JP4544774B2 - Pre-made pile core misalignment prevention device and pre-made pile core misalignment prevention construction method - Google Patents

Pre-made pile core misalignment prevention device and pre-made pile core misalignment prevention construction method Download PDF

Info

Publication number
JP4544774B2
JP4544774B2 JP2001103480A JP2001103480A JP4544774B2 JP 4544774 B2 JP4544774 B2 JP 4544774B2 JP 2001103480 A JP2001103480 A JP 2001103480A JP 2001103480 A JP2001103480 A JP 2001103480A JP 4544774 B2 JP4544774 B2 JP 4544774B2
Authority
JP
Japan
Prior art keywords
pile
guide cylinder
ready
steel pipe
auger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001103480A
Other languages
Japanese (ja)
Other versions
JP2002294704A (en
Inventor
島 三 千 夫 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tenox Corp
Original Assignee
Tenox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tenox Corp filed Critical Tenox Corp
Priority to JP2001103480A priority Critical patent/JP4544774B2/en
Publication of JP2002294704A publication Critical patent/JP2002294704A/en
Application granted granted Critical
Publication of JP4544774B2 publication Critical patent/JP4544774B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Description

【発明の属する技術分野】
【0001】
本発明は、鋼管ソイルセメント杭工法における鋼管杭やその他のプレボーリング工法等で使用される既製杭を埋設する際の既製杭の芯ズレ防止装置および既製杭の芯ズレ防止施工方法に関する。
【0002】
【従来の技術】
図17は鋼管ソイルセメント杭の一例を示す断面図で、既製杭として鋼管杭100の例で示してある。図18は拡翼101付きの鋼管杭100を使用しての鋼管ソイルセメント杭の断面図である。符号102は地盤、103はソイルセメント部、104は根固め部を示す。
このような鋼管ソイルセメント杭の施工方法には、鋼管杭同時埋設方法(中掘り工法)およびプレボーリング方法の二方式がある。既製コンクリート杭のプレボーリング工法は鋼管ソイルセメント杭のプレボーリングの方法と異なるが、工程的には両者は類似の工法であるといえる。
【0003】
従来の鋼管杭同時埋設方法(中掘り工法)を、図19乃至図24について説明すると、まずオーガーを地上で準備する。
図19は鋼管ソイルセメント杭の造成に使用するオーガーを示す正面図である。同図において、オーガー20は、オーガー軸21と、軸先端に装着された掘削翼22、23と、この上段に回転自在に遊嵌された共回り防止翼25と、さらにこの上段に固着された攪拌翼24とから構成されている。
【0004】
掘削翼23及び攪拌翼24は、オーガー軸21に固着された支持部材28、29に枢軸26とシャーピン27とで拡開状態で取り付けられており、共回り防止翼25は、オーガー軸21に回転自在に遊嵌された支持部材30に枢軸26とシャーピン27とで拡開状態で取り付けられている。
【0005】
掘削翼22、23にはビット22a、23aが固着され、掘削翼22は鋼管杭100の内径より小径であり、攪拌翼24の外径は掘削翼23の外径と略同一で、かつ鋼管杭100の外径より大径である。共回り防止翼25の外径は掘削翼23より大径に形成され、掘削中は掘削翼22、23で掘削された削孔壁から外側の原地盤中に食い込み、掘削翼22、23と攪拌翼24とが回転しても共回り防止翼25は回転しないようになっている。
【0006】
図19においては共回り防止翼25の上段に攪拌翼24が設けられているが、攪拌翼24と共回り防止翼25の位置を入れ替えてもよいし、攪拌翼24を多段に設けてもよい。
前記共回り防止翼25は、掘削翼22、23で掘削されて生じた大きな土塊を破砕するもので、掘削翼22、23や攪拌翼24と共に回転している大きな土塊が、回転していない共回り防止翼25に当たり、掘削翼22、23や攪拌翼24との間で剪断されて破砕され、固化材と地盤との均一な混錬を可能にする。
【0007】
なお、図19では図示を省略したが、オーガー軸21にはスタビライザが設けられ、鋼管杭100の内において軸芯を維持したり、芯振れ及びオーガー軸の屈曲を防止するようになっている。
【0008】
そこで先ず、地上で前記のようなオーガー20を図20に示すように鋼管杭100にセットする。このセットは、鋼管杭100の下端より前記掘削翼22、23、攪拌翼24及び共回り防止翼25を先行した状態でオーガー軸21を鋼管杭100内に挿入して行なわれる。
【0009】
次に、図示しない施工機でオーガー軸21と鋼管杭100のそれぞれの上端を把持し、図20、図21に示すようにオーガー20と鋼管杭100をそれぞれ互いに逆方向または同一方向に回転させつつ、同時にオーガー軸21先端の吐出口31からスラリー状の固化材を吐出し、地盤中を掘削翼22、23で削孔する。
掘削翼22、23で掘削された地盤の土塊は、共回り防止翼25で破砕され、攪拌翼24で攪拌されつつ、吐出口31から吐出する固化材と混合される。
なお、オーガー軸21と鋼管杭100のそれぞれの上端を把持し、オーガー20と鋼管杭100に回転力及び給進力を与え、回転させつつオーガー軸21先端の吐出口31からスラリー状の固化材を吐出させて削孔させる前記施工機(図示せず)は、公知であるので説明は省略する。
【0010】
次に、図22に示すように所定深度まで削孔し、掘削翼22先端が所定深度に到達した時点で、固化材の吐出を固化後の圧縮強度がそれまで注入した固化材より大きいスラリー状固化材に切り替えて削孔底部をその固化材で充満して根固め部104を形成する。この場合、オーガー20は給進させないが、回転させた方がよい。この工程を根固め工程と称す。
【0011】
前記根固め工程は、図22に示された所定深度よりも削孔底部の根固め部104の距離だけ浅い地盤の深度まで削孔した後、それまで注入した固化材よりも固化後の圧縮強度が大きな固化材に切り替え、前記削孔底部の根固め部104の距離だけ固化材を吐出しつつ所定深度まで削孔して形成してもよい。
【0012】
なお、この場合、所定深度よりも削孔底部の根固め部104の距離だけ浅い地盤の深度まで削孔した後、それまで吐出した固化材よりも固化後の圧縮強度が大きな固化材に切り替え、オーガー20を削孔底部の根固め部104の距離だけ固化材を吐出しつつ回転・給進して所定深度まで到達し、次に固化材を吐出せずオーガー20を回転させつつ根固め部104の距離だけオーガー20を上下させて再攪拌を行なうこともできる。
【0013】
次に、図23に示すように鋼管杭100上端を地上のクランプ装置(図示せず)で固定し、オーガー20を地上へ引き揚げる。この場合、引き揚げる途中で攪拌翼24、共回り防止翼25、掘削翼23が順次鋼管杭100の下端に当たってシャーピン27が順次剪断されるので、攪拌翼24、共回り防止翼25、掘削翼23は、これらを枢支する枢軸26を軸として下方に折り畳まれて鋼管杭100内を上昇する。
【0014】
次に、図24に示すように鋼管杭100を回転させながら給進させ、固化後の圧縮強度が大きな固化材が注入された根固め部104内に挿入する。次にオーガー20を地上へ引き揚げる。このオーガー20の引き揚げは、攪拌翼24、共回り防止翼25及び掘削翼23を縮閉した後、引続きオーガー20を地上に引き揚げ、次に図24に示すように鋼管杭100を削孔底部の根固め部104に沈設してもよい。
【0015】
図25は従来のプレボーリング方法を示す断面図で、(A)(B)(C)(D)(E)と工程順に示してあり、前記鋼管杭同時埋設方法と同一構成要素には同一符号が付してある。
まず、地上で図25(A)に示すようなオーガー20を用意する。このオーガー20は、オーガー軸21と、軸先端に固着された掘削翼22、23とこの上段に回転自在に遊嵌された共回り防止翼25と、さらにこの上段に固着された攪拌翼24とから構成されている。掘削翼22、23にはビット22a、23aが固着され、掘削翼23と攪拌翼24の外径は略同一である。共回り防止翼25の外径は掘削翼23、攪拌翼24より大径に形成され、掘削中は掘削翼22、23で掘削された削孔壁から外側の原地盤中に食い込み、掘削翼22、23と攪拌翼24とが回転しても共回り防止翼25は回転しないようになっている。
本例は、掘削翼23、攪拌翼24及び共回り防止翼25が、前記図19乃至図24に示すオーガー20のような枢軸26及びシャーピン27の構成を具備しないものであって、他は前記図19乃至図24に示すオーガー20と同一であるので同一符号を付して詳細な説明は省略する。
【0016】
次に、図示しない施工機で前記オーガー20のオーガー軸21の上端を把持し、図25(B)に示すようにオーガー20を回転させつつ、同時にオーガー軸21の吐出口31からスラリー状の固化材を吐出し、地盤中を掘削翼22、23で削孔する。掘削翼22、23で掘削された地盤の土塊は、共回り防止翼25で破砕され、攪拌翼24で攪拌されつつ、吐出口31から吐出する固化材と混練される。
なお、オーガー軸21の上端を把持し、オーガー20に回転力及び給進力を与え、回転させつつオーガー軸21先端の吐出口31からスラリー状の固化材を吐出させて削孔させる前記施工機(図示せず)は、公知であるので説明は省略する。
【0017】
次に、所定深度まで削孔し、掘削翼22先端が所定深度に到達した時点で、固化材の吐出を固化後の圧縮強度がそれまで注入した固化材より大きいスラリー状固化材に切り替えて、図25(C)に示すように削孔底部をその固化材で充満して根固め部104を形成する。この工程を根固め工程と称す。
【0018】
前記根固め工程は、図25(C)に示された所定深度よりも削孔底部の根固め部104の距離だけ浅い地盤の深度まで削孔した後、それまで注入した固化材よりも固化後の圧縮強度が大きな固化材に切り替え、前記削孔底部の根固め部104の距離だけ固化材を吐出しつつ所定深度まで削孔して形成してもよい。
【0019】
次に、オーガー20を回転させながら地上に引き揚げると、図25(D)に示すようなソイルセメント部103と根固め部104によるソイルセメント柱体が造成される。このオーガー20の引き揚げ時に、スラリー状の固化材は、吐出する場合と停止する場合とがあり、また、オーガー20は回転させた方が攪拌が良好となるので好ましい。
【0020】
次に、図25(D)及び(E)に示すように前記造成されたソイルセメント柱体中に、上方から鋼管杭100を回転させながら、鋼管杭100の先端部が根固め部104に位置するまで挿入して、図25(E)に示すような鋼管ソイルセメント杭が造成される。
【0021】
【発明が解決しようとする課題】
しかしながら、前記従来の鋼管ソイルセメント杭の施工方法では、既製杭の芯ズレが発生しやすい不都合がある。従来の施工方法においても、オーガー20のオーガー軸21にスタビライザを設け芯ズレの防止を図っているが、ソイルセメントコラム柱体径が杭径より大きく、かつスタビライザと鋼管杭の内壁面との間には多少のクリアランスがあるためにどうしても芯ズレが発生する恐れがあった。
【0022】
また、一般に、既製杭の杭芯ズレは貫入初期の時点で発生することが多い。既製杭(例えば、鋼管杭)の中掘り工法では、オーガー20の先端部が地盤102中に貫入する初期に地盤102の抵抗や玉石等により芯ズレを発生しやすい。芯ズレが発生すると杭100とオーガー20を一度地上へ引き上げてから、再度杭芯を合わせて最初から施工を始めなければならず、時間的なロスが発生する。もしこのやり直し作業を省いてそのまま杭の施工を続けると、杭が大きく傾斜したり、杭芯ズレが大きくなり許容値を外れてしまうことになる。
【0023】
プレボーリング工法では既製杭の外径よりも大きな径の掘削孔を削孔するため、図25(D)から(E)に示すような既製杭を削孔中へ沈設するときに杭芯ズレが発生しやすい。また、プレボーリング孔自体の芯ズレは中掘り工法と同様に発生する。
【0024】
前述のように、従来技術では中掘り工法もプレボーリング工法も、既製杭が所定の位置から偏芯する、いわゆる杭芯ズレを起こすという課題があった。
そこで、本出願人は、このような課題を解決するものとして既に特願2000−11779の既製杭の芯ズレ防止装置および既製杭の芯ズレ防止施工方法を提案した、
本発明は、上記発明を更に改善した鋼管ソイルセメント杭の施工における既製杭やその他の工法における既製杭の芯ズレ防止装置および既製杭の芯ズレ防止施工方法を提供するものである。
【0025】
【課題を解決するための手段】
前記課題を解決するため、本発明の既製杭の芯ズレ防止装置は、施工する既製杭よりも大きな径の孔が設けられた基板と、該基板にその孔と同心的に固着された施工する既製杭より大きな内径を有するガイド筒と、該ガイド筒内面に装着する回転支承とより成り、
前記ガイド筒には、その側面に切欠開口部が設けられており、前記回転支承は、少なくとも3個をガイド筒内面に装着することを特徴とする。
また、本発明の既製杭の芯ズレ防止装置は、前記回転支承がガイドローラであり、該ガイドローラをガイド筒上端部内面に着脱自在に装着することを特徴とする。
【0026】
また、本発明の既製杭の芯ズレ防止施行方法は、施工する既製杭よりも大きな径の孔が設けられた基板と、該基板にその孔と同心的に固着された施工する既製杭より大きな内径を有し側面に切欠開口部が設けられたガイド筒と、該ガイド筒内面に装着する回転支承とより成る既製杭の芯ズレ防止装置を使用し、杭芯位置にガイド筒の中心位置がほぼ一致するようにして基板を地盤上に設置し、この基板を固定手段で固定し、ガイド筒上端部内面に設置した少なくとも3個の回転支承が杭の外面に接するようにして既製杭を沈設することを特徴とする。
【0027】
また、本発明の既製杭の芯ズレ防止施行方法は、前記固定手段が、施工機の支脚で基板を押えて固定することを特徴とする。
【0028】
さらに、本発明の既製杭の芯ズレ防止施工方法は、杭芯位置にガイド筒の中心位置がほぼ一致するようにして基板を地盤上に設置し、この基板を固定手段で固定し、ガイド筒上端部内面に設置した少なくとも3個の回転支承が杭の外面に接するようにして既製杭を沈設する既製杭の芯ズレ防止施工方法であって、既製杭がその上方外周にフック部を固着された鋼管杭又はSC杭であり、先行する既製杭に後続する既製杭を継ぎ足して順次沈設する工程において、先行する既製杭の上方外周に固着された突起部を、回転支承の構成部材に載置して先行既製杭が沈下しないように支持し、後続既製杭を接続することを特徴とする。
【0029】
【発明の実施の形態】
以下、本発明の実施の形態を図面と共に詳細に説明する。図1は本発明の実施の形態を示すガイド筒の斜視図、図2は本発明の実施の形態を示す回転支承の斜視図、図3は本発明の実施の形態を示す回転支承の断面図である。
【0030】
本発明に係る既製杭の芯ズレ防止装置は、図1に示すような基板3に固設されたガイド筒1と、図2及び図3に示すような回転支承2とで構成される。本例では回転支承2としてガイドローラで示している。
ガイド筒1は、内径が既製杭100の外径とガイドローラ(回転支承)2の内面側突出幅の2倍を合計した長さに略等しい径乃至やや大きい径とし、鋼管等で形成される。
【0031】
基板3は、鋼板等で形成されるが、その形状は特に問わない。しかし、施工方法や製造コストを考慮すると方形が好ましい。この基板3には、前記ガイド筒1の内径と略等しい径の孔4が設けられ、ガイド筒1は、この孔4と同心的に基板3に固着される。この固着手段としては、溶接等を例示できる。また、ガイド筒1には基板3との間に補強板11が設けられて強度の向上が図られている.ガイド筒1の長さは、杭が偏芯しようとするときの抵抗力を保持できる厚さが必要となるが、補強板11を設けるとガイド筒1の厚さを薄くすることができる。尚、補強板11には、フック孔13が設けてあり、施工機での吊り上げての設置、移動及び撤去に使用できるようになっている。
【0032】
図4はガイド筒の他の実施の形態を示す斜視図である。本例はガイド筒1の側面に切欠開口部1aが設けられている場合であって、他は前記実施の形態と同様であるので、同一符号を付して詳細な説明は省略する。切欠開口部1aは流出したソイルセメントや汚泥等を、ガイド筒1から流出させるもので、本例によれば、削孔より流出するソイルセメントや掘削土等を、ガイド筒1内に滞留させることなく、釜場等の特定の方向に流出させることができる。
【0033】
また、回転支承2は、図2および図3に示すようにガイド筒1の上端部に着脱自在に装着する。回転支承2の軸5は、ガイド筒1の軸心と平行し、該軸5の回りを回転するガイドローラ2aを少なくとも1個取り付ける。回転支承2は少なくとも3個を着脱自在にガイド筒1の上端部に装着する。杭の外径が大きくなると回転支承2の取付け個数を増やした方が精度が向上する。通常は4乃至8個がよい。
【0034】
回転支承2の一例を図2および図3について説明する。垂直方向の取付板6に固設した軸受板7を水平方向に延出する。この軸受板7には、取付板6と前記ガイド筒1の肉厚より大きい間隔をとって取付板6と平行に支持板8を垂下し、この支持板8に前記軸受板7と所定の間隔をとって軸受板7と平行に軸受板9を固設する。前記軸受板7と9の間には、軸5をガイド筒1の軸心と平行に架設すると共に、この軸5にガイドローラ2aを回転自在に取り付ける。前記取付板6にはボルト10が螺入されており、取付板6と支持板8の間にガイド筒1の上端を嵌入させた後、このボルト10を締め付けることによって、ガイド筒1上端部に着脱自在となる。ガイドローラ2aの材質としては、樹脂もしくは硬質ゴムを例示することができる。
尚、符号12はフック杆を示す。
【0035】
図5は回転支承の他の実施の形態を示す断面図である。本例はガイドローラ2aが縦長の場合であって、他は前記実施の形態と同様であるので、同一符号を付して詳細な説明は省略する。
【0036】
次に前記のような既製杭の芯ズレ防止装置を使用しての既製杭の芯ズレ防止施工方法を説明する。最初に鋼管杭同時埋設方法を図6乃至図14について説明する。この場合、使用される既製杭は、鋼管杭である。
【0037】
まず、図6に示すように基板3に固着されたガイド筒1を、杭芯位置にガイド筒1の中心位置がほぼ一致するようにして地盤102上に設置する。このガイド筒1は、基板3を固定手段14で地盤102に対し固定することによって固定される。本例において固定手段14は、施工機(図示省略)の支脚で基板3を押え付ける手段を示している。施工機(図示せず)は公知であるので説明は省略するが、リーダーの基端側にシリンダーで進退する支脚が設けられているので、その支脚を固定手段14として利用する。このとき、ガイド筒1が鉛直となるように基板3を地盤102上に固定するように留意する。
【0038】
次に図7および図8に示すように回転支承2をガイド筒1上端部に差し込むようにセットし、ボルト10を締め付けることによりガイド筒1に取り付ける。回転支承2の装着時期は、最初からガイド筒1上端部に装着していてもよいし、既製杭をガイド筒1に挿入してから杭芯を合わせるように装着してもよい。
【0039】
次に図9に示すように既製杭としての鋼管杭100の下端よりオーガー20の掘削翼22、23、攪拌翼24及び共回り防止翼25を先行した状態でオーガー軸21を鋼管杭100内に挿入し、回転支承2のガイドローラ2aで形成する平面を鉛直に貫くようにガイド筒1中に鋼管杭100を挿入し、次に図示しない施工機でオーガー軸21と鋼管杭100のそれぞれの上端を把持し、図10および図11に示すようにオーガー20と鋼管杭100をそれぞれ互に逆方向または同一方向に回転させつつ、同時にオーガー軸21先端の吐出口31からスラリー状の固化材を吐出し、地盤102中を削孔する。掘削翼22、23で掘削された地盤の土塊は共回り防止翼25で破砕され、攪拌翼24で攪拌されつつ、吐出口31から吐出する固化材と混合される。この地盤の削孔に伴い、図4に示したガイド筒1を使用した場合は、その切欠開口部1aからソイルセメントや掘削土が流出する。
【0040】
なお、オーガー20は、前記図19に示すものと同じであるので、同一符号で説明し、詳細な説明は省略する。
また、オーガー軸21と鋼管杭100のそれぞれの上端を把持し、オーガー20と鋼管杭100に回転力及び給進力を与え、回転させつつオーガー軸21先端の吐出口31からスラリー状の固化材を吐出させて削孔させる前記施工機(図示せず)は、公知であるので説明は省略する。
【0041】
次に、図11に示すように所定深度まで削孔し、掘削翼22先端が所定深度に到達した時点で、固化材の吐出を固化後の圧縮強度がそれまで注入した固化材より大きいスラリー状固化材に切り替えて削孔底部をその固化材で充満して根固め部104を形成する。この場合、オーガー20は給進させないが、回転させた方がよい。この工程を根固め工程と称す。
【0042】
前記根固め工程は、図11に示された所定深度よりも削孔底部の根固め部104の距離だけ浅い地盤の深度まで削孔した後、それまで注入した固化材よりも固化後の圧縮強度が大きな固化材に切り替え、前記削孔底部の根固め部104の距離だけ固化材を吐出しつつ所定深度まで削孔して形成してもよい。
【0043】
なお、この場合、所定深度よりも削孔底部の根固め部104の距離だけ浅い地盤の深度まで削孔した後、それまで吐出した固化材よりも固化後の圧縮強度が大きな固化材に切り替え、オーガー20を削孔底部の根固め部104の距離だけ固化材を吐出しつつ回転・給進して所定深度まで到達し、次に固化材を吐出せずオーガー20を回転させつつ根固め部104の距離だけオーガー20を上下させて再攪拌を行なうこともできる。
【0044】
次に、図12に示すように鋼管杭100上端を地上のクランプ装置(図示せず)で固定し、オーガー20を地上へ引き揚げる。この場合、引き揚げる途中で攪拌翼24、共回り防止翼25、掘削翼23が順次鋼管杭100の下端に当たってシャーピン27が順次剪断されるので、攪拌翼24、共回り防止翼25、掘削翼23は、これらを枢支する枢軸26を軸として下方に折り畳まれて鋼管杭100内を上昇する。
【0045】
次に、図13に示すように鋼管杭100を回転させながら給進させ、固化後の圧縮強度が大きな固化材が注入された根固め部104内に挿入する。次にオーガー20を地上へ引き揚げる。このオーガー20の引き揚げは、攪拌翼24、共回り防止翼25及び掘削翼23を縮閉した後、引続きオーガー20を地上に引き揚げ、次に図13に示すように鋼管杭100を削孔底部の根固め部104に沈設してもよい。
【0046】
最後に図14に示すように基板3に固着されたガイド筒1および回転支承2を取り除くことによって鋼管杭100が中心に位置した鋼管ソイルセメント杭が完成する。
【0047】
しかして、前記ソイルセメント柱を築造しながらの鋼管杭100の沈設施工では、ガイド筒1に設けられた回転支承2に支承されて沈設(挿入)されるので鋼管杭が偏芯しようとするとガイド筒が抵抗するため芯ズレを起こすことなく精度よく施工される。なお、鋼管杭100は、図18に示すような下端部外周面に拡翼101が設けられた鋼管杭であってもよく、この拡翼101は根固め部104中に位置するようにする。
【0048】
次にプレボーリング工法における施工方法を図15について説明する。図15は(A)(B)(C)(D)(E)と工程順に示してあり、前記施工方法と同一構成要素には同一符号が付してある。
まず、地上で図15(A)に示すようなオーガー20を用意する。このオーガー20は、オーガー軸21と、軸先端に固着された掘削翼22、23とこの上段に回転自在に遊嵌された共回り防止翼25と、さらにこの上段に固着された攪拌翼24とから構成されている。掘削翼22、23にはビット22a、23aが固着され、掘削翼23と攪拌翼24の外径は略同一である。共回り防止翼25の外径は掘削翼23、攪拌翼24より大径に形成され、掘削中は掘削翼22、23で掘削された削孔壁から外側の原地盤中に食い込み、掘削翼22、23と攪拌翼24とが回転しても共回り防止翼25は回転しないようになっている。
本例は、掘削翼23、攪拌翼24及び共回り防止翼25が、図19に示すオーガー20のような枢軸26及びシャーピン27の構成を具備しないものであって、他は前記図19に示すオーガー20と同一であるので同一符号を付して詳細な説明は省略する。なお、攪拌混合装置はこの他の従来公知の通常に使用されているものを用いてもよい。
【0049】
次に、図示しない施工機で前記オーガー20のオーガー軸21の上端を把持し、図15(B)に示すようにオーガー20を回転させつつ、同時にオーガー軸21の吐出口31からスラリー状の固化材を吐出し、地盤中を掘削翼22、23で削孔する。掘削翼22、23で掘削された地盤の土塊は、共回り防止翼25で破砕され、攪拌翼24で攪拌されつつ、吐出口31から吐出する固化材と混練される。この場合も地盤の削孔に伴い図4に示したガイド筒1を使用した場合は、その切欠開口部1aからソイルセメントや掘削土が流出する。
なお、オーガー軸21の上端を把持し、オーガー20に回転力及び給進力を与え、回転させつつオーガー軸21先端の吐出口31からスラリー状の固化材を吐出させて削孔させる前記施工機(図示せず)は、公知であるので説明は省略する。
【0050】
次に、所定深度まで削孔し、掘削翼22先端が所定深度に到達した時点で、固化材の吐出を固化後の圧縮強度がそれまで注入した固化材より大きいスラリー状固化材に切り替えて、図15(C)に示すように削孔底部をその固化材で充満して根固め部104を形成する。この工程を根固め工程と称す。
【0051】
前記根固め工程は、図15(C)に示された所定深度よりも削孔底部の根固め部104の距離だけ浅い地盤の深度まで削孔した後、それまで注入した固化材よりも固化後の圧縮強度が大きな固化材に切り替え、前記削孔底部の根固め部104の距離だけ固化材を吐出しつつ所定深度まで削孔して形成してもよい。
【0052】
次に、オーガー20を回転させながら地上に引き揚げると、ソイルセメント部103と根固め部104によるソイルセメント柱体が造成されるから、このソイルセメント柱体の上端の地盤上に、ソイルセメントが固化する前に図15(D)に示すように基板3に固着したガイド筒1を設置し、固定する。そのガイド筒1の上端部には前記同様に回転支承2をボルト10を介して取り付ける。この回転支承2は予めガイド筒1に取り付けてから地盤上に設置してもよい。
また、本例ではソイルセメント柱体を造成した後にガイド筒1及び回転支承2を装着したが、これは図15(A)に示す最初の時点でガイド筒1を設置してからオーガー20でソイルセメント柱体を造成してもよい。いずれにしてもガイド筒1は、中心を杭芯位置に合わせて地盤上に設置する。
【0053】
次に図15(D)(E)に示すように回転支承2のガイドローラ2aで形成する平面を鉛直に貫くように鋼管杭100を挿入しながら杭100の沈設施工を行なう。鋼管杭100が偏芯しようとしても回転するガイドローラ2aを介してガイド筒1が抵抗するため杭100は偏芯することなく、地盤中に貫入していく。
また、回転支承2のガイドローラ2aが鋼管杭100の回転と共に回転するため、鋼管杭100の貫入の妨げとなることがない。
【0054】
鋼管杭100の沈設施工が完了したら、図15(E)に示すように回転支承2を装着したガイド筒1を回収して杭100の施工を完了する。この場合も鋼管杭がソイルセメント柱体の中心に位置して施工することができた。
【0055】
図16は既製杭として上方外周に吊上げるためのフックのような突起部15が固着された鋼管杭100を使用し、先行鋼管杭100aに後続する鋼管杭100bを継ぎ足し接続して沈設する場合の施工方法を示す。本例によれば先行する鋼管杭100aの突起部15を回転支承2の構成部材、例えば、軸受板7上に載置して先行鋼管杭100aが沈下しないように支持し、後続鋼管杭100bを溶接等で接続して継ぎ足すことが可能となる。従って、接続作業が容易となるものである。
【0056】
【発明の効果】
以上詳細に説明した通り、本発明に係る既製杭の芯ズレ防止装置および既製杭の芯ズレ防止施工方法によれば、次のような効果を奏する。
(1)基板に固着されたガイド筒は、地盤上に設置し、支脚を介して施工機本体の重量で押えつけるだけでよく、特願2000−11779の発明のように地盤中に貫入したり引き抜き作業がないので作業が容易で作業効率もよい。
【0057】
(2)既製杭がその上方外周に突起部を固着された鋼管杭又はSC杭であって、先行する既製杭に後続する既製杭を継ぎ足して順次沈設する工法においては、先行する既製杭の上方外周に固着された突起部を、回転支承の構成部材に載置して先行既製杭が沈下しないように支持し、後続既製杭を先行既製杭に接続できるので、既製杭の継ぎ足し接続の作業がきわめて容易となる。
【0058】
(3)ガイド筒に装着した少なくとも3個の回転支承が鋼管杭に接するようにして鋼管杭を沈設施工すれば、回転支承にガイドされ、ガイド筒の抵抗力により、鋼管杭の施工時の偏芯を防止することができる。
【0059】
(4)本発明によれば、鋼管杭同時埋設方法でも後埋設(プレボーリング工法)の施工方法でも鋼管杭の偏芯を防ぐことができる。特に、プレボーリング工法では、スタビライザもないため、偏芯を防ぐものとして効果が高いものである。
【0060】
(5)回転支承を着脱可能にしているため、装置のメンテナンスが容易となるとともに、回転支承に汎用性があるため、外径の異なる杭にも適用でき、経済的である。
(6)また、ガイド筒の側面に切欠開口部を設けておけば、流出したソイルセメントや掘削土等をガイド筒外に排出することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示すガイド筒の斜視図である。
【図2】本発明の実施の形態を示す回転支承の斜視図である。
【図3】本発明の実施の形態を示す回転支承の断面図である
【図4】本発明の他の実施の形態を示すガイド筒の斜視図である。
【図5】本発明の他の実施の形態を示す回転支承の断面図である
【図6】本発明の施工順序を示す断面図である。
【図7】本発明の次の施工順序を示す断面図である。
【図8】図7の状態の平面図である。
【図9】本発明のまた次の施工順序を示す断面図である。
【図10】本発明のまた次の施工順序を示す断面図である。
【図11】本発明のまた次の施工順序を示す断面図である。
【図12】本発明のまた次の施工順序を示す断面図である。
【図13】本発明のさらに次の施工順序を示す断面図である。
【図14】本発明のまたさらに次の施工順序を示す断面図である。
【図15】(A)(B)(C)(D)(E)は、本発明の他の施工方法を工程順に示す断面図である。
【図16】既製杭を継ぎ足し接続する施工方法を示す斜視図である。
【図17】鋼管ソイルセメント杭の断面図である。
【図18】拡翼付鋼管杭を使用しての鋼管ソイルセメント杭の断面図である。
【図19】オーガーの正面図である。
【図20】従来例の施工順序を示す正面図である。
【図21】従来例の次の施工順序を示す断面図である。
【図22】従来例のまた次の施工順序を示す断面図である。
【図23】従来例のさらに次の施工順序を示す断面図である。
【図24】従来例のまたさらに次の施工順序を示す断面図である。
【図25】(A)(B)(C)(D)(E)は、他の従来例の施工方法を工程順に示す断面図である。
【符号の説明】
1 ガイド筒
1a 切欠開口部
2 回転支承
2a ガイドローラ
3 基板
4 孔
5 軸
6 取付板
7、9 軸受板
8 支持板
10 ボルト
11 補強板
13 フック孔
14 固定手段(支脚)
15 突起部
20 オーガー
100 既製杭(鋼管杭)
102 地盤
BACKGROUND OF THE INVENTION
[0001]
TECHNICAL FIELD The present invention relates to an apparatus for preventing misalignment of a prefabricated pile and a method for preventing misalignment of a prefabricated pile when embedding a prefabricated pile used in a steel pipe pile or other pre-boring method in a steel pipe soil cement pile construction method.
[0002]
[Prior art]
FIG. 17 is a cross-sectional view showing an example of a steel pipe soil cement pile, and shows an example of a steel pipe pile 100 as a ready-made pile. FIG. 18 is a cross-sectional view of a steel pipe soil cement pile using a steel pipe pile 100 with expanded blades 101. Reference numeral 102 denotes the ground, 103 denotes a soil cement portion, and 104 denotes a root hardening portion.
There are two methods of constructing such steel pipe soil cement piles: a steel pipe pile simultaneous burying method (inner digging method) and a pre-boring method. The pre-boring method for ready-made concrete piles is different from the pre-boring method for steel-pile soil cement piles, but both can be said to be similar in terms of process.
[0003]
A conventional steel pipe pile simultaneous burying method (inner digging method) will be described with reference to FIGS. 19 to 24. First, an auger is prepared on the ground.
FIG. 19 is a front view showing an auger used for constructing a steel pipe soil cement pile. In the figure, an auger 20 is secured to an auger shaft 21, excavating blades 22 and 23 attached to the tip of the shaft, a co-rotation preventing blade 25 that is freely loosely fitted to the upper stage, and an upper stage. And a stirring blade 24.
[0004]
The excavation blade 23 and the stirring blade 24 are attached to support members 28 and 29 fixed to the auger shaft 21 in an expanded state with a pivot 26 and a shear pin 27, and the common rotation prevention blade 25 rotates on the auger shaft 21. A pivot shaft 26 and a shear pin 27 are attached in an expanded state to a support member 30 that is freely loosely fitted.
[0005]
Bits 22a and 23a are fixed to the excavation blades 22 and 23, the excavation blade 22 is smaller in diameter than the inner diameter of the steel pipe pile 100, the outer diameter of the stirring blade 24 is substantially the same as the outer diameter of the excavation blade 23, and the steel pipe pile. It is larger than the outer diameter of 100. The outer diameter of the co-rotation prevention blade 25 is formed to be larger than that of the excavation blade 23. During excavation, the outer wall of the excavation blades 22 and 23 excavates into the outer ground, and the excavation blades 22 and 23 are agitated. Even if the blade 24 rotates, the co-rotation preventing blade 25 does not rotate.
[0006]
In FIG. 19, the stirring blade 24 is provided in the upper stage of the common rotation prevention blade 25, but the positions of the stirring blade 24 and the common rotation prevention blade 25 may be switched, or the stirring blade 24 may be provided in multiple stages. .
The co-rotation prevention blade 25 crushes a large soil mass generated by excavation with the excavation blades 22, 23, and the large soil mass rotating together with the excavation blades 22, 23 and the stirring blade 24 is not rotated. The anti-rotation blade 25 is sheared and crushed between the excavation blades 22 and 23 and the stirring blade 24, thereby enabling uniform mixing of the solidified material and the ground.
[0007]
Although not shown in FIG. 19, the auger shaft 21 is provided with a stabilizer so as to maintain the shaft core in the steel pipe pile 100 and to prevent the core runout and the auger shaft from bending.
[0008]
Therefore, first, the auger 20 as described above is set on the steel pipe pile 100 as shown in FIG. This set is performed by inserting the auger shaft 21 into the steel pipe pile 100 with the excavating blades 22, 23, the stirring blade 24 and the co-rotation preventing blade 25 preceding the lower end of the steel pipe pile 100.
[0009]
Next, the upper ends of the auger shaft 21 and the steel pipe pile 100 are gripped by a construction machine (not shown), and the auger 20 and the steel pipe pile 100 are rotated in the opposite direction or the same direction as shown in FIGS. Simultaneously, the slurry-like solidified material is discharged from the discharge port 31 at the tip of the auger shaft 21, and the ground is drilled by the excavating blades 22 and 23.
The soil block excavated by the excavating blades 22 and 23 is crushed by the co-rotation preventing blade 25 and mixed with the solidified material discharged from the discharge port 31 while being stirred by the stirring blade 24.
Note that the upper ends of the auger shaft 21 and the steel pipe pile 100 are gripped, a rotational force and a feeding force are applied to the auger 20 and the steel pipe pile 100, and the slurry-like solidified material is discharged from the discharge port 31 at the tip of the auger shaft 21 while rotating. Since the construction machine (not shown) that discharges and drills holes is well known, description thereof is omitted.
[0010]
Next, as shown in FIG. 22, a hole is drilled to a predetermined depth, and when the tip of the excavation blade 22 reaches a predetermined depth, the discharge strength of the solidified material is more slurry than the solidified material injected so far. Switching to the solidified material, the bottom of the hole is filled with the solidified material, and the rooted portion 104 is formed. In this case, the auger 20 is not advanced, but it is better to rotate it. This process is referred to as a rooting process.
[0011]
In the root consolidation step, after compressing to the depth of the ground shallower than the predetermined depth shown in FIG. 22 by the distance of the root consolidation portion 104 at the bottom of the drilling hole, the compressive strength after solidification than the solidified material injected so far It is also possible to switch to a larger solidified material and drill the hole to a predetermined depth while discharging the solidified material by a distance of the root solidifying portion 104 at the bottom of the hole.
[0012]
In this case, after drilling to the depth of the ground shallower by the distance of the root consolidation portion 104 of the bottom of the drilling hole than the predetermined depth, switch to a solidified material having a higher compressive strength after solidification than the solidified material discharged so far, The auger 20 is rotated and fed while discharging the solidification material by a distance of the root consolidation part 104 at the bottom of the drilling hole, reaches a predetermined depth, and then the agglomeration part 104 is rotated while rotating the auger 20 without discharging the solidification material. The auger 20 can be moved up and down by a distance of 2 mm for re-stirring.
[0013]
Next, as shown in FIG. 23, the upper end of the steel pipe pile 100 is fixed by a ground clamping device (not shown), and the auger 20 is lifted to the ground. In this case, the agitating blade 24, the co-rotation preventing blade 25, and the excavation blade 23 are sequentially brought into contact with the lower end of the steel pipe pile 100 and the shear pin 27 is sheared in sequence while being pulled up. Then, the steel pipe pile 100 is lifted downward with the pivot 26 that pivotally supports them as an axis, and rises in the steel pipe pile 100.
[0014]
Next, as shown in FIG. 24, the steel pipe pile 100 is rotated while being rotated, and inserted into the root consolidation portion 104 into which a solidified material having a high compressive strength after solidification has been injected. Next, the auger 20 is lifted to the ground. The auger 20 is lifted after the agitating blade 24, the co-rotation preventing blade 25 and the excavating blade 23 are contracted, and then the auger 20 is continuously lifted to the ground, and then the steel pipe pile 100 is moved to the bottom of the hole as shown in FIG. You may sink to the root hardening part 104. FIG.
[0015]
FIG. 25 is a cross-sectional view showing a conventional pre-boring method, which is shown in the order of steps (A), (B), (C), (D), and (E). Is attached.
First, an auger 20 as shown in FIG. 25 (A) is prepared on the ground. The auger 20 includes an auger shaft 21, excavating blades 22 and 23 fixed to the tip of the shaft, a co-rotation preventing blade 25 rotatably fitted on the upper stage, and a stirring blade 24 fixed to the upper stage. It is composed of Bits 22a and 23a are fixed to the excavation blades 22 and 23, and the outer diameters of the excavation blade 23 and the stirring blade 24 are substantially the same. The outer diameter of the co-rotation prevention blade 25 is formed to be larger than that of the excavation blade 23 and the stirring blade 24. During excavation, the excavation blade 22 digs into the outer ground from the hole wall excavated by the excavation blades 22, 23. , 23 and the stirring blade 24 rotate, the co-rotation preventing blade 25 does not rotate.
In this example, the excavation blade 23, the stirring blade 24, and the co-rotation prevention blade 25 do not have the configuration of the pivot shaft 26 and the shear pin 27 like the auger 20 shown in FIGS. Since it is the same as the auger 20 shown in FIGS. 19 to 24, the same reference numerals are given and detailed description thereof is omitted.
[0016]
Next, the upper end of the auger shaft 21 of the auger 20 is gripped by a construction machine (not shown), and the auger 20 is rotated as shown in FIG. The material is discharged and the ground is drilled with the excavating blades 22 and 23. The soil block excavated by the excavating blades 22 and 23 is crushed by the co-rotation preventing vane 25 and mixed with the solidified material discharged from the discharge port 31 while being stirred by the stirring blade 24.
The construction machine grips the upper end of the auger shaft 21, applies a rotational force and a feeding force to the auger 20, and discharges the slurry-like solidified material from the discharge port 31 at the tip of the auger shaft 21 to make a hole. (Not shown) is well-known and will not be described.
[0017]
Next, drilling to a predetermined depth, when the tip of the excavation blade 22 reaches a predetermined depth, switch the discharge of the solidified material to a slurry-like solidified material larger than the solidified material injected so far, the compression strength after solidification, As shown in FIG. 25C, the bottom of the hole is filled with the solidified material to form a rooted portion 104. This process is referred to as a rooting process.
[0018]
In the root consolidation step, after drilling to the depth of the ground shallower than the predetermined depth shown in FIG. 25C by the distance of the root consolidation portion 104 at the bottom of the drilling hole, after solidification than the solidified material injected so far It is also possible to switch to a solidified material having a high compressive strength, and to drill a hole to a predetermined depth while discharging the solidified material by a distance of the rooted portion 104 at the bottom of the hole.
[0019]
Next, when the auger 20 is rotated and pulled up to the ground, a soil cement column body is formed by the soil cement portion 103 and the root hardening portion 104 as shown in FIG. When the auger 20 is pulled up, the slurry-like solidified material may be discharged or stopped, and it is preferable to rotate the auger 20 because stirring becomes better.
[0020]
Next, as shown in FIGS. 25D and 25E, the tip of the steel pipe pile 100 is positioned at the rooted portion 104 while rotating the steel pipe pile 100 from above in the above-described soil cement pillar. Until it is inserted, a steel pipe soil cement pile as shown in FIG.
[0021]
[Problems to be solved by the invention]
However, the conventional method for constructing steel pipe soil cement piles has a disadvantage that core misalignment of ready-made piles is likely to occur. In the conventional construction method, a stabilizer is provided on the auger shaft 21 of the auger 20 to prevent misalignment. However, the soil cement column column diameter is larger than the pile diameter, and between the stabilizer and the inner wall surface of the steel pipe pile. There was a risk of misalignment due to the slight clearance.
[0022]
In general, the pile core misalignment of ready-made piles often occurs at the initial stage of penetration. In an intermediate digging method of a ready-made pile (for example, a steel pipe pile), misalignment is likely to occur due to resistance of the ground 102, cobblestone, or the like at the initial stage when the tip of the auger 20 penetrates into the ground 102. When the misalignment occurs, the pile 100 and the auger 20 are once lifted to the ground, and then the pile cores are aligned again to start the construction from the beginning, resulting in a time loss. If this work is omitted and the construction of the pile is continued, the pile will be greatly inclined or the pile core will be displaced and the tolerance will be exceeded.
[0023]
In the pre-boring method, the excavation hole having a diameter larger than the outer diameter of the ready-made pile is drilled. Therefore, when the ready-made pile as shown in FIGS. Likely to happen. Further, the core misalignment of the pre-boring hole itself occurs in the same manner as in the digging method.
[0024]
As described above, the conventional digging method and the pre-boring method have a problem of causing a so-called pile misalignment in which the ready-made pile is eccentric from a predetermined position.
Therefore, the present applicant has already proposed the pre-made pile core misalignment prevention device and the pre-made pile core misalignment prevention construction method of Japanese Patent Application No. 2000-1179 as a solution to such problems.
The present invention provides a ready-made pile core misalignment prevention apparatus and a ready-made pile misalignment prevention construction method in the construction of a steel pipe soil cement pile that has further improved the above-described invention.
[0025]
[Means for Solving the Problems]
  In order to solve the above-mentioned problem, the pre-aligned pile misalignment prevention device of the present invention is constructed by a board provided with a hole having a diameter larger than that of the ready-made pile to be constructed, and the board fixed to the board concentrically with the hole. A guide cylinder having an inner diameter larger than that of a ready-made pile, and a rotary bearing attached to the inner surface of the guide cylinder,
  The guide tube is provided with a notch opening on a side surface thereof, and at least three of the rotation supports are mounted on the inner surface of the guide tube.
  Further, in the ready-made pile core misalignment prevention device of the present invention, the rotation support is a guide roller, and the guide roller is detachably mounted on the inner surface of the upper end portion of the guide cylinder.
[0026]
  In addition, the method for preventing misalignment of the ready-made pile of the present invention is as follows.A substrate having a hole with a larger diameter than a ready-made pile to be constructed, and a guide cylinder having a larger inner diameter than the ready-made pile to be constructed and fixed concentrically to the hole on the substrate and provided with a notch opening on the side surface And a pre-made pile core misalignment prevention device consisting of a rotating bearing attached to the inner surface of the guide cylinder, and the substrate is installed on the ground so that the center position of the guide cylinder substantially coincides with the pile core position. The substrate is fixed by a fixing means, and the ready-made pile is sunk so that at least three rotary supports installed on the inner surface of the upper end portion of the guide cylinder are in contact with the outer surface of the pile.
[0027]
  Moreover, the method for preventing misalignment of a ready-made pile according to the present invention is characterized in that the fixing means presses and fixes the substrate with a support leg of a construction machine.
[0028]
Further, in the method for preventing misalignment of the ready-made pile of the present invention, the substrate is installed on the ground so that the center position of the guide tube substantially coincides with the pile core position, and the substrate is fixed by a fixing means. A prefabricated pile anti-centering construction method in which the prefabricated pile is laid down so that at least three rotary bearings installed on the inner surface of the upper end are in contact with the outer surface of the pile, and the hook portion is fixed to the upper outer periphery of the prefabricated pile. Steel pipe piles or SC piles, and in the process of adding the ready-made piles following the preceding ready-made piles and placing them in order, the protrusions fixed on the upper outer periphery of the preceding ready-made piles are placed on the components of the rotary bearing Then, the preceding ready-made pile is supported so as not to sink, and the subsequent ready-made pile is connected.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view of a guide cylinder showing an embodiment of the present invention, FIG. 2 is a perspective view of a rotary bearing showing an embodiment of the present invention, and FIG. 3 is a sectional view of the rotary bearing showing an embodiment of the present invention. It is.
[0030]
The ready-made pile core misalignment prevention apparatus according to the present invention includes a guide cylinder 1 fixed to a substrate 3 as shown in FIG. 1 and a rotary bearing 2 as shown in FIGS. In this example, the rotation support 2 is indicated by a guide roller.
The guide cylinder 1 has a diameter that is substantially equal to or slightly larger than the total length of the outer diameter of the ready-made pile 100 and twice the protruding width on the inner surface side of the guide roller (rotating bearing) 2 and is formed of a steel pipe or the like. .
[0031]
Although the board | substrate 3 is formed with a steel plate etc., the shape in particular is not ask | required. However, a rectangular shape is preferable in consideration of the construction method and manufacturing cost. The substrate 3 is provided with a hole 4 having a diameter substantially equal to the inner diameter of the guide tube 1, and the guide tube 1 is fixed to the substrate 3 concentrically with the hole 4. Examples of the fixing means include welding. Further, a reinforcing plate 11 is provided between the guide tube 1 and the substrate 3 to improve the strength. The length of the guide cylinder 1 needs to be thick enough to maintain the resistance force when the pile is going to be eccentric, but if the reinforcing plate 11 is provided, the thickness of the guide cylinder 1 can be reduced. In addition, the reinforcing plate 11 is provided with a hook hole 13 so that it can be used for installation, movement and removal by lifting with a construction machine.
[0032]
FIG. 4 is a perspective view showing another embodiment of the guide tube. This example is a case where the cutout opening 1a is provided on the side surface of the guide tube 1, and the other parts are the same as those in the above-described embodiment. The cutout opening 1a allows the discharged soil cement, sludge, and the like to flow out from the guide cylinder 1, and according to this example, the soil cement and excavated soil flowing out from the drilling holes are retained in the guide cylinder 1. And can flow out in a specific direction such as Kamaba.
[0033]
Further, as shown in FIGS. 2 and 3, the rotary support 2 is detachably attached to the upper end portion of the guide cylinder 1. The shaft 5 of the rotary support 2 is attached with at least one guide roller 2 a that is parallel to the axis of the guide cylinder 1 and rotates around the shaft 5. At least three rotary supports 2 are detachably attached to the upper end portion of the guide tube 1. When the outer diameter of the pile is increased, the accuracy is improved by increasing the number of the rotary bearings 2 attached. Usually 4 to 8 is good.
[0034]
An example of the rotary bearing 2 will be described with reference to FIGS. A bearing plate 7 fixed to the vertical mounting plate 6 extends in the horizontal direction. A support plate 8 is suspended from the bearing plate 7 in parallel with the mounting plate 6 at a distance larger than the thickness of the mounting plate 6 and the guide tube 1, and the support plate 8 has a predetermined distance from the bearing plate 7. The bearing plate 9 is fixed in parallel with the bearing plate 7. A shaft 5 is installed between the bearing plates 7 and 9 in parallel with the axis of the guide cylinder 1, and a guide roller 2 a is rotatably attached to the shaft 5. A bolt 10 is screwed into the mounting plate 6, and after the upper end of the guide tube 1 is inserted between the mounting plate 6 and the support plate 8, the bolt 10 is tightened so that the upper end of the guide tube 1 is fixed. Detachable. Examples of the material of the guide roller 2a include resin or hard rubber.
Reference numeral 12 denotes a hook rod.
[0035]
FIG. 5 is a sectional view showing another embodiment of the rotary bearing. This example is a case where the guide roller 2a is vertically long, and the others are the same as those in the above-described embodiment. Therefore, the same reference numerals are given and detailed description thereof is omitted.
[0036]
Next, a method for preventing misalignment of a ready-made pile using the ready-made pile misalignment prevention apparatus as described above will be described. First, the steel pipe pile simultaneous burying method will be described with reference to FIGS. In this case, the ready-made pile used is a steel pipe pile.
[0037]
First, as shown in FIG. 6, the guide cylinder 1 fixed to the substrate 3 is installed on the ground 102 so that the center position of the guide cylinder 1 substantially coincides with the pile core position. The guide cylinder 1 is fixed by fixing the substrate 3 to the ground 102 by the fixing means 14. In this example, the fixing means 14 indicates means for pressing the substrate 3 with a support leg of a construction machine (not shown). A construction machine (not shown) is well known and will not be described. However, since a support leg that is advanced and retracted by a cylinder is provided on the base end side of the leader, the support leg is used as the fixing means 14. At this time, care should be taken to fix the substrate 3 on the ground 102 so that the guide cylinder 1 is vertical.
[0038]
Next, as shown in FIG. 7 and FIG. 8, the rotary support 2 is set so as to be inserted into the upper end portion of the guide cylinder 1, and the bolt 10 is tightened to attach it to the guide cylinder 1. The rotation support 2 may be attached to the upper end portion of the guide cylinder 1 from the beginning, or may be attached so that the ready-made pile is inserted into the guide cylinder 1 and the pile core is aligned.
[0039]
Next, as shown in FIG. 9, the auger shaft 21 is placed in the steel pipe pile 100 with the excavating blades 22 and 23, the stirring blade 24 and the co-rotation preventing blade 25 of the auger 20 preceding the lower end of the steel pipe pile 100 as a ready-made pile. The steel pipe pile 100 is inserted into the guide tube 1 so as to penetrate the plane formed by the guide roller 2a of the rotary support 2 vertically, and then the upper ends of the auger shaft 21 and the steel pipe pile 100 with an unshown construction machine. 10 and 11, while rotating the auger 20 and the steel pipe pile 100 in the opposite direction or the same direction, the slurry-like solidified material is simultaneously discharged from the discharge port 31 at the tip of the auger shaft 21. Then, the ground 102 is drilled. The soil block excavated by the excavating blades 22 and 23 is crushed by the co-rotation preventing blade 25 and mixed with the solidified material discharged from the discharge port 31 while being stirred by the stirring blade 24. When the guide cylinder 1 shown in FIG. 4 is used along with the drilling of the ground, the soil cement or excavated soil flows out from the notch opening 1a.
[0040]
Since the auger 20 is the same as that shown in FIG. 19, it will be described with the same reference numerals and detailed description thereof will be omitted.
Further, the upper ends of the auger shaft 21 and the steel pipe pile 100 are gripped, a rotational force and a feeding force are applied to the auger 20 and the steel pipe pile 100, and the slurry-like solidified material is discharged from the discharge port 31 at the tip of the auger shaft 21 while rotating. Since the construction machine (not shown) that discharges and drills holes is well known, description thereof is omitted.
[0041]
Next, as shown in FIG. 11, when the hole is drilled to a predetermined depth and the tip of the excavation blade 22 reaches the predetermined depth, the solidified material is discharged in a slurry state whose compressive strength after solidification is larger than the solidified material injected so far. Switching to the solidified material, the bottom of the hole is filled with the solidified material to form the rooted portion 104. In this case, the auger 20 is not advanced, but it is better to rotate it. This process is referred to as a rooting process.
[0042]
In the root consolidation step, after compressing to a depth of the ground shallower than the predetermined depth shown in FIG. 11 by the distance of the root consolidation portion 104 at the bottom of the drilling hole, the compressive strength after solidification than the solidified material injected so far It is also possible to switch to a larger solidified material and drill the hole to a predetermined depth while discharging the solidified material by a distance of the root solidifying portion 104 at the bottom of the hole.
[0043]
In this case, after drilling to the depth of the ground shallower by the distance of the root consolidation portion 104 of the bottom of the drilling hole than the predetermined depth, switch to a solidified material having a higher compressive strength after solidification than the solidified material discharged so far, The auger 20 is rotated and fed while discharging the solidification material by a distance of the root consolidation part 104 at the bottom of the drilling hole, reaches a predetermined depth, and then the agglomeration part 104 is rotated while rotating the auger 20 without discharging the solidification material. The auger 20 can be moved up and down by a distance of 2 mm for re-stirring.
[0044]
Next, as shown in FIG. 12, the upper end of the steel pipe pile 100 is fixed by a ground clamping device (not shown), and the auger 20 is lifted to the ground. In this case, the agitating blade 24, the co-rotation preventing blade 25, and the excavation blade 23 are sequentially brought into contact with the lower end of the steel pipe pile 100 and the shear pin 27 is sheared in sequence while being pulled up. Then, the steel pipe pile 100 is lifted downward with the pivot 26 that pivotally supports them as an axis, and rises in the steel pipe pile 100.
[0045]
Next, as shown in FIG. 13, the steel pipe pile 100 is rotated while being rotated, and is inserted into the root consolidation portion 104 into which a solidified material having a high compressive strength after solidification has been injected. Next, the auger 20 is lifted to the ground. The auger 20 is lifted after the agitating blade 24, the co-rotation preventing blade 25 and the excavating blade 23 are contracted, and then the auger 20 is continuously lifted to the ground, and then the steel pipe pile 100 is moved to the bottom of the hole as shown in FIG. You may sink to the root hardening part 104. FIG.
[0046]
Finally, as shown in FIG. 14, the steel pipe soil cement pile with the steel pipe pile 100 positioned at the center is completed by removing the guide tube 1 and the rotary support 2 fixed to the substrate 3.
[0047]
Thus, in the laying construction of the steel pipe pile 100 while constructing the soil cement pillar, the steel pipe pile is supported by the rotating support 2 provided in the guide cylinder 1 and is laid (inserted), so that the steel pipe pile is guided when trying to decenter. Since the tube resists, it can be constructed accurately without causing misalignment. Note that the steel pipe pile 100 may be a steel pipe pile in which a wing expansion 101 is provided on the outer peripheral surface of the lower end portion as shown in FIG. 18, and the wing expansion 101 is positioned in the rooting portion 104.
[0048]
Next, a construction method in the pre-boring method will be described with reference to FIG. FIG. 15 shows (A), (B), (C), (D), and (E) in the order of steps, and the same components as those in the construction method are denoted by the same reference numerals.
First, an auger 20 as shown in FIG. 15A is prepared on the ground. The auger 20 includes an auger shaft 21, excavation blades 22 and 23 fixed to the tip of the shaft, a co-rotation prevention blade 25 that is freely loosely fitted to the upper stage, and a stirring blade 24 fixed to the upper stage. It is composed of Bits 22a and 23a are fixed to the excavation blades 22 and 23, and the outer diameters of the excavation blade 23 and the stirring blade 24 are substantially the same. The outer diameter of the co-rotation prevention blade 25 is formed to be larger than that of the excavation blade 23 and the stirring blade 24. During the excavation, the excavation blade 22 digs into the outer ground from the hole wall excavated by the excavation blades 22, 23. , 23 and the stirring blade 24 rotate, the co-rotation preventing blade 25 does not rotate.
In this example, the excavating blade 23, the stirring blade 24, and the co-rotation preventing blade 25 do not have the configuration of the pivot shaft 26 and the shear pin 27 like the auger 20 shown in FIG. 19, and the others are shown in FIG. Since it is the same as the auger 20, the same reference numerals are given and detailed description is omitted. In addition, you may use the conventionally well-known normally used apparatus for stirring and mixing.
[0049]
Next, the upper end of the auger shaft 21 of the auger 20 is gripped by a construction machine (not shown), and the auger 20 is rotated as shown in FIG. The material is discharged and the ground is drilled with the excavating blades 22 and 23. The soil block excavated by the excavating blades 22 and 23 is crushed by the co-rotation preventing vane 25 and mixed with the solidified material discharged from the discharge port 31 while being stirred by the stirring blade 24. Also in this case, when the guide cylinder 1 shown in FIG. 4 is used along with the drilling of the ground, the soil cement or excavated soil flows out from the notch opening 1a.
The construction machine grips the upper end of the auger shaft 21, applies a rotational force and a feeding force to the auger 20, and discharges the slurry-like solidified material from the discharge port 31 at the tip of the auger shaft 21 to make a hole. (Not shown) is well-known and will not be described.
[0050]
Next, drilling to a predetermined depth, when the tip of the excavation blade 22 reaches a predetermined depth, switching the discharge of the solidified material to a slurry-like solidified material larger than the solidified material injected so far, As shown in FIG. 15C, the bottom of the hole is filled with the solidified material to form a rooted portion 104. This process is referred to as a rooting process.
[0051]
In the root consolidation step, after drilling to the depth of the ground shallower than the predetermined depth shown in FIG. 15C by the distance of the root consolidation portion 104 at the bottom of the drilling hole, after solidification than the solidified material injected so far It is also possible to switch to a solidified material having a high compressive strength, and to drill a hole to a predetermined depth while discharging the solidified material by a distance of the rooted portion 104 at the bottom of the hole.
[0052]
Next, when the auger 20 is rotated and pulled up to the ground, the soil cement column body is formed by the soil cement portion 103 and the root consolidation portion 104, and the soil cement is solidified on the ground at the upper end of the soil cement column body. Prior to this, as shown in FIG. 15D, the guide tube 1 fixed to the substrate 3 is installed and fixed. The rotation support 2 is attached to the upper end portion of the guide tube 1 via a bolt 10 as described above. The rotary support 2 may be installed on the ground after being attached to the guide tube 1 in advance.
Further, in this example, the guide cylinder 1 and the rotary support 2 are mounted after the soil cement column body is formed. This is because the auger 20 installs the guide cylinder 1 at the first time shown in FIG. A cement pillar may be created. In any case, the guide cylinder 1 is installed on the ground with the center aligned with the pile core position.
[0053]
Next, as shown in FIGS. 15D and 15E, the pile 100 is laid down while the steel pipe pile 100 is inserted so as to vertically penetrate the plane formed by the guide roller 2a of the rotary support 2. Even if the steel pipe pile 100 tries to be eccentric, the guide cylinder 1 resists through the rotating guide roller 2a, so that the pile 100 penetrates into the ground without being eccentric.
Moreover, since the guide roller 2a of the rotation support 2 rotates with the rotation of the steel pipe pile 100, the penetration of the steel pipe pile 100 is not hindered.
[0054]
When the installation work of the steel pipe pile 100 is completed, the guide cylinder 1 equipped with the rotary support 2 is collected as shown in FIG. In this case as well, the steel pipe pile could be constructed in the center of the soil cement column.
[0055]
FIG. 16 shows a case where a steel pipe pile 100 to which a projection 15 such as a hook for lifting on an upper outer periphery is fixed as a ready-made pile is used, and a steel pipe pile 100b following the preceding steel pipe pile 100a is added and connected and set. The construction method is shown. According to this example, the protruding portion 15 of the preceding steel pipe pile 100a is placed on the constituent member of the rotary bearing 2, for example, the bearing plate 7, and supported so that the preceding steel pipe pile 100a does not sink, and the subsequent steel pipe pile 100b is supported. It is possible to connect and add by welding or the like. Therefore, connection work is facilitated.
[0056]
【The invention's effect】
As described above in detail, the ready-made pile core misalignment prevention device and the ready-made pile core misalignment prevention construction method according to the present invention have the following effects.
(1) The guide tube fixed to the substrate may be installed on the ground and pressed by the weight of the construction machine main body via the support legs, and may penetrate into the ground as in the invention of Japanese Patent Application No. 2000-1179. Since there is no drawing work, work is easy and work efficiency is good.
[0057]
(2) In a construction method in which a prefabricated pile is a steel pipe pile or SC pile with a protrusion fixed to the upper outer periphery thereof, and the prefabricated pile following the preceding prefabricated pile is added and sequentially laid, Since the protrusions fixed on the outer periphery are placed on the components of the rotary bearing and supported so that the preceding ready-made piles do not sink, and the subsequent ready-made piles can be connected to the pre-made ready-made piles, It becomes very easy.
[0058]
(3) If the steel pipe pile is sunk and installed so that at least three rotary bearings attached to the guide cylinder are in contact with the steel pipe pile, it will be guided by the rotary bearing, and the resistance during the construction of the steel pipe pile will be guided by the resistance of the guide cylinder. A wick can be prevented.
[0059]
(4) According to the present invention, the eccentricity of the steel pipe pile can be prevented by the steel pipe pile simultaneous burying method or the post-embedding method (pre-boring method). In particular, in the pre-boring method, since there is no stabilizer, it is highly effective for preventing eccentricity.
[0060]
(5) Since the rotation support is detachable, the maintenance of the apparatus becomes easy, and the rotation support is versatile, so that it can be applied to piles having different outer diameters and is economical.
(6) Moreover, if the notch opening part is provided in the side surface of the guide cylinder, the discharged soil cement or excavated soil can be discharged out of the guide cylinder.
[Brief description of the drawings]
FIG. 1 is a perspective view of a guide tube showing an embodiment of the present invention.
FIG. 2 is a perspective view of a rotary bearing showing an embodiment of the present invention.
FIG. 3 is a sectional view of a rotary bearing showing an embodiment of the present invention.
FIG. 4 is a perspective view of a guide cylinder showing another embodiment of the present invention.
FIG. 5 is a sectional view of a rotary bearing showing another embodiment of the present invention.
FIG. 6 is a cross-sectional view showing the construction sequence of the present invention.
FIG. 7 is a cross-sectional view showing the next construction sequence of the present invention.
FIG. 8 is a plan view of the state of FIG.
FIG. 9 is a cross-sectional view showing the next construction sequence of the present invention.
FIG. 10 is a cross-sectional view showing the next construction sequence of the present invention.
FIG. 11 is a sectional view showing the next construction sequence of the present invention.
FIG. 12 is a sectional view showing the next construction sequence of the present invention.
FIG. 13 is a cross-sectional view showing a further construction sequence of the present invention.
FIG. 14 is a cross-sectional view showing the next construction sequence of the present invention.
FIGS. 15A, 15B, 15C, 15D and 15E are cross-sectional views showing another construction method of the present invention in the order of steps.
FIG. 16 is a perspective view showing a construction method for adding and connecting ready-made piles.
FIG. 17 is a cross-sectional view of a steel pipe soil cement pile.
FIG. 18 is a cross-sectional view of a steel pipe soil cement pile using a steel pipe pile with expanded blades.
FIG. 19 is a front view of an auger.
FIG. 20 is a front view showing a construction sequence of a conventional example.
FIG. 21 is a cross-sectional view showing the next construction sequence of the conventional example.
FIG. 22 is a cross-sectional view showing the next construction sequence of the conventional example.
FIG. 23 is a cross-sectional view showing the next construction sequence of the conventional example.
FIG. 24 is a cross-sectional view showing the next construction sequence of the conventional example.
25 (A), (B), (C), (D), and (E) are cross-sectional views showing another conventional construction method in the order of steps.
[Explanation of symbols]
1 Guide tube
1a Notch opening
2 Rotating bearing
2a Guide roller
3 Substrate
4 holes
5 axes
6 Mounting plate
7, 9 Bearing plate
8 Support plate
10 volts
11 Reinforcement plate
13 Hook hole
14 Fixing means (support legs)
15 Protrusion
20 Auger
100 Ready-made pile (steel pipe pile)
102 ground

Claims (5)

施工する既製杭よりも大きな径の孔が設けられた基板と、該基板にその孔と同心的に固着された施工する既製杭より大きな内径を有するガイド筒と、該ガイド筒内面に装着する回転支承とより成り、
前記ガイド筒には、その側面に切欠開口部が設けられており、前記回転支承は、少なくとも3個をガイド筒内面に装着することを特徴とする既製杭の芯ズレ防止装置。
A board having a hole with a larger diameter than the ready-made pile to be constructed, a guide cylinder having a larger inner diameter than the ready-made pile to be constructed concentrically fixed to the board, and a rotation attached to the inner surface of the guide cylinder Consisting of bearings,
The guide cylinder is provided with a notch opening on a side surface thereof, and at least three of the rotary bearings are mounted on the inner surface of the guide cylinder .
前記回転支承はガイドローラであり、該ガイドローラをガイド筒上端部内面に着脱自在に装着することを特徴とする請求項1記載の既製杭の芯ズレ防止装置。  2. The ready-made pile core misalignment prevention apparatus according to claim 1, wherein the rotation support is a guide roller, and the guide roller is detachably attached to the inner surface of the upper end portion of the guide cylinder. 施工する既製杭よりも大きな径の孔が設けられた基板と、該基板にその孔と同心的に固着された施工する既製杭より大きな内径を有し側面に切欠開口部が設けられたガイド筒と、該ガイド筒内面に装着する回転支承とより成る既製杭の芯ズレ防止装置を使用し、杭芯位置にガイド筒の中心位置がほぼ一致するようにして基板を地盤上に設置し、この基板を固定手段で固定し、ガイド筒上端部内面に設置した少なくとも3個の回転支承が杭の外面に接するようにして既製杭を沈設することを特徴とする既製杭の芯ズレ防止施工方法。A board having a hole with a diameter larger than that of a ready-made pile to be constructed, and a guide cylinder having a larger inner diameter than the ready-made pile to be constructed, which is concentrically fixed to the board and provided with a notch opening on the side surface And a pre-made pile core misalignment prevention device consisting of a rotating bearing attached to the inner surface of the guide cylinder, and the substrate is installed on the ground so that the center position of the guide cylinder substantially coincides with the pile core position. A method for preventing misalignment of a prefabricated pile, wherein the prefabricated pile is sunk in such a manner that the substrate is fixed by a fixing means, and at least three rotary bearings installed on the inner surface of the upper end of the guide cylinder are in contact with the outer surface of the pile. 前記固定手段は、施工機の支脚で基板を押えて固定することを特徴とする請求項3記載の既製杭の芯ズレ防止施工方法。The said fixing means presses a board | substrate with the support leg of a construction machine, and fixes the core misalignment prevention construction method of the ready-made pile of Claim 3 characterized by the above-mentioned . 杭芯位置にガイド筒の中心位置がほぼ一致するようにして基板を地盤上に設置し、この基板を固定手段で固定し、ガイド筒上端部内面に設置した少なくとも3個の回転支承が杭の外面に接するようにして既製杭を沈設する既製杭の芯ズレ防止施工方法であって、既製杭がその上方外周に突起部を固着された鋼管杭又はSC杭であり、先行する既製杭に後続する既製杭を継ぎ足して順次沈設する工程において、先行する既製杭の上方外周に固着された突起部を、回転支承の構成部材に載置して先行既製杭が沈下しないように支持し、後続既製杭を接続することを特徴とする既製杭の芯ズレ防止施工方法。  Place the board on the ground so that the center position of the guide cylinder approximately coincides with the pile core position, fix this board with fixing means, and at least three rotary bearings installed on the inner surface of the upper end of the guide cylinder are A method for preventing misalignment of a prefabricated pile that sinks a prefabricated pile so as to be in contact with the outer surface, and the prefabricated pile is a steel pipe pile or SC pile with a protrusion fixed to the upper outer periphery thereof, following the preceding prefabricated pile In the process of adding the ready-made piles to be laid down sequentially, the protrusions fixed on the upper outer periphery of the preceding ready-made piles are placed on the components of the rotary bearing to support the pre-made piles so that they will not sink. A method for preventing misalignment of a ready-made pile characterized by connecting piles.
JP2001103480A 2001-04-02 2001-04-02 Pre-made pile core misalignment prevention device and pre-made pile core misalignment prevention construction method Expired - Lifetime JP4544774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001103480A JP4544774B2 (en) 2001-04-02 2001-04-02 Pre-made pile core misalignment prevention device and pre-made pile core misalignment prevention construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001103480A JP4544774B2 (en) 2001-04-02 2001-04-02 Pre-made pile core misalignment prevention device and pre-made pile core misalignment prevention construction method

Publications (2)

Publication Number Publication Date
JP2002294704A JP2002294704A (en) 2002-10-09
JP4544774B2 true JP4544774B2 (en) 2010-09-15

Family

ID=18956536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001103480A Expired - Lifetime JP4544774B2 (en) 2001-04-02 2001-04-02 Pre-made pile core misalignment prevention device and pre-made pile core misalignment prevention construction method

Country Status (1)

Country Link
JP (1) JP4544774B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004037508A1 (en) * 2002-10-24 2004-05-06 Toyo Boseki Kabushiki Kaisha Heat-resistant film and composite ion-exchange membrane
JP5611148B2 (en) * 2011-08-22 2014-10-22 大成建設株式会社 Shear reinforcement method and auxiliary device for reinforced concrete structure
CN108239980B (en) * 2018-02-08 2023-09-15 中铁上海工程局集团有限公司 Positioning device for prefabricated superposed piles of station building envelope and use method of positioning device
CN109386000A (en) * 2018-11-29 2019-02-26 中交路桥华南工程有限公司 Steel pile casting decentralization installation deviation correcting device and construction method
CN110804948B (en) * 2019-10-31 2021-05-11 安徽省路港工程有限责任公司 Construction method of steel pipe pile bailey truss foundation full-space bracket system
CN112160709B (en) * 2020-01-04 2023-07-04 江西基业良工桩机制造有限公司 Pile casing sinking auxiliary device and drilling machine with auxiliary device
CN112681318A (en) * 2020-12-16 2021-04-20 江苏昌鑫基础工程集团有限公司 Deep well settlement pile foundation fixing device for tunnel complex geological operation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4819306U (en) * 1971-07-13 1973-03-05
JPS58194231U (en) * 1982-06-15 1983-12-24 株式会社竹中工務店 Lower pile holding device in pile driver
JPH0226991Y2 (en) * 1984-03-19 1990-07-23
JPH0598642A (en) * 1991-10-08 1993-04-20 Tenotsukusu:Kk Pile burying method and positioning jig therefor
JPH05125729A (en) * 1991-11-05 1993-05-21 Shimizu Corp Construction device of post
JPH0660632U (en) * 1993-01-27 1994-08-23 前田建設工業株式会社 Jig for burying foundation piles
JPH0892958A (en) * 1994-09-29 1996-04-09 Geotop Corp Foundation pile construction method, and ring holder device for the construction
JPH11117299A (en) * 1997-10-08 1999-04-27 Nakatomi Kurimoto Casing bracing device for foundation work machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4819306U (en) * 1971-07-13 1973-03-05
JPS58194231U (en) * 1982-06-15 1983-12-24 株式会社竹中工務店 Lower pile holding device in pile driver
JPH0226991Y2 (en) * 1984-03-19 1990-07-23
JPH0598642A (en) * 1991-10-08 1993-04-20 Tenotsukusu:Kk Pile burying method and positioning jig therefor
JPH05125729A (en) * 1991-11-05 1993-05-21 Shimizu Corp Construction device of post
JPH0660632U (en) * 1993-01-27 1994-08-23 前田建設工業株式会社 Jig for burying foundation piles
JPH0892958A (en) * 1994-09-29 1996-04-09 Geotop Corp Foundation pile construction method, and ring holder device for the construction
JPH11117299A (en) * 1997-10-08 1999-04-27 Nakatomi Kurimoto Casing bracing device for foundation work machine

Also Published As

Publication number Publication date
JP2002294704A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
JP5265500B2 (en) Pile digging method, foundation pile structure
JP4544774B2 (en) Pre-made pile core misalignment prevention device and pre-made pile core misalignment prevention construction method
JP2002155530A (en) Embedding method and tip metal fitting of existing pile
JP2008308945A (en) Concrete foundation combined with tension pile, and construction method thereof
JP3931298B2 (en) Hollow pipe pile core misalignment prevention device and hollow pipe pile core misalignment prevention construction method
JP4478348B2 (en) Steel pipe pile driving method and apparatus
JPH02289718A (en) Drilling method of expanded head pile hole, constructing method of expanded head pile and pile hole drill
CN215669558U (en) Front-mounted inclined pile of foundation pit supporting system
KR20130113004A (en) Front edge expanded bulb having internal excavation method used high strength steel pile
JP4197074B2 (en) Embedded pile construction equipment
JPS5924026A (en) Pile formation work
JP3676850B2 (en) Steel pile construction method
KR101618786B1 (en) Construction Method for Reinforcing Foundation ground using Piles with Extended head and Extending device for Piles
US20220282443A1 (en) Method for forming a pile wall in ground and a corresponding pile wall
KR102335023B1 (en) pulling up device for restoration structure
JP2832481B2 (en) Drilling rig for hole for concrete pile installation
JP2645322B2 (en) Construction method of soil cement composite pile
JP2002097639A (en) Pile burying method and jig
CN218880845U (en) Combined inclined pile support construction device
KR101304877B1 (en) Pile construction structure
KR20180093358A (en) Slot casing with spacer and a method of construction for retaining wall using slot casing
JP2000017658A (en) Pitching-of-pile method of ready-made pile and its device
JPS63233190A (en) Method of special intermediate excavation construction of existing pile and device thereof
JPH05306520A (en) Formation of soil-cement composite pile
JPH0641956A (en) Execution method for high proof stress cast-in-place concrete pile, etc.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4544774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term