JP4539341B2 - Composite reverse osmosis membrane and method for producing the same - Google Patents

Composite reverse osmosis membrane and method for producing the same Download PDF

Info

Publication number
JP4539341B2
JP4539341B2 JP2005010142A JP2005010142A JP4539341B2 JP 4539341 B2 JP4539341 B2 JP 4539341B2 JP 2005010142 A JP2005010142 A JP 2005010142A JP 2005010142 A JP2005010142 A JP 2005010142A JP 4539341 B2 JP4539341 B2 JP 4539341B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
polyfunctional
osmosis membrane
composite reverse
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005010142A
Other languages
Japanese (ja)
Other versions
JP2006198461A (en
JP2006198461A5 (en
Inventor
憲弘 吉田
岳治 井上
洋樹 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005010142A priority Critical patent/JP4539341B2/en
Publication of JP2006198461A publication Critical patent/JP2006198461A/en
Publication of JP2006198461A5 publication Critical patent/JP2006198461A5/en
Application granted granted Critical
Publication of JP4539341B2 publication Critical patent/JP4539341B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Polyamides (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、飲料水や純水の製造、し尿や家庭用排水等の下水の高度処理、工業排水の浄化や有価物の回収などの排水処理に用いる複合逆浸透膜の製造方法に関するものである。   The present invention relates to a method for producing a composite reverse osmosis membrane used for wastewater treatment such as production of drinking water and pure water, advanced treatment of sewage such as human waste and household wastewater, purification of industrial wastewater and recovery of valuable resources. .

近年、省エネルギーおよび省資源のための低コストプロセスとして膜分離法が水処理分野において積極的に利用されてきている。膜分離法に主として使用される複合逆浸透膜は、多官能アミン成分を含む水溶液と多官能酸ハロゲン化物を含む有機溶液との重縮合反応によって得られる架橋ポリアミドからなる超薄膜層を微多孔性支持膜上に被覆した構造であり、透過性や選択分離性の高い膜として広く用いられている。   In recent years, a membrane separation method has been actively used in the water treatment field as a low-cost process for saving energy and resources. The composite reverse osmosis membrane mainly used for membrane separation is a microporous ultrathin layer made of crosslinked polyamide obtained by polycondensation reaction between an aqueous solution containing a polyfunctional amine component and an organic solution containing a polyfunctional acid halide. The structure is coated on a support membrane and is widely used as a membrane with high permeability and selective separation.

しかし、これらの複合逆浸透膜の表面は、通常、荷電性や疎水性部分を持っており、使用が長期に渡ったり、逆符号の荷電物質や疎水性物質が処理水中に存在する場合には膜が汚れ、透過水量や脱塩率の低下が発生することがある。特に、処理原水に洗剤などの界面活性剤が混入している場合、この界面活性剤が複合逆浸透膜の膜面に吸着され、膜の分離性能を低下させることがある。このため、上記の複合逆浸透膜による処理を行うと、時間の経過とともに透過水量が著しく低下して安定な処理が困難である。   However, the surface of these composite reverse osmosis membranes usually has a chargeable or hydrophobic part, and if the product is used for a long period of time or there is a charged or hydrophobic substance with a reverse sign in the treated water, The membrane may become dirty, and the amount of permeated water and the desalination rate may decrease. In particular, when a surface active agent such as a detergent is mixed in the treated raw water, this surface active agent may be adsorbed on the membrane surface of the composite reverse osmosis membrane, thereby reducing the membrane separation performance. For this reason, when the treatment with the above composite reverse osmosis membrane is performed, the amount of permeated water is remarkably lowered with the passage of time, and a stable treatment is difficult.

上記の膜の汚れ(ファウリング)といった問題点を解決する手段として、多官能アミン成分に、直鎖脂肪族アミン成分を添加したもの(特許文献1)が知られている。   As a means for solving the problems such as fouling of the film, a polyfunctional amine component added with a linear aliphatic amine component is known (Patent Document 1).

しかしながら、この方法は、界面活性剤添加後の透過水量の低下を抑えるとともに、初期透過水量が低下するといった問題があった。
特開2004−50144号公報 特許第3284116号公報
However, this method has a problem that the permeated water amount after the addition of the surfactant is suppressed and the initial permeated water amount is lowered.
JP 2004-50144 A Japanese Patent No. 3284116

本発明の目的は、上記した従来の問題を解決し、界面活性剤を含む水の処理に用いても、高い脱塩率や高い透過水量を有し、透過水量の低下率の低い複合逆浸透膜を提供することにある。   The object of the present invention is to solve the above-mentioned conventional problems, and even when used for the treatment of water containing a surfactant, it has a high desalination rate and a high permeate flow rate, and a composite reverse osmosis with a low permeate flow rate reduction rate. It is to provide a membrane.

上記課題を達成するため、本発明は以下の構成をとる。
すなわち本発明は、多官能アミンと多官能酸ハロゲン化物からなる架橋ポリアミド分離機能層が多孔性支持膜上に形成されてなる複合逆浸透膜において、該架橋ポリアミド分離機能層を形成させるための多官能アミンとしてグアニジン類と他の多官能アミン類とが用いられ、かつ、該グアニジン類が架橋ポリアミド分離機能層の架橋ポリアミド中で化学的に結合した状態で存在することを特徴とする。
In order to achieve the above object, the present invention has the following configuration.
That is, the present invention provides a composite reverse osmosis membrane crosslinked polyamide separating functional layer comprising a polyfunctional amine and a polyfunctional acid halide is formed on a porous support membrane, multi for forming the crosslinked polyamide separating functional layer functional Amin and to guanidines and the other polyfunctional amines are used, and characterized by the presence in the state in which the guanidine is chemically bonded in the crosslinked polyamide crosslinked polyamide separating functional layer .

また、上記グアニジン類が、グアニジン、アミノグアニジン、グアナゾール、ジフェニルグアニジン、トリフェニルグアニジン、及び、グアニド無水酢酸からなる群から選ばれる1種以上であることが好ましい。
架橋ポリアミド分離機能層の表面に、架橋重合体からなる被覆が形成されていることが好ましい。
Moreover, the guanidine is guanidine, aminoguanidine, Guanazoru, diphenyl guanidine, triphenyl guanidine, and is preferably at least one member selected from the group consisting of guanido acetic anhydride.
It is preferable that a coating made of a crosslinked polymer is formed on the surface of the crosslinked polyamide separation functional layer.

また本発明は、多官能アミンを含有する水溶液と多官能酸ハロゲン化物を含有する有機溶液とを接触させることにより多官能アミンと多官能酸ハロゲン化物とを反応させて、多孔性支持膜上に架橋ポリアミド分離機能層を形成させ、前記した本発明の複合逆浸透膜製造する方法であって、前記多官能アミンを含有する水溶液が、グアニジン類と他の多官能アミン類とを含有し、かつ、他の多官能アミンに対するグアニジン類の割合が30〜50質量%であることを特徴とする複合逆浸透膜の製造方法である。 The present invention is a multi-functional by reacting a polyfunctional amine and a polyfunctional acid halide by contacting an organic solution containing an aqueous solution and a polyfunctional acid halide containing Amin, porous support film crosslinked polyamide separating functional layer to form a a method for producing a composite reverse osmosis membrane of the present invention described above, the aqueous solution containing the polyfunctional amine emissions is, containing a guanidine and other multifunctional amines And the ratio of guanidine with respect to another polyfunctional amine is 30-50 mass% , It is a manufacturing method of the composite reverse osmosis membrane characterized by the above-mentioned.

本発明により、界面活性剤を含む水の処理に用いても、透過水量の低下が僅かであり、充分な透過水量を保持できる複合逆浸透膜が提供できる。   The present invention can provide a composite reverse osmosis membrane capable of maintaining a sufficient amount of permeated water with little decrease in the amount of permeated water even when used for treatment of water containing a surfactant.

本発明の複合逆浸透膜は、グアニジン類と他の多官能アミンとを含有する水溶液と多官能酸ハロゲン化物を含有する有機溶液とを接触させることにより多官能アミンと多官能酸ハロゲン化物とを反応させて、多孔性支持膜上に架橋ポリアミド分離機能層を形成させることにより製造される。 The composite reverse osmosis membrane of the present invention comprises a polyfunctional amine and a polyfunctional acid halide by contacting an aqueous solution containing a guanidine and another polyfunctional amine with an organic solution containing a polyfunctional acid halide. is reacted, Ru is prepared by forming a crosslinked polyamide separating functional layer on a multi-porous support membrane.

本発明において、多孔性支持膜とは、実質的には分離性能を有さない層であり、主として分離性能を有する架橋ポリアミド分離機能層に強度を与えるために用いられるものである。   In the present invention, the porous support membrane is a layer that does not substantially have separation performance, and is mainly used to give strength to a crosslinked polyamide separation functional layer having separation performance.

多孔性支持膜の構造は特に限定されないが、膜の表面から裏面にわたって孔径が均一な微細な孔を有する構造であるか、または、片面に緻密で微細な孔を有し、その面からもう一方の面まで徐々に孔径が大きくなるような孔を有する非対称構造であり、その微細孔の大きさが100nm以下であることが好ましい。また、多孔性支持膜の厚みは、1μm〜数mmであるのが好ましく、膜強度の観点から10μm以上、扱いやすさ、モジュール加工のしやすさの点で数100μm以下がより好ましい。   The structure of the porous support membrane is not particularly limited, but it is a structure having fine pores having a uniform pore diameter from the front surface to the back surface of the membrane, or having fine fine pores on one side and the other side from that side. It is preferable that the surface has an asymmetric structure having pores that gradually increase in diameter, and the size of the micropores is preferably 100 nm or less. In addition, the thickness of the porous support membrane is preferably 1 μm to several mm, more preferably 10 μm or more from the viewpoint of membrane strength, and more preferably several 100 μm or less in terms of ease of handling and module processing.

多孔性支持膜に使用する素材は特に限定されず、例えば、ポリスルホン、酢酸セルロース、硝酸セルロース、ポリ塩化ビニル、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン等のホモポリマーまたはコポリマーを単独あるいはブレンドして使用することができる。これらの素材の中では化学的、機械的、熱的に安定性が高く、成型が容易であることから、ポリスルホンが好ましく使用される。   The material used for the porous support membrane is not particularly limited, and for example, homopolymers or copolymers such as polysulfone, cellulose acetate, cellulose nitrate, polyvinyl chloride, polyacrylonitrile, polyphenylene sulfide, polyphenylene sulfide sulfone are used alone or in combination. can do. Among these materials, polysulfone is preferably used because of its high chemical, mechanical and thermal stability and easy molding.

架橋ポリアミド分離機能層を形成させるための多官能アミンとしては、グアニジン類と他の多官能アミン類とを用いる。グアニジン類は、グアニジン骨格を有する化合物であって、多官能酸ハロゲン化物との反応によって化学的に結合した状態となり得るものであり、たとえば、グアニジン、アミノグアニジン、グアナゾール、ジフェニルグアニジン、トリフェニルグアニジン、グアニド無水酢酸などが用いられる。これらの中で、得られた膜の性能の面から特にグアニジンが好ましく使用される。 And polyfunctional Amin for forming a crosslinked polyamide separating functional layer, using the guanidines and other multifunctional amines. Guanidines are compounds having a guanidine skeleton, which can be chemically bonded by reaction with a polyfunctional acid halide , such as guanidine, aminoguanidine, guanazole, diphenylguanidine, triphenylguanidine, Guanide acetic anhydride or the like is used. Among these, guanidine is particularly preferably used from the viewpoint of the performance of the obtained film.

また他の多官能アミン類としては、たとえば、m−フェニレンジアミン、p−フェニレンジアミン、o−フェニレンジアミン、1,3,5−トリアミノベンゼン、p−キシレンジアミン、ジアミノピリジンなどの2個以上のアミノ基を有する芳香族の化合物も用いることができる。また、エチレンジアミン、プロピレンジアミン、ジメチルエチレンジアミン、ピペラジン、アミノメチルピペリジンなどの2個以上のアミノ基を有する脂肪族アミン成分も用いることができる。なかでも、反応性、得られた膜の性能を考慮にいれると、m−フェニレンジアミン、p−フェニレンジアミン、1,3,5−トリアミノベンゼンが好ましく使用される。 Also as the other polyfunctional amines, for example, m- phenylenediamine, p- phenylenediamine, o- phenylenediamine, 1,3,5-triaminobenzene, p- xylylenediamine, two such diaminopyridine Aromatic compounds having the above amino groups can also be used. In addition, an aliphatic amine component having two or more amino groups such as ethylenediamine, propylenediamine, dimethylethylenediamine, piperazine, and aminomethylpiperidine can also be used. Among these, m-phenylenediamine, p-phenylenediamine, and 1,3,5-triaminobenzene are preferably used in consideration of the reactivity and the performance of the obtained film.

多官能酸ハロゲン化物としては、たとえば、トリメシン酸ハライド、ベンゾフェノンテトラカルボン酸ハライド、トリメリット酸ハライド、ピロメリット酸ハライド、イソフタル酸ハライド、テレフタル酸ハライド、ナフタレンジカルボン酸ハライド、ジフェニルジカルボン酸ハライド、ピリジンジカルボン酸ハライド、ベンゼンジスルホン酸ハライド、クロルスルホニルイソフタル酸ハライドなどの芳香族酸ハライドを用いることができる。また、シクロヘキサントリカルボン酸ハライド、シクロヘキサンジカルボン酸ハライド、オキサリルハライドなどの脂肪族酸ハライドも用いることができる。なかでも、製膜溶媒に対する溶解性や得られる複合逆浸透膜の特性を考慮すると、イソフタル酸クロライド、テレフタル酸クロライド、トリメシン酸クロライドおよびこれらの混合物を用いることが好ましい。   Examples of the polyfunctional acid halide include trimesic acid halide, benzophenone tetracarboxylic acid halide, trimellitic acid halide, pyromellitic acid halide, isophthalic acid halide, terephthalic acid halide, naphthalenedicarboxylic acid halide, diphenyldicarboxylic acid halide, pyridinedicarboxylic acid. Aromatic acid halides such as acid halides, benzenedisulfonic acid halides, chlorosulfonylisophthalic acid halides can be used. In addition, aliphatic acid halides such as cyclohexanetricarboxylic acid halide, cyclohexanedicarboxylic acid halide, and oxalyl halide can also be used. Of these, considering the solubility in the membrane-forming solvent and the properties of the resulting composite reverse osmosis membrane, it is preferable to use isophthalic acid chloride, terephthalic acid chloride, trimesic acid chloride, and mixtures thereof.

本発明の複合逆浸透膜における架橋ポリアミド分離機能層を形成するための多官能アミンとしてグアニジン類と他の多官能アミン類とが用いられ、かつ、該グアニジン類が架橋ポリアミド分離機能層の架橋ポリアミド中で化学的に結合した状態で存在するものである。 A polyfunctional amine ting to guanidines and other multifunctional amines for forming definitive the composite reverse osmosis membrane crosslinked polyamide separating functional layer of the present invention is used, and the guanidine is crosslinked polyamide separating functional It exists in a chemically bonded state in the crosslinked polyamide of the layer.

ここでグアニジン類化学的結合した状態で存在することは、基材を除いた複合逆浸透膜を水中で十分洗浄後、塩化メチレンを用いて架橋ポリアミド分離機能層を抽出、乾燥し、次いで、該抽出後の複合逆浸透膜を120℃の6モル/リットルの水酸化ナトリウム水溶液中で1時間加水分解した加水分解物を、重水中で1H−NMRで測定した際に、グアニジン類のアミンピークが観測されることにより確認することができるHere the guanidine is present in a state chemically bonded after thoroughly washing the composite reverse osmosis membrane obtained by removing the substrate with water, extracted crosslinked polyamide separating functional layer with methylene chloride, dried, and then When the hydrolyzate obtained by hydrolyzing the composite reverse osmosis membrane after extraction in a 6 mol / liter sodium hydroxide aqueous solution at 120 ° C. for 1 hour was measured by 1H-NMR in heavy water, the amine of guanidines This can be confirmed by observing the peak.

さらに、上記の架橋ポリアミド分離機能層の表面に、架橋重合体を被覆することが好ましい。熱架橋を行う際の加熱方法としては、たとえば、熱風を吹き付ける方法を用いることができる。その場合の加熱温度は、30〜150℃の範囲内にあることが好ましく、30〜130℃の範囲内にあるとより好ましく、60〜100℃の範囲内にあるとさらに好ましい。加熱温度が30℃を下回ると、十分な加熱が行われず架橋反応速度が低下する傾向にあり、150℃を超えると副反応が進行しやすくなる。また、100℃以上で熱架橋を行うと、複合逆浸透膜の熱収縮が大きくなることがあり、透過水量が低くなる傾向にある。   Furthermore, it is preferable to coat a crosslinked polymer on the surface of the crosslinked polyamide separation functional layer. As a heating method when performing thermal crosslinking, for example, a method of blowing hot air can be used. In this case, the heating temperature is preferably in the range of 30 to 150 ° C, more preferably in the range of 30 to 130 ° C, and still more preferably in the range of 60 to 100 ° C. When the heating temperature is lower than 30 ° C, sufficient heating is not performed and the crosslinking reaction rate tends to decrease. When the heating temperature is higher than 150 ° C, the side reaction tends to proceed. Moreover, when thermal crosslinking is performed at 100 ° C. or higher, thermal shrinkage of the composite reverse osmosis membrane may increase, and the amount of permeated water tends to decrease.

水溶性ポリマーの架橋には、架橋剤を用いることが好ましい。架橋剤としては例えば前述した、酸またはアルカリや、グリオキサールやグルタルアルデヒドなど、1分子中に少なくとも2個の官能基を有するアルデヒドなどを挙げることができる。特に、架橋重合体の原料がポリビニルアルコール、架橋剤がグルタルアルデヒドであり、架橋重合体がポリビニルアルコールとグルタルアルデヒドの反応物を含むことが好ましい。   A crosslinking agent is preferably used for crosslinking the water-soluble polymer. Examples of the crosslinking agent include the aldehydes having at least two functional groups in one molecule, such as the acid or alkali, glyoxal, and glutaraldehyde described above. In particular, the raw material of the crosslinked polymer is preferably polyvinyl alcohol, the crosslinking agent is glutaraldehyde, and the crosslinked polymer preferably contains a reaction product of polyvinyl alcohol and glutaraldehyde.

架橋剤の添加濃度としては、0.01〜5重量%の範囲内にあることが好ましく、0.01〜1重量%の範囲内にあるとより好ましく、0.01〜0.5重量%の範囲内にあるとさらに好ましい。濃度が0.01重量%を下回ると、架橋密度が低くなり架橋重合体の水不溶性が不十分となりやすく、5重量%を上回ると、架橋密度が高くなり造水量が低くなる傾向がみられ、さらに、架橋反応速度が速くなりゲル化が起こりやすく、均一塗布が難しくなる傾向がある。架橋反応の反応時間は10秒〜10分が好ましい。10秒未満だと反応が十分に進行しないことがあり、10分を越えると生産効率が低下する。   The concentration of the crosslinking agent added is preferably in the range of 0.01 to 5% by weight, more preferably in the range of 0.01 to 1% by weight, and 0.01 to 0.5% by weight. More preferably within the range. If the concentration is less than 0.01% by weight, the crosslinking density tends to be low and water insolubility of the crosslinked polymer tends to be insufficient, and if it exceeds 5% by weight, the crosslinking density tends to increase and the amount of water produced tends to be low. Furthermore, the crosslinking reaction rate is increased, gelation is likely to occur, and uniform application tends to be difficult. The reaction time for the crosslinking reaction is preferably 10 seconds to 10 minutes. If it is less than 10 seconds, the reaction may not proceed sufficiently, and if it exceeds 10 minutes, the production efficiency decreases.

このようにして得られた複合逆浸透膜は、このままでも使用できるが、使用する前に水洗などによって未反応残存物を取り除くことが好ましい。30〜100℃の範囲内にある水で膜を洗浄し、残存するアミノ化合物などを除去することが好ましい。また、洗浄は、上記温度範囲内にある水中に支持膜を浸漬したり、水を吹き付けたりして行うことができる。用いる水の温度が30℃を下回ると、複合逆浸透膜中にアミノ化合物が残存し透過水量が低くなる傾向にある。また、オートクレーブやスチームなどで100℃を超える温度で洗浄を行うと、膜が熱収縮を起こすことがあり、やはり透過水量が低くなる傾向にある。   The composite reverse osmosis membrane thus obtained can be used as it is, but it is preferable to remove unreacted residues by washing before use. It is preferable to wash the membrane with water in the range of 30 to 100 ° C. to remove the remaining amino compound and the like. The washing can be performed by immersing the support membrane in water within the above temperature range or spraying water. When the temperature of the water to be used is below 30 ° C., the amino compound remains in the composite reverse osmosis membrane and the amount of permeated water tends to be low. Further, when washing is performed at a temperature exceeding 100 ° C. with an autoclave, steam, or the like, the membrane may cause thermal shrinkage, and the amount of permeated water tends to be low.

またこのあと、たとえばpHが6〜13の範囲内の塩素含有水溶液に常圧で接触させる方法や、亜硝酸含有水溶液に常圧で接触させる方法により、膜の排除率、透水性を高めることも好ましい。   Further, for example, the membrane rejection rate and water permeability may be increased by a method of contacting a chlorine-containing aqueous solution having a pH of 6 to 13 at normal pressure or a method of contacting a nitrous acid-containing aqueous solution at normal pressure. preferable.

次に、水不溶性の架橋重合体に化合物を接触させて膜の親水性を増すこともできる。この化合物としては、たとえば、アルコール類を用いることができる。具体的には、アルコール類として、メチルアルコールやエチルアルコール、n−プロピルアルコール、イソプロピルアルコール、イソブチルアルコールを用いることができる。上記の中では、特にメチルアルコールやエチルアルコール、イソプロピルアルコールを用いると好ましく、イソプロピルアルコールを用いるとさらに好ましい。用いる濃度としては、0.1〜50重量%の範囲内にあると好ましく、0.5〜15重量%の範囲内にあるとより好ましい。濃度が50重量%を上回ると、コスト高につながり、また、0.1重量%を下回ると、水透過性を向上させる効果を得にくくなる。   Next, the hydrophilicity of the membrane can be increased by contacting the compound with a water-insoluble crosslinked polymer. As this compound, for example, alcohols can be used. Specifically, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, or isobutyl alcohol can be used as the alcohol. Of the above, methyl alcohol, ethyl alcohol, and isopropyl alcohol are particularly preferable, and isopropyl alcohol is more preferable. The concentration to be used is preferably in the range of 0.1 to 50% by weight, and more preferably in the range of 0.5 to 15% by weight. When the concentration exceeds 50% by weight, the cost increases. When the concentration is less than 0.1% by weight, it is difficult to obtain the effect of improving water permeability.

次に本発明の複合逆浸透膜の好ましい製造方法について述べる。   Next, a preferred method for producing the composite reverse osmosis membrane of the present invention will be described.

まず、密に織ったポリエステル布や不織布などの支持体の上に、例えば、ポリスルホン溶液を一定の厚さに注型し、それを水中で湿式凝固させて、表面の大部分が直径数十nm以下の微細な孔を有した多孔性支持膜を得る。得られた多孔性支持膜上に、多官能アミンとしてグアニジン類と他の多官能アミン類とを含む水溶液を塗布し、次に多官能酸ハロゲン化物の溶液を塗布してin−situ界面重縮合反応させ、実質的に分離性能を有するポリアミド分離機能層を形成させる。グアニジン類と他の多官能アミン類とを含有する水溶液中に含まれるグアニジン類の量は、他の多官能アミン類の量の30〜50質量%である。30質量%を下回ると界面活性剤添加後の透過水量が著しく低下し、また、50質量%を上回ると初期透過水量が著しく低下するためである。 First, a polysulfone solution is cast to a certain thickness on a densely woven polyester cloth or non-woven support, and it is wet-coagulated in water. A porous support membrane having the following fine pores is obtained. On the resulting porous support membrane, a multifunctional amine ting and by coating an aqueous solution containing a guanidine and other multifunctional amines, then the polyfunctional acid halide solution by a coating in-situ An interfacial polycondensation reaction is performed to form a polyamide separation functional layer having substantially separation performance. The amount of guanidine contained in an aqueous solution containing the guanidine and other multifunctional amines, from 30 to 50 mass% of the amount of other multifunctional amines. Below 30 wt%, the permeate flow after the addition of the surfactant is significantly reduced, also because the initial amount of permeated water exceeds 50 mass% significantly reduced.

グアニジン類と他の多官能アミン類とを含む多官能アミン水溶液の濃度は、0.1〜20重量%の範囲内にあることが好ましく、1〜3重量%の範囲内にあることがより好ましい。多官能アミン濃度が0.1重量%を下回ると、界面重縮合反応の進行が遅くなり、20重量%を超えると分離機能層の膜厚が大きくなり透水性が低下する傾向にある。 The concentration of the polyfunctional Amin water solution containing guanidine and other multifunctional amines, preferably in the range of 0.1 to 20 wt%, to be within the scope of 1 to 3 wt% More preferred. When polyfunctional Amin concentration is below 0.1 wt%, the progress of the interfacial polycondensation reaction is slow, the film thickness is increased permeability of the separation function layer exceeds 20 wt% tends to decrease.

多官能酸ハロゲン化物を溶解する有機溶液は、水と非混和性であり、かつ、多官能酸ハロゲン化物を溶解するとともに、多孔性支持膜の構造を破壊せず、界面重縮合により架橋ポリマーを形成し得るものであればよい。例えば、炭化水素化合物、シクロヘキサン、1,1,2−トリクロロ−1,2,2−トリフルオロエタンなどが挙げられるが、反応速度、溶媒の揮発性から、好ましくは、n−ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、1,1,2−トリクロロ−1,2,2トリフルオロエタンなどである。   The organic solution in which the polyfunctional acid halide is dissolved is immiscible with water, dissolves the polyfunctional acid halide, and does not destroy the structure of the porous support membrane. Any material that can be formed may be used. For example, hydrocarbon compounds, cyclohexane, 1,1,2-trichloro-1,2,2-trifluoroethane and the like can be mentioned. From the reaction rate and solvent volatility, n-hexane, heptane, octane are preferable. , Nonane, decane, undecane, dodecane, 1,1,2-trichloro-1,2,2 trifluoroethane, and the like.

上記溶媒中の多官能酸ハロゲン化物の濃度は、0.01〜0.2重量%の範囲内にあることが好ましく、0.04〜0.06重量%の範囲内にあることがより好ましい。0.01重量%を下回ると、活性層である分離機能層の形成が不十分となりやすい傾向がある。   The concentration of the polyfunctional acid halide in the solvent is preferably in the range of 0.01 to 0.2% by weight, and more preferably in the range of 0.04 to 0.06% by weight. If it is less than 0.01% by weight, the formation of the separation functional layer as the active layer tends to be insufficient.

多官能アミン成分水溶液および多官能酸ハロゲン化物溶液には、多官能アミン成分と多官能酸ハロゲン化物との反応を妨害しないものであれば、必要に応じて、アシル化触媒や極性溶媒、酸補足剤、界面活性剤、酸化防止剤などを含有させることもできる。   As long as the polyfunctional amine component aqueous solution and polyfunctional acid halide solution do not interfere with the reaction between the polyfunctional amine component and the polyfunctional acid halide, an acylation catalyst, a polar solvent, and an acid supplement are added as necessary. An agent, a surfactant, an antioxidant and the like can also be contained.

本発明の複合逆浸透膜の形態は特に限定されず、例えば、平膜でも中空糸膜、管状膜でも構わない。   The form of the composite reverse osmosis membrane of the present invention is not particularly limited. For example, it may be a flat membrane, a hollow fiber membrane, or a tubular membrane.

本発明の複合逆浸透膜は、25℃において、pH6.5、濃度が2,000mg/lの塩化ナトリウム水溶液を用い、操作圧力0.5MPaで3時間ろ過したときの透過水量が0.4〜3m/m・日であることが好ましい。このような複合逆浸透膜は、例えば、前述した製造方法で、製造することができる。透過水量を0.4〜3m/m・日の範囲とすることにより、ファウリングの発生を適度に抑え、処理を安定的に行うことができる。さらに0.5〜1m/m・日の範囲内にあることが好ましい
ここで、透過水量低下率を以下のように定義する。すなわち、25℃において、pH6.5、濃度が2,000mg/lの塩化ナトリウム水溶液を用い操作圧力0.5MPaにて複合逆浸透膜を透過させて3時間ろ過した後の透過水量を前透過水量(F1)とし、続いて、この塩化ナトリウム水溶液にノニオン界面活性剤(ポリオキシエチレン(10)オクチルフェニルエーテル)を濃度が100mg/lになるように前記水溶液に添加してから0.5MPaの圧力で1時間経過後の透過水量を後透過水量(F2)としたときに、以下の数式(1)で定義される。
The composite reverse osmosis membrane of the present invention uses a sodium chloride aqueous solution having a pH of 6.5 and a concentration of 2,000 mg / l at 25 ° C., and has a permeated water amount of 0.4 to 0.4 when filtered at an operating pressure of 0.5 MPa for 3 hours. It is preferably 3 m 3 / m 2 · day. Such a composite reverse osmosis membrane can be manufactured by the manufacturing method mentioned above, for example. By setting the amount of permeated water in the range of 0.4 to 3 m 3 / m 2 · day, generation of fouling can be appropriately suppressed and the treatment can be performed stably. Furthermore, it is preferable that it exists in the range of 0.5-1 m < 3 > / m < 2 > * day Here, the permeated water amount fall rate is defined as follows. That is, the permeated water amount after passing through a composite reverse osmosis membrane with a sodium chloride aqueous solution having a pH of 6.5 and a concentration of 2,000 mg / l at an operating pressure of 0.5 MPa and filtering for 3 hours at 25 ° C. (F1), and then a nonionic surfactant (polyoxyethylene (10) octylphenyl ether) was added to the aqueous solution so that the concentration was 100 mg / l. When the amount of permeated water after 1 hour is defined as the amount of permeated water (F2), it is defined by the following mathematical formula (1).

Figure 0004539341
Figure 0004539341

本発明の複合逆浸透膜は、前記透過水量低下率が0.4以下であることが好ましい。さらに好ましくは0.2以下である。複合逆浸透膜を用いることにより、界面活性剤に接しても膜面への界面活性剤の吸着がほとんどみられずに、透過水量の低下が僅かであり、充分な透過水量を保持できる。従って、界面活性剤を含む排水の高度処理に用いても、高水質の透過水を安定して得ることができる。   In the composite reverse osmosis membrane of the present invention, the permeated water decrease rate is preferably 0.4 or less. More preferably, it is 0.2 or less. By using the composite reverse osmosis membrane, even when it comes into contact with the surfactant, the adsorption of the surfactant to the membrane surface is hardly observed, and the permeated water amount is little decreased, and a sufficient permeated water amount can be maintained. Therefore, even if it uses for the advanced treatment of the waste_water | drain containing surfactant, high water quality permeated water can be obtained stably.

本発明の複合逆浸透膜は、取り扱いを容易にするため筐体に納めて流体分離素子とすることができる。この流体分離素子は、たとえば、多数の孔を穿設した筒状の集液管の周りに、複合逆浸透膜の平膜と、トリコットなどの分離液流路材と、プラスチックネットなどの供給液流路材とを含む膜ユニットを巻回し、これらを円筒状の筐体に納めた構造とすると好ましい。複数の流体分離素子を直列あるいは並列に接続して分離膜モジュールとすることもできる。このような分離膜モジュールは排水処理装置に好適に用いることができる。   The composite reverse osmosis membrane of the present invention can be housed in a housing for easy handling and can be used as a fluid separation element. This fluid separation element is, for example, a flat membrane of a composite reverse osmosis membrane, a separation liquid channel material such as a tricot, and a supply liquid such as a plastic net around a cylindrical liquid collection pipe having a large number of holes. A structure in which a membrane unit including a channel material is wound and these are housed in a cylindrical housing is preferable. A plurality of fluid separation elements can be connected in series or in parallel to form a separation membrane module. Such a separation membrane module can be suitably used for a wastewater treatment apparatus.

以下、上記複合逆浸透膜を用いた水処理装置および水処理方法のうち、排水処理装置および排水処理方法の好ましいプロセスフローについて説明する。   Hereinafter, a preferable process flow of the wastewater treatment apparatus and the wastewater treatment method among the water treatment apparatus and the water treatment method using the composite reverse osmosis membrane will be described.

まず、原水である下水を、スクリーン、沈砂、予備曝気槽、最初沈殿槽などに導入して物理的処理を施し、浮遊物や油脂を除去する。このとき、除去効率を上げるために凝集剤等による凝集処理を行うことも好ましい。次に、原水を活性汚泥槽などに導入して生物的処理を施し、原水中の有機物を分解する。その後、最終沈殿槽で懸濁物質を除去し、下水二次処理水を得る。続いて、好ましくは、この下水二次処理水を、砂濾過装置、精密ろ過膜、限外ろ過膜などに供給して、水中の懸濁物質をさらに除去する。ここで、微生物を好適に除去するためには、精密濾過膜や限外濾過膜などを用いることがより好ましく、原水中の高分子除去および後段の膜汚染の軽減のためには、限外濾過膜がさらに好ましい。このような処理を施した水を、本発明の複合逆浸透膜を用いたモジュールに供給し、原水中の塩や有機物を除去する。原水中の塩や有機物が除去された透過水は、親水用水等の用水として再利用することができる。   First, sewage, which is raw water, is introduced into a screen, sand settling, a preliminary aeration tank, a first settling tank, etc., and subjected to physical treatment to remove suspended matters and oils and fats. At this time, it is also preferable to perform a coagulation treatment with a coagulant or the like in order to increase the removal efficiency. Next, the raw water is introduced into an activated sludge tank or the like and subjected to biological treatment to decompose organic matter in the raw water. Thereafter, suspended substances are removed in a final sedimentation tank to obtain sewage secondary treated water. Subsequently, the sewage secondary treated water is preferably supplied to a sand filtration device, a microfiltration membrane, an ultrafiltration membrane or the like to further remove suspended substances in water. Here, in order to suitably remove microorganisms, it is more preferable to use a microfiltration membrane, an ultrafiltration membrane, or the like. In order to remove a polymer in raw water and reduce membrane contamination in the subsequent stage, an ultrafiltration membrane is used. More preferred is a membrane. The water subjected to such treatment is supplied to the module using the composite reverse osmosis membrane of the present invention to remove salts and organic substances in the raw water. The permeated water from which salts and organic substances in the raw water have been removed can be reused as service water such as hydrophilic water.

主な処理対象とする下水は、石鹸や洗浄排液のために多量の界面活性剤を含むことがあり、従来のポリアミド系複合逆浸透膜などを用いると早期に透過水量が低下するので安定な処理が困難であったが、本発明では、界面活性剤に接しても膜面への界面活性剤の吸着がほとんど観られずに透過水量の低下が僅かであり、高水質の透過水を安定して得ることができる。   Sewage, which is the main treatment target, may contain a large amount of surfactant for soap and washing drainage, and if a conventional polyamide composite reverse osmosis membrane is used, the amount of permeated water will decrease at an early stage. Although the treatment was difficult, in the present invention, even when in contact with the surfactant, the adsorption of the surfactant to the membrane surface was hardly observed, and the permeated water amount decreased little and stable high quality permeated water was stabilized. Can be obtained.

また、原水を本発明の複合逆浸透膜に供給する前に精密濾過膜または限外濾過膜で透水処理することが好ましい。このことで、前段で生物学的処理を施した場合にも微生物を好適に除去できるので、後段の複合逆浸透膜モジュールを懸濁物質から保護することができる。   Moreover, it is preferable to perform water permeation treatment with a microfiltration membrane or an ultrafiltration membrane before supplying raw water to the composite reverse osmosis membrane of the present invention. As a result, even when biological treatment is performed in the former stage, microorganisms can be suitably removed, so that the latter composite reverse osmosis membrane module can be protected from suspended substances.

実施例および比較例における測定は次の通り行った。   Measurements in Examples and Comparative Examples were performed as follows.

実施例および比較例において透過水量は、温度25℃、pH6.5、濃度が2,000mg/lの塩化ナトリウム水溶液を用い操作圧力0.5MPaの条件で1時間ろ過したときの透過水量を評価した。透過水量は、単位時間(日)に単位面積(m)当たりの膜を透過する水量で求めた。 In the examples and comparative examples, the amount of permeated water was evaluated by filtering for 1 hour under conditions of an operating pressure of 0.5 MPa using a sodium chloride aqueous solution having a temperature of 25 ° C., pH 6.5, and a concentration of 2,000 mg / l. . The amount of permeated water was determined by the amount of water permeating the membrane per unit area (m 2 ) per unit time (day).

また、温度25℃、pH6.5、濃度が2,000mg/lの塩化ナトリウム水溶液を用い操作圧力0.5MPaにて複合逆浸透膜を透過させてろ過した時の透過水量を前透過水量(F1)とし、続いて、この塩化ナトリウム水溶液にノニオン界面活性剤(ポリオキシエチレン(10)オクチルフェニルエーテル)を濃度が100mg/lになるように添加してから1時間経過後の透過水量を後透過水量(F2)とし、数式(1)で透過水量低下率を算出した。脱塩率は以下の数式(2)により求めた。   Further, the amount of permeated water when filtered through a composite reverse osmosis membrane using an aqueous sodium chloride solution at a temperature of 25 ° C., pH 6.5, and a concentration of 2,000 mg / l at an operating pressure of 0.5 MPa is the amount of pre-permeated water (F1 Subsequently, a nonionic surfactant (polyoxyethylene (10) octylphenyl ether) was added to the aqueous sodium chloride solution so that the concentration was 100 mg / l, and the amount of permeated water after 1 hour had passed through. The water amount (F2) was used, and the permeated water amount reduction rate was calculated by Equation (1). The desalting rate was determined by the following formula (2).

Figure 0004539341
Figure 0004539341

透過液中の塩濃度及び供給液中の塩濃度は、各液の電気伝導度を測定することにより求めた。各液の電気伝導度は電気伝導率・pHメータ装置を用いて、電気伝導率セルを超純水洗浄後、各液で十分共洗いした後測定した。   The salt concentration in the permeate and the salt concentration in the feed solution were determined by measuring the electrical conductivity of each solution. The electric conductivity of each liquid was measured using an electric conductivity / pH meter device after washing the electric conductivity cell with ultrapure water and then thoroughly washing with each liquid.

(実施例1)
ポリエステル繊維からなる、縦30cm横20cmの大きさの抄紙不織布基材をガラス板上に固定し、その上にポリスルホンの15重量%ジメチルホルムアミド(DMF)溶液を、200μmの厚みで、25℃にてキャストし、ただちに純水中に浸漬して5分間放置し、次いで、90℃、2分間熱水中で処理して微多孔性支持膜(以下、FT−PS支持膜という)を得た。このFT−PS支持膜の厚さは200〜210μmであり、純水透過係数は圧力0.1MPa、液温25℃、雰囲気温度25℃で測定したとき0.01〜0.03g/cm・sec・atmであった。
Example 1
A papermaking nonwoven fabric substrate made of polyester fibers and having a size of 30 cm in length and 20 cm in width is fixed on a glass plate, and a 15% by weight dimethylformamide (DMF) solution of polysulfone is 200 μm thick at 25 ° C. It was cast, immediately immersed in pure water and allowed to stand for 5 minutes, and then treated in hot water at 90 ° C. for 2 minutes to obtain a microporous support membrane (hereinafter referred to as FT-PS support membrane). The thickness of this FT-PS support membrane is 200 to 210 μm, and the pure water permeability coefficient is 0.01 to 0.03 g / cm 2 · when measured at a pressure of 0.1 MPa, a liquid temperature of 25 ° C., and an ambient temperature of 25 ° C. sec · atm.

このFT−PS支持膜を、メタフェニレンジアミンが1.0重量%、グアニジンが0.3重量%であり、ε−カプロラクタム2.25重量%を含む水溶液中に2分間浸漬した。次いで、この支持膜を垂直方向にゆっくりと引上げ、支持膜表面から余分な水溶液を取除いた後、トリメシン酸クロライド0.06重量%を含むデカン溶液40mlを、表面が完全に濡れるように塗布した。次に、膜を垂直にして余分な溶液を液切りして除去した後、膜面に残った溶媒を蒸発させるために、膜表面での風速が8m/sとなるように、温度30℃の空気を1分間吹き付けた。この膜を炭酸ナトリウム1重量%と、ラウリル硫酸ナトリウム0.3重量%とを含む水溶液に2分間浸漬した。5分以上流水浸漬を行った後、90℃の熱水に2分間浸漬後、膜性能向上のため、温度40度、pH3.0に調整した亜硝酸ナトリウム2000ppmを含む溶液中に1分間浸漬し、蒸留水で20秒間すすいだ。   This FT-PS support membrane was immersed in an aqueous solution containing 1.0% by weight of metaphenylenediamine, 0.3% by weight of guanidine and 2.25% by weight of ε-caprolactam for 2 minutes. Next, the support membrane was slowly pulled up in the vertical direction to remove excess aqueous solution from the surface of the support membrane, and then 40 ml of a decane solution containing 0.06% by weight of trimesic acid chloride was applied so that the surface was completely wetted. . Next, after removing the excess solution by removing the excess solution with the film vertical, in order to evaporate the solvent remaining on the film surface, the temperature of 30 ° C. is set so that the wind speed on the film surface is 8 m / s. Air was blown for 1 minute. This membrane was immersed in an aqueous solution containing 1% by weight of sodium carbonate and 0.3% by weight of sodium lauryl sulfate for 2 minutes. After immersion in running water for 5 minutes or more, after immersion in hot water at 90 ° C. for 2 minutes, in order to improve membrane performance, it is immersed in a solution containing 2000 ppm of sodium nitrite adjusted to a temperature of 40 degrees and pH 3.0 for 1 minute. Rinse with distilled water for 20 seconds.

得られた複合逆浸透膜に対して測定した結果、塩排除率は98.1%、透過水量は0.62m・m−2・日−1、透過水量低下率は55%であった。 The results obtained were measured for a composite reverse osmosis membrane, salt rejection 98.1% permeate flow is 0.62m 3 · m -2 · day -1, the amount of permeated water reduction rate was 55%.

(実施例2)
実施例1においてメタフェニレンジアミンが0.8重量%である水溶液を用いた以外は実施例1と同様に製膜、評価を行った。
(Example 2)
Film formation and evaluation were performed in the same manner as in Example 1 except that an aqueous solution containing 0.8% by weight of metaphenylenediamine in Example 1 was used.

得られた逆浸透複合膜に対して測定した結果、塩排除率は97.7%、透過水量は0.68m・m−2・日−1、透過水量低下率は57%であった。 As a result of measuring with respect to the obtained reverse osmosis composite membrane, the salt rejection was 97.7%, the permeated water amount was 0.68 m 3 · m −2 · day −1 , and the permeated water amount decreasing rate was 57%.

(実施例3)
実施例1においてグアニジンが0.5重量%である水溶液を用いて、膜を炭酸ナトリウム1重量%と、ラウリル硫酸ナトリウム0.3重量%とを含む水溶液に2分間浸漬する前段階まで実施例1と同様に製膜した。
(Example 3)
In Example 1, an aqueous solution containing 0.5% by weight of guanidine was used and the membrane was immersed in an aqueous solution containing 1% by weight of sodium carbonate and 0.3% by weight of sodium lauryl sulfate for 2 minutes up to the previous stage. A film was formed in the same manner as above.

次いで、この膜にポリビニルアルコール(重量平均分子量2,000、ケン化度89 %)0.8重量%と、グルタルアルデヒド0.32重量%とを含む水溶液に、酸触媒として硫酸を0.02モル/リットルとなるように添加した水溶液を塗布し、1分間保持した。垂直で30秒間保持し余分な液を切ったのち、熱風乾燥機を用いて60℃で1分間加熱し架橋した。5分以上流水浸漬を行い、未架橋物や酸触媒を除去するため、90℃の熱水に2分間浸漬した。膜性能向上のため、温度40度、pH3.0に調整した亜硝酸ナトリウム2000ppmを含む溶液中に1分間浸漬し、蒸留水で20秒間すすいだ。複合逆浸透膜は、評価前に10重量%イソプロパノール水溶液に10分間浸漬し親水化処理を行った。   Next, 0.02 mol of sulfuric acid as an acid catalyst was added to an aqueous solution containing 0.8% by weight of polyvinyl alcohol (weight average molecular weight 2,000, saponification degree 89%) and 0.32% by weight of glutaraldehyde. The aqueous solution added so as to be 1 liter was applied and held for 1 minute. After maintaining for 30 seconds in a vertical direction to cut off excess liquid, the mixture was crosslinked by heating at 60 ° C. for 1 minute using a hot air dryer. It was immersed in running water for 5 minutes or more and immersed in hot water at 90 ° C. for 2 minutes in order to remove uncrosslinked products and acid catalyst. In order to improve the membrane performance, the film was immersed in a solution containing 2000 ppm of sodium nitrite adjusted to a temperature of 40 ° C. and a pH of 3.0 for 1 minute and rinsed with distilled water for 20 seconds. The composite reverse osmosis membrane was hydrophilized by immersing in a 10% by weight isopropanol aqueous solution for 10 minutes before evaluation.

得られた複合逆浸透膜に対して測定した結果、塩排除率は97.6%、透過水量は0.56m・m−2・日−1、透過水量低下率は12%であった。 As a result of measuring with respect to the obtained composite reverse osmosis membrane, the salt rejection rate was 97.6%, the permeated water amount was 0.56 m 3 · m −2 · day −1 , and the permeated water amount decreasing rate was 12%.

(比較例1)
実施例1のうち、グアニジン組成比0%の水溶液を用いた以外は実施例1と同様に製膜、評価を行った。
(Comparative Example 1)
In Example 1, film formation and evaluation were performed in the same manner as in Example 1 except that an aqueous solution having a guanidine composition ratio of 0% was used.

得られた複合逆浸透膜に対して測定した結果、塩排除率は97.5%、透過水量は0.86m・m−2・日−1、透過水量低下率は66%であった。 As a result of measuring with respect to the obtained composite reverse osmosis membrane, the salt rejection rate was 97.5%, the permeated water amount was 0.86 m 3 · m −2 · day −1 , and the permeated water amount decreasing rate was 66%.

(比較例2)
実施例3の全アミン成分のうち、グアニジン組成比0%の水溶液を用いた以外は実施例3と同様に製膜、評価を行った。
(Comparative Example 2)
Film formation and evaluation were performed in the same manner as in Example 3 except that an aqueous solution having a guanidine composition ratio of 0% was used among all the amine components of Example 3.

得られた逆浸透複合膜に対して測定した結果、塩排除率は98.6%、透過水量は0.54m・m−2・日−1、透過水量低下率は25%であった。 As a result of measuring with respect to the obtained reverse osmosis composite membrane, the salt rejection rate was 98.6%, the permeated water amount was 0.54 m 3 · m −2 · day −1 , and the permeated water amount reduction rate was 25%.

測定結果を表1に併記する。   The measurement results are also shown in Table 1.

Figure 0004539341
Figure 0004539341
多官能アミン水溶液中における他の多官能アミンに対するグアニジン類の割合は、実施例1が30質量%、実施例2が37.5質量%、実施例3が50質量%であった。The ratio of guanidines to other polyfunctional amines in the polyfunctional amine aqueous solution was 30% by mass in Example 1, 37.5% by mass in Example 2, and 50% by mass in Example 3.

表1から、次のことが明らかである。すなわち、実施例1〜3は、脱塩率、透過水量低下率に優れており、透過水量も実用レベルであった。   From Table 1, the following is clear. That is, Examples 1 to 3 were excellent in the desalting rate and the permeated water decrease rate, and the permeated water amount was at a practical level.

Claims (4)

多官能アミンと多官能酸ハロゲン化物からなる架橋ポリアミド分離機能層が多孔性支持膜上に形成されてなる複合逆浸透膜において、該架橋ポリアミド分離機能層を形成させるための多官能アミンとしてグアニジン類と他の多官能アミン類とが用いられ、かつ該グアニジン類が架橋ポリアミド分離機能層の架橋ポリアミド中で化学的に結合した状態で存在することを特徴とする複合逆浸透膜。 In the composite reverse osmosis membrane crosslinked polyamide separating functional layer formed on the porous support membrane consisting of polyfunctional Amin and the polyfunctional acid halide, a polyfunctional amine emissions in order to form a crosslinked polyamide separating functional layer A composite reverse osmosis membrane characterized in that guanidines and other polyfunctional amines are used , and the guanidines are present in a chemically bonded state in the crosslinked polyamide of the crosslinked polyamide separation functional layer. . グアニジン類が、グアニジン、アミノグアニジン、グアナゾール、ジフェニルグアニジン、トリフェニルグアニジン、及び、グアニド無水酢酸からなる群から選ばれる1種以上であることを特徴とする請求項1に記載の複合逆浸透膜。The composite reverse osmosis membrane according to claim 1, wherein the guanidine is one or more selected from the group consisting of guanidine, aminoguanidine, guanazole, diphenylguanidine, triphenylguanidine, and guanide acetic anhydride. 架橋ポリアミド分離機能層の表面に、架橋重合体からなる被覆が形成されていることを特徴とする請求項1又は2に記載の複合逆浸透膜。 The composite reverse osmosis membrane according to claim 1 or 2, wherein a coating composed of a crosslinked polymer is formed on the surface of the crosslinked polyamide separation functional layer. 多官能アミンを含有する水溶液と多官能酸ハロゲン化物を含有する有機溶液とを接触させることにより多官能アミンと多官能酸ハロゲン化物とを反応させて、多孔性支持膜上に架橋ポリアミド分離機能層を形成させ、請求項1〜3のいずれかに記載の複合逆浸透膜製造する方法であって、前記多官能アミンを含有する水溶液が、グアニジン類と他の多官能アミンとを含有し、かつ、他の多官能アミンに対するグアニジン類の割合が30〜50質量%であることを特徴とする複合逆浸透膜の製造方法。 By reacting a polyfunctional amine and a polyfunctional acid halide by contacting an organic solution containing an aqueous solution and a polyfunctional acid halide containing polyfunctional Amin, crosslinked polyamide separating functional on a porous support membrane to form a layer, a method for producing a composite reverse osmosis membrane according to any one of claims 1 to 3, the aqueous solution containing the polyfunctional amine emissions is, a grayed guanidine compound and another polyfunctional amine It contained, and method of producing a composite reverse osmosis membrane fraction of guanidines for other multifunctional amine is characterized in that 30 to 50 wt%.
JP2005010142A 2005-01-18 2005-01-18 Composite reverse osmosis membrane and method for producing the same Expired - Fee Related JP4539341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005010142A JP4539341B2 (en) 2005-01-18 2005-01-18 Composite reverse osmosis membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005010142A JP4539341B2 (en) 2005-01-18 2005-01-18 Composite reverse osmosis membrane and method for producing the same

Publications (3)

Publication Number Publication Date
JP2006198461A JP2006198461A (en) 2006-08-03
JP2006198461A5 JP2006198461A5 (en) 2008-02-28
JP4539341B2 true JP4539341B2 (en) 2010-09-08

Family

ID=36956923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005010142A Expired - Fee Related JP4539341B2 (en) 2005-01-18 2005-01-18 Composite reverse osmosis membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP4539341B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078218A (en) * 2007-09-26 2009-04-16 Toray Ind Inc Method of manufacturing composite semi-permeable membrane
US8839960B2 (en) 2010-12-21 2014-09-23 General Electric Company Polymeric matrices formed from monomers comprising a protected amine group
CN102728247B (en) * 2012-07-05 2014-01-08 中国科学院宁波材料技术与工程研究所 Preparation method of composite forward osmosis membrane
KR102172598B1 (en) * 2013-02-28 2020-11-02 도레이 카부시키가이샤 Composite semipermeable membrane
CN106830126A (en) * 2017-03-14 2017-06-13 郑州嘉晨化工科技有限公司 A kind of coal chemical industry sewage inorganic agent and its preparation method and application
JP6855669B2 (en) 2017-04-19 2021-04-07 エルジー・ケム・リミテッド Water treatment separation membrane and its manufacturing method
CN109550413B (en) * 2018-12-17 2020-09-25 中国科学院长春应用化学研究所 Anti-pollution membrane material and preparation method thereof
CN112007515A (en) * 2019-05-29 2020-12-01 农业部沼气科学研究所 Method for reducing reverse osmosis separation rejection rate of furan formaldehyde
CN115105962B (en) * 2021-03-22 2023-11-03 国家能源投资集团有限责任公司 Repairing method of waste reverse osmosis membrane element
JP7552954B1 (en) * 2023-02-03 2024-09-18 東レ株式会社 Composite semipermeable membrane, composite semipermeable membrane module, and fluid separation device
CN116510525B (en) * 2023-06-30 2023-09-01 天津大学 High-flux nanofiltration membrane based on guanidino compound and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253454A (en) * 1992-03-11 1993-10-05 Daicel Chem Ind Ltd New dual separating membrane and treatment of waste water using the membrane
JP2001079373A (en) * 1999-09-17 2001-03-27 Saehan Ind Inc Production of polyamide reverse osmosis composite membrane
JP2001327840A (en) * 2000-05-25 2001-11-27 Toray Ind Inc Composite semipermeable membrane and its manufacturing method
JP2004025102A (en) * 2002-06-24 2004-01-29 Saehan Ind Inc Method for manufacturing selective separation membrane having excellent stain resistance
JP2004050144A (en) * 2002-07-24 2004-02-19 Toray Ind Inc Separation membrane for waste water treatment and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253454A (en) * 1992-03-11 1993-10-05 Daicel Chem Ind Ltd New dual separating membrane and treatment of waste water using the membrane
JP2001079373A (en) * 1999-09-17 2001-03-27 Saehan Ind Inc Production of polyamide reverse osmosis composite membrane
JP2001327840A (en) * 2000-05-25 2001-11-27 Toray Ind Inc Composite semipermeable membrane and its manufacturing method
JP2004025102A (en) * 2002-06-24 2004-01-29 Saehan Ind Inc Method for manufacturing selective separation membrane having excellent stain resistance
JP2004050144A (en) * 2002-07-24 2004-02-19 Toray Ind Inc Separation membrane for waste water treatment and its manufacturing method

Also Published As

Publication number Publication date
JP2006198461A (en) 2006-08-03

Similar Documents

Publication Publication Date Title
JP4539341B2 (en) Composite reverse osmosis membrane and method for producing the same
TW567089B (en) Porous hollow fiber membranes and method of making the same
JP6136266B2 (en) Composite semipermeable membrane
KR102293090B1 (en) Composite semipermeable membrane
JP2016518982A (en) Polyamide-based water treatment separation membrane excellent in salt removal rate and permeation flow rate characteristics and method for producing the same
WO2016002821A1 (en) Composite semipermeable membrane
JP6642860B2 (en) Water treatment separation membrane and method for producing the same
KR101240736B1 (en) Polymer compositions, water-treatment membranes and water-treatment modules comprising the same
JPS584561B2 (en) Kanjiyouporiniyosono Fuseihan Umaku
JP2003200026A (en) Composite semipermeable membrane and method for manufacturing the same
JP2002224546A (en) Composite semipermeable membrane for sewage disposal and its manufacturing method
JP2008246419A (en) Production method for composite semi-permeable membrane
JP2006102594A (en) Method for manufacturing composite semipermeable membrane
JP5177056B2 (en) Composite semipermeable membrane
JP2013223861A (en) Composite diaphragm
JP4284767B2 (en) Composite semipermeable membrane, water production method using the same, and fluid separation element
JP2012143750A (en) Method for producing composite semi-permeable membrane
JP3975933B2 (en) Composite semipermeable membrane and sewage treatment method
JP2009262089A (en) Manufacturing method of composite semi-permeable membrane
JP2004050144A (en) Separation membrane for waste water treatment and its manufacturing method
JP2009078218A (en) Method of manufacturing composite semi-permeable membrane
KR102041657B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
JP5130967B2 (en) Manufacturing method of composite semipermeable membrane
KR102067861B1 (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module
JP4433233B2 (en) Processing method of composite semipermeable membrane module

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140702

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees