JP4540831B2 - Double-sided mounting board inspection method and apparatus - Google Patents

Double-sided mounting board inspection method and apparatus Download PDF

Info

Publication number
JP4540831B2
JP4540831B2 JP2000349567A JP2000349567A JP4540831B2 JP 4540831 B2 JP4540831 B2 JP 4540831B2 JP 2000349567 A JP2000349567 A JP 2000349567A JP 2000349567 A JP2000349567 A JP 2000349567A JP 4540831 B2 JP4540831 B2 JP 4540831B2
Authority
JP
Japan
Prior art keywords
image data
double
memory
fluoroscopic
surface sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000349567A
Other languages
Japanese (ja)
Other versions
JP2002158500A (en
Inventor
篤司 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Electric Works Co Ltd
Original Assignee
Nagoya Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Electric Works Co Ltd filed Critical Nagoya Electric Works Co Ltd
Priority to JP2000349567A priority Critical patent/JP4540831B2/en
Publication of JP2002158500A publication Critical patent/JP2002158500A/en
Application granted granted Critical
Publication of JP4540831B2 publication Critical patent/JP4540831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はX線を照射し、プリント基板等の基板の両面に実装された電子部品の状態、例えば、部品の半田付け状態や取付け状態を検査するための検査方法およびその装置に関する。
【0002】
【従来の技術】
従来における両面に電子部品が実装された基板の半田付け状態を検査する方法としては、例えば、特許第2945537号公報に開示された方法がある。この方法は、表裏面に部品が半田付けされた基板にX線を照射し、そのX線透視画像データを得た後、該透視画像データから表面又は裏面のみに部品が正常に半田付けされた基板のX線透視画像データを減じて得られる画像データと、裏面又は表面のみに部品が正常に半田付けされた基板の透視画像との対比から半田付けの良否を判定する方法である。
【0003】
すなわち、この半田付け検査方法は、画像データとして両面に部品が半田付けされた基板の第1の画像データと、表面又は裏面のみに正常に半田付けされた第2の画像データおよび裏面又は表面のみに正常に半田付けされた第3の画像データの3つの画像データが必要であり、かつ、第1の画像データから第2の画像データおよび第3の画像データとの差分を求め、該差分によって得られた第4および第5の画像データと予め設定した画像データとの対比を行うことにより良否判定を行う方法である。
【0004】
【発明が解決しようとする課題】
ところで、前記した従来例にあっては、両面に部品が実装された検査基板の第1の画像データから前記第2および第3の画像データを差分して良否判断を行うものであることから、表面のみに部品を実装した基板と裏面のみに部品を実装した基板の検査用の2枚が必要となり、しかも、2枚の基板は正常に部品が半田付けされたものである必要があることから、2枚の基板の製作が面倒であると共に、本来、後から部品が実装される側に先に部品を実装した基板は検査後に反対側の部品を実装することができないため、試料用として製作した基板の半数が無駄になるといった問題があった。
【0005】
なお、従来例における明細書中には前記検査用の2枚の基板の代わりに設計上で得られた設計上のデータを数値入力してもよいとの記載があるが、この数値データの作成が困難であると共に、実際の検査用の基板と数値データとは必ずしも一致するものではなく、このような数値データを検査用として使用した場合には、検査結果に誤差が生じるという問題がある。
【0006】
本発明は前記した問題点を解決せんとするもので、その目的とするところは、通常の基板実装において行われる表面のみに部品を実装した基板のみを試料用基板として製作するのみで、その他は通常の両面実装基板を用意すれば足りるので、表面のみに部品を実装した基板は後の工程で裏面にも部品を実装することが可能であることから、試料用として用意した基板が無駄にならず経費の節減が図れると共に、検査時間の短縮を図ることができる両面実装基板検査方法およびその装置を提供せんとするにある。
【0007】
【課題を解決するための手段】
本発明の両面実装基板検査方法は前記した目的を達成せんとするもので、その手段は、基板の表面のみに部品を実装した表面試料画像データを得て記憶し、次いで、表裏面に部品が実装された基板における両面透視画像データを得て記憶し、該両面透視画像データから前記表面試料画像データを差分して裏面の透視画像データを得て裏面試料画像データとなし、実際の検査基板においては、該検査基板における両面透視画像データから前記表面試料画像データおよび前記裏面試料画像データを差分して、検査基板の裏面および表面の実画像データを得て、この実画像データから部品の実装状態の良否を判定するようにしたことを特徴とする。
【0008】
また、前記表面試料画像データは、表面のみに部品が実装された複数枚の基板における透視画像データの平均値を求めて表面試料画像データとし、また、前記裏面試料画像データは、前記両面に部品が実装された複数枚の基板における両面透視画像データから前記表面試料画像データとの差分を求めた裏面試料基板の平均値の画像データとしたことを特徴とする。
【0009】
本発明の両面実装基板検査装置の手段は、基板に対してX線を照射して実装された部品も含めた透視画像を得るX線撮像手段と、該X線撮像手段によって得られた透視画像をAD変換して透視画像データを得る画像変換手段と、表面のみに部品が実装された基板の透視画像データを表面試料画像データとして記憶するメモリと、該画像変換手段によって得られた両面に部品が実装された透視画像データを記憶するメモリと、前記メモリに記憶された両面に部品が実装された透視画像データから前記メモリに記憶されている表面試料画像データの差分を行う演算手段と、該演算手段によって得られた裏面の透視画像データを裏面試料画像データとして記憶するメモリと、検査基板における両面透視画像データから前記メモリに記憶された表面試料画像データとの差分を行い裏面画像データを得る演算手段と、該演算手段によって得られた裏面画像データを裏面実画像データとして記憶するメモリと、検査基板における両面透視画像データから前記メモリに記憶された裏面試料画像データとの差分を行い表面画像データを得る演算手段と、該演算手段によって得られた表面画像データを表面実画像データとして記憶するメモリと、前記表裏面実画像データから部品の実装状態の良否を判定する良否判定手段とを具備したものである。
【0010】
また、前記表面試料画像データを記憶するメモリは、複数枚の透視画像データを平均化した透視画像データを記憶し、また、前記裏面試料画像データを記憶するメモリは、前記両面に部品が実装された複数枚の基板における両面透視画像データから前記表面試料画像データとの差分を求めた平均化した透視画像データを記憶しているものである。
【0011】
【発明の実施の形態】
次に、本発明に係る両面実装基板検査装置の一実施の形態を図面と共に説明する。
図1において、1はX線照射装置、2はプリント基板P(以下、単に基板という)を透過した画像を撮像するX線撮像装置、3は該X線撮像装置2からの画像をAD変換器を介してデジタル画像信号に変換する画像変換手段、4は図2に詳述する制御手段、5は前記制御手段によって得られた検査基板の表面および裏面の画像データを用いて、実装部品の半田付け状態や取付け状態の良否判定を行う良否判定手段、6は該良否判定手段によって不良と判定された場合に、どの部分が不良であるかの表示を行うCRT等の表示手段である。
【0012】
次に、前記した制御手段4の詳細について説明するに、該制御手段4は後述する各段階におけるX線照射装置1によって撮像され、前記画像変換手段3によって変換された透視画像データを記憶するメモリと、複数の透視画像データの平均値を求める演算手段と、該演算手段によって平均化された表面および裏面の試料画像データと両面に部品が実装された検査基板の透視画像データとの差分を行う演算手段を具備しているものである(図示せず)。
【0013】
次に、前記した構成に基づいて動作を図2のフローチャートと共に説明する。
先ず、両面に部品を実装した被検査基板である基板Pを製作するには、部品実装装置によって表面に部品を実装し炉を通して半田付けし、その後、同様に、裏面に部品を実装し炉を通して半田付けする。
【0014】
ここで、表面、次いで、裏面に部品を半田付けするというように部品実装装置を設定した場合(一般的な部品実装装置は表面、裏面という順序で部品実装が行われる)には、裏面側のみに部品を実装し半田付けした基板にあっては、表面側に部品実装装置を用いて部品を実装するということは不可能となる。
【0015】
先ず、複数枚の基板Pにおける表面側のみに部品を実装した該基板PをX線照射装置1とX線撮像装置2との間に配置し、X線照射装置1を起動して基板PにX線を照射すると、該基板Pの透視画像がX線撮像装置2で得られる。
【0016】
そして、このX線撮像装置2よりの透視画像を画像変換手段3によってデジタル信号に変換して表面透視画像データとしてメモリに記憶され、かつ、このような作業を繰り返し行い複数枚の表面透視画像データをメモリに記憶させる。
【0017】
次いで、複数枚の表面透視画像データを演算手段によって平均化して、この平均化した表面透視画像データを表面試料画像データa(図3の写真参照)としてメモリに記憶させておく(ステップS1)。
【0018】
次に、表裏両面に部品を実装した実検査基板を複数枚用意しておき、それぞれの実検査基板の透視画像データbを前記したX線照射装置1とX線撮像装置2との間に配置して得、この両面実装基板の透視画像データb(図4の写真参照)をメモリに記憶させる(ステップS2)。
【0019】
次いで、演算手段において、前記メモリに記憶されている両面に部品が実装された基板Pの透視画像データから前記メモリに記憶されている表面のみに部品が実装された表面試料画像データの差分を演算して、検査基板である基板Pの裏面側の透視画像データを求めると共にメモリに記憶する。
【0020】
そして、このような作業を前記用意した両面実装基板の枚数分だけ裏面側の透視画像データを繰り返し求め、全ての作業が終了した後に演算手段によって裏面側透視画像データの平均化を行い、この平均化された画像データを裏面試料画像データc(図5の写真参照)としてメモリに記憶しておく(ステップS3)。なお、図5の写真において画像下部分で完全に抽出されていない部分があるが、これは表面にX線を遮断する部品が載っているためである。
【0021】
次に、検査を行う両面に部品が実装された基板をX線照射装置1とX線撮像装置2との間に配置し、その透視画像データdを一旦メモリに記憶し(ステップS4)、このメモリに記憶された透視画像データdから前記裏面試料画像データaとの差分を演算手段によって行い、その結果、得られた画像データeをメモリに記憶する(ステップS5)。
【0022】
次いで、前記したと同様に、前記透視画像データdから前記表面試料データcの差分を演算手段によって行い、その結果、得られた画像データfをメモリに記憶する(ステップS6)。
【0023】
そして、このような手順によって得られた検査基板である基板Pの表面側と裏面側の画像データにおける部品の半田付け状態や取付け状態が正常か不良であるかの判定を良否判定手段5によって行い(ステップS7)、不良が発生しているとの判定が行われるとCRT等の表示手段6において表示される。
【0024】
なお、試料としての表面側の透視画像データとしては、基板の表面のみに部品を実装した複数枚の基板における平均値を求めたものについて説明したが、表面側の透視画像データとしては、設計上のデータを数値として入力したデータをメモリに記憶させたものであってもよい。
【0025】
また、前記した実施の形態にあっては、裏面試料画像データを得るのに、両面に部品を実装した1枚毎の基板の画像データと表面試料画像データとの差分を行った後に、その差分の平均値から裏面試料画像データを得るようにしたものについて説明したが、複数枚の両面実装基板の透視画像データの平均値を得た後に、この平均値と表面試料画像データとの差分を行うことによって、裏面試料画像データを得るようにしてもよい。
【0026】
【発明の効果】
本発明は前記したように、表面のみに部品が実装された基板の透視画像データを得て表面試料画像データとなし、次いで、表裏面に部品が実装された基板における両面透視画像データを得て記憶し、該両面透視画像データから前記表面試料画像データを差分して裏面の透視画像データを得て裏面試料画像データとなし、実際の検査基板においては、該検査基板における両面透視画像データから前記表面試料画像データおよび前記裏面試料画像データを差分して、検査基板の裏面および表面の実画像データを得て、この実画像データから部品の実装状態の良否を判定するようにしたので、従来例のように裏面に部品を実装した基板を無駄にすることがなくなり、かつ、両面実装基板の部品の半田付け状態や取付け状態を高精度で確認することができる共に検査時間の短縮を図ることができる。
【0027】
また、前記表面試料画像データは、表面のみに部品が実装された複数枚の基板における透視画像データの平均値を求めて表面試料基板の画像データとし、また、前記裏面試料画像データは、前記両面に部品が実装された複数枚の基板における両面透視画像データから前記表面試料画像データとの差分を求めた裏面試料基板の平均値の画像データとしたので、両面実装基板の部品の半田付け状態や取付け状態の検査をより一層精度よく行うことができる等の効果を有するものである。
【図面の簡単な説明】
【図1】本発明に係る両面実装基板検査装置の概略を示すブロック図である。
【図2】動作を示すフローチャートである。
【図3】表面のみに部品を実装した基板のX線写真である。
【図4】両面に部品を実装した基板のX線写真である。
【図5】図4の写真から図3の写真を差分したX線写真である。
【符号の説明】
1 X線照射装置
2 X線撮像装置
3 画像変換手段
4 制御手段
5 良否判定手段
6 表示手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inspection method and apparatus for inspecting the state of electronic components that are irradiated with X-rays and mounted on both surfaces of a substrate such as a printed circuit board, for example, the soldering state and attachment state of the component.
[0002]
[Prior art]
As a conventional method for inspecting the soldering state of a substrate on which electronic components are mounted on both sides, for example, there is a method disclosed in Japanese Patent No. 2945537. In this method, after X-rays are irradiated on a substrate having components soldered on the front and back surfaces, and X-ray fluoroscopic image data is obtained, the components are normally soldered only on the front surface or back surface from the fluoroscopic image data. This is a method for determining whether soldering is good or bad from a comparison between image data obtained by subtracting X-ray fluoroscopic image data of a substrate and a fluoroscopic image of a substrate in which components are normally soldered only on the back surface or the front surface.
[0003]
That is, in this soldering inspection method, the first image data of the board with components soldered on both sides as image data, the second image data normally soldered only on the front surface or the back surface, and only the back surface or the front surface. 3 image data of the 3rd image data soldered normally is required, and the difference between the 2nd image data and the 3rd image data is obtained from the 1st image data, This is a method for determining pass / fail by comparing the obtained fourth and fifth image data with preset image data.
[0004]
[Problems to be solved by the invention]
By the way, in the above-described conventional example, since the second and third image data are differentiated from the first image data of the inspection board on which components are mounted on both sides, the quality is determined. Two boards for inspection of a board with components mounted only on the front surface and a board with components mounted only on the back surface are required, and the two boards must be properly soldered components. Production of two boards is cumbersome, and originally a board on which a component is first mounted on the side where the component is mounted later cannot be mounted on the opposite side after inspection, so it is manufactured as a sample. There was a problem that half of the substrates were wasted.
[0005]
In the specification of the conventional example, there is a description that the design data obtained in the design may be input as a numerical value instead of the two substrates for inspection. In addition, the actual inspection substrate and the numerical data do not always coincide with each other, and when such numerical data is used for inspection, there is a problem that an error occurs in the inspection result.
[0006]
The present invention is intended to solve the above-mentioned problems, and its purpose is to produce only a substrate on which a component is mounted only on the surface used in normal substrate mounting as a sample substrate. Since it is sufficient to prepare a normal double-sided mounting board, it is possible to mount a part on the back side in a later process, so that the board prepared for the sample is wasted. It is therefore an object of the present invention to provide a double-sided mounting board inspection method and apparatus capable of reducing costs and shortening the inspection time.
[0007]
[Means for Solving the Problems]
The double-sided mounting board inspection method of the present invention is intended to achieve the above-mentioned purpose, and its means obtains and stores surface sample image data in which the parts are mounted only on the surface of the board, and then the parts are placed on the front and back surfaces. Obtain and store double-sided fluoroscopic image data on the mounted substrate, obtain the backside fluoroscopic image data by subtracting the front surface sample image data from the double-sided fluoroscopic image data, and provide the backside sample image data. The difference between the front surface sample image data and the back surface sample image data from the double-sided fluoroscopic image data on the inspection board to obtain the actual image data of the back surface and the front surface of the inspection board, and the mounting state of the component from the actual image data It is characterized in that it is determined whether the quality is good or bad.
[0008]
Further, the surface sample image data is obtained as an average value of fluoroscopic image data on a plurality of substrates on which components are mounted only on the surface, and is used as surface sample image data. The image data of the average value of the back surface sample substrate obtained by calculating the difference from the front surface sample image data from the double-sided fluoroscopic image data on a plurality of substrates on which is mounted.
[0009]
The means of the double-sided mounting board inspection apparatus according to the present invention includes an X-ray imaging means for obtaining a fluoroscopic image including components mounted by irradiating the board with X-rays, and a fluoroscopic image obtained by the X-ray imaging means. Image conversion means for obtaining perspective image data by AD conversion, a memory for storing perspective image data of a substrate on which a component is mounted only on the surface as surface sample image data, and components on both sides obtained by the image conversion means A memory for storing the fluoroscopic image data mounted with, and a computing means for performing a difference between the surface sample image data stored in the memory from the fluoroscopic image data in which components are mounted on both sides stored in the memory; and A back surface fluoroscopic image data obtained by the calculation means is stored as back surface sample image data, and a front surface test stored in the memory from the double side fluoroscopic image data on the inspection board. Calculation means for obtaining back image data by performing a difference with the image data, a memory for storing the back image data obtained by the calculation means as real back image data, and a double-sided perspective image data on the inspection board stored in the memory. Calculating means for obtaining the surface image data by performing a difference with the backside sample image data, a memory for storing the surface image data obtained by the calculating means as the actual surface image data, and mounting of components from the front and back actual image data And a pass / fail judgment means for judging pass / fail of the state.
[0010]
The memory for storing the front surface sample image data stores fluoroscopic image data obtained by averaging a plurality of fluoroscopic image data, and the memory for storing the back surface sample image data has components mounted on both sides. Further, averaged fluoroscopic image data obtained by calculating a difference from the surface sample image data from double-sided fluoroscopic image data on a plurality of substrates is stored.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of a double-sided mounting board inspection apparatus according to the present invention will be described with reference to the drawings.
In FIG. 1, 1 is an X-ray irradiation apparatus, 2 is an X-ray imaging apparatus that captures an image transmitted through a printed circuit board P (hereinafter simply referred to as a substrate), and 3 is an AD converter that converts the image from the X-ray imaging apparatus 2 2 is a control means described in detail in FIG. 2, and 5 is a solder for a mounting component using image data of the front and back surfaces of the inspection board obtained by the control means. A pass / fail judgment means 6 for judging pass / fail of the attached state and the attached state, and a display means 6 such as a CRT for displaying which part is faulty when the pass / fail judgment means judges the fault.
[0012]
Next, the control unit 4 will be described in detail. The control unit 4 stores a fluoroscopic image data imaged by the X-ray irradiation apparatus 1 at each stage described later and converted by the image conversion unit 3. And calculating means for obtaining an average value of a plurality of fluoroscopic image data, and performing a difference between the front and back sample image data averaged by the arithmetic means and the fluoroscopic image data of the inspection board on which components are mounted on both sides It has a calculation means (not shown).
[0013]
Next, the operation will be described with reference to the flowchart of FIG.
First, in order to manufacture a substrate P that is a board to be inspected with components mounted on both sides, the components are mounted on the front surface by a component mounting apparatus and soldered through a furnace, and then similarly, the components are mounted on the back surface and passed through the furnace. Solder.
[0014]
Here, when the component mounting apparatus is set such that the parts are soldered to the front surface and then to the back surface (the general component mounting apparatus performs the component mounting in the order of the front surface and the back surface), only the back surface side It is impossible to mount a component on the surface side by using a component mounting apparatus on a substrate on which the component is mounted and soldered.
[0015]
First, the substrate P on which components are mounted only on the surface side of the plurality of substrates P is disposed between the X-ray irradiation apparatus 1 and the X-ray imaging apparatus 2, and the X-ray irradiation apparatus 1 is activated to form the substrate P. When the X-ray is irradiated, a fluoroscopic image of the substrate P is obtained by the X-ray imaging apparatus 2.
[0016]
Then, the fluoroscopic image from the X-ray imaging apparatus 2 is converted into a digital signal by the image converting means 3 and stored in the memory as surface fluoroscopic image data, and a plurality of surface fluoroscopic image data are repeatedly obtained by repeating such operations. Is stored in the memory.
[0017]
Next, the plurality of surface fluoroscopic image data are averaged by the calculation means, and the averaged surface fluoroscopic image data is stored in the memory as surface sample image data a (see the photograph in FIG. 3) (step S1).
[0018]
Next, a plurality of actual inspection boards having components mounted on both front and back surfaces are prepared, and the fluoroscopic image data b of each actual inspection board is arranged between the X-ray irradiation apparatus 1 and the X-ray imaging apparatus 2 described above. The perspective image data b (see the photograph in FIG. 4) of this double-sided mounting board is stored in the memory (step S2).
[0019]
Next, in the calculation means, the difference between the surface sample image data in which the component is mounted only on the surface stored in the memory is calculated from the perspective image data of the substrate P in which the component is mounted on both surfaces stored in the memory. Then, the fluoroscopic image data on the back side of the substrate P which is the inspection substrate is obtained and stored in the memory.
[0020]
Then, the back side fluoroscopic image data is repeatedly obtained as many times as the number of the prepared double-sided mounting boards, and after all the operations are completed, the back side fluoroscopic image data is averaged by the arithmetic means. The converted image data is stored in the memory as back surface sample image data c (see the photograph in FIG. 5) (step S3). In the photograph of FIG. 5, there is a portion that is not completely extracted in the lower portion of the image because this is because a part that blocks X-rays is placed on the surface.
[0021]
Next, a substrate having components mounted on both sides to be inspected is placed between the X-ray irradiation apparatus 1 and the X-ray imaging apparatus 2, and the fluoroscopic image data d is temporarily stored in a memory (step S4). A difference between the fluoroscopic image data d stored in the memory and the back-surface sample image data a is calculated by the calculation means, and as a result, the obtained image data e is stored in the memory (step S5).
[0022]
Next, in the same manner as described above, the difference between the fluoroscopic image data d and the surface sample data c is performed by the calculation means, and the resulting image data f is stored in the memory (step S6).
[0023]
Then, the pass / fail judgment means 5 determines whether the soldering state or mounting state of the component in the image data on the front side and the back side of the board P which is the inspection board obtained by such a procedure is normal or defective. (Step S7) When it is determined that a defect has occurred, it is displayed on the display means 6 such as a CRT.
[0024]
In addition, as the fluoroscopic image data on the surface side as the sample, a description has been given of an average value obtained for a plurality of substrates in which components are mounted only on the surface of the substrate. Data obtained by inputting the above data as numerical values may be stored in a memory.
[0025]
In the above-described embodiment, in order to obtain the back surface sample image data, after performing the difference between the image data of each substrate on which components are mounted on both sides and the surface sample image data, the difference is obtained. However, after obtaining the average value of the perspective image data of the plurality of double-sided mounting boards, the difference between the average value and the surface sample image data is performed. Thus, the back surface sample image data may be obtained.
[0026]
【The invention's effect】
As described above, the present invention obtains the fluoroscopic image data of the substrate on which the component is mounted only on the surface to obtain the surface sample image data, and then obtains the double-sided fluoroscopic image data on the substrate on which the component is mounted on the front and back surfaces. Storing and subtracting the front-surface sample image data from the double-sided fluoroscopic image data to obtain a rear-side fluoroscopic image data to obtain back-surface sample image data; in an actual inspection board, the double-sided fluoroscopic image data on the inspection board Since the actual image data of the back surface and the front surface of the inspection board is obtained by subtracting the front surface sample image data and the back surface sample image data, the quality of the component mounting state is determined from the actual image data. The board with components mounted on the backside is not wasted, and the soldering and mounting status of the components on the double-sided mounting board can be checked with high accuracy. Kill both it is possible to shorten the inspection time.
[0027]
The front surface sample image data is obtained by obtaining an average value of fluoroscopic image data on a plurality of substrates having components mounted only on the front surface to obtain image data of the front surface sample substrate, and the back surface sample image data is the double-sided image data. Since the image data of the average value of the back surface sample substrate obtained by calculating the difference from the front surface sample image data from the double-sided perspective image data on a plurality of substrates on which the components are mounted, the soldering state of the components of the double-sided mounting substrate It has an effect that the inspection of the mounting state can be performed with higher accuracy.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an outline of a double-sided mounting board inspection apparatus according to the present invention.
FIG. 2 is a flowchart showing an operation.
FIG. 3 is an X-ray photograph of a board on which components are mounted only on the surface.
FIG. 4 is an X-ray photograph of a board on which components are mounted on both sides.
5 is an X-ray photograph obtained by subtracting the photograph of FIG. 3 from the photograph of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 X-ray irradiation apparatus 2 X-ray imaging device 3 Image conversion means 4 Control means 5 Pass / fail judgment means 6 Display means

Claims (4)

基板の表面のみに部品を実装した表面試料画像データを得て記憶し、次いで、表裏面に部品が実装された基板における両面透視画像データを得て記憶し、該両面透視画像データから前記表面試料画像データを差分して裏面の透視画像データを得て裏面試料画像データとなし、実際の検査基板においては、該検査基板における両面透視画像データから前記表面試料画像データおよび前記裏面試料画像データを差分して、検査基板の裏面および表面の実画像データを得て、この実画像データから部品の実装状態の良否を判定するようにしたことを特徴とする両面実装基板検査方法。Surface sample image data in which components are mounted only on the surface of the substrate is obtained and stored, then double-sided perspective image data is obtained and stored on the substrate on which the components are mounted on the front and back surfaces, and the surface sample is obtained from the double-sided perspective image data The back side fluoroscopic image data is obtained by subtracting the image data to obtain back side sample image data. In the actual inspection board, the front surface sample image data and the back side sample image data are subtracted from the double side fluoroscopic image data on the inspection board. Then, a double-sided mounting board inspection method characterized in that actual image data of the back surface and front surface of the inspection board is obtained, and the quality of the component mounting state is determined from the actual image data. 前記表面試料画像データは、表面のみに部品が実装された複数枚の基板における透視画像データの平均値を求めて表面試料画像データとし、また、前記裏面試料画像データは、前記両面に部品が実装された複数枚の基板における両面透視画像データから前記表面試料画像データとの差分を求めて裏面試料基板の平均値の画像データとしたことを特徴とする請求項1記載の両面実装基板検査方法。The surface sample image data is obtained as the surface sample image data by obtaining an average value of the fluoroscopic image data on a plurality of substrates having components mounted only on the surface, and the back surface sample image data has components mounted on both sides. 2. The double-sided mounting board inspection method according to claim 1, wherein a difference from the front-surface sample image data is obtained from double-sided fluoroscopic image data on the plurality of substrates thus obtained and used as image data of an average value of the back-surface sample board. 基板に対してX線を照射して実装された部品も含めた透視画像を得るX線撮像手段と、
該X線撮像手段によって得られた透視画像をAD変換して透視画像データを得る画像変換手段と、
表面のみに部品が実装された基板の透視画像データを表面試料画像データとして記憶するメモリと、
該画像変換手段によって得られた両面に部品が実装された透視画像データを記憶するメモリと、
前記メモリに記憶された両面に部品が実装された透視画像データから前記メモリに記憶されている表面試料画像データの差分を行う演算手段と、
該演算手段によって得られた裏面の透視画像データを裏面試料画像データとして記憶するメモリと、
検査基板における両面透視画像データから前記メモリに記憶された表面試料画像データとの差分を行い裏面画像データを得る演算手段と、
該演算手段によって得られた裏面画像データを裏面実画像データとして記憶するメモリと、
検査基板における両面透視画像データから前記メモリに記憶された裏面試料画像データとの差分を行い表面画像データを得る演算手段と、
該演算手段によって得られた表面画像データを表面実画像データとして記憶するメモリと、
前記表裏面実画像データから部品の実装状態の良否を判定する良否判定手段と、
を具備したことを特徴とする両面実装基板検査装置。
X-ray imaging means for obtaining a fluoroscopic image including components mounted by irradiating the substrate with X-rays;
Image conversion means for AD conversion of the fluoroscopic image obtained by the X-ray imaging means to obtain fluoroscopic image data;
Memory for storing fluoroscopic image data of a substrate with components mounted only on the surface as surface sample image data;
A memory for storing fluoroscopic image data in which components are mounted on both sides obtained by the image conversion means;
Arithmetic means for performing a difference between the surface sample image data stored in the memory from the perspective image data in which components are mounted on both sides stored in the memory;
A memory for storing the fluoroscopic image data of the back surface obtained by the computing means as back surface sample image data;
A computing means for obtaining a backside image data by performing a difference between the double-sided perspective image data on the inspection substrate and the surface sample image data stored in the memory;
A memory for storing back side image data obtained by the computing means as back side real image data;
An arithmetic means for obtaining a front surface image data by performing a difference from the back surface sample image data stored in the memory from the double-sided fluoroscopic image data on the inspection substrate;
A memory for storing the surface image data obtained by the calculation means as surface actual image data;
Pass / fail judgment means for judging pass / fail of the mounting state of the component from the front and back real image data;
A double-sided mounting board inspection apparatus comprising:
前記表面試料画像データを記憶するメモリは、複数枚の透視画像データを平均化した透視画像データを記憶し、また、前記裏面試料画像データを記憶するメモリは、前記両面に部品が実装された複数枚の基板における両面透視画像データから前記表面試料画像データとの差分を求めた平均化した透視画像データを記憶していることを特徴とする請求項3記載の両面実装基板検査装置。The memory for storing the front surface sample image data stores fluoroscopic image data obtained by averaging a plurality of fluoroscopic image data, and the memory for storing the back surface sample image data includes a plurality of components mounted on both sides. 4. The double-sided mounting board inspection apparatus according to claim 3, wherein averaged fluoroscopic image data obtained by calculating a difference from the surface sample image data from double-sided fluoroscopic image data on a single substrate is stored.
JP2000349567A 2000-11-16 2000-11-16 Double-sided mounting board inspection method and apparatus Expired - Fee Related JP4540831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000349567A JP4540831B2 (en) 2000-11-16 2000-11-16 Double-sided mounting board inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000349567A JP4540831B2 (en) 2000-11-16 2000-11-16 Double-sided mounting board inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2002158500A JP2002158500A (en) 2002-05-31
JP4540831B2 true JP4540831B2 (en) 2010-09-08

Family

ID=18822949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000349567A Expired - Fee Related JP4540831B2 (en) 2000-11-16 2000-11-16 Double-sided mounting board inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP4540831B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714462B2 (en) * 2004-12-24 2011-06-29 株式会社サキコーポレーション Device for inspecting appearance of object
US7590279B2 (en) 2004-12-24 2009-09-15 Saki Corporation Appearance inspection apparatus for inspecting inspection piece
JP4988482B2 (en) * 2006-09-15 2012-08-01 トヨタ自動車株式会社 Radiation inspection apparatus, radiation inspection method, and radiation inspection program
JP2008186879A (en) * 2007-01-29 2008-08-14 Omron Corp Substrate inspection method
JP2011095227A (en) * 2009-11-02 2011-05-12 Saki Corp:Kk Radiation inspection device of inspection object

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243239A (en) * 1993-02-10 1994-09-02 Omron Corp X-ray fluoroscopic image processing method
JPH09153675A (en) * 1995-11-30 1997-06-10 Kobe Steel Ltd Method for inspecting mounted board and its device
JP2945537B2 (en) * 1992-04-08 1999-09-06 株式会社神戸製鋼所 Soldering inspection method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2945537B2 (en) * 1992-04-08 1999-09-06 株式会社神戸製鋼所 Soldering inspection method and apparatus
JPH06243239A (en) * 1993-02-10 1994-09-02 Omron Corp X-ray fluoroscopic image processing method
JPH09153675A (en) * 1995-11-30 1997-06-10 Kobe Steel Ltd Method for inspecting mounted board and its device

Also Published As

Publication number Publication date
JP2002158500A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
JP4493421B2 (en) Printed circuit board inspection apparatus, printed circuit board assembly inspection line system, and program
CN110045688B (en) Inspection management system, inspection management device, and inspection management method
JP2011180058A (en) Solder printing inspection device and solder print system
JP4540831B2 (en) Double-sided mounting board inspection method and apparatus
JP4249543B2 (en) Circuit board appearance inspection method and circuit board appearance inspection apparatus
JP2007271638A (en) Solder inspection system
JP2005228949A (en) Inspection device, system, and method
JP2001050730A (en) Soldering inspection method and device for both-side mounting board
JP4161884B2 (en) Solder inspection equipment
JP2010141209A (en) Substrate inspection device and substrate inspection method
JPH0372249A (en) X-ray soldering inspecting device
JP2945537B2 (en) Soldering inspection method and apparatus
JP4941394B2 (en) Method and apparatus for evaluating printed state of solder
JP3205392B2 (en) Cream solder printing inspection device and inspection method
JP2002368411A (en) Solder inspection system
JP2022111659A (en) Inspection management system, inspection management device, inspection management method, and program
JP3680675B2 (en) Method for creating inspection data for printing inspection apparatus
JP4187332B2 (en) Screen printing inspection method and screen printing apparatus
KR20110060997A (en) Method of analyzing defect in printing process and computer readable media storing the same
WO2021181792A1 (en) Inspection system, inspection method, and program
TWI802270B (en) Inspection system, inspection management device, inspection program generation method, and program
TWI773431B (en) Offset Position Compensation System and Compensation Method for Predicting Deformation Error of Circuit Board Using Nonlinear Model
JP2007227624A (en) System and method for inspecting quality of solder
JP4192679B2 (en) Inspection method and apparatus for double-sided mounting board
JPH0674741A (en) Soldered part detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100623

R150 Certificate of patent or registration of utility model

Ref document number: 4540831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees