JP2004277760A - Non-oriented electromagnetic steel sheet - Google Patents

Non-oriented electromagnetic steel sheet Download PDF

Info

Publication number
JP2004277760A
JP2004277760A JP2003067284A JP2003067284A JP2004277760A JP 2004277760 A JP2004277760 A JP 2004277760A JP 2003067284 A JP2003067284 A JP 2003067284A JP 2003067284 A JP2003067284 A JP 2003067284A JP 2004277760 A JP2004277760 A JP 2004277760A
Authority
JP
Japan
Prior art keywords
less
steel sheet
content
magnetic properties
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003067284A
Other languages
Japanese (ja)
Other versions
JP3843955B2 (en
Inventor
Hiroshi Fujimura
浩志 藤村
Hiroyoshi Yashiki
裕義 屋鋪
Mitsuhiro Numata
光裕 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003067284A priority Critical patent/JP3843955B2/en
Publication of JP2004277760A publication Critical patent/JP2004277760A/en
Application granted granted Critical
Publication of JP3843955B2 publication Critical patent/JP3843955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-oriented electromagnetic steel sheet which has adequate recyclability and has magnetic properties improved. <P>SOLUTION: The non-oriented electromagnetic steel sheet comprises, by mass%, 0.004% or less C, 0.7 to 1.5% Si, 0.1 to 0.3% Mn, less than 0.0005% sol. Al, 0.2% or less P, 0.005% or less S, 0.003% or less N, 0.1% or less Cr, 0.005% or less V, 0.001% or less Ti, 0.016 to 0.05% Cu and the balance Fe with unavoidable impurities. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、リサイクルに適した無方向性電磁鋼板に関する。特に、本発明は比較的低温域での粒成長性が要求される磁性焼鈍に供される用途に好適な無方向性電磁鋼板に関する。
【0002】
【従来の技術】
近年では省エネルギー化が重要な課題となり、従来以上に高効率な電気機器が求められている。このため、従来以上に高い磁気特性を有した電磁鋼板が必要とされている。さらに、最近では、環境への配慮から、電気機器における鉄心材料のリサイクル化への対応も急務となっている。
【0003】
電気機器の高効率化や鉄心材料の小型化には、鉄心の素材となる電磁鋼板の磁気特性を改善することが有効である。従来の無方向性電磁鋼板の分野では、磁気特性のうち、特に鉄損を低減する手段として、比抵抗を増大させて渦電流損を低下させるために、SiやAl,Mn等の含有量を高める手法が一般に用いられてきた。中でもAlは比抵抗を増加させる効果が大きい割に硬さを上昇させにくいので、鋼板の打ち抜き性の改善(金型摩耗の抑制)に有効である。
【0004】
しかしながら、Al添加鋼はリサイクル性に問題を残していた。すなわち、鋼中にある程度以上のAlが含まれていると、鉄心材料をリサイクルしたり、需要家でスクラップ処理する場合に電気炉の電極を傷めるという問題があった。さらに、鉄心のリサイクル材を用いてモータのシャフトなどを鋳造する場合、0.1質量%以上のAlが含まれていると、鋳込み時に溶鋼の表面酸化が進行して粘性が増大し、健全な鋳込みが阻害される問題もあった。
【0005】
このように、リサイクル性を考慮した場合、低Al化が有利である。したがって、低Al化としながらも、高い磁気特性を有した電磁鋼板及びその製造方法が望まれており、現在までに多数提案されてきた。
【0006】
例えば特許文献1では、Si:0.1〜1.0%、Mn≦1.5%、sol.Al:0.001〜0.005%とし、介在物中MnO濃度15%以下である鉄損の低い電磁鋼板が提案されている。
【0007】
また、特許文献2では、Si:0.1〜1.0%、Mn≦1.5%、sol.Al:0.0005〜0.001%で、介在物中MnO濃度15%以下、介在物中SiO濃度75%以上である鉄損の低い電磁鋼板が提案されている。
【0008】
さらに、特許文献3では、Si:0.05〜1.0%、Mn:0.25〜0.5%、sol.Al≦0.004%、介在物中MnOとSiOの重量比MnO/SiO≦0.3である電磁鋼板が提案され、スケール性欠陥の少ない表面性状に優れた電磁鋼板が得られるとしている。
【0009】
これらの技術は鋼材成分に加え、介在物組成を適正に制御することで磁気特性を向上させるもので、介在物中のSiO濃度、MnO濃度の適正範囲が示されている。
【0010】
しかしながら、さらに磁気特性を向上させるために、Si含有量を増加させて(例えば0.7質量%以上)比抵抗を高めようとすると、上記の酸化物系介在物のみならず、さまざまな窒化物が析出するため磁気特性が劣化してしまうといった問題点があった。そのため、これまでの技術ではこの様な要求に十分対応することができなかったのが実情であった。
【0011】
【特許文献1】
特開昭63−195217号公報
【特許文献2】
特開平1−152239号公報
【特許文献3】
特開平10−147849号公報
【0012】
【発明が解決しようとする課題】
本発明は、上記実情に鑑みてなされたものであり、良好なリサイクル性を有し、かつ磁気特性を向上させた無方向性電磁鋼板を提案するものである。
【0013】
【課題を解決するための手段】
以下、鋼中の各元素の含有量を示す「%」は、特に断りのない限り「質量%」を意味する。
【0014】
一般に、無方向性電磁鋼板において単にリサイクル性を改善するだけならば、Al含有量を0.1%未満に低減する低Al化を行えばよい。しかしながら、Al含有量が0.005〜0.1%では微細なAlNが析出して結晶粒成長を抑制するため磁気特性が著しく劣化するといった問題があった。この点から、Al含有量は0.005%未満とすることが好ましく、これによりAlN析出は比較的抑制される。
【0015】
一方、比抵抗を増大させて鉄損を減少させる観点からは、Si含有量を増加させることが好ましいが、Si含有量が0.7%以上となると種々の窒化物が析出するためやはり磁気特性が劣化する。その窒化物には、SiMn系窒化物、V、Crを含有する炭窒化物及びAl窒化物などが観察される。
【0016】
そこで、発明者らはこの点を改善すべく鋭意研究を行った結果、C、N、S含有量が低く、窒化物生成元素であるV、Cr、Al、Ti含有量も十分に低減し、かつMn含有量とCu含有量を適正範囲に複合添加し、さらに必要に応じて介在物として存在する微細な硫化物の組成を制御した場合は、Siを0.7〜1.5%含有する低Al材において良好な鉄損特性が得られることの知見を得、この知見に基づき本発明を完成させるに至ったものである。
【0017】
すなわち、本発明は、質量%で、C:0.004%以下、Si:0.7〜1.5%、Mn:0.1〜0.3%、sol.Al:0.0005%未満、P:0.2%以下、S:0.005%以下、N:0.003%、Cr:0.1%以下、V:0.005%以下、Ti:0.001%以下、Cu:0.016〜0.05%を含有し、残部がFeおよび不可避的不純物からなることを特徴とする無方向性電磁鋼板を提供する。
【0018】
本発明の電磁鋼板は、このようにAlの含有量が極めて低いことから、リサイクル性にすぐれており、かつSi含有量を上記範囲とした場合でも、MnおよびCuの含有量を所定の範囲とし、かつ窒化物生成元素であるV、Cr、Al、Ti含有量も十分に低減したものであるので、良好な磁気特性を有するものである。
【0019】
上記本発明においては、鋼中に介在物として存在する長径0.05〜0.1μmの硫化物中のCuモル分率(=%Cu/(%Cu+%Mn+%S)×100)が30%以上であることことが好ましい。このような組成の硫化物を介在物として有する電磁鋼板は、より良好な磁気特性を示すものであるからである。
【0020】
【発明の実施の形態】
発明者らは、まず磁気特性に及ぼす鋼組成の影響を調べるため以下の様な実験を行った。
【0021】
質量%でC:0.002%、Si:0.8%、Mn:0.08〜0.5%、P:0.05%、S:0.0025〜0.0032%、Cr:0.05%、V:0.002%、Ti:0.0003%以下、sol.Al<0.0003%、N:0.002%を含有し、Cuの合計量を0.003〜0.13%の範囲内で変化させた鋼を実験室で溶解してインゴットとし、鍛造してスラブとした。
【0022】
このスラブより厚さ15mmの鋼片を切り出し、1100℃で1時間の加熱処理をした後、3パスの圧延を施し、850℃で熱間仕上げ圧延を終了して500℃より−20℃/hで徐冷し厚さ3mmの熱延鋼板を得た。これを両面研削して厚さ2.3mmとし、さらに冷間圧延して厚さ0.5mmの冷延鋼板とした。この冷延鋼板を750℃に急速加熱して20秒間保持する焼鈍を施して無方向性電磁鋼板とした。この鋼板から、長手方向が圧延方向と板幅方向となるように3cm×l0cmの試験片を打ち抜き、750℃、2時間の磁性焼鈍を行った。このようにして得たサンプルの磁気特性として鉄損W15 50(1.5T、50Hzでの鉄損)を測定した。結果を図1に示す。なお、鉄損W15 50は、単板磁気試験装置(横河電機(株)製)を用いて測定した。また、鉄損W15 50は、圧延方向と板幅方向の平均値とした。
【0023】
図1に示す結果より、MnおよびCuを所定の含有量とすることにより、特有の複合添加効果が得られ、極めて良好な磁気特性を示す領域があることが分かった。
【0024】
次に、磁気特性に及ぼす介在物の影響を調べるため以下の実験を行った。前述の実験においてMn、Cu含有量が上述した領域にあり、磁性焼鈍後の鉄損が良好であった鋼を用いて、熱延条件及び仕上げ焼鈍条件を種々変化させた無方向性電磁鋼板を作成し、仕上げ焼鈍した鋼板に分散している介在物と磁性焼鈍後の鉄損の関係を調べた。なお、用いた鋼の鋼成分は、質量%で、C:0.002%、Si:0.82%、Mn:0.21%、P:0.050%、S:0.0028%、Cr:0.05%、V:0.002%、Ti:0.0003%、sol.Al:0.0002%、N:0.0022%、Cu:0.021%であった。
【0025】
鋼板に分散している介在物には主にMn−Cu系硫化物が観察された。その内、磁性焼鈍時の粒成長に悪影響を及ぼす微細な硫化物10個を、EDS(エネルギー分散型X線分光法、energy dispersive X−ray spectroscopy)で組成分析し、Cuモル分率(=%Cu/(%Cu+%Mn+%S)×100))の平均値を求めた。ここで対象としている微細な硫化物は、抽出レプリカをTEM(透過型電子顕微鏡)観察した時、長径が0.05〜0.1μmであるものとした。なお、長径が0.05μm未満の硫化物も存在したが、定量分析精度が十分得られないので分析対象から外した。
【0026】
分析で得られた介在物であるMn−Cu系硫化物中のCuモル濃度と磁性焼鈍後の鉄損との関係を図2に示す。図2に示すように、硫化物中のCuモル濃度が増加すると共に鉄損W15 50は低下し、Cuモル濃度が30%以上となると、鉄損W15 50として良好な値となることが判明した。これは、MnS単独硫化物よりもCu含有硫化物の方が結晶粒界との相互作用が小さく粒界ピン止め効果が小さくなるためと推察される。
【0027】
また、Cuモル分率が30%未満の領域では、Cuモル分率の増加に伴って急峻に鉄損W15 50は低下するが、Cuモル分率が30%以上の領域では、Cuモル分率の増加に伴う鉄損W15 50の低下率はそれほど大きなものとはならないことが分かった。
【0028】
このように、MnおよびCuを所定の含有量とすること、さらに好ましくは、鋼板に分散する介在物であるMn−Cu系硫化物中のCuモル分率を所定の値以上とすることが本発明の特徴であるが、その効果を有効に引き出し、また電磁鋼板として必要な他の特性を満足させるためには、以下のように成分を限定する必要がある。
【0029】
(鋼組成)
C:Cは炭化物として析出し、磁気特性を低下させるため、その含有量は低いほどよい。特に、C含有量が0.004%を超えて高くなると磁気時効が生じるため、0.004%以下とする。なお、磁気特性にとって好ましくない(111)結晶方位粒の成長を抑制するため、その含有量の下限値は0.0003%とするのが望ましい。
【0030】
Si:Siは鋼の比抵抗を高めるため、その含有量が高いほど鉄損は小さくなる。その効果を十分得るには、Si含有量を0.7%以上とする必要がある。しかしながら、Si含有量が0.7%以上となるとN活量が増大し種々の窒化物を形成し、これにより磁気特性が劣化する。本発明ではこのような磁気特性劣化を防止するため、窒化物生成元素の含有量を十分低下させた上で、MnおよびCuを適正範囲に複合添加する点に特徴を有する。一方、Si含有量が1.5%を超えると鋼板の硬さが上昇し、その結果打ち抜き金型の摩耗が速くなり、モータ鉄心製造コストが増加する。従って、Si含有量は0.7〜1.5%とする。
【0031】
Mn:Mnも鋼の比抵抗を高める効果があるため、Mn含有量は高い方が良い。Mn含有量が0.1%未満となると、MnSが微細に分散し磁気特性が劣化する。一方、Mn含有量が0.3%を超えて高くなると、SiMn系窒化物が析出し磁気特性が劣化する。従って、Mn含有量は0.1〜0.3%とする。さらに、磁気特性を安定させて製造するには、Mn含有量は0.15〜0.25%が望ましい。
【0032】
sol.Al:sol.Al(酸可溶性Al)は脱酸に有効な元素であるが、0.7%以上のSi含有鋼においては窒化物を形成しやすいため、その含有量は低い程良い。また、磁気特性のばらつきの原因となるため、0.0005%未満とする。
【0033】
P:PはSi同様に鋼の比抵抗を高め、鉄損低減に有効であるが、0.2%を超えて高くなると鋼板の硬さが上昇するので打ち抜き金型の摩耗が速くなりモータ鉄心製造コストが増加する。したがって、P含有量は0.2%以下とする。
【0034】
S:Sは0.005%を超えて高くなると、MnSを核にSiMn窒化物が析出しやすくなり磁気特性が著しく劣化する。従って、S含有量は0.005%以下とする。望ましくは、S含有量は0.004%以下、さらにMnSによる磁気特性劣化や特性バラツキを抑制するには、0.003%以下が好ましい。
【0035】
Cr:Crは不可避不純物である。0.1%を超えて含有するとCr系窒化物が析出し磁気特性が劣化する。従って、Cr含有量は0.1%以下とする。さらに、V、Nbとの複合析出物を抑制し磁気特性を改善するには、Cr含有量を0.05%以下にすることが好ましい。
【0036】
V:Vは不可避不純物である。0.005%を超えて含有するとV炭窒化物が析出し磁気特性が著しく劣化する。したがって、V含有量は0.005%以下とする。さらに、Cr、Nbとの複合析出物を抑制し磁気特性を改善するには、V含有量を0.003%以下にすることが好ましい。
【0037】
Ti:Tiは不可避不純物である。0.001%を超えて含有すると微細なTi炭窒化物が析出し磁気特性が著しく劣化する。従って、Ti含有量は0.001%以下とする。
【0038】
N:NはSi、Mn、V、Cr、Al等と窒化物を形成し、磁気焼鈍時の粒成長を妨げるため、0.003%以下とする。さらに好ましいN量は0.002%以下である。
【0039】
Cu:Cuは硫化物や窒化物の析出に影響を及ぼし、磁性焼鈍後の粒成長性と集合組織を改善することにより磁気特性を向上させる。その効果を得るには、Mn量を適正範囲に制御すると同時に0.016%以上添加することが必要である。
【0040】
このようなMnとCuの複合効果の原因については明らかではないが、次のように発明者らは推測している。すなわち、Mnの役割は前述した通りであるが、Cuを複合添加することにより、MnSが(Mn、Cu)Sに一部形態変化し硫化物の分散密度が低下する。さらに、MnS単独硫化物よりもCu含有硫化物の方が結晶粒界との相互作用が小さく粒界ピン止め効果が小さくなる。このような硫化物の制御により、磁性焼鈍時の粒成長性や集合組織が改善される。その結果、磁気特性が向上するのである。
【0041】
一方、0.05%を超えて含有させた場合、磁性焼鈍後の鉄損改善効果が飽和する。また0.05%超の多量Cu添加は熱延鋼板の表面疵を誘発し、製品の歩留まりが低下する。したがって、Cu含有量は0.016〜0.05%とする。なお、特開平9−263909号公報にはCu硫化物の制御により磁性焼鈍時の磁気特性が向上するとしている。しかし、この技術では鋳造凝固時の冷却速度を高めるために冷却スプレーの能力を強化したり、鋳片の厚みを薄くする方法などを採用しなければならず、通常の製法よりコストが高くなる問題がある。
【0042】
その他成分:窒化物生成傾向の強いZr、B、Nbはなるべく低減しておくことが好ましい。但し、それぞれの成分は不可避的に混入する量を超えなければ特に問題とはならない。ここで言う不可避的に混入する量とは、Zrが0.002%以下、Bが0.001%以下、Nbが0.003%以下である。
【0043】
(介在物)
鋼中に分散する介在物としての硫化物は、磁性焼鈍時の粒成長を抑制し、磁気特性を劣化させるので、その組成を制御する必要がある。具体的には、0.05〜0.1μmの微細な硫化物中に含まれるCuモル分率が30%以上の場合に、磁性焼鈍時の鉄損がより良好となる。
【0044】
このような硫化物中のCuモル分率の制御は以下のようにして行うことができる。
【0045】
Cuはオーステナイト相よりもフェライト相中での固溶度が小さいので、硫化物中のCu濃度増加はフェライト相域で進行すると考えられる。したがって、この硫化物組成を制御するには、スラブ加熱温度をオーステナイト相域の低温として粗大なMnSを析出させ、熱延仕上げ温度を高温フェライト相域とし、さらに冷間圧延後の仕上げ焼鈍温度を高温フェライト相域で行うことが有利である。
【0046】
具体的には、スラブ鋳造条件は通常の製造方法でよいが、スラブ加熱温度を1130℃以下とし、さらに熱延仕上げ温度を850℃以上のフェライト相域とし、さらに冷問圧延後の仕上げ焼鈍を750〜900℃とすることが有効である。ただし、スラブ加熱温度を1000℃未満とすると、スキッド部での温度低下によるスラブ温度の不均一が大きくなり、板厚精度が劣化するので、スラブ加熱温度の下限は1000℃が望ましい。熱延鋼板の焼鈍は実施してもしなくてもよい。実施する場合は、700〜900℃のフェライト相域で1h以上焼鈍し、その後の冷却速度は100℃/h以下とする箱焼鈍が有効である。なお、熱間圧延及び焼鈍は、上記条件に限定されるものではない。
【0047】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【0048】
【実施例】
以下、実施例を示して本発明をさらに具体的に説明する。
【0049】
(実施例1)
転炉で脱炭脱硫した溶鋼230tを取鍋内に出鋼し、取鍋をRH式真空脱ガス装置に移動した。RH式真空脱ガス装置で減圧脱炭を行い、鋼中C濃度を0.004%以下とした後に、Si、Mn、P、Cu、およびAlの成分を調整した。その添加原料には、Cr、Ti、V、Nb等の不純物含有量の少ないものを用いた。なお、溶鋼温度が低い場合は、酸素ガスを付与して昇温処理を行った。成分調整、温度調整後、RH処理を終了し、連続鋳造機にてスラブとした。
【0050】
スラブを加熱炉で1100℃まで加熱し、仕上げ温度850〜880℃,巻き取り温度500℃で熱間圧延し、厚さ2.3mmとした。ついで、熱延板焼鈍を行わずに脱スケール後に0.5mmまで冷間圧延し、780℃で仕上げ焼鈍した。仕上げ焼鈍後、鋼板表面に絶縁皮膜を塗布した。この鋼板から28cmエプスタイン試験片を採取し、磁性焼鈍(窒素雰囲気中、750℃で2時間保持)を施した。エプスタイン法(JIS−C−2550に規定の方法)により磁気特性を測定した。
【0051】
表1に鋼成分分析値及び磁性焼鈍後の鉄損を示す。本発明の実施例である鋼1から10は磁性焼鈍後の鉄損W15 50がいずれも3.90W/kg以下で良好である。それに対し、比較例の鋼11から22の鉄損はいずれも4.06〜5.38W/kgと劣る。
【0052】
【表1】

Figure 2004277760
【0053】
(実施例2)
鋼組成が本発明の範囲内にある鋼1スラブを用いて、熱間圧延や仕上げ焼鈍を種々の条件として厚さ0.5mmの無方向性電磁鋼板を製造した。具体的には、スラブ加熱温度を1100〜1250℃、熱延仕上げ温度を800〜880℃、熱延鋼板の厚さを2.3mm、そして冷間圧延後の仕上げ焼鈍温度を700〜900℃とした。その製造された鋼板に分散する硫化物を抽出レプリカによりTEM観察し、10個の微細硫化物(長径0.05〜0.1μm)の組成をEDS分析し、平均のCuモル分率を求めた。また、磁性焼鈍後の磁気特性をエプスタイン法により測定した。表2に製造条件、Cuモル分率、及び磁気特性を示す。図3に鉄損W15 50と製造条件、Cuモル分率の関係を示す。個々の製造条件と鉄損の間には明確な相関が認められないが、適正な製造条件の組み合わせで製造されたNo.1、8、9の鋼板はCuモル分率が30%以上となり、磁性焼鈍後の鉄損も3.70W/kg以下で良好である。
【0054】
【表2】
Figure 2004277760
【0055】
【発明の効果】
本発明の電磁鋼板は、このようにAlの含有量が極めて低いことから、リサイクル性にすぐれており、かつSiを0.7%以上含有させた場合でも、MnおよびCuの含有量を所定の範囲とし、かつ窒化物生成元素であるV、Cr、Al、Tiの含有量も十分に低減したものであるので、磁気特性に悪影響を与える窒化物を大幅に低減させることが可能となり、良好な磁気特性を有する電磁鋼板とすることができる。
【図面の簡単な説明】
【図1】鋼中におけるCuおよびMnの含有量と鉄損W15 50との関係を示すグラフである。
【図2】鋼中に分散する介在物としての硫化物中のCuモル濃度と鉄損W15 50との関係を示すグラフである。
【図3】(a)〜(c)は鉄損W15 50と各種製造条件との関係を示すグラフであり、(d)は鋼中に分散する介在物としての硫化物中のCuモル分率と鉄損W15 50との関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-oriented electrical steel sheet suitable for recycling. In particular, the present invention relates to a non-oriented electrical steel sheet suitable for use in magnetic annealing requiring grain growth in a relatively low temperature range.
[0002]
[Prior art]
In recent years, energy saving has become an important issue, and electric devices with higher efficiency than ever have been demanded. Therefore, there is a need for an electromagnetic steel sheet having higher magnetic properties than ever before. Furthermore, recently, due to environmental considerations, there is an urgent need to respond to recycling of iron core materials in electrical equipment.
[0003]
In order to increase the efficiency of electric equipment and reduce the size of the iron core material, it is effective to improve the magnetic properties of the magnetic steel sheet used as the material of the iron core. In the field of conventional non-oriented electrical steel sheets, the content of Si, Al, Mn, etc., in order to increase the specific resistance and reduce the eddy current loss, as a means of reducing iron loss among the magnetic properties, is particularly important. Enhancement techniques have been commonly used. Among them, Al is effective in improving the punching property of a steel sheet (suppressing die wear) because it hardly increases hardness in spite of a large effect of increasing specific resistance.
[0004]
However, Al-added steel leaves a problem in recyclability. That is, if Al contains a certain amount or more in steel, there is a problem that the electrode of the electric furnace is damaged when the iron core material is recycled or scrapped by a customer. Furthermore, when casting a motor shaft or the like using a recycled iron core, if 0.1% by mass or more of Al is contained, the surface oxidation of molten steel proceeds during casting, the viscosity increases, and There was also a problem that casting was hindered.
[0005]
Thus, when considering the recyclability, it is advantageous to reduce the Al. Accordingly, there is a demand for an electromagnetic steel sheet having a low Al content and high magnetic properties and a method for producing the same, and many have been proposed so far.
[0006]
For example, in Patent Document 1, Si: 0.1 to 1.0%, Mn ≦ 1.5%, sol. Al: An electromagnetic steel sheet with a low iron loss of 0.001 to 0.005% and an MnO concentration of 15% or less in inclusions has been proposed.
[0007]
In Patent Document 2, Si: 0.1 to 1.0%, Mn ≦ 1.5%, sol. Al: at 0.0005 to 0.001%, inclusions MnO concentration of 15% or less, low iron loss electrical steel sheet has been proposed is inclusions SiO 2 concentration of 75% or more.
[0008]
Further, in Patent Document 3, Si: 0.05 to 1.0%, Mn: 0.25 to 0.5%, sol. An electrical steel sheet having Al ≦ 0.004% and a weight ratio of MnO to SiO 2 in inclusions of MnO / SiO 2 ≦ 0.3 has been proposed, and it is said that an electrical steel sheet having few scale defects and excellent surface properties can be obtained. .
[0009]
These techniques improve the magnetic properties by appropriately controlling the composition of the inclusions in addition to the steel material components, and indicate the appropriate ranges of the SiO 2 concentration and the MnO concentration in the inclusions.
[0010]
However, in order to further improve the magnetic properties, the Si content is increased (for example, 0.7% by mass or more) to increase the specific resistance. Is deposited, which causes a problem that the magnetic characteristics are deteriorated. Therefore, the conventional technology has not been able to sufficiently respond to such a demand.
[0011]
[Patent Document 1]
JP-A-63-195217 [Patent Document 2]
JP-A-1-152239 [Patent Document 3]
JP-A-10-147849
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and proposes a non-oriented electrical steel sheet having good recyclability and improved magnetic properties.
[0013]
[Means for Solving the Problems]
Hereinafter, “%” indicating the content of each element in steel means “% by mass” unless otherwise specified.
[0014]
Generally, in order to simply improve the recyclability of the non-oriented electrical steel sheet, the Al content may be reduced to less than 0.1% to reduce the Al content. However, when the Al content is 0.005 to 0.1%, there is a problem that fine AlN precipitates to suppress crystal grain growth, so that magnetic properties are significantly deteriorated. From this point, the Al content is preferably less than 0.005%, whereby AlN precipitation is relatively suppressed.
[0015]
On the other hand, from the viewpoint of reducing the iron loss by increasing the specific resistance, it is preferable to increase the Si content. Deteriorates. Among the nitrides, SiMn-based nitrides, carbonitrides containing V and Cr, and Al nitrides are observed.
[0016]
Therefore, the inventors have conducted intensive studies to improve this point, and as a result, the C, N, and S contents are low, and the contents of V, Cr, Al, and Ti, which are nitride-forming elements, are sufficiently reduced. In addition, when the Mn content and the Cu content are combined and added in an appropriate range, and the composition of fine sulfides existing as inclusions is controlled as necessary, 0.7 to 1.5% of Si is contained. The knowledge that good iron loss characteristics can be obtained with a low Al material was obtained, and the present invention was completed based on this knowledge.
[0017]
That is, in the present invention, C: 0.004% or less, Si: 0.7 to 1.5%, Mn: 0.1 to 0.3%, sol. Al: less than 0.0005%, P: 0.2% or less, S: 0.005% or less, N: 0.003%, Cr: 0.1% or less, V: 0.005% or less, Ti: 0 The present invention provides a non-oriented electrical steel sheet containing 0.001% or less and Cu: 0.016 to 0.05%, with the balance being Fe and unavoidable impurities.
[0018]
Since the electrical steel sheet of the present invention has such an extremely low Al content, it is excellent in recyclability, and even when the Si content is in the above range, the contents of Mn and Cu are set in a predetermined range. In addition, since the contents of V, Cr, Al, and Ti, which are nitride-forming elements, are also sufficiently reduced, they have good magnetic properties.
[0019]
In the present invention, the Cu mole fraction (=% Cu / (% Cu +% Mn +% S) × 100) in the sulfide having a major axis of 0.05 to 0.1 μm existing as inclusions in the steel is 30%. It is preferable that it is above. This is because an electrical steel sheet having a sulfide having such a composition as an inclusion exhibits better magnetic properties.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
The inventors first conducted the following experiments to examine the effect of steel composition on magnetic properties.
[0021]
In mass%, C: 0.002%, Si: 0.8%, Mn: 0.08 to 0.5%, P: 0.05%, S: 0.0025 to 0.0032%, Cr: 0. 05%, V: 0.002%, Ti: 0.0003% or less, sol. A steel containing Al <0.0003%, N: 0.002% and the total amount of Cu changed in the range of 0.003 to 0.13% was melted in a laboratory to form an ingot and forged. And made it a slab.
[0022]
A slab having a thickness of 15 mm was cut out from the slab, heat-treated at 1100 ° C. for 1 hour, rolled in three passes, hot finish rolling was completed at 850 ° C., and -20 ° C./h from 500 ° C. To obtain a hot-rolled steel sheet having a thickness of 3 mm. This was ground to a thickness of 2.3 mm and cold-rolled to obtain a cold-rolled steel sheet having a thickness of 0.5 mm. This cold-rolled steel sheet was annealed by rapidly heating to 750 ° C. and holding for 20 seconds to obtain a non-oriented electrical steel sheet. A test piece of 3 cm × 10 cm was punched from the steel sheet so that the longitudinal direction was the rolling direction and the sheet width direction, and magnetic annealing was performed at 750 ° C. for 2 hours. Thus iron loss W 15/50 as the magnetic properties of the samples obtained was measured (1.5T, iron loss at 50 Hz). The results are shown in FIG. Incidentally, the iron loss W 15/50 was measured using a single-plate magnetic testing device (manufactured by Yokogawa Electric Corporation (Ltd.)). Also, the iron loss W 15/50 was an average value of the rolling direction and the sheet width direction.
[0023]
From the results shown in FIG. 1, it was found that a specific composite addition effect was obtained by setting Mn and Cu to the predetermined contents, and there was a region showing extremely good magnetic properties.
[0024]
Next, the following experiment was conducted to investigate the effect of inclusions on magnetic properties. In the above-described experiments, the Mn and Cu contents were in the above-described regions, and a steel having good iron loss after magnetic annealing was used to prepare a non-oriented electrical steel sheet in which the hot rolling conditions and the finish annealing conditions were variously changed. The relationship between inclusions made and dispersed in the finish-annealed steel sheet and iron loss after magnetic annealing was examined. The steel components of the steel used are, by mass%, C: 0.002%, Si: 0.82%, Mn: 0.21%, P: 0.050%, S: 0.0028%, Cr: : 0.05%, V: 0.002%, Ti: 0.0003%, sol. Al: 0.0002%, N: 0.0022%, Cu: 0.021%.
[0025]
Mn-Cu-based sulfide was mainly observed in the inclusions dispersed in the steel sheet. Among them, 10 fine sulfides which adversely affect the grain growth during magnetic annealing are subjected to composition analysis by EDS (energy dispersive X-ray spectroscopy), and the Cu mole fraction (=% The average value of Cu / (% Cu +% Mn +% S) × 100)) was determined. The target fine sulfide had a major axis of 0.05 to 0.1 μm when the extracted replica was observed with a TEM (transmission electron microscope). Although sulfides having a major axis of less than 0.05 μm were also present, they were excluded from the analysis because sufficient quantitative analysis accuracy could not be obtained.
[0026]
FIG. 2 shows the relationship between the molar concentration of Cu in the Mn-Cu-based sulfide as inclusions obtained by the analysis and the iron loss after magnetic annealing. As shown in FIG. 2, the iron loss W 15/50 as well as increasing Cu molar concentration in the sulfide decreases, the Cu molar concentration of 30% or more, a good value as the iron loss W 15/50 It has been found. This is presumed to be because the Cu-containing sulfide has a smaller interaction with the crystal grain boundary than the MnS single sulfide, and the grain boundary pinning effect is smaller.
[0027]
Further, in a region less than Cu mole fraction of 30%, but sharply the iron loss W 15/50 is decreased with increasing Cu mole fraction, in Cu mole fraction of 30% or more regions, Cu molar reduction rate of the iron loss W 15/50 due to the increase of the fraction was found to be not be a very big thing.
[0028]
As described above, Mn and Cu are set to the predetermined contents, and more preferably, the Cu mole fraction in the Mn-Cu-based sulfide, which is an inclusion dispersed in the steel sheet, is set to a predetermined value or more. Although it is a feature of the present invention, it is necessary to limit the components as described below in order to effectively bring out its effects and satisfy other characteristics required as an electromagnetic steel sheet.
[0029]
(Steel composition)
C: Since C precipitates as carbides and degrades magnetic properties, the lower the content, the better. In particular, when the C content exceeds 0.004%, magnetic aging occurs, so the content is set to 0.004% or less. Note that, in order to suppress the growth of (111) crystal grains which are not preferable for magnetic properties, the lower limit of the content is desirably 0.0003%.
[0030]
Since Si: Si increases the specific resistance of steel, the higher its content, the smaller the iron loss. In order to obtain the effect sufficiently, the Si content needs to be 0.7% or more. However, when the Si content is 0.7% or more, the N activity increases and various nitrides are formed, thereby deteriorating the magnetic characteristics. The present invention is characterized in that in order to prevent such deterioration of magnetic properties, the content of the nitride-forming element is sufficiently reduced, and then Mn and Cu are combined and added in an appropriate range. On the other hand, if the Si content exceeds 1.5%, the hardness of the steel sheet increases, and as a result, the abrasion of the punching die increases, and the cost of manufacturing the motor core increases. Therefore, the Si content is set to 0.7 to 1.5%.
[0031]
Mn: Since Mn also has the effect of increasing the specific resistance of steel, the higher the Mn content, the better. When the Mn content is less than 0.1%, MnS is finely dispersed and magnetic properties are deteriorated. On the other hand, if the Mn content is higher than 0.3%, SiMn-based nitrides precipitate and the magnetic properties deteriorate. Therefore, the Mn content is set to 0.1 to 0.3%. Furthermore, in order to manufacture with stable magnetic properties, the Mn content is desirably 0.15 to 0.25%.
[0032]
sol. Al: sol. Al (acid-soluble Al) is an element effective for deoxidation. However, in a steel containing 0.7% or more of Si, a nitride is easily formed, so that the lower the content, the better. Further, since it causes variation in magnetic characteristics, the content is set to less than 0.0005%.
[0033]
P: P, like Si, increases the specific resistance of steel and is effective in reducing iron loss. However, when P exceeds 0.2%, the hardness of the steel plate increases, so that the wear of the punching die becomes faster, and the motor core is increased. Manufacturing costs increase. Therefore, the P content is set to 0.2% or less.
[0034]
S: If S is higher than 0.005%, SiMn nitride is likely to precipitate with MnS as a nucleus, and magnetic properties are significantly deteriorated. Therefore, the S content is set to 0.005% or less. Desirably, the S content is 0.004% or less, and more preferably 0.003% or less in order to suppress the deterioration of magnetic properties and the variation in properties due to MnS.
[0035]
Cr: Cr is an unavoidable impurity. If the content exceeds 0.1%, Cr-based nitrides precipitate and the magnetic properties deteriorate. Therefore, the Cr content is set to 0.1% or less. Furthermore, in order to suppress composite precipitates with V and Nb and improve magnetic properties, it is preferable that the Cr content be 0.05% or less.
[0036]
V: V is an unavoidable impurity. When the content exceeds 0.005%, V carbonitride precipitates and magnetic properties are remarkably deteriorated. Therefore, the V content is set to 0.005% or less. Further, in order to suppress composite precipitates with Cr and Nb and improve magnetic properties, the V content is preferably set to 0.003% or less.
[0037]
Ti: Ti is an unavoidable impurity. When the content exceeds 0.001%, fine Ti carbonitride precipitates and magnetic properties are remarkably deteriorated. Therefore, the Ti content is set to 0.001% or less.
[0038]
N: N forms a nitride with Si, Mn, V, Cr, Al, etc., and prevents grain growth during magnetic annealing. A more preferable N content is 0.002% or less.
[0039]
Cu: Cu affects the precipitation of sulfides and nitrides, and improves magnetic properties by improving grain growth and texture after magnetic annealing. To obtain the effect, it is necessary to control the amount of Mn to an appropriate range and simultaneously add 0.016% or more.
[0040]
Although the cause of such a combined effect of Mn and Cu is not clear, the inventors speculate as follows. That is, although the role of Mn is as described above, by adding Cu in a complex manner, MnS partially changes into (Mn, Cu) S and the dispersion density of sulfide decreases. Further, the Cu-containing sulfide has a smaller interaction with the crystal grain boundary than the MnS single sulfide, and the grain boundary pinning effect is smaller. By controlling such sulfide, grain growth and texture during magnetic annealing are improved. As a result, the magnetic properties are improved.
[0041]
On the other hand, when the content exceeds 0.05%, the effect of improving iron loss after magnetic annealing is saturated. Further, the addition of a large amount of Cu exceeding 0.05% induces surface defects of the hot-rolled steel sheet, and the product yield is reduced. Therefore, the Cu content is set to 0.016 to 0.05%. Japanese Patent Application Laid-Open No. 9-263909 states that the magnetic properties during magnetic annealing are improved by controlling Cu sulfide. However, in this technology, it is necessary to increase the cooling spray capacity in order to increase the cooling rate at the time of solidification of the casting, or to adopt a method of reducing the thickness of the slab, and the cost is higher than the normal manufacturing method There is.
[0042]
Other components: Zr, B, and Nb, which have a strong tendency to form nitrides, are preferably reduced as much as possible. However, there is no particular problem unless each component exceeds the amount inevitably mixed. The unavoidable amounts to be mixed here are Zr of 0.002% or less, B of 0.001% or less, and Nb of 0.003% or less.
[0043]
(Inclusion)
Sulfides as inclusions dispersed in steel suppress grain growth during magnetic annealing and degrade magnetic properties, so their composition must be controlled. Specifically, when the Cu mole fraction contained in the fine sulfide of 0.05 to 0.1 μm is 30% or more, the iron loss during magnetic annealing becomes better.
[0044]
Such control of the Cu mole fraction in the sulfide can be performed as follows.
[0045]
Since Cu has a lower solid solubility in the ferrite phase than in the austenite phase, it is considered that the increase in the Cu concentration in the sulfide proceeds in the ferrite phase region. Therefore, in order to control the sulfide composition, the slab heating temperature is set to a low temperature in the austenite phase region to precipitate coarse MnS, the hot rolling finish temperature is set to the high temperature ferrite phase region, and the finish annealing temperature after cold rolling is further reduced. It is advantageous to work in the high temperature ferrite phase region.
[0046]
Specifically, the slab casting condition may be a normal production method, but the slab heating temperature is 1130 ° C. or less, the hot rolling finish temperature is 850 ° C. or more in the ferrite phase region, and the finish annealing after cold rolling is performed. It is effective to set it to 750 to 900 ° C. However, if the slab heating temperature is less than 1000 ° C., the slab temperature becomes more non-uniform due to a decrease in temperature at the skid portion, and the thickness accuracy deteriorates. Therefore, the lower limit of the slab heating temperature is preferably 1000 ° C. Annealing of the hot-rolled steel sheet may or may not be performed. In the case of carrying out, it is effective to anneal in a ferrite phase region of 700 to 900 ° C. for 1 hour or more, and then perform box annealing in which the cooling rate is 100 ° C./h or less. Note that hot rolling and annealing are not limited to the above conditions.
[0047]
Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the claims of the present invention, and any device having the same operation and effect can be realized by the present invention. It is included in the technical scope of the invention.
[0048]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0049]
(Example 1)
230 t of molten steel decarburized and desulfurized in a converter was tapped into a ladle, and the ladle was moved to an RH-type vacuum degasser. After decompressing under reduced pressure with an RH-type vacuum degassing apparatus to reduce the C concentration in steel to 0.004% or less, the components of Si, Mn, P, Cu, and Al were adjusted. As the additive material, a material having a small impurity content such as Cr, Ti, V, and Nb was used. When the temperature of the molten steel was low, an oxygen gas was applied to perform a temperature raising process. After the component adjustment and the temperature adjustment, the RH treatment was completed, and the slab was formed using a continuous casting machine.
[0050]
The slab was heated to 1100 ° C in a heating furnace, and hot-rolled at a finishing temperature of 850 to 880 ° C and a winding temperature of 500 ° C to a thickness of 2.3 mm. Then, after descaling, cold rolling was performed to 0.5 mm without performing hot-rolled sheet annealing, and final annealing was performed at 780 ° C. After the finish annealing, an insulating film was applied to the steel sheet surface. A 28 cm Epstein test piece was collected from this steel sheet and subjected to magnetic annealing (held at 750 ° C. for 2 hours in a nitrogen atmosphere). Magnetic properties were measured by the Epstein method (a method specified in JIS-C-2550).
[0051]
Table 1 shows the steel component analysis values and the iron loss after magnetic annealing. Steel 1 to 10 which is an embodiment of the present invention is excellent both iron loss W 15/50 after the magnetic annealing 3.90W / kg or less. On the other hand, the iron losses of the steels 11 to 22 of the comparative examples are all inferior to 4.06 to 5.38 W / kg.
[0052]
[Table 1]
Figure 2004277760
[0053]
(Example 2)
Using a steel 1 slab having a steel composition within the range of the present invention, a non-oriented electrical steel sheet having a thickness of 0.5 mm was manufactured under various conditions of hot rolling and finish annealing. Specifically, the slab heating temperature is 1100 to 1250 ° C, the hot rolling finish temperature is 800 to 880 ° C, the thickness of the hot rolled steel sheet is 2.3 mm, and the finish annealing temperature after cold rolling is 700 to 900 ° C. did. The sulfide dispersed in the manufactured steel sheet was observed by TEM using an extraction replica, and the composition of ten fine sulfides (major axis: 0.05 to 0.1 μm) was analyzed by EDS to find the average Cu mole fraction. . The magnetic properties after the magnetic annealing were measured by the Epstein method. Table 2 shows the manufacturing conditions, Cu mole fraction, and magnetic properties. Production conditions and iron loss W 15/50 in FIG. 3 shows the relationship between the Cu mole fraction. Although there is no clear correlation between the individual manufacturing conditions and the iron loss, No. 1 manufactured under appropriate combinations of manufacturing conditions. The steel sheets of Nos. 1, 8, and 9 have a Cu mole fraction of 30% or more, and the iron loss after magnetic annealing is good at 3.70 W / kg or less.
[0054]
[Table 2]
Figure 2004277760
[0055]
【The invention's effect】
Since the electrical steel sheet of the present invention has such an extremely low Al content, it is excellent in recyclability, and even when containing 0.7% or more of Si, the content of Mn and Cu is kept at a predetermined value. Range, and the contents of V, Cr, Al, and Ti, which are nitride-generating elements, are also sufficiently reduced, so that nitrides that adversely affect magnetic properties can be significantly reduced. An electromagnetic steel sheet having magnetic properties can be obtained.
[Brief description of the drawings]
1 is a graph showing the relationship between the content and the iron loss W 15/50 of Cu and Mn in the steel.
2 is a graph showing the relationship between the Cu molar concentration and the iron loss W 15/50 in the sulfide as inclusions dispersed in the steel.
[3] (a) ~ (c) is a graph showing the relationship between the various production conditions and the iron loss W 15/50, (d) the Cu molar in sulfides as inclusions dispersed in the steel is a graph showing the relationship between a fraction and the iron loss W 15/50.

Claims (2)

質量%で、C:0.004%以下、Si:0.7〜1.5%、Mn:0.1〜0.3%、sol.Al:0.0005%未満、P:0.2%以下、S:0.005%以下、N:0.003%以下、Cr:0.1%以下、V:0.005%以下、Ti:0.001%以下、Cu:0.016〜0.05%を含有し、残部がFeおよび不可避的不純物からなることを特徴とする無方向性電磁鋼板。% By mass, C: 0.004% or less, Si: 0.7 to 1.5%, Mn: 0.1 to 0.3%, sol. Al: less than 0.0005%, P: 0.2% or less, S: 0.005% or less, N: 0.003% or less, Cr: 0.1% or less, V: 0.005% or less, Ti: A non-oriented electrical steel sheet comprising 0.001% or less and Cu: 0.016 to 0.05%, with the balance being Fe and unavoidable impurities. 鋼中に介在物として存在する長径0.05〜0.1μmの硫化物中のCuモル分率(=%Cu/(%Cu+%Mn+%S)×100)が30%以上であることを特徴とする請求項1記載の無方向性電磁鋼板。The Cu mole fraction (=% Cu / (% Cu +% Mn +% S) × 100) in the sulfide having a major axis of 0.05 to 0.1 μm existing as an inclusion in steel is not less than 30%. The non-oriented electrical steel sheet according to claim 1.
JP2003067284A 2003-03-12 2003-03-12 Non-oriented electrical steel sheet Expired - Lifetime JP3843955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003067284A JP3843955B2 (en) 2003-03-12 2003-03-12 Non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003067284A JP3843955B2 (en) 2003-03-12 2003-03-12 Non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2004277760A true JP2004277760A (en) 2004-10-07
JP3843955B2 JP3843955B2 (en) 2006-11-08

Family

ID=33284936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003067284A Expired - Lifetime JP3843955B2 (en) 2003-03-12 2003-03-12 Non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3843955B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067568A1 (en) * 2014-10-30 2016-05-06 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing non-oriented electromagnetic steel sheet
JP2016125134A (en) * 2015-01-08 2016-07-11 Jfeスチール株式会社 Non-oriented silicon steel sheet excellent in recyclability and method for producing the same
EP3184660A4 (en) * 2014-08-21 2017-12-27 JFE Steel Corporation Non-oriented electrical steel sheet and manufacturing method thereof
WO2018123558A1 (en) 2016-12-28 2018-07-05 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet having excellent recyclability
US10242782B2 (en) 2012-08-08 2019-03-26 Jfe Steel Corporation High-strength electrical steel sheet and method of producing the same
KR20190086490A (en) 2016-12-28 2019-07-22 제이에프이 스틸 가부시키가이샤 Non-directional electric steel sheet excellent in recyclability

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10242782B2 (en) 2012-08-08 2019-03-26 Jfe Steel Corporation High-strength electrical steel sheet and method of producing the same
EP3184660A4 (en) * 2014-08-21 2017-12-27 JFE Steel Corporation Non-oriented electrical steel sheet and manufacturing method thereof
US20170314090A1 (en) * 2014-10-30 2017-11-02 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
KR20170072278A (en) 2014-10-30 2017-06-26 제이에프이 스틸 가부시키가이샤 Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
CN107075640A (en) * 2014-10-30 2017-08-18 杰富意钢铁株式会社 The manufacture method of non orientation electromagnetic steel plate and non orientation electromagnetic steel plate
EP3214195A4 (en) * 2014-10-30 2017-09-13 JFE Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
WO2016067568A1 (en) * 2014-10-30 2016-05-06 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing non-oriented electromagnetic steel sheet
JPWO2016067568A1 (en) * 2014-10-30 2017-04-27 Jfeスチール株式会社 Non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet
RU2665645C1 (en) * 2014-10-30 2018-09-03 ДжФЕ СТИЛ КОРПОРЕЙШН Non-oriented electrical steel sheets and method of manufacture of the non-oriented electrical steel sheets
KR101963056B1 (en) * 2014-10-30 2019-03-27 제이에프이 스틸 가부시키가이샤 Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
US10704115B2 (en) * 2014-10-30 2020-07-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
JP2016125134A (en) * 2015-01-08 2016-07-11 Jfeスチール株式会社 Non-oriented silicon steel sheet excellent in recyclability and method for producing the same
WO2018123558A1 (en) 2016-12-28 2018-07-05 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet having excellent recyclability
KR20190086490A (en) 2016-12-28 2019-07-22 제이에프이 스틸 가부시키가이샤 Non-directional electric steel sheet excellent in recyclability

Also Published As

Publication number Publication date
JP3843955B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
TWI622655B (en) Non-oriented electromagnetic steel plate and manufacturing method thereof
CN113166869B (en) Non-oriented electromagnetic steel sheet and method for producing same
KR20160015376A (en) Non-oriented magnetic steel sheet having high magnetic flux density, and motor
JP5360336B1 (en) Non-oriented electrical steel sheet
JP4586741B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR20190077025A (en) Non-oriented electrical steel sheet and manufacturing method thereof
RU2731570C1 (en) Non-textured electrical steel sheet demonstrating excellent recycling ability for secondary use
JP2005200713A (en) Nonoriented silicon steel sheet having excellent uniformity of magnetic property in coil and high production yield, and its production method
JP3852419B2 (en) Non-oriented electrical steel sheet
JP3843955B2 (en) Non-oriented electrical steel sheet
JP4331969B2 (en) Method for producing non-oriented electrical steel sheet
TWI484048B (en) Non - directional electromagnetic steel plate
JP3931842B2 (en) Method for producing non-oriented electrical steel sheet
JP3037878B2 (en) Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same
CN114901850A (en) Hot-rolled steel sheet for non-oriented electromagnetic steel sheet
CN113166871A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JP3280959B1 (en) Low iron loss non-oriented electrical steel sheet with good workability and method for producing the same
JP3252692B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
CN114945693B (en) Hot rolled steel sheet for non-oriented electromagnetic steel sheet
CN115135794B (en) Non-oriented electrical steel sheet and method for manufacturing same
WO2022219742A1 (en) Hot-rolled steel sheet for non-oriented electrical steel sheet and method for manufacturing same
JP2003064456A (en) Nonoriented silicon steel sheet for semiprocess, and production method therefor
JP2003183734A (en) Method for manufacturing non-oriented electromagnetic steel sheet superior in cold-rolling property
JP4288811B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3843955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20121030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term