメカニカルフロス法により発泡体原料を得て、
前記発泡体原料を、供給ロールから送り出された基材フィルム上に供給し、
前記基材フィルム上に供給された発泡体原料を、得られる弾性シートの厚みが0.3〜3.0mmの範囲になるように製品厚制御手段によって調整し、
前記発泡体原料を加熱することで反応・硬化させて、基材フィルム上に弾性シートを形成し、
製品回収ロールで基材フィルムと共に弾性シートを巻き取り回収し、
前記弾性シートの厚みを0.3〜3.0mmの範囲で設定すると共に、該弾性シートの密度を240〜500kg/mの範囲に設定することで、25%圧縮荷重(25%CLD)を0.03MPa以下とし、該弾性シートにおけるアセトンに溶解し得る物質の含有量を、5.0重量%以下にすることで、UL94に規定される難燃性がHBF規格を達成した難燃性シール材を得る
ことを特徴とする難燃性シール材の製造方法。
A polyol which is a substance capable of reacting with isocyanate while mixing only a metal hydroxide having an average particle size of 10 to 100 μm as a solid component in a range of 25 to 50 parts by weight with respect to 100 parts by weight of a polyol. Is diluted in advance as a solvent, and the liquid mixture in which the auxiliary raw material and the metal catalyst are set so that the content of the foam stabilizer is in the range of 30 to 70% by weight, the isocyanate, and the foaming gas are mixed. To obtain a foam material by mechanical flossing,
The foam raw material is supplied onto a base film fed from a supply roll,
The foam raw material supplied on the base film is adjusted by the product thickness control means so that the thickness of the elastic sheet obtained is in the range of 0.3 to 3.0 mm,
By reacting and curing the foam raw material, an elastic sheet is formed on the base film,
The product recovery roll winds and collects the elastic sheet together with the base film,
By setting the thickness of the elastic sheet in a range of 0.3 to 3.0 mm and setting the density of the elastic sheet in a range of 240 to 500 kg / m 3 , a 25% compression load (25% CLD) is set. The flame retardant seal in which the flame retardancy specified in UL94 achieves the HBF standard by setting the content of the substance that can be dissolved in acetone in the elastic sheet to 5.0 wt% or less. A method for producing a flame-retardant sealing material, comprising obtaining a material.
JP2003413831A 2003-12-11 2003-12-11 Method for producing flame retardant sealing material Expired - Lifetime JP4544853B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003413831A JP4544853B2 (en) 2003-12-11 2003-12-11 Method for producing flame retardant sealing material
TW093137114A TWI363079B (en) 2003-12-11 2004-12-02 Flame retardant seal
CNB2004101003111A CN100393805C (en) 2003-12-11 2004-12-09 Flame resistant sealing material
KR1020040104154A KR101133148B1 (en) 2003-12-11 2004-12-10 Flame Retardant Seal
HK05108548A HK1074456A1 (en) 2003-12-11 2005-09-28 Flame retardant seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413831A JP4544853B2 (en) 2003-12-11 2003-12-11 Method for producing flame retardant sealing material

Publications (2)

Publication Number Publication Date
JP2005171102A JP2005171102A (en) 2005-06-30
JP4544853B2 true JP4544853B2 (en) 2010-09-15

Family

ID=34733851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413831A Expired - Lifetime JP4544853B2 (en) 2003-12-11 2003-12-11 Method for producing flame retardant sealing material

Country Status (5)

Country Link
JP (1) JP4544853B2 (en)
KR (1) KR101133148B1 (en)
CN (1) CN100393805C (en)
HK (1) HK1074456A1 (en)
TW (1) TWI363079B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101017965B (en) * 2007-02-14 2011-07-06 上海市电力公司 A blocking technology of SF6 gas insulation power device leakage
JP5479174B2 (en) * 2009-03-24 2014-04-23 株式会社イノアックコーポレーション Polyurethane foam laminate, method for producing the same, and gasket
JP5660975B2 (en) * 2011-05-27 2015-01-28 株式会社イノアックコーポレーション Sealing material and manufacturing method thereof
PL3677610T3 (en) 2019-01-07 2022-01-31 Evonik Operations Gmbh Preparation of polyurethane foam
CN116218202A (en) * 2023-02-03 2023-06-06 广东安拓普聚合物科技有限公司 Sealing ring material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216157B2 (en) * 1972-04-28 1977-05-07
JPS60139445A (en) * 1983-12-27 1985-07-24 株式会社イノアックコーポレーション Flame-retardant polyurethane foam for flame lamination
JPH09249728A (en) * 1996-03-19 1997-09-22 Inoac Corp Flame-retardant polyurethane foam
JPH11291375A (en) * 1998-04-10 1999-10-26 Achilles Corp Fixed form elastic foamed sealing material and manufacture thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4876291A (en) * 1988-08-24 1989-10-24 J.M. Huber Corporation Mineral filler fire retardant composition and method
DE3902238A1 (en) * 1989-01-26 1990-08-02 Jones Parker & Co Ltd Foamable potting compound with adjustable, preferably longer processing time
US5416143A (en) * 1993-01-07 1995-05-16 Bayer Aktiengesellschaft Highly flame-retardant polyamide moulding compounds
ATE178915T1 (en) * 1996-02-14 1999-04-15 Sika Ag FLAME RETARDANT POLYURETHANE SYSTEMS
JPH11140150A (en) * 1997-11-13 1999-05-25 Chisso Corp Composition for low-smoking flame-retardant polyisocyanurate foam and low-smoking flame-retardantfoam prepared therefrom
DE19921472A1 (en) * 1999-05-08 2000-11-16 Sued Chemie Ag Flame retardant polymer composition
JP2002226545A (en) 2001-01-31 2002-08-14 Sanyo Chem Ind Ltd Polymer polyol composition and method for producing polyurethane resin
JP2003221425A (en) 2002-01-31 2003-08-05 Sanyo Chem Ind Ltd Method for producing polyurethane foam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216157B2 (en) * 1972-04-28 1977-05-07
JPS60139445A (en) * 1983-12-27 1985-07-24 株式会社イノアックコーポレーション Flame-retardant polyurethane foam for flame lamination
JPH09249728A (en) * 1996-03-19 1997-09-22 Inoac Corp Flame-retardant polyurethane foam
JPH11291375A (en) * 1998-04-10 1999-10-26 Achilles Corp Fixed form elastic foamed sealing material and manufacture thereof

Also Published As

Publication number Publication date
CN100393805C (en) 2008-06-11
HK1074456A1 (en) 2005-11-11
CN1637108A (en) 2005-07-13
JP2005171102A (en) 2005-06-30
TWI363079B (en) 2012-05-01
KR101133148B1 (en) 2012-04-06
KR20050058220A (en) 2005-06-16
TW200519163A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP5620110B2 (en) Conductive polymer foam, method for making the same, and use thereof
KR101525149B1 (en) Sheet for absorbing impact and sealing having improved flame-retardant and preparation method thereof
US7504052B2 (en) Antistatic and electrically conductive polyurethanes
KR20220043762A (en) resin composition
JP4544853B2 (en) Method for producing flame retardant sealing material
JP2002198679A (en) Electromagnetic wave shielding gasket
US20120003457A1 (en) Flame-retardant resin form and flame-retardant material
KR101830523B1 (en) Polymer compound for film and self-healable heat-dissipation film using the same
JP2010247532A (en) Polyurethane foam laminate and method for manufacturing the same, and gasket
KR101757584B1 (en) Composition for remanufacturable heat-dissipation film and preparing method thereof
JP4762614B2 (en) Low flammability polyurethane foam
KR101676272B1 (en) Liquid silicone rubber composition having low viscosity and flame retardancy for application to high-voltage electrical insulators
JP4754179B2 (en) Soundproof material
JP2006219655A (en) Urethane composition
KR100541488B1 (en) Electromagnetic shielding gasket
JP4809643B2 (en) Polyurethane foam
JP2008156501A (en) One-part moisture-curable polyurethane coating agent, mounting circuit board having been subjected to moistureproof insulation treatment using the same, and method for producing the mounting circuit board
CN114806178B (en) Hybrid silicone resin composition for high temperature applications
JP2005060502A (en) Water cut-off polyurethane sealing material
JP2019517600A (en) Flame retardant semi-rigid polyurethane foam
JP5091049B2 (en) Electromagnetic shielding gasket
JPH10218956A (en) Flame-retardant polyurethane foam
JP7388947B2 (en) Composition for forming a conductive film and method for producing a conductive film
JPWO2018163746A1 (en) Curable composition, paint, electric wire and resin article
CN112566983A (en) Silicone sealant composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4544853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term