以下、添付の図面を参照して、本発明の実施の形態について説明する。
図1は、この発明の一実施形態に係る光ディスク記録媒体を説明するための図、図2A及び図2Bは、図1の一部拡大図である。
図1に示すように、円板状の光ディスク記録媒体1は、周方向に分割された複数のフレーム2(この例では、フレーム#00〜#97)を備え、これら各フレーム2は、更に周方向に分割された複数のセグメント3(この例では、セグメント#00〜#13)から構成されている。各セグメント3は、サーボ領域6と、一部の隣接するサーボ領域6間を除いてはホログラム記録領域7とを備え、一部の隣接するサーボ領域6間(この例では、セグメント#00のサーボ領域6とセグメント#01のサーボ領域6間)には、アクセス位置を示すアドレス情報が記録されたアドレス領域8が形成されている。
図2A,2Bに示すように、各サーボ領域6には、光ディスク記録・再生装置における各種の動作のタイミングの基準となるサーボクロックピットSCK1,2,3と、例えばサンプルド・サーボ方式によってフォーカスサーボ及びトラッキングサーボを行うためのサーボピットA,B,Cとが予めエンボスピット等により記録されている。アドレス領域8は、プリ・アンブル8a、同期マーク8b、アドレスパート8c、エンドアドレスマーク8d、ポスト同期マーク8e及びポスト・アンブル8fから構成されている。
アドレスパート8cには、ホログラム記録領域7を識別するためのアドレス情報が1トラックおきに記録されており、ホログラムの記録の際には、このアドレス領域8に記録されている情報を利用して、各ホログラム記録領域7の情報記録位置に対する光ヘッドからの情報光、記録用参照光及び再生用参照光の照射位置の位置合わせを行う。光ディスク記録・再生装置は、サーボ領域6に記録されているサーボクロックピットSCK1〜3及びサーボピットA,B,Cを利用してフォーカシングやトラッキングを行うと共に、アドレス領域8に記録されているアドレス情報を検出して各ホログラム記録領域7における情報光、記録用参照光及び再生用参照光の照射位置を合わせている。ホログラム記録領域7は、エンボスビットによる物理フォーマットが施されていないミラー領域である。
図3は、この光ディスク記録媒体1の拡大した部分断面図である。光ディスク記録媒体1は、円形の透明基板1a,1bの間にホログラム記録層1cを設けると共に、透明基板1bの記録層1cとは反対側の面に反射膜1dを形成し、これらを基板1eと貼り合わせて構成される。反射膜1dには、セグメント#00では、サーボ領域6及びアドレス領域8のエンボスピットが物理フォーマットとしてプリフォーマットされ、セグメント#01〜#13では、サーボ領域6のエンボスピットのみが物理フォーマットとしてプリフォーマットされている。このように14個のセグメントのうちの1つのセグメントのみをアドレス情報の物理フォーマットのために使用することにより、ホログラムの記録に利用できるミラー領域の面積を極力大きく確保することができる。ホログラム記録領域7では、直径Dのホログラム記録スポットHSPが隣接スポットHSPと一部重なるように水平方向にピッチPずつずらして記録され、これにより多重記録を実現する。
光ディスク記録媒体の具体的な構成としては、透明基板1a,1bの厚みt1,t3が、例えば0.6mm以下で、ホログラム記録層1cの厚みt2が、例えば10μm以上に設定されている。ホログラム記録層1cは、レーザ光で所定時間照射されたときに、レーザ光の強度に応じて屈折率、誘電率及び反射率等の光学特性が変化するホログラム記録材料によって形成されており、例えばデュポン(Dupont)社製のフォトポリマ(Photopolymers)HRF−600(製品名)等が使用される。
次に、サーボ領域6及びアドレス領域8の物理フォーマットについて詳細に説明する。図2A及び図2Bに示すように、サーボクロックピットは、サーボピットA,B,C形成領域の両端部に形成されており、一方の端部に形成されるサーボクロックピットSCK1はトラック方向に1つ、他方の端部に形成されるサーボクロックピットSCK2,SCK3はトラック方向に連続して2つ形成されている。これは、トラック方向への双方向読み出しを可能にするために、方向性を決定付けるようサーボクロックピットSCK1とSCK2,SCK3の形成数を異ならせたものである。このようにサーボクロックピットSCK1,SCK2,SCK3を形成することにより、読み出す方向の違いによるサーボクロック情報が異なるため、読み出し方向を識別することができる。これは、後述する追跡サーボ処理を実行する上で必要な機能となる。
この実施形態の光ディスク記録媒体1では、これらエンボスピットの間にトラックを形成する。サーボクロックピットSCK1〜3の径方向の配列ピッチは、トラックピッチ(例えば0.8μm)に等しく、これは図4に示すMTF=0の空間周波数(λ/2NA)となるように設定されている。これにより、サーボクロックピットは、径方向に関して光学的に1本の溝に見え、トラッキング開始時に光ビームがどのような位置にあっても、これを検出することができる。なお、この点は、アドレス領域8のプリ・アンブル8a、同期マーク8b、エンドアドレスマーク8d、ポスト同期マーク8e及びポスト・アンブル8fについても同様である。
サーボピットA,B,Cは、サンプルド・サーボを実現するものである。即ち、図5に示すような、オントラック位置に形成されたサーボピットA′と、トラックの進行方向左右に配置されたサーボピットB′,C′とによりサンプルド・サーボを行おうとすると、ピットA′,B′,C′を1/2トラックピッチ(TP)で形成しなくてはならず、製造コストが上昇するのに対し、本実施例の方式は、図6(a)に示すように、全てのピットがトラックとトラックの間に形成されており、2つの隣接するピットのペアで、オントラック位置の検出を行っているので、ピットの形成精度はトラックピッチ(TP)であり、その分、製造コストを低減することができる。
同図(a)において、光ビームスポットSPがAトラック(A−Tr)にオントラックしているときには、光ビームスポットSPは、まず最初に2つのピットAを検出し、次にピットB,Cをそれぞれ1つずつ検出するので、同図(b)に示すように、最初の検出信号RFAが最大、続く2番目と3番目の検出信号RFB,RFCがRFAよりも小さい振幅でほぼ等しい振幅となる。したがって、この場合には、小さい振幅の検出信号RFB,RFCのピーク値をサンプルホールドとして両者を減算することにより、トラッキングエラー信号TEが得られる。
次に、アドレスパート8cについて説明する。アドレスパート8cには、アドレス情報が1トラックおきに記録されている。図7には、各トラック及び各フレームとアドレス情報との配置関係が示されている。この図に示すように、アドレス情報は、奇数トラック(正確には奇数トラックの外側)の場合、奇数フレームに記録され、偶数トラック(正確には偶数トラックの外側)の場合、偶数フレームに記録される。アドレス情報は、例えば2バイトのトラック番号情報と、1バイトのフレーム番号情報とからなる。奇数トラックのアクセス中には、奇数フレームのアドレス領域8からトラック情報とフレーム情報を参照するが、偶数フレームのアドレス領域8からはフレーム情報のみを参照して、トラック情報は参照しない。同様に、偶数トラックのアクセス中には、偶数フレームのアドレス領域8からトラック情報とフレーム情報を参照するが、奇数フレームのアドレス領域8からはフレーム情報のみを参照して、トラック情報は参照しない。このようなアドレス参照を行うことにより、トラック密度がMTF=0の空間周波数に達していても、径方向の空間周波数を低下させることができ、アドレス参照を支障無く行うことが可能になる。
次に、ホログラム記録領域7へのホログラム記録フォーマット(論理フォーマット)について説明する。図8は、ホログラム記録フォーマットを説明するための図である。なお、図に示す円は、説明の便宜上、ホログラム記録スポットの記録位置の中心部を示したもので、ホログラム記録スポットを表したものではない点に注意を要する。図3にも示したように、ホログラム記録スポットHSPの直径Dは、トラックピッチTP(この例では0.8μm)に比べて非常に大きい。いま、ホログラム記録スポットHSPの直径Dを500μmとし、多重数mを25とすると、ホログラム記録スポットHSPの記録ピッチPは、D/m=20μmとなる。したがって、1つのトラックに20μmピッチで連続的にホログラム記録スポットHSPを形成すると、次に記録可能なトラックは、25トラック先のトラックとなる。この場合には、連続的な記録・再生が不可能になる。
そこで、この実施形態では、1つのトラックにホログラム記録スポットHSPを形成したら、次のトラックでは、ピッチP(=20μm)だけトラック方向にずれた位置にホログラム記録スポットHSPを記録する。これを順次繰り返し、m(=25)トラック先のトラックで、最初のトラックと同じ径方向位置にホログラム記録スポットHSPを形成する。これにより、各トラックでは、必ず少なくとも1つのホログラム記録スポットの記録又は再生が行われるので、連続的な処理が可能になる。
図9は、記録時のタイミングを与える記録パルスを示している。サーボ領域6のサーボクロックピットSCK1から再生されたサーボクロックCKを基準とし、トラック#00,#01,…,#nでそれぞれ書込タイミングをずらすようにする。このずれ量は、ピッチPに相当する。
図10は、ホログラム記録フォーマットの他の実施形態を示す図である。この実施形態では、半径方向に隣接するホログラム記録スポット列を約P/2だけずらして配置している。このように配置することにより、ホログラム記録スポットの更に高密度な配置が可能になる。
なお、図11に示すように、光ディスク記録媒体1は、例えば半径方向に複数のゾーンZA,ZB,ZCが形成され、各ゾーンZA,ZB,ZCで記録されるホログラム記録スポットHSPの数を、外周ほど多くなるように、n1,n2,n3(但し、n1<n2<n3)のように変えるようにしても良い。このような配置を行うことにより、更に記録密度が向上する。
図12は、この発明の一実施形態に係る光ディスク記録媒体の記録・再生装置の構成を概略的に示すブロック図である。光ディスク記録・再生装置10は、光ディスク記録媒体1が取り付けられるスピンドル41と、このスピンドル41を回転させるスピンドルモータ42と、光ディスク記録媒体1の回転数を所定の値に保つようにスピンドルモータ42を制御するスピンドルサーボ回路43とを備えている。また、光ディスク記録・再生装置10は、光ディスク記録媒体1に対して情報光と記録用参照光とを照射してホログラム記録領域7にホログラムを記録すると共に、ホログラムが記録された光ディスク記録媒体1に対して再生用参照光を照射し再生光を検出して、光ディスク記録媒体1のホログラム記録領域7に記録されているホログラムから元の情報を再生するための光ヘッド40と、この光ヘッド40を光ディスク記録媒体1の半径方向に駆動する駆動装置44とを備えている。
光ディスク記録・再生装置10は、光ヘッド40の出力信号からフォーカスエラー信号FEと、トラッキングエラー信号TEと、追跡エラー信号CEと、再生信号RFとを検出するための検出回路45と、この検出回路45により検出されるフォーカスエラー信号FE及びコントローラ50からのコマンドに基づいて光ヘッド40がサーボ領域6を通過する間、後述する光ヘッド本体を光ディスク記録媒体1の板面に対して垂直方向に移動させフォーカスサーボ制御を行うフォーカスサーボ回路46とを備えている。また、検出回路45により検出されるトラッキングエラー信号TE及びコントローラ50からのコマンドに基づいて光ヘッド40がサーボ領域6を通過する間、光ヘッド本体を光ディスク記録媒体1の半径方向に移動させてトラッキングサーボ制御を行うトラッキングサーボ回路47と、検出回路45により検出される追跡エラー信号CE及びコントローラ50からのコマンドに基づいて光ヘッド40がホログラム記録領域7を通過する間、光ヘッド本体を光ディスク記録媒体1の移動方向に移動させてホログラム記録領域7の情報記録位置を情報光及び記録用参照光の照射位置が所定時間ずれることなく追従するように追跡サーボ制御を行う追跡サーボ回路55とを備えている。更に、トラッキングエラー信号TE及びコントローラ50からのコマンドに基づいて駆動装置44を制御して光ヘッド40を光ディスク記録媒体1の半径方向に移動させるスライドサーボ制御を行うスライドサーボ回路48と、コントローラ50からのコマンドに基づいて光ヘッド40がサーボ領域6を通過する間、光ヘッド40を所望の情報記録位置へ追従させる追従制御回路54とを備えている。
また、光ディスク記録・再生装置10は、光ヘッド40内の後述するCCDアレイの出力データをデコードして光ディスク記録媒体1のホログラム記録領域7の各情報記録位置に記録されたホログラムを再生したり、検出回路45からの再生信号RFにより基本クロックを再生してコントローラ50にクロック信号を供給したり、アドレス領域8のアドレス情報を判別したりする信号処理回路49と、光ディスク記録・再生装置10の全体の動作を制御するコントローラ50と、このコントローラ50に対して様々な指示を与えるための操作部51とを備えている。
更に、光ディスク記録・再生装置10は、信号処理回路49の出力信号に基づいて光ディスク記録媒体1と光ヘッド本体との相対的な傾きを検出する傾き検出回路52と、この傾き検出回路52の出力信号に基づいて光ディスク記録媒体1の板面に対する光ヘッド本体の傾きが変化する方向に光ヘッド本体の位置を変化させ、光ディスク記録媒体1と光ヘッド本体との相対的な傾きを補正する傾き補正回路53とを備えている。
信号処理回路49のうち、トラッキングエラー検出回路に関する部分は、例えば図13に示すように構成されている。サーボクロックCKを基準として検出回路45からのRF信号のA,B,Cの時点でのピーク値をサンプル/ホールドして得られた値RFA,RFB,RFCの互いの差分をそれぞれ差動増幅器61a,61b,61cで求める。これら差動増幅器61a,61b,61cの各出力TPA,TPB,TPCをマルチプレクサ62で選択してトラックキングエラー信号TEを出力する。差動増幅器61a,61b,61cの各出力の極性をそれぞれコンパレータ63a,63b,63cで検出し、これらコンパレータ63a,63b,63cの各出力PA,PB,PCに基づいて、論理演算回路64がマルチプレクサ62を切替制御する。これにより、図6(b)に示した、小さい2つのピーク値の差分がトラッキングエラー信号TEとして出力される。なお、これらのトラッキングエラー信号TRA,TRB,TRCのダイナミックレンジは、図2Aに示すように、2つのサーボピット65での回折によるものであり、従来の光ディスクに比べて大きな値とすることができ、換言するとS/N比(信号対雑音比)が良好なトラッキングエラー信号TEを得ることができる。
光ディスク記録再生装置10では、ホログラムの記録時において、光ヘッド40がサーボ領域6を通過する間、光ヘッド本体をほぼトラックに沿う方向に移動させることによって、所定の時間、移動するホログラム記録領域7の1つの情報記録位置を情報光及び記録用参照光の照射位置が追従するように、情報光及び記録用参照光の照射位置を制御する追従制御回路54を備えているが、本実施形態では、情報光及び記録用参照光の照射位置が情報記録位置を更に精密且つ正確に追跡するように追跡サーボ制御を行うために、検出回路45によってホログラム記録領域7の各情報記録位置と情報光及び記録用参照光の照射位置との光ディスク記録媒体1の移動方向における位置ずれを、サーボクロックピットSCK1〜3を追跡サーボ用のレーザビームで照射して追跡エラー信号CEとして検出し、この追跡エラー信号CEに基づいてホログラム記録領域7内であっても光ヘッド本体を光ディスク記録媒体1の移動方向において移動させて、追跡サーボを行うための追跡サーボ回路55が設けられている。
コントローラ50は、信号処理回路49より出力されるサーボクロックCKやアドレス情報を入力すると共に、光ヘッド40、スピンドルサーボ回路43、スライドサーボ回路48、フォーカスサーボ回路46、トラッキングサーボ回路47、追跡サーボ回路55及び追従制御回路54等を制御するようになっている。スピンドルサーボ回路43には、信号処理回路49より出力される基本クロックが入力される。コントローラ50は、CPU(中央処理装置)、ROM(リード・オンリ・メモリ)及びRAM(ランダム・アクセス・メモリ)を有し、CPUが、RAMを作業領域として、ROMに格納されたプログラムを実行することによって、コントローラ50の機能を実現するようになっている。
次に、図14を参照して、本実施形態に係る光ディスク記録媒体の記録・再生装置の光ヘッド40の光学系11の一例について説明する。光ディスク記録媒体1へのホログラム記録は、レーザ光源25から発射される発散レーザ光をレンズ24によって集束してレーザビームを形成し、このレーザビームをハーフミラー30aを用いて二本のレーザビームに分割して、一方を記録情報によって変調された情報光に、他方を干渉パターンを形成するための記録用参照光として利用する。即ち、ホログラムの記録は、ホログラム記録層1c内に情報光と記録用参照光との干渉による3次元的干渉縞パターンを形成せしめるように、情報光と記録用参照光とを光ディスク記録媒体1のホログラム記録層1cに所定の時間照射することによって行われる。情報光と記録用参照光とを光ディスク記録媒体1のホログラム記録層1cの情報記録位置の一つを所定の時間照射するためには、光ディスク記録媒体1の移動と光ヘッド40による照射位置の移動とを所定の時間同期させる。
即ち、露光に必要な時間正確に同期して移動させることが必要である。そのため、本実施形態では、サーボ領域6にサーボクロックピットSCK1〜3を設け、このサーボクロックピットSCK1〜3を、ホログラム記録のためのレーザビームの波長とは異なる波長の追跡レーザビームで照射することによって、情報記録位置と情報光と記録用参照光の照射位置との位置ずれを検出し、ホログラムの記録時に、ホログラム記録領域7の情報記録位置と情報光と記録用参照光の照射位置とを所定の時間正確に位置合わせして移動させるための追跡サーボ制御を行っている。また、記録されたホログラムの再生は、干渉パターンを形成するための記録用参照光に替えて再生用参照光をホログラム記録層1cに照射することによって行われる。
更に、図14に示す光学系の一例は、本実施形態の光ディスク記録媒体の記録・再生装置に使用する光ヘッドの光学部分の原理を示す概略図であって、この例における記録再生光学系即ち光ヘッド11は、光ディスク記録媒体1に対向する対物レンズ12と、この対物レンズ12を光ディスク記録媒体1の厚み方向及び半径方向に移動するためのアクチュエータ13とを備える。対物レンズ12の光源側には、対物レンズ12から順に2分割旋光板14及びプリズムブロック15が配置され、2分割旋光板14は、光軸の左側部分に配置された旋光板14Lと、同光軸の右側部分に配置された旋光板14Rとから成り立っている。旋光板14Lは、レーザビームの偏光方向を+45°旋光させ、旋光板14Rは、レーザビームの偏光方向を−45°旋光させる。プリズムブロック15は、2分割旋光板14側から順にハーフミラー15aと全反射ミラー15bとを有している。これらハーフミラー15aと全反射ミラー15bとは共にその法線方向が対物レンズ12の光軸に対して同一方向に45°傾けて配置されている。
プリズムブロック15の側方には、更に、別のプリズムブロック19が平行に配置され、プリズムブロック15のハーフミラー15aに対向して、プリズムブロック19の全反射ミラー19aが平行に配置される。同様に、プリズムブロック15の全反射ミラー15bに対向して、プリズムブロック19のハーフミラー19bが平行に配置されている。プリズムブロック19の側方には、更に、ハーフミラー23aを有するプリズムブロック23及びハーフミラー30aを有するプリズムブロック30がそれぞれ配置される。
プリズムブロック15のハーフミラー15aとプリズムブロック19の全反射ミラー19aとの間には、凸レンズ16と位相空間光変調器17が配置され、プリズムブロック15の全反射ミラー15bとプリズムブロック19のハーフミラー19bとの間には、空間光変調器18が配置されている。位相空間光変調器17は、格子状に配列された多数の微小区画を有し、各微小区画毎に通過するレーザビームの位相を変化させ、通過するレーザビームの位相を空間的に変調できる構成となっており、ホログラム形成時或いはホログラム読取時の参照光を生成するもので、液晶素子を使用することにより容易に実現することができる。
一方、空間光変調器18は、情報光生成手段として機能し、その構造は、光変調器17と同じく格子状に配列された多数の微小区画からなり、各微小区画毎にレーザビームの通過状態と遮断状態とを記録する情報に応じて選択することによって、レーザビームの強度を空間的に変調し、情報を担持した情報光を生成することができるようになっている。この空間光変調器18にも位相空間光変調器17と同様に液晶素子を採用することができる。
光ヘッド11の光源は、ホログラム記録再生用のレーザ光源25並びに追跡サーボ用のレーザ光源33、及びレーザ光源25,33からのコヒーレントな発散レーザ光を平行光束に収束してレーザビームを形成するコリメータレンズ24,32をそれぞれ備え、プリズムブロック23,30にそれぞれ設けられたハーフミラー23a,30aは、その法線方向がコリメータレンズ24,32の光軸に対して45°傾けられている。このハーフミラー23a,30aを通過するレーザ光源25,33からの投射光の一部は、フォトディテクタ26,31に指向され、フォトディテクタ26,31の出力は光源25,33からの光出力を自動調整する。
光ディスク記録媒体1からの戻りビームは、ハーフミラー23aによって反射され、フォトディテクタ26とは反対の側に設けられた凸レンズ27、シリンドリカルレンズ28を経て、4分割フォトディテクタ29に達し、光ヘッド40がアドレスサーボ領域6を通過する間に、フォーカスエラー信号FE、トラッキングエラー信号TEがそれぞれ検出されると共に、再生信号RFが導出される。検出されたフォーカスエラー信号FEは、光ヘッド40のフォーカス・サーボ制御のために使用され、トラッキングエラー信号TEは、光ヘッド40のトラッキングサーボ制御を行うために使用される。
本実施形態では、光ヘッド40がホログラム記録領域7を通過する際に、追跡エラー信号CEを検出して、光ヘッド40の追跡サーボ制御を行うために、サーボクロックピットに対する追跡サーボ用のレーザビームの照射位置は、追跡サーボ用のレーザ光源の出射位置を、ホログラムの記録態様に応じて、コリメータレンズ32の光軸から変位させることによって移動させることができる。従って、追跡サーボ用のレーザビームでサーボクロックピットSCK1〜3上を照射して追跡エラー信号CEを検出し、追跡サーボ制御を行いながら、ホログラム記録用のレーザビームで情報記録位置を照射して、ホログラムの記録が行えるように構成されている。
次に、ホログラムを記録する際の動作の概略を説明する。図14において、ホログラム記録時には、空間光変調器18は、記録する情報に応じて各画素毎に透過状態(以下、「オン」ともいう。)と遮断状態(以下、「オフ」ともいう。)を選択して、通過するレーザビームを空間的に変調し、情報光を生成する。本発明の実施態様では、2画素で1ビットの情報を表現し、必ず、1ビットの情報に対応する2画素のうちの一方をオン、他方をオフとする。
また、位相空間光変調器17は、通過するレーザビームに対して、所定の変調パターンに従って、画素毎に、所定の位相を基準にして位相差0(rad)かπ(rad)を選択的に付与することによって、レーザビームの位相を空間的に変調して、レーザビームの位相が空間的に変調された記録用参照光を生成する。コントローラ50は、所定の条件に従って自らが選択した変調パターン又は操作部51によって選択された変調パターンの情報を位相空間光変調器17に与え、位相空間光変調器17は、コントローラ50により与えられた、又は操作部51によって選択された変調パターンの情報に従って、通過するレーザビームの位相を空間的に変調する。
レーザ光源25から出力されるレーザビームは、パルス状の記録用高出力にされる。なお、コントローラ50は、再生信号RFより再生された基本クロックに基づいて、対物レンズ12の出射レーザビームがホログラム記録領域7を通過するタイミングを予測し、対物レンズ12の出射光がホログラム記録領域7を通過する間、上記設定のままとする。更に、対物レンズ12からのレーザビームがホログラム記録領域7を通過する間は、フォーカスサーボ制御及びトラッキングサーボ制御は行われず追跡サーボ制御のみが行われる。また、以下の説明では、レーザ光源25がP偏光の光を出射するものとする。
図14に示したように、レーザ光源25から出射されたP偏光のレーザ光は、コリメータレンズ24によって平行光束のレーザビームとされ、ビームスプリッタ30を通過してビームスプリッタ23に入射し、光量の一部がハーフミラー23aを透過し、プリズムブロック19に入射する。プリズムブロック19に入射したレーザビームは、光量の一部がハーフミラー19bを透過して空間光変調器18を通過し、その際に、記録する情報に従って、空間的に変調されて、情報光となる。
この情報光は、プリズムブロック15の全反射面15bで反射され、光量の一部がハーフミラー15aを透過して、2分割旋光板14を通過する。ここで、2分割旋光板14の旋光板14Lを通過したレーザビームは偏光方向が+45°回転されてA偏光のレーザビームとなり、旋光板14Rを通過した光は偏光方向が−45°回転されてB偏光のレーザビームとなる。2分割旋光板14を通過したA偏光及びB偏光の情報光は、光ディスク記録媒体1のホログラム記録層1cと基板4の境界面、即ち、反射膜1d上で収束するように、対物レンズ12によって光ディスク記録媒体1に照射される。
一方、プリズムブロック19のハーフミラー19bで反射されたレーザビームは、全反射ミラー19aで反射され、位相空間光変調器17を通過し、その際に、所定の変調パターンに従って、光の位相が空間的に変調されて記録用参照光となる。この記録用参照光は、凸レンズ16を通過して収束され、その光量の一部がプリズムブロック15のハーフミラー15aで反射され、2分割旋光板14を通過する。
ここで、2分割旋光板14の旋光板14Lを通過したレーザビームは偏光方向が+45°回転されてA偏光のレーザビームとなり、旋光板14Rを通過したレーザビームは偏光方向が−45°回転されてB偏光のレーザビームとなる。2分割旋光板14を通過したA偏光及びB偏光の記録用参照光は、光ディスク記録媒体1に照射され、ホログラム記録層1cと基板4との境界面よりも手前で対物レンズ12によって一旦収束された後、発散しながらホログラム記録層1c内を通過する。
ここで理解を容易にするために、光の偏光について簡単に説明しておくと、A偏光とは、S偏光を−45°回転させるか、或いはP偏光を+45°回転させた直線偏光であり、B偏光とは、S偏光を+45°回転させるか、或いはP偏光を−45°回転させた直線偏光である。従って、A偏光とB偏光とは互いに偏光方向が直交している。
図15及び図16は記録時におけるレーザビームの状態を示す説明図である。図において、符号81で示した記号はP偏光を表し、符号83で示した記号はA偏光を表し、符号84で示した記号はB偏光を表している。図15において、2分割旋光板14の旋光板14Lを通過した情報光71Lは、A偏光の光となり、対物レンズ12によって光ディスク記録媒体1に照射され、ホログラム記録層1c内を通過し、反射膜1d上に収束すると共に反射膜1dで反射されて、再度ホログラム記録層1c内を逆行する。
また、2分割旋光板14の旋光板14Lを通過した記録用参照光72Lは、A偏光の光となり、対物レンズ12によって光ディスク記録媒体1に照射され、ホログラム記録層1cへの入射面上で一旦収束した後、発散しながらホログラム記録層1c内を通過する。そして、ホログラム記録層1c内において、反射膜1dで反射されたA偏光の情報光71Lと反射膜1dに向かって進むA偏光の記録用参照光72Lとが干渉して干渉パターンをホログラム記録層内に3次元的に形成する。従って、レーザ光源25の出射光の出力が高出力になったとき、その干渉パターンがホログラム記録層1c内に立体的に記録されることになる。
また、図16に示したように、2分割旋光板14の旋光板14Rを通過した情報光71Rは、B偏光の光となり、対物レンズ12によって光ディスク記録媒体1に照射され、ホログラム記録層1c内を通過し、反射膜1d上に収束すると共に反射膜1dで反射されて、再度ホログラム記録層1c内を逆方向に進行する。また、2分割旋光板14の旋光板14Rを通過した記録用参照光72Rは、B偏光の光となり、対物レンズ12によって光ディスク記録媒体1に照射され、ホログラム記録層1cの入射面上で一旦収束した後、発散しながらホログラム記録層1c内を通過する。そして、ホログラム記録層1c内において、反射膜1dで反射されたB偏光の情報光71Rと反射膜1dに向かって進むB偏光の記録用参照光72Rとが干渉して3次元干渉パターンを形成し、レーザ光源25の出射光の出力が高出力になったとき、その干渉パターンがホログラム記録層1c内に立体的に記録される。
図15及び図16に示した、本発明の光ディスク記録媒体へのホログラム記録態様では、情報光の光軸と記録用参照光の光軸が同一線上に配置されるように、情報光と記録用参照光とがホログラム記録層1cに対して同一面側より照射される。また、情報記録領域の同一記録位置のホログラム記録層1cに、記録用参照光の変調パターンを変えて複数回の記録動作を行うことで、位相符号化多重により、情報を多重記録することが可能である。
このようにして、本発明の光ディスク記録媒体にホログラムを記録するための記録装置では、ホログラム記録層1c内に反射型(リップマン型)のホログラムが形成される。なお、A偏光の情報光71LとB偏光の記録用参照光72Rとは、偏光方向が直交するため干渉せず、同様に、B偏光の情報光71RとA偏光の記録用参照光72Lとは、偏光方向が直交するため干渉しない。即ち、ホログラムの記録に際して、余分な干渉縞の発生が防止され、SN(信号対雑音)比の低下を防止することができる利点がある。
更に、上記記録装置では、情報光は、上述のように、光ディスク記録媒体1におけるホログラム記録層1cと基板1eの境界面で収束するように照射され、光ディスク記録媒体1の反射膜1dで反射されて対物レンズ12側に戻ってくる。この戻り光は、サーボ時と同様にして、4分割フォトディテクタ29に入射する。従って、この4分割フォトディテクタ29に入射する情報光を利用して、記録時にも、アドレスサーボ領域6において、フォーカスサーボを行うことが可能である。
なお、記録用参照光の方は、光ディスク記録媒体1におけるホログラム記録層1cの入射面上で収束してサーボ領域6のエンボスピットには発散光が照射されるため、光ディスク記録媒体1の反射膜1dで反射されて対物レンズ12側に戻ってきても4分割フォトディテクタ29上では結像しないため、フォーカスサーボに利用することはできない。
なお、上記記録装置では、凸レンズ16を前後に動かしたり、その倍率を変更したりすることで、ホログラム記録層1cにおいて情報光と参照光による一つの干渉パターンが立体的に記録される領域(ホログラム形成領域)の大きさを任意に選ぶこともできる。
次に、記録情報再生時の作用について再度図14を参照して説明する。再生時には、空間光変調器18の全画素がオンにされる。また、コントローラ50は、再生しようとする情報の記録時における記録用参照光の変調パターンと同じ情報を位相空間光変調器17に与え、位相空間光変調器17は、コントローラ50により与えられた情報記録時の変調パターンと同じ情報に従って、通過するレーザビームの位相を空間的に変調して、レーザビームの位相が空間的に変調され、再生用参照光が生成される。
レーザ光源25から発射されるレーザ光の出力は、再生用の低出力に切り替えられ、コントローラ50は、再生信号RFより再生されたサーボクロックCKに基づいて、対物レンズ12を通過したレーザビームがホログラム記録領域7を通過するタイミングを予測し、対物レンズ12からのレーザビームがホログラム記録領域7を通過する間、上記の再生時の設定とする。従って、対物レンズ12からのレーザビームがホログラム記録領域7を通過する間は、フォーカスサーボ制御及びトラッキングサーボ制御は行われず、追跡サーボ制御のみ行われる。
図14に示したように、レーザ光源25から出射されたP偏光のレーザビームは、コリメータレンズ24によって平行光束のレーザビームとされ、ビームスプリッタ30を透過してビームスプリッタ23に入射し、光量の一部はハーフミラー23aによって反射されてフォトディテクタ26に入射して自動光量調節が行われ、ハーフミラー23aを通過したレーザビームはプリズムブロック19に入射する。プリズムブロック19に入射した光の一部がハーフミラー19bで反射され、この反射された光は、全反射ミラー19aで反射され、位相空間光変調器17を通過し、その際に、所定の変調パターンに従って、光の位相が空間的に変調されて、再生用参照光となる。
この再生用参照光は、凸レンズ16を通過して収束する光となる。この再生用参照光は、一部がプリズムブロック15のハーフミラー15aで反射され、2分割旋光板14を通過する。ここで、2分割旋光板14の旋光板14Lを通過した光は偏光方向が+45°回転されて、A偏光の光となり、また、旋光板14Rを通過した光は偏光方向が−45°回転されて、B偏光の光となる。2分割旋光板14を通過した再生用参照光は、対物レンズ12を経て光ディスク記録媒体1に照射され、ホログラム記録層1cの手前で収束した後、発散しながらホログラム記録層1c内を通過する。
図17及び図18において、符号81で示した記号はP偏光を表し、符号82で示した記号はS偏光を表し、符号83で示した記号はA偏光を表し、符号84で示した記号はB偏光を表している。図17において、2分割旋光板14の旋光板14Lを通過した再生用参照光73LはA偏光の光となり、対物レンズ12によって光ディスク記録媒体1に照射され、ホログラム記録層1cの手前側で収束した後、発散しながらホログラム記録層1c内を通過する。その結果、ホログラム記録層1cより、記録時における情報光71Lに対応する再生光74Lが発生する。この再生光74Lは、対物レンズ12側に進み、対物レンズ12で平行光束のレーザビームとされ、再度2分割旋光板14を通過してS偏光の光となる。
また、図18に示したように、2分割旋光板14の旋光板14Rを通過した再生用参照光73RはB偏光の光となり、対物レンズ12によって光ディスク記録媒体1に照射され、ホログラム記録層1cの手前側で収束した後、発散しながらホログラム記録層1c内を通過する。その結果、ホログラム記録層1cより、記録時における情報光71Rに対応する再生光74Rが発生する。この再生光74Rは、対物レンズ12に向かって進み、対物レンズ12で平行光束のレーザビームとされ、再度2分割旋光板14を通過してS偏光の光となる。
2分割旋光板14を通過した再生光は、プリズムブロック15に入射し、その一部がハーフミラー15aを透過する。ハーフミラー15aを透過した再生光は、全反射ミラー15bで反射され、全画素がオンにされた空間光変調器18を通過し、光量の一部がプリズムブロック19のハーフミラー19bで反射されて、CCDアレイ20に入射し、CCDアレイ20上には、記録時における空間光変調器18によるオン、オフのパターンが結像され、このパターンを検出することで、光ディスク記録媒体1に記録されていた情報が再生される。
なお、記録用参照光の変調パターンを変えて、ホログラム記録層1cに複数の情報が多重記録されている場合には、複数の情報のうち、記録用参照光の変調パターンと同じ変調パターンの再生用参照光によって読み取られた情報のみが再生される。図17及び図18では、再生用参照光の光軸と再生光の光軸が同一線上に配置され、再生用参照光の照射と再生光の収集とが、ホログラム記録層1cの同一側より行われている例である。
更に、再生光の一部は、記録時のサーボ時における戻り光と同様に、4分割フォトディテクタ29に入射する。従って、この4分割フォトディテクタ29に入射する光を用いて、再生時にもサーボ領域6においてフォーカスサーボを行うことが可能である。なお、再生用参照光の方は、光ディスク記録媒体1におけるホログラム記録層1cの手前側で一旦収束してホログラム記録層1c内で発散光となるため、光ディスク記録媒体1の反射膜1dで反射されて対物レンズ12側に戻ってきても4分割フォトディテクタ29上では結像しない。
本発明を実施するにあたっては、光ヘッドから光ディスク記録媒体1を照射するレーザビームとして、レーザ光源25から発射されるホログラム形成用の波長λ2のレーザビームと、移動する光ディスク記録媒体1の情報記録位置をホログラム形成用のレーザビームの照射位置が、露光に必要な時間、位置ずれなく追従するように、光ヘッドに対して追跡サーボ制御を行うために、サーボ領域6に設けたサーボクロックピットSCK1〜3を追跡レーザビームで照射して、情報記録位置とホログラム形成用のレーザビームの照射位置との光ディスク記録媒体の移動方向における位置ずれを検出する、レーザ光源33から発射される波長λ1の追跡レーザビームとを必要とすることから、本発明の光ディスク記録媒体1に対する光ヘッド11は、例えば、波長λ1、波長λ2の複数波長のコヒーレントなレーザビームを出射できるよう構成されている。
波長λ1、波長λ2の複数波長の組み合わせとしては、λ1=780nm、λ2=532nmの組み合わせ、λ1=780nm、λ2=650nmの組み合わせ、λ1=650nm、λ2=525nmの組み合わせ、λ1=650nm、λ2=405nmの組み合わせ、λ1=780nm、λ2=390nmの組み合わせ等がある。図14の装置では、波長の異なる2つのレーザ光源25,33を設けた装置を例示したが、かかる2種レーザ光源に替えて、単一レーザ光源と、プリズム又は回折格子等による波長選択素子との組み合わせからなる複数波長のレーザビームが出射可能な波長可変レーザ光源装置、或いは、レーザビーム源及び該レーザビーム源からの出射光の波長を交換する非線形光学系を使用した波長可変レーザ光源装置等を使用することもできる。
光ディスク記録媒体1のホログラム記録領域7の情報記録位置に順次ホログラムを記録するにあたって、ホログラム形成用のレーザビームで、光ディスク記録媒体1が距離にして少なくとも200μm移動する間、位置ずれを起こすことなく情報記録位置を追従せしめ、照射し続けることによってホログラム記録層にホログラムを定着させることが必要である。
そして、光ディスク記録媒体1が200μm移動し、ホログラムの記録が完了した時点で、光ヘッドは、光ディスク記録媒体1の移動方向とは逆の方向に200μm−α(但し、αは隣接する情報記録位置間の距離)急激に戻され、同様の記録態様で新たなホログラムを光記録媒体の次の情報記録位置に記録するために、ホログラム形成用のレーザビームで次の情報記録位置への照射を開始し、光ディスク記録媒体1が200μm移動する間、当該情報記録位置をホログラム形成用のレーザビームで追従しながら情報記録位置へ正確なホログラム記録を行う。
このようなホログラム記録動作が、次のサーボ領域に達するまで順次繰り返される。光ヘッドがサーボ領域6を通過する間は、前述の如くフォーカスサーボ制御及びトラッキングサーボ制御が行われ次セクタの情報記録領域に移ると、追跡サーボ制御を行いながら上記と同様のホログラムの記録動作を繰り返し、次セクタの情報記録領域の情報記録位置にホログラムが順次記録されていく。
1…光ディスク記録媒体、1a,1b…透明基板、1c…記録層、1d…反射膜、1e…基板、2…フレーム、3…セグメント、4…、5…、6…サーボ領域、7…ホログラム記録領域、8…アドレス領域、8a…プリ・アンブル、8b…同期マーク、8c…アドレスパート、8d…エンドアドレスマーク、8e…ポスト同期マーク、8f…ポスト・アンブル、10…光ディスク記録・再生装置、11…光ヘッド、12…対物レンズ、13…アクチュエータ、14…2分割旋光板、15,19,23,30…プリズムブロック、15a,19b,23a,30a…ハーフミラー、15b,19a…全反射ミラー、16,27…凸レンズ、17…位相空間光変調器、18…空間光変調器、24,32…コリメータレンズ、25,33…レーザ光源、26,31…フォトディテクタ、28…シリンドリカルレンズ、29…4分割フォトディテクタ、30a…ハーフミラー、40…光ヘッド、41…スピンドル、42…スピンドルモータ、43…スピンドルサーボ回路、44…駆動装置、45…検出回路、46…フォーカスサーボ回路、47…トラッキングサーボ回路、48…スライドサーボ回路、49…信号処理回路、50…コントローラ、51…操作部、52…傾き検出回路、53…傾き補正回路、54…追従制御回路、55…追跡サーボ回路、61…差動増幅器、62…マルチプレクサ、63…コンパレータ、64…論理演算回路。