JP4542306B2 - Method for producing non-oriented electrical steel sheet - Google Patents

Method for producing non-oriented electrical steel sheet Download PDF

Info

Publication number
JP4542306B2
JP4542306B2 JP2002297862A JP2002297862A JP4542306B2 JP 4542306 B2 JP4542306 B2 JP 4542306B2 JP 2002297862 A JP2002297862 A JP 2002297862A JP 2002297862 A JP2002297862 A JP 2002297862A JP 4542306 B2 JP4542306 B2 JP 4542306B2
Authority
JP
Japan
Prior art keywords
less
sulfide
hot rolling
steel sheet
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002297862A
Other languages
Japanese (ja)
Other versions
JP2004002954A (en
Inventor
英邦 村上
健一 村上
吉宏 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002297862A priority Critical patent/JP4542306B2/en
Publication of JP2004002954A publication Critical patent/JP2004002954A/en
Application granted granted Critical
Publication of JP4542306B2 publication Critical patent/JP4542306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、モーターやトランス用の鉄芯材料として用いられる、鉄損および磁束密度ともに極めて優れた無方向性電磁鋼板の製造方法に関するものである。
【0002】
【従来の技術】
無方向性電磁鋼板は、重電機器、家電用など各種モーター、変圧器、安定器等の鉄芯材料として広く用いられている。商業的には鉄損でグレード分けされ、モーターやトランスの設計特性に合せて使い分けがなされている。近年、エネルギー節減の観点から一層の低鉄損化が、また、電気機器の小型化の観点から一層の高磁束密度化が要求されており、鉄損、磁束密度ともにさらに優れた鋼板の開発が強く要望されている。
【0003】
このような背景で、これまでに鉄損や磁束密度の改善を目的とした多くの技術が開示され、成分の最適化、特殊元素の添加、熱延板焼鈍の付与、仕上焼鈍の高温化などが実用化されている。これらの技術が制御しようとしている因子の一つは析出物の形態であり、材質特性に強く影響を及ぼすため重要な因子と考えられている。
【0004】
一般に、鋼板中に微細な析出物が存在すると焼鈍時の粒成長が阻害され鉄損が劣化する。特に、微細な硫化物は粒成長を阻害し鉄損を大幅に劣化させることが知られており、鋼板の粒成長性を向上させるには、硫化物量を低減するか粗大化するかし無害化する必要がある。硫化物量の低減にはSの低減が直接的であるが、2次精練工程での脱硫、脱窒の強化、長時間の脱ガス処理が必要となり、製鋼コストの上昇が避けられない。
【0005】
また、製造工程の追加となる熱延板焼鈍を実施する技術または最終仕上げ焼鈍温度の高温化などもコスト上昇は避けられずこれらの技術により安価で特性の優れた鋼板を製造することは困難であった。
【0006】
この他の方法として、熱延加熱温度の低温化に関する技術が提案されている。
例えば、特許文献1には、熱間圧延途中の粗バーを950〜1150℃に加熱することで熱間圧延中のMnSの微細析出を防止する技術が開示されている。しかし、このように単純に熱延加熱温度を低温化するだけでは特性向上は十分でなく良好な特性を得るためには硫化物の種類や状態を特定の範囲内に限定する必要がある。また、熱延加熱温度の低温化は熱延温度域も低温化することになるため圧延荷重が大きくなったり、熱延後の再結晶や粒成長が不十分になり逆に磁気特性が劣化する場合もある。
【特許文献1】
特開平11−61257号公報
【0007】
【発明が解決しようとする課題】
本発明はこのような状況に鑑みなされたもので、新しい工程の付与を行うことなく基本成分の最適化と製造工程の改善とにより鉄損および磁束密度ともに極めて優れた無方向性電磁鋼板を製造する方法を提供するものである。
【0008】
【課題を解決するための手段】
本発明者らは、硫化物形態を制御し、良好な磁気特性が得られる無方向性電磁鋼板の製造方法を見出すべく最適製造条件(特に熱延条件)について検討を行い、硫化物の中でも特にCuを含有する硫化物の量、サイズおよび密度が特定の範囲内にある場合に磁気特性が良好となることを知見し、そのためには特に熱延条件(温度、時間、履歴、冷却速度等)の制御が重要であることを明確にして本発明を完成したものである。
【0009】
すなわち、最終製品での硫化物(特にCuを含有する硫化物)の状態を特定範囲内に限定し、そのための製造方法として熱延条件を有効に活用する、すなわち、Cu:0.2%以下を含有する無方向性電磁鋼板用の鋼片を900℃〜1100℃の温度範囲に30分以上保定し、その後1150℃以上の温度で30以上保定することなく熱延を開始し、仕上げ熱延中および仕上げ熱延直後の冷却速度を制御することに特徴がある。本発明の要旨は次のとおりである。
【0013】
成分が、質量%で、C:0.0050%以下、Si:0.05〜3.5%、Mn:3.0%以下、Al:3.0%以下、S:0.008%以下、P:0.15%以下、N:0.0050%以下、Cu:0.2%以下を含有し、残部Feおよび不可避的不純物からなり、かつ、((Cu硫化物であるS)/(鋼中S)≦0.2または(Cu硫化物であるS)/(Mn硫化物であるS)≦0.2)を満足するとともに、鋼板中の直径0.03〜0.20μmのCuを含有する硫化物の数密度が0.5個/μm 以下であり、更に、鋼板中の直径0.03μm以上1.0μm以下のCuを含有する硫化物について、平均直径が0.05μm以上、直径が0.05μm以下であるものの個数の割合が50%以下である無方向性電磁鋼板の製造方法であって、前記成分からなる鋼片を900〜1100℃の温度域で30分以上保持する工程を経た後、1150℃以上かつ30分以上の保持をすることなく熱間圧延を開始し、前記熱間圧延における仕上げ圧延中における平均冷却速度を50℃/秒以下、仕上げ圧延終了後3秒間の平均冷却速度を20℃/秒以下とし、熱間圧延した後、酸洗し、圧下率65〜90%の冷間圧延をした後、10秒〜5分の再結晶焼鈍することを特徴とする無方向性電磁鋼板の製造方法。
【0014】
)前記鋼片を900〜1100℃の温度域で30分以上保持する工程を経た後、1150℃以上の温度域で30分未満保定する工程を経て熱間圧延することを特徴とする()記載の無方向性電磁鋼板の製造方法。
【0017】
)前記熱間圧延における巻取り温度を700℃以上とすることを特徴とする()または()記載の無方向性電磁鋼板の製造方法。
【0018】
)前記熱間圧延巻取り後、冷延前までの間に700℃以上1200℃以下で5秒〜10分の熱処理を行うことを特徴とする()〜()のいずれかの項に記載の無方向性電磁鋼板の製造方法。
【0019】
【発明の実施の形態】
以下に本発明の詳細をその限定理由とともに説明する。含有量はすべて質量%である。
【0020】
Cは、磁気時効によって磁気特性を著しく劣化させるため、上限を0.0050%とする。また、鉄損低下の観点からはCは0.0020%以下であることが好しい。
【0021】
Siは、磁気特性と通板性の兼ね合いから0.05〜3.5%とする。0.05%未満では良好な磁気特性が得られず、3.5%を超えると脆化のため製造工程での通板性が顕著に劣化する。
【0022】
Mnは、Sと反応し硫化物を形成するため本発明では重要な元素である。通常Mnが中途半端に少ない場合には熱間圧延中に微細なMnSが析出し鉄損および磁束密度を著しく劣化させる場合がある。しかし、本発明においては熱延加熱条件を特定の範囲に制御することで、この悪影響を回避できるため、Mnの下限は特に設けない。一方、Mn量が多くなると熱間圧延段階で再溶解・再析出するMnSの量が減少するので、MnSによる悪影響は減少する。1.0%を超えるとこの効果は飽和するが、固溶Mnの存在そのものが磁束密度にとって不利な{111}方位の生成を抑制し磁束密度を向上させるので、多量に含有させても特に問題はない。コスト面からMnの上限を3.0%とする。
【0023】
Alは、AlNの形成を促進し粗大化させ結晶粒成長性を向上させる観点から下限は特に設ける必要はない。Al量が多い場合も1.0%を超えると析出物形態促進の効果は飽和するが、固溶Alが電気抵抗を高めることで鉄損を低下させるので、多量に含有させることが特性上有利である。ただし、高Alを含有する溶鋼は鋳造時の操業性が悪化するため上限を3.0%とする。
【0024】
Sは硫化物量に直接関係する。含有S量が多いと熱延加熱条件を本発明範囲に制御したとしても析出量が多くなり粒成長性を阻害するため、上限は0.008%とする。なお、鋼板の磁気特性をより高めるためには、0.005%以下とすることが好しい。
【0025】
Pは、鋼板の硬度を高め、打ち抜き性を向上させる作用があるので、所望の打ち抜き硬度によりその必要添加量が決められる。ただし、過剰に含有すると磁束密度が劣化するので上限を0.15%とする。
【0026】
Nは、含有量が多いと窒化物が多くなり結晶粒成長性を阻害するため上限を0.0050%とする。なお、鋼板の磁気特性をより高めるためには、0.0030%以下とすることが好しい。
【0027】
Cuは、Mnと同様に硫化物を形成するが硫化物を介しての磁気特性の影響はMn硫化物以上に大きいため本発明では特に重要な元素である。Cuはわずかな含有量でも熱間圧延中、特に仕上げ圧延以降の工程において微細な硫化物を形成し鉄損および磁束密度を著しく劣化させる場合がある。このため、できる限り少ないことが好ましいが、通常、鋼板中には原料や製造工程で混入するスクラップ等から不可避的に含有しているため0とすることは困難である。一方、過剰に含有すると磁束密度を低減させるので、上限を0.2%とする。
【0028】
次に本発明の重要な制限要因である硫化物の状態について説明する。
【0029】
本発明では特にCuを含有する硫化物の制御が重要である。一般に硫化物の種類および形態はSやMn,Ti,Mg,Ca、Cuなどの硫化物形成元素量や熱延などの製造条件のみならず複合析出する場合にはO,Cおよび酸化物、炭窒化物形成元素の含有量によっても変化する。本発明では、(Cu硫化物であるS)/(鋼中S)≦0.2、または、(Cu硫化物であるS)/(Mn硫化物であるS)≦0.2、と限定する。これは硫化物の中でも磁気特性への悪影響が特に大きいCu硫化物の量を減らすことが重要となるためで、特に、本発明鋼で主となるMnS等、Cu以外の硫化物に対する比を小さくすることが重要である。十分な効果を得るにはこれらの比を0.1以下とすることが好ましく、さらに好ましくは0.05以下とする。
【0030】
ここで、(Cu硫化物であるS)とは鋼板を電解抽出して得た残渣中のCu量を定量し、原子比でCu/S=2/1としてSの質量に換算した値であり、また、(Mn硫化物であるS)とは鋼板を電解抽出して得た残渣中のMn量を定量し、原子比でMn/S=1/1としてSの質量に換算した値である。
【0031】
化学的な分析で知ることができる硫化物は、その量とともに、顕微鏡等を用いる直接観察により判明できるサイズ、密度等の制御も本発明の効果を得るためには重要となる。特に上述のような化学的な分析では検出できず、分析値が0となるような場合にも、直接観察においては微細かつ微量な硫化物が見られる場合もあり、このような微細かつ微量な硫化物を制御することが本発明では重要となることがある。なお、硫化物単独の析出物でなく酸化物や炭化物などと複合析出した場合も対象とする。複合析出物を形成した場合には、一つの析出物の種類および各化合物についてのサイズを特定することは困難であるが、明らかに一つの析出物が硫化物である部分とその他に分けられる場合を除いて一つの硫化物として判定するものとする。
【0032】
硫化物は、本発明ではSPEED法によって得られた抽出レプリカをEDX付電子顕微鏡にて観察する。組成の判定はEDXにより分析を行い主として観察される非金属元素がSの場合を硫化物とする。また、大きさが小さいためSの特性スペクトルは明瞭ではなくともMn,Cu等が検出されかつ、O等の明瞭なスペクトルが観察されず、かつ硫化物と特定できる他の析出物との形態比較から硫化物とほぼ断定できる析出物も硫化物として本発明で考慮に入れる。大きさが非常に微小でありEDXスペクトルに明瞭な特性スペクトルが現れないものは本発明で考慮すべき硫化物からは除外する。この最小サイズは大体0.03μmであるので、本発明では0.03μmを下限とした。
硫化物の直径および数は偏りがない程度の視野について計測する。本発明においては、対象となる径の硫化物の数が1視野内に約500個となるような倍率に設定して、無作為に10視野を選択し、数密度については対象硫化物数をその時の視野面積とSPEED法による電解厚さで除し、また平均直径は個々の硫化物径の合計を個数で除した。ここで、視野内の対象となる硫化物は全て計測する必要があることは言うまでもない。なお、画像解析等を用いて硫化物数と直径を求めることもできる。
【0033】
また、形状が延伸したものが見られる場合があるが、形状が等方的でないものについては長径と短径の平均をその析出物の直径とする。
【0034】
析出物の数密度はレプリカ作成過程における電解工程において試料表面を通電した全電荷が、Feの2価イオン(Fe2+)として鋼板が電解されるのに消費され、電解時に残滓として残る析出物がすべてレプリカ上に補足されるとして計算した。本発明者らの通常のレプリカ作成においては試料表面積において50C(クーロン)/cm2の電気量で電解を行うので、試料表面から18μmの厚さ内にある析出物がレプリカ上で観察されることになる。
【0035】
以上のようにして測定された硫化物について、直径0.03〜0.20μmのCuを含有する硫化物の数密度が0.5個/μm3以下、直径0.03μm以上1.0μm以下のCuを含有する硫化物について、平均直径が0.05μm以上、直径が0.05μm以下であるものの個数の割合が50%以下、とすることで良好な磁気特性を得ることができる。数密度が特定数値以上、特に微細なものの割合が増加すると粒成長性が著しく阻害され良好な特性を得ることができなくなる。
【0036】
次に、本発明の無方向性電磁鋼板の製造方法について説明する。
【0037】
本発明の無方向性電磁鋼板は、上述した成分からなる鋼片を熱間圧延し、酸洗し、冷間圧延し、再結晶焼鈍することで得られる。さらに、熱間圧延後に熱処理を施しても良い。
【0038】
このうち、本発明において特に重要な熱延条件について説明する。特に、熱延前の温度履歴および仕上げ熱延中および仕上げ圧延直後の冷却速度が本発明での重要な要件であって、これを発明範囲内に制御することで本発明の効果を確実に得ることができる。
【0039】
すなわち、熱間での圧延前に900〜1100℃の温度範囲で30分以上保定することで発明の効果が顕著になる。この条件を外れると上記の硫化物分布が本発明で規定した最適範囲を外れるため特性が劣化する。このメカニズムの詳細は明らかではないが、基本的に高温での加熱は加熱中の硫化物の溶解量が多くなりその後の熱延工程での温度降下過程で析出する際に微細な硫化物を増加させるためと考えられる。
【0040】
一方、加熱温度を低くすると熱延の仕上げ温度も低くなりその後の巻取り温度も低くなるため、巻取り中の硫化物成長も期待できなくなる。また、仕上げ温度が低くなると再結晶、粒成長も起きにくくなり、熱延板で加工組織が残留し最終特性を阻害する場合もある。このためには低温保定の後、短時間だけ高温で保定し圧延を開始することが有効である。この場合には、特に表層が高温になり板全体の圧延中の温度降下を抑制することで、熱延組織の再結晶、成長が促進され最終製品での特性も向上する。
【0041】
この短時間の高温加熱は温度が1150℃以下では再結晶、粒成長を促進する効果が得られず、また加熱時間が30分を超えると硫化物形態の制御が困難になる。
【0042】
硫化物形態を好ましく制御するために、熱間仕上げ圧延中およびその後の冷却条件も特定の範囲とすることが好ましい。仕上げ熱延中の平均冷却速度を50℃/秒以下、仕上げ熱延終了後3秒間の平均冷却速度を20℃/秒以下とする。この冷却速度の制御が重要となる温度域は一般には熱延中に冷却水やロールとの接触により鋼材の温度が降下するため熱延前の加熱温度よりも低い温度域となる。
【0043】
この温度域での冷却速度が特性に大きな影響を及ぼすメカニズムは明確ではないがCuとMnでは含有量との兼ね合いもありCu硫化物はより低い温度域で生成し、丁度熱延仕上げ温度付近の温度域で形成し、この温度域での冷却速度がCu硫化物の量および形態の制御に強い影響を及ぼすためと思われる。詳細には圧延による加工誘起析出等も考慮したメカニズムが働くと考えられる。
【0044】
硫化物の形態は仕上げ熱延後の熱処理によってもある程度の制御は可能であり、この場合は巻取り温度を700℃以上とすると析出物形態がより好ましく制御できる。また熱延板を700℃以上1200℃以下で5秒〜10分の熱処理を行うことでも同様の効果を得ることができる。
【0045】
酸洗以降の製造工程は何ら特殊なものである必要はなく、通常の無方向性電磁鋼板の製造方法と同様で本発明の効果を得ることができる。なお、本発明の製造方法により仕上焼鈍を経て得られた無方向性電磁鋼板は、その後に歪取焼鈍を行ってもその優れた鉄損値および磁束密度を保持する。
【0046】
また、本発明の効果は焼鈍後の歪の導入を抑えてモーターとして使用される、いわゆるフルプロセス無方向電磁鋼板は勿論、焼鈍後にスキンパス圧延を行いモーター等に組み立て後の熱処理工程での歪誘起粒成長現象を用いて特性の改善を行ういわゆるセミプロセス無方向電磁鋼板にも適用可能である。
【0047】
さらに、磁気特性の更なる向上、強度、耐食性や疲労特性等の部材としての付加機能、また鋳造成や焼鈍通板性、スクラップ使用など製造工程上の生産等を向上させる目的でSn、W、Mo、Sb、Cr、Ni、Co等の微量元素を添加または不可避的に混入することは本発明の効果を何ら損なうものではない。
【0048】
【実施例】
磁気特性は55mm×55mmの大きさのサンプルでコイルの圧延方向から0°、45°、90°の特性を測定し、 (X0+2×X45+X90)/4 X0、X45、X90:コイルの圧延方向から0°、45°、90°の特性で得られる鋼板の面内平均により評価した。測定はすべて切り出しままの状態で行った。
【0049】
表1に示す成分の鋼を溶製し、これを連続鋳造でスラブとなし、表2に示す熱延条件でそれぞれ熱間圧延し、板厚2mmの熱延板を得た。熱延板を酸洗した後、圧下率75%で0.50mmに冷延し、次いで表2中の条件で連続焼鈍を実施し製品とした。得られた各鋼板の析出物の状態と磁気特性を表3および表4に示す。
【0050】
電磁鋼板の特性は含有するSi,Mn,Al量により大きく変化するため、本発明の効果の評価は、これらの含有量がほぼ同等である3つの組、すなわち試験No.1,2、3(鋼A,B)、試験No.4,5,6(鋼C,D)、試験No.7,8,9(鋼E,F)において行う。この結果から、本発明範囲内にある鋼板は鉄損値および磁束密度が極めて優れていることが判る。これに対して析出状態が本発明範囲を外れたものは特性が不良である。
【0051】
【表1】

Figure 0004542306
【0052】
【表2】
Figure 0004542306
【0053】
【表3】
Figure 0004542306
【0054】
【表4】
Figure 0004542306
【0055】
【発明の効果】
以上述べたように、本発明によれば安価で、しかも鉄損値および磁束密度がともに極めて優れた無方向性電磁鋼板が製造できる。[0001]
BACKGROUND OF THE INVENTION
The present invention is used as an iron core material for motors and transformers, to a very good method for producing a non-oriented electrical steel plate in iron loss and magnetic flux density both.
[0002]
[Prior art]
Non-oriented electrical steel sheets are widely used as iron core materials for various motors, transformers, ballasts and the like for heavy electrical equipment and home appliances. Commercially, the grades are classified by iron loss, and they are used according to the design characteristics of the motor and transformer. In recent years, there has been a demand for further reduction of iron loss from the viewpoint of energy saving and further increase in magnetic flux density from the viewpoint of miniaturization of electrical equipment. There is a strong demand.
[0003]
Against this background, many technologies aimed at improving iron loss and magnetic flux density have been disclosed so far, including optimization of components, addition of special elements, provision of hot-rolled sheet annealing, higher temperature of finish annealing, etc. Has been put to practical use. One of the factors that these technologies are trying to control is the form of precipitates and is considered to be an important factor because it strongly affects the material properties.
[0004]
In general, when fine precipitates are present in a steel sheet, grain growth during annealing is inhibited and iron loss is deteriorated. In particular, fine sulfides are known to inhibit grain growth and significantly deteriorate iron loss. To improve grain growth of steel sheets, the amount of sulfides can be reduced or coarsened, or made harmless. There is a need to. Although the reduction of S is direct in reducing the amount of sulfide, desulfurization, denitrification intensification, and degassing treatment for a long time are required in the secondary scouring process, and an increase in steelmaking cost is inevitable.
[0005]
In addition, it is difficult to manufacture steel sheets with excellent characteristics and low cost due to the increased cost of technology such as hot rolling annealing, which is an additional manufacturing process, or higher final finishing annealing temperature. there were.
[0006]
As another method, a technique for lowering the hot rolling heating temperature has been proposed.
For example, Patent Literature 1 discloses a technique for preventing fine precipitation of MnS during hot rolling by heating a rough bar during hot rolling to 950 to 1150 ° C. However, simply lowering the hot rolling heating temperature in this way does not improve the characteristics sufficiently, and in order to obtain good characteristics, it is necessary to limit the type and state of the sulfide within a specific range. In addition, lowering the hot rolling heating temperature also lowers the hot rolling temperature range, so the rolling load becomes larger, and recrystallization and grain growth after hot rolling become insufficient, conversely deteriorating magnetic properties. In some cases.
[Patent Document 1]
Japanese Patent Laid-Open No. 11-61257
[Problems to be solved by the invention]
The present invention has been made in view of such a situation, and produces a non-oriented electrical steel sheet that is extremely excellent in both iron loss and magnetic flux density by optimizing basic components and improving the manufacturing process without giving a new process. It provides a way to
[0008]
[Means for Solving the Problems]
The present inventors have studied the optimum production conditions (especially hot rolling conditions) in order to find a production method of a non-oriented electrical steel sheet that can control the sulfide form and obtain good magnetic properties, and particularly among sulfides. It has been found that magnetic properties are good when the amount, size and density of the sulfide containing Cu are within a specific range, and for that purpose, especially hot rolling conditions (temperature, time, history, cooling rate, etc.) The present invention has been completed by clarifying that control of the above is important.
[0009]
That is, the state of sulfide (especially Cu-containing sulfide) in the final product is limited to a specific range, and hot rolling conditions are effectively utilized as a manufacturing method therefor, that is, Cu: 0.2% or less Is held for 30 minutes or more in a temperature range of 900 ° C. to 1100 ° C., and then hot rolling is started without holding for 30 or more at a temperature of 1150 ° C. or more, and finish hot rolling It is characterized by controlling the cooling rate immediately after medium and finish hot rolling. The gist of the present invention is as follows.
[0013]
( 1 ) Component is mass%, C: 0.0050% or less, Si: 0.05-3.5%, Mn: 3.0% or less, Al: 3.0% or less, S: 0.008 % Or less, P: 0.15% or less, N: 0.0050% or less, Cu: 0.2% or less, consisting of the remainder Fe and inevitable impurities, and ((Cu sulfide S) / (S in steel) ≦ 0.2 or (S which is Cu sulfide) / (S which is Mn sulfide) ≦ 0.2), and the diameter in the steel sheet is 0.03 to 0.20 μm. The number density of sulfides containing Cu is 0.5 pieces / μm 3 or less, and for sulfides containing Cu having a diameter of 0.03 μm or more and 1.0 μm or less in the steel sheet, the average diameter is 0.05 μm or more, method for producing a non-oriented electrical steel sheet ratio of the number of those diameter is 0.05μm or less is not more than 50% There are, after a step of holding the steel slab comprising the components in a temperature range of 900 to 1100 ° C. for 30 minutes or more, hot rolling begins without the 1150 ° C. or more and 30 minutes or more retention, the heat The average cooling rate during finish rolling in hot rolling is 50 ° C./second or less, the average cooling rate for 3 seconds after finishing rolling is 20 ° C./second or less, hot rolling, pickling, and rolling reduction of 65 to 90. % Cold rolling, followed by recrystallization annealing for 10 seconds to 5 minutes.
[0014]
( 2 ) The steel slab is hot-rolled through a step of holding the steel slab in a temperature range of 900 to 1100 ° C. for 30 minutes or more and then a step of holding it in a temperature range of 1150 ° C. or more for less than 30 minutes ( 1 ) The manufacturing method of the non-oriented electrical steel sheet as described.
[0017]
( 3 ) The method for producing a non-oriented electrical steel sheet according to ( 1 ) or ( 2 ), wherein a coiling temperature in the hot rolling is 700 ° C. or higher.
[0018]
( 4 ) Any one of ( 1 ) to ( 3 ), wherein heat treatment is performed at 700 ° C. or higher and 1200 ° C. or lower for 5 seconds to 10 minutes after the hot rolling and before cold rolling. The manufacturing method of the non-oriented electrical steel sheet as described in a term.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The details of the present invention will be described below together with the reasons for limitation. All the contents are mass%.
[0020]
C has an upper limit of 0.0050% because the magnetic properties are significantly deteriorated by magnetic aging. Further, from the viewpoint of reducing iron loss, C is preferably 0.0020% or less.
[0021]
Si is set to 0.05 to 3.5% in view of the balance between magnetic properties and plate passing properties. If it is less than 0.05%, good magnetic properties cannot be obtained, and if it exceeds 3.5%, the plate-passability in the production process is significantly deteriorated due to embrittlement.
[0022]
Mn is an important element in the present invention because it reacts with S to form a sulfide. Usually, when Mn is little in the middle, fine MnS may precipitate during hot rolling, and iron loss and magnetic flux density may be remarkably deteriorated. However, in the present invention, since the adverse effect can be avoided by controlling the hot rolling heating condition within a specific range, the lower limit of Mn is not particularly provided. On the other hand, when the amount of Mn is increased, the amount of MnS that is re-dissolved and re-precipitated in the hot rolling step is reduced, so that adverse effects due to MnS are reduced. This effect is saturated when it exceeds 1.0%, but the presence of the solid solution Mn itself suppresses the generation of the {111} orientation, which is disadvantageous for the magnetic flux density, and improves the magnetic flux density. There is no. In view of cost, the upper limit of Mn is set to 3.0%.
[0023]
From the viewpoint of promoting the formation of AlN, increasing the size of AlN, and improving the crystal grain growth, there is no need to provide a lower limit for Al. Even if the amount of Al exceeds 1.0%, the effect of promoting the precipitate form is saturated, but since solid solution Al reduces the iron loss by increasing the electrical resistance, it is advantageous in terms of characteristics to contain a large amount It is. However, since molten steel containing high Al deteriorates the operability during casting, the upper limit is made 3.0%.
[0024]
S is directly related to the amount of sulfide. If the content of S is large, even if the hot rolling heating conditions are controlled within the range of the present invention, the amount of precipitation increases and the grain growth is inhibited, so the upper limit is made 0.008%. In order to further improve the magnetic properties of the steel sheet, it is preferable to set it to 0.005% or less.
[0025]
P has the effect of increasing the hardness of the steel sheet and improving the punchability, so the necessary addition amount is determined by the desired punching hardness. However, if the content is excessive, the magnetic flux density deteriorates, so the upper limit is made 0.15%.
[0026]
If the content of N is large, the amount of nitride increases and the crystal grain growth is inhibited, so the upper limit is made 0.0050%. In order to further improve the magnetic properties of the steel sheet, it is preferable to set it to 0.0030% or less.
[0027]
Cu forms sulfides like Mn. However, since the influence of magnetic properties via sulfides is greater than that of Mn sulfides, Cu is a particularly important element in the present invention. Even with a small content of Cu, fine sulfides may be formed during hot rolling, particularly in the processes after finish rolling, and iron loss and magnetic flux density may be significantly degraded. For this reason, although it is preferable that it is as few as possible, it is difficult to set it to 0 because it is inevitably contained in the steel plate from raw materials and scraps mixed in the manufacturing process. On the other hand, if contained excessively, the magnetic flux density is reduced, so the upper limit is made 0.2%.
[0028]
Next, the state of sulfide, which is an important limiting factor of the present invention, will be described.
[0029]
In the present invention, control of a sulfide containing Cu is particularly important. In general, the types and forms of sulfides include not only the amount of sulfide-forming elements such as S, Mn, Ti, Mg, Ca and Cu, and production conditions such as hot rolling, but also O, C, oxides, and carbon in the case of complex precipitation. It also varies depending on the content of nitride-forming elements. In the present invention, (S that is Cu sulfide) / (S in steel) ≦ 0.2 or (S that is Cu sulfide) / (S that is Mn sulfide) ≦ 0.2. . This is because it is important to reduce the amount of Cu sulfide having a particularly large adverse effect on magnetic properties among sulfides. In particular, the ratio of sulfides other than Cu, such as MnS, which is mainly used in the steel of the present invention, is reduced. It is important to. In order to obtain a sufficient effect, the ratio is preferably 0.1 or less, and more preferably 0.05 or less.
[0030]
Here, (S which is Cu sulfide) is a value obtained by quantifying the amount of Cu in the residue obtained by electrolytic extraction of the steel sheet, and converting it to the mass of S as Cu / S = 2/1 in atomic ratio. In addition, (M which is Mn sulfide) is a value obtained by quantifying the amount of Mn in the residue obtained by electrolytic extraction of the steel sheet, and converting it to the mass of S as Mn / S = 1/1 by atomic ratio. .
[0031]
In order to obtain the effects of the present invention, the amount of sulfide that can be known by chemical analysis, as well as the control of size, density, and the like that can be determined by direct observation using a microscope or the like, are important. In particular, even when the analytical value cannot be detected by the chemical analysis as described above and the analytical value is 0, a fine and trace amount of sulfide may be observed in direct observation. Controlling sulfides can be important in the present invention. It should be noted that not only sulfides but also composite precipitates with oxides or carbides are considered. When composite precipitates are formed, it is difficult to specify the type of one precipitate and the size of each compound, but when one precipitate is clearly divided into a sulfide part and the other Shall be judged as one sulfide.
[0032]
In the present invention, for the sulfide, an extracted replica obtained by the SPEED method is observed with an electron microscope with EDX. The composition is determined by analysis by EDX, and when the non-metallic element mainly observed is S, the sulfide is determined. In addition, because of its small size, the characteristic spectrum of S is not clear, but Mn, Cu, etc. are detected, and no clear spectrum of O, etc. is observed, and morphology comparison with other precipitates that can be identified as sulfides From the present invention, a precipitate that can be almost determined as a sulfide is also considered as a sulfide. Those that are very small in size and do not show a clear characteristic spectrum in the EDX spectrum are excluded from the sulfides to be considered in the present invention. Since this minimum size is approximately 0.03 μm, 0.03 μm is set as the lower limit in the present invention.
The diameter and number of sulfides are measured in a visual field where there is no bias. In the present invention, the magnification is set so that the number of sulfides of a target diameter is about 500 in one field of view, and 10 fields of view are randomly selected. Dividing by the visual field area and the electrolytic thickness by the SPEED method, the average diameter was obtained by dividing the sum of the individual sulfide diameters by the number. Here, it goes without saying that it is necessary to measure all the target sulfides in the field of view. The number of sulfides and the diameter can also be obtained by using image analysis or the like.
[0033]
Moreover, although what extended the shape may be seen, about the thing where a shape is not isotropic, let the average of a major axis and a minor axis be the diameter of the precipitate.
[0034]
The number density of the precipitates is consumed when the steel plate is electrolyzed as Fe divalent ions (Fe 2+ ) in the electrolysis process in the replica making process, and all the precipitates remaining as residues during electrolysis are consumed. Calculated as supplemented on replica. In the ordinary replica production by the present inventors, electrolysis is performed with an electric quantity of 50 C (Coulomb) / cm 2 on the surface area of the sample, so that precipitates within a thickness of 18 μm from the sample surface are observed on the replica. become.
[0035]
Regarding the sulfides measured as described above, the number density of sulfides containing Cu having a diameter of 0.03 to 0.20 μm is 0.5 pieces / μm 3 or less, and Cu having a diameter of 0.03 to 1.0 μm is added. With respect to the sulfide to be contained, good magnetic properties can be obtained by setting the ratio of the number of those having an average diameter of 0.05 μm or more and a diameter of 0.05 μm or less to 50% or less. If the number density is a specific numerical value or more, especially when the proportion of fine particles increases, the grain growth property is remarkably inhibited, and good characteristics cannot be obtained.
[0036]
Next, the manufacturing method of the non-oriented electrical steel sheet of this invention is demonstrated.
[0037]
The non-oriented electrical steel sheet of the present invention can be obtained by hot rolling, pickling, cold rolling, and recrystallization annealing of a steel slab comprising the above-described components. Furthermore, heat treatment may be performed after hot rolling.
[0038]
Of these, the hot rolling conditions particularly important in the present invention will be described. In particular, the temperature history before hot rolling and the cooling rate during finish hot rolling and immediately after finish rolling are important requirements in the present invention, and by controlling this within the scope of the invention, the effects of the present invention can be reliably obtained. be able to.
[0039]
That is, the effect of the invention becomes remarkable by maintaining for 30 minutes or more in a temperature range of 900 to 1100 ° C. before hot rolling. If this condition is not satisfied, the above-mentioned sulfide distribution is outside the optimum range defined in the present invention, and the characteristics deteriorate. The details of this mechanism are not clear, but heating at high temperatures basically increases the amount of sulfide dissolved during heating, increasing the amount of fine sulfides as it precipitates during the subsequent temperature drop in the hot rolling process. It is thought to make it.
[0040]
On the other hand, when the heating temperature is lowered, the finishing temperature of hot rolling is lowered and the subsequent winding temperature is also lowered, so that it is impossible to expect sulfide growth during winding. In addition, when the finishing temperature is lowered, recrystallization and grain growth are less likely to occur, and the processed structure may remain on the hot-rolled sheet, which may impair the final characteristics. For this purpose, it is effective to start rolling by holding at high temperature for a short time after holding at low temperature. In this case, particularly, the surface layer becomes high temperature and the temperature drop during the rolling of the entire plate is suppressed, whereby the recrystallization and growth of the hot rolled structure is promoted and the properties in the final product are improved.
[0041]
This short-time high-temperature heating does not provide the effect of promoting recrystallization and grain growth when the temperature is 1150 ° C. or lower, and when the heating time exceeds 30 minutes, it becomes difficult to control the sulfide form.
[0042]
In order to preferably control the sulfide form, it is preferable that the cooling conditions during and after the hot finish rolling are also in a specific range. The average cooling rate during finishing hot rolling is 50 ° C./second or less, and the average cooling rate for 3 seconds after finishing hot rolling is 20 ° C./second or less. The temperature range in which the control of the cooling rate is important is generally a temperature range lower than the heating temperature before hot rolling because the temperature of the steel material drops due to contact with cooling water or a roll during hot rolling.
[0043]
The mechanism by which the cooling rate in this temperature range greatly affects the characteristics is not clear, but Cu and Mn also have a balance with the content, and Cu sulfide is generated in a lower temperature range, just around the hot rolling finish temperature. It is thought that it is formed in the temperature range, and the cooling rate in this temperature range has a strong influence on the control and amount of Cu sulfide. In detail, it is considered that a mechanism that takes into account the processing-induced precipitation due to rolling works.
[0044]
The form of the sulfide can be controlled to some extent by the heat treatment after finish hot rolling. In this case, the precipitate form can be controlled more preferably when the coiling temperature is 700 ° C. or higher. Further, the same effect can be obtained by subjecting the hot-rolled plate to heat treatment at 700 ° C. or more and 1200 ° C. or less for 5 seconds to 10 minutes.
[0045]
The manufacturing process after pickling does not need to be special at all, and the effects of the present invention can be obtained in the same manner as in a normal method for manufacturing a non-oriented electrical steel sheet. In addition, the non-oriented electrical steel sheet obtained through finish annealing by the manufacturing method of the present invention retains its excellent iron loss value and magnetic flux density even after performing strain relief annealing.
[0046]
The effect of the present invention is to suppress the introduction of strain after annealing, which is used as a motor, so-called full-process non-oriented electrical steel sheets, as well as to induce strain in the heat treatment process after assembling to a motor etc. by performing skin pass rolling after annealing. The present invention can also be applied to a so-called semi-processed non-oriented electrical steel sheet in which characteristics are improved by using the grain growth phenomenon.
[0047]
Furthermore, Sn, W, for the purpose of further improving the magnetic characteristics, additional functions as members such as strength, corrosion resistance and fatigue characteristics, as well as production in the manufacturing process such as casting, annealing, and scrap use Addition or inevitable mixing of trace elements such as Mo, Sb, Cr, Ni, Co does not impair the effects of the present invention.
[0048]
【Example】
The magnetic properties of a sample of 55 mm × 55 mm were measured at 0 °, 45 °, and 90 ° from the coil rolling direction. (X0 + 2 × X45 + X90) / 4 X0, X45, X90: 0 from the coil rolling direction Evaluation was made by the in-plane average of the steel plates obtained with the characteristics of °, 45 °, and 90 °. All measurements were performed as cut out.
[0049]
Steels having the components shown in Table 1 were melted and formed into slabs by continuous casting, and hot-rolled under the hot rolling conditions shown in Table 2 to obtain hot-rolled sheets having a thickness of 2 mm. After pickling the hot-rolled sheet, it was cold-rolled to 0.50 mm at a rolling reduction of 75%, and then subjected to continuous annealing under the conditions shown in Table 2 to obtain a product. Tables 3 and 4 show the state of precipitates and magnetic properties of the obtained steel sheets.
[0050]
Since the characteristics of the electrical steel sheet vary greatly depending on the amounts of Si, Mn, and Al contained, the evaluation of the effect of the present invention is based on three groups having substantially the same content, namely, test No. 1, 2, 3 (Steel A, B), Test No. 4, 5, 6 (steel C, D), test no. Performed in 7, 8, 9 (Steel E, F). From this result, it can be seen that the steel sheet within the scope of the present invention is extremely excellent in iron loss value and magnetic flux density. On the other hand, when the precipitation state is outside the range of the present invention, the characteristics are poor.
[0051]
[Table 1]
Figure 0004542306
[0052]
[Table 2]
Figure 0004542306
[0053]
[Table 3]
Figure 0004542306
[0054]
[Table 4]
Figure 0004542306
[0055]
【The invention's effect】
As described above, according to the present invention, it is possible to manufacture a non-oriented electrical steel sheet that is inexpensive and extremely excellent in both iron loss value and magnetic flux density.

Claims (4)

成分が、質量%で、C:0.0050%以下、Si:0.05〜3.5%、Mn:3.0%以下、Al:3.0%以下、S:0.008%以下、P:0.15%以下、N:0.0050%以下、Cu:0.2%以下を含有し、残部Feおよび不可避的不純物からなり、かつ、((Cu硫化物であるS)/(鋼中S)≦0.2または(Cu硫化物であるS)/(Mn硫化物であるS)≦0.2)を満足するとともに、鋼板中の直径0.03〜0.20μmのCuを含有する硫化物の数密度が0.5個/μm 以下であり、更に、鋼板中の直径0.03μm以上1.0μm以下のCuを含有する硫化物について、平均直径が0.05μm以上、直径が0.05μm以下であるものの個数の割合が50%以下である無方向性電磁鋼板の製造方法であって、前記成分からなる鋼片を900〜1100℃の温度域で30分以上保持する工程を経た後、1150℃以上かつ30分以上の保持をすることなく熱間圧延を開始し、前記熱間圧延における仕上げ圧延中における平均冷却速度を50℃/秒以下、仕上げ圧延終了後3秒間の平均冷却速度を20℃/秒以下とし、熱間圧延した後、酸洗し、圧下率65〜90%の冷間圧延をした後、10秒〜5分の再結晶焼鈍することを特徴とする無方向性電磁鋼板の製造方法。 Ingredients are mass%, C: 0.0050% or less, Si: 0.05-3.5%, Mn: 3.0% or less, Al: 3.0% or less, S: 0.008% or less, P: 0.15% or less, N: 0.0050% or less, Cu: 0.2% or less, consisting of the remainder Fe and inevitable impurities, and ((Cu sulfide S) / (steel Medium S) ≦ 0.2 or (S which is Cu sulfide) / (S which is Mn sulfide) ≦ 0.2) and contains Cu having a diameter of 0.03 to 0.20 μm in the steel sheet. The sulfide has a number density of 0.5 pieces / μm 3 or less, and the sulfide containing Cu having a diameter of 0.03 μm or more and 1.0 μm or less in the steel sheet has an average diameter of 0.05 μm or more and a diameter of 0 A method for producing a non-oriented electrical steel sheet in which the ratio of the number of particles having a size of 0.05 μm or less is 50% or less, Then, after passing the step of holding the steel slab composed of the above components in the temperature range of 900 to 1100 ° C. for 30 minutes or more, hot rolling is started without holding 1150 ° C. or more and 30 minutes or more, and the hot rolling The average cooling rate during finish rolling at 50 ° C./second or less, the average cooling rate for 3 seconds after finish rolling at 20 ° C./second or less, hot rolling, pickling, and rolling reduction of 65 to 90% A method for producing a non-oriented electrical steel sheet, characterized by performing recrystallization annealing for 10 seconds to 5 minutes after cold rolling. 前記鋼片を900〜1100℃の温度域で30分以上保持する工程を経た後、1150℃以上の温度域で30分未満保定する工程を経て熱間圧延することを特徴とする請求項記載の無方向性電磁鋼板の製造方法。After a step of holding the steel strip at a temperature range of 900 to 1100 ° C. for 30 minutes or more, according to claim 1, wherein the hot rolling through the steps to retain less than 30 minutes at a temperature range of not lower than 1150 ° C. Manufacturing method for non-oriented electrical steel sheets. 前記熱間圧延における巻取り温度を700℃以上とすることを特徴とする請求項または記載の無方向性電磁鋼板の製造方法。The method for producing a non-oriented electrical steel sheet according to claim 1 or 2, wherein a coiling temperature in the hot rolling is set to 700 ° C or higher. 前記熱間圧延巻取り後、冷延前までの間に700℃以上1200℃以下で5秒〜10分の熱処理を行うことを特徴とする請求項のいずれかの項に記載の無方向性電磁鋼板の製造方法。After the hot rolling coiling, free of any one of claims 1 to 3, characterized in that the heat treatment of 5 seconds to 10 minutes at 700 ° C. or higher 1200 ° C. or less between before cold rolling A method for producing grain-oriented electrical steel sheets.
JP2002297862A 2002-04-05 2002-10-10 Method for producing non-oriented electrical steel sheet Expired - Fee Related JP4542306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002297862A JP4542306B2 (en) 2002-04-05 2002-10-10 Method for producing non-oriented electrical steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002103921 2002-04-05
JP2002297862A JP4542306B2 (en) 2002-04-05 2002-10-10 Method for producing non-oriented electrical steel sheet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010049771A Division JP5375678B2 (en) 2002-04-05 2010-03-05 Non-oriented electrical steel sheet with excellent iron loss and magnetic flux density

Publications (2)

Publication Number Publication Date
JP2004002954A JP2004002954A (en) 2004-01-08
JP4542306B2 true JP4542306B2 (en) 2010-09-15

Family

ID=30446696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297862A Expired - Fee Related JP4542306B2 (en) 2002-04-05 2002-10-10 Method for producing non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4542306B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4568190B2 (en) 2004-09-22 2010-10-27 新日本製鐵株式会社 Non-oriented electrical steel sheet
US7763122B2 (en) * 2005-12-27 2010-07-27 Posco Co., Ltd. Non-oriented electrical steel sheets with improved magnetic property and method for manufacturing the same
EP2698441B1 (en) * 2011-04-13 2020-11-04 Nippon Steel Corporation High-strength non-oriented electrical steel sheet
EP2985360B1 (en) * 2013-04-09 2018-07-11 Nippon Steel & Sumitomo Metal Corporation Non-oriented magnetic steel sheet and method for producing same
CN109852878B (en) 2017-11-30 2021-05-14 宝山钢铁股份有限公司 Non-oriented electrical steel sheet having excellent magnetic properties and method for manufacturing the same
KR102176347B1 (en) * 2018-11-30 2020-11-09 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
EP4253575A4 (en) 2020-11-27 2023-12-20 Nippon Steel Corporation Non-oriented electromagnetic steel sheet, method for producing same, and hot-rolled steel sheet
EP4253574A4 (en) 2020-11-27 2024-01-24 Nippon Steel Corp Non-oriented electromagnetic steel sheet, method for manufacturing same, and hot-rolled steel sheet
JPWO2022219742A1 (en) 2021-04-14 2022-10-20

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180014A (en) * 1986-02-04 1987-08-07 Nippon Steel Corp Non-oriented electrical sheet having low iron loss and superior magnetic flux density and its manufacture
JPS62199720A (en) * 1986-02-25 1987-09-03 Sumitomo Metal Ind Ltd Production of non-oriented electrical steel sheet having excellent magnetic characteristic
JP2768994B2 (en) * 1989-09-20 1998-06-25 川崎製鉄株式会社 Heating method of slab for non-oriented electrical steel sheet
JPH0742501B2 (en) * 1990-07-02 1995-05-10 新日本製鐵株式会社 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties before and after magnetic annealing
JP2536974B2 (en) * 1991-04-25 1996-09-25 新日本製鐵株式会社 Hot rolling method for non-oriented electrical steel sheet with extremely excellent magnetic properties
JP2536976B2 (en) * 1991-05-17 1996-09-25 新日本製鐵株式会社 Manufacturing method of non-oriented electrical steel sheet having excellent surface properties and magnetic properties
JP3331401B2 (en) * 1993-03-31 2002-10-07 新日本製鐵株式会社 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties all around
JPH0967653A (en) * 1995-08-29 1997-03-11 Nkk Corp Nonoriented silicon steel sheet excellent in core loss characteristics
JPH09302414A (en) * 1996-05-15 1997-11-25 Nkk Corp Production of nonoriented silicon steel sheet excellent in low magnetic field characteristics

Also Published As

Publication number Publication date
JP2004002954A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP5375678B2 (en) Non-oriented electrical steel sheet with excellent iron loss and magnetic flux density
CN108463569B (en) Non-oriented electromagnetic steel sheet and method for producing same
EP2952602B1 (en) Ferritic stainless steel sheet which is excellent in workability and method of production of same
JP2004360003A (en) Ferritic stainless steel sheet superior in press formability and fabrication quality, and manufacturing method therefor
KR102244171B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO2020136993A1 (en) Non-oriented electrical steel sheet and method for producing same
KR101892526B1 (en) High-carbon hot-rolled steel sheet and method for manufacturing the same
KR101892524B1 (en) High-carbon hot-rolled steel sheet and method for manufacturing the same
JP4383181B2 (en) Non-oriented electrical steel sheet with excellent uniformity of magnetic properties in coil and high production yield, and method for producing the same
JP2005133175A (en) Magnetic steel sheet having excellent magnetic property and deformation resistance, and its production method
JP4542306B2 (en) Method for producing non-oriented electrical steel sheet
JP2004332042A (en) Method for producing non-oriented magnetic steel sheet excellent in magnetic characteristic in rolling direction and perpendicular direction on sheet surface
JP6662501B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4660474B2 (en) Non-oriented electrical steel sheet with excellent punching workability and magnetic properties after strain relief annealing and its manufacturing method
JP4280004B2 (en) Semi-processed non-oriented electrical steel sheet with extremely excellent iron loss and magnetic flux density and method for producing the same
TWI484048B (en) Non - directional electromagnetic steel plate
JP4790151B2 (en) Non-oriented electrical steel sheet with extremely excellent iron loss and magnetic flux density and method for producing the same
WO2021193310A1 (en) High-strength hot-rolled steel sheet and method for producing same
JP4422220B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP2005002401A (en) Method for producing non-oriented silicon steel sheet
JP3252692B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
JP2004277760A (en) Non-oriented electromagnetic steel sheet
WO2023149248A1 (en) Non-oriented electromagnetic steel sheet and method for producing same
WO2023149249A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
KR102653156B1 (en) Non-oriented electrical steel sheet and manufacturing method of non-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100625

R151 Written notification of patent or utility model registration

Ref document number: 4542306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees