JP4538600B2 - Photocatalytic activity evaluation and measurement method and equipment for it - Google Patents

Photocatalytic activity evaluation and measurement method and equipment for it Download PDF

Info

Publication number
JP4538600B2
JP4538600B2 JP2005020195A JP2005020195A JP4538600B2 JP 4538600 B2 JP4538600 B2 JP 4538600B2 JP 2005020195 A JP2005020195 A JP 2005020195A JP 2005020195 A JP2005020195 A JP 2005020195A JP 4538600 B2 JP4538600 B2 JP 4538600B2
Authority
JP
Japan
Prior art keywords
light
measurement
photocatalyst
photocatalytic
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005020195A
Other languages
Japanese (ja)
Other versions
JP2006208180A (en
Inventor
雅之 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005020195A priority Critical patent/JP4538600B2/en
Publication of JP2006208180A publication Critical patent/JP2006208180A/en
Application granted granted Critical
Publication of JP4538600B2 publication Critical patent/JP4538600B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Catalysts (AREA)

Description

本発明は、防汚、防曇、殺菌、有害物質の分解等のさまざまな利用に供されている二酸化チタンを始めとする光触媒の活性度評価・測定法とそのための装置に関する。詳しくは、銀イオンの光還元反応を利用した光触媒の活性度評価・測定法とそのための装置に関する。さらに詳しくは、ガラス等の基体にコーティングされて使用される二酸化チタン等光触媒の活性化評価試験に使用される光触媒の活性度評価・測定法とそのための装置に関する。   The present invention relates to a method for evaluating and measuring the activity of a photocatalyst such as titanium dioxide, which is used for various applications such as antifouling, antifogging, sterilization, and decomposition of harmful substances, and an apparatus therefor. More specifically, the present invention relates to a method for evaluating and measuring the activity of a photocatalyst utilizing a photoreduction reaction of silver ions, and an apparatus therefor. More specifically, the present invention relates to a method for evaluating and measuring the activity of a photocatalyst used for an activation evaluation test of a photocatalyst such as titanium dioxide used by being coated on a substrate such as glass, and an apparatus therefor.

近年、光触媒を利用した各種反応が活発に研究なされ、各種分野に盛んに利用されている。その中でも特に注目されている利用技術の中には、自然光も含めた各種光源によって光触媒を作用させ、空気中の汚れ物質やにおい物質、浮遊している各種菌、有害物質等の分解に使用したり、これによって空気をクリーンにしたり、あるいは、人手を介することなく窓ガラスや建物の外壁を汚れから護り、クリーンとする技術が注目されている。そのため様々な光触媒が提案、開発されているが、光触媒を有効に利用するシステムについても盛んに研究、開発が行われている。このような光触媒の研究開発、応用研究が盛んになるにつれ、光触媒の性能、とりわけ、触媒の活性度を正確に知り、評価することが重要となり、そのための基準が求められるようになってきた。そのため、光触媒の評価・測定法として、様々な試み、提案がなされ、且つ実施されている。   In recent years, various reactions using photocatalysts have been actively studied and actively used in various fields. Among the utilization technologies that are particularly attracting attention, photocatalysts are acted on by various light sources including natural light, and are used for decomposing dirt substances, odorous substances, various floating bacteria, harmful substances, etc. in the air. Attention has been focused on a technique for cleaning the window glass and the outer wall of the building from dirt without the need for human intervention. For this reason, various photocatalysts have been proposed and developed. However, active research and development have been conducted on systems that effectively use photocatalysts. As research and development and application research of such photocatalysts become active, it is important to accurately know and evaluate the performance of the photocatalyst, in particular, the activity of the catalyst, and a standard for that purpose has been demanded. Therefore, various trials, proposals have been made and implemented as photocatalyst evaluation / measurement methods.

一般に触媒活性は、光触媒も含め固体触媒の場合、その性能を評価するに当たっては固体触媒粉末の比表面積を測定し、触媒を実際の反応に即して各種データを収集し、反応率、反応速度等によって評価されることが行われている。例えば、光触媒の評価法として、触媒粉末をホルムアルデヒド等の気体と接触して光を照射し、ホルムアルデヒド濃度を検知、測定することによって、ホルムアルデヒドの分解度を知り、評価する測定法が実施されている。   In general, in the case of solid catalysts including photocatalysts, the catalyst activity is measured by measuring the specific surface area of the solid catalyst powder and collecting various data according to the actual reaction to evaluate the performance. It is performed by such as. For example, as a method for evaluating a photocatalyst, a measurement method is known in which the catalyst powder is exposed to light such as formaldehyde and irradiated with light, and the formaldehyde concentration is detected and measured to know and evaluate the degree of decomposition of formaldehyde. .

しかしながら、このような評価法は、極めて煩雑で手間のかかる評価法であるとともに、その使用する触媒が、粉末の状態で使用されるような場合ならまだしも、実際の使用条件とは異なり、粉末でない場合、例えば、光触媒がガラス等の基体表面に塗布、コーティングされて使用されるような場合、上記粉末法による測定方法を適用することは、触媒の使用実態に即しておらず問題である。   However, such an evaluation method is an extremely complicated and time-consuming evaluation method, and if the catalyst to be used is used in a powder state, it is not a powder unlike actual use conditions. In this case, for example, when the photocatalyst is used after being coated and coated on the surface of a substrate such as glass, it is problematic to apply the measurement method based on the powder method because it does not conform to the actual use of the catalyst.

すなわち、コーティングされた膜状の光触媒は、粉末状と比較して光触媒として働く有効な表面積は極端に小さく、光触媒活性測定に非常に高い感度と正確なデータが要求される場合において、このような粉末法を適用して測定し、評価することは、触媒の使用実態からかけ離れており、適正ではなく、コーティング膜の有する触媒活性度を正しく評価しているとは言いがたいし、得られた測定値は、触媒の使用実態を反映しておらず、感度的にも問題を抱え、この試験方法によって触媒を評価することは著しく困難で問題の多い手法である。   That is, the coated film-like photocatalyst has an extremely small effective surface area acting as a photocatalyst compared to the powder form, and such a case where extremely high sensitivity and accurate data are required for photocatalytic activity measurement. Measurement and evaluation by applying the powder method is far from the actual use of the catalyst, it is not appropriate, and it is difficult to say that the catalyst activity of the coating film is correctly evaluated. The measured values do not reflect the actual usage of the catalyst, have a problem in sensitivity, and it is extremely difficult and problematic to evaluate the catalyst by this test method.

そのため、コーティング膜のような形態に適した光触媒の活性度の評価・測定法としては、以下に示す2つの評価方法を挙げることができる。第1の評価・測定法は、メチレンブルー等の色素を使用した色素分解法である。この色素分解法は、色素を事前に光触媒材料の表面に塗布し、これに紫外光等の光触媒反応の励起光照射を実施しながら色素の吸光度の時間変化を記録することで光触媒活性の測定を実現する手法である(非特許文献1を参照のこと)。   Therefore, as an evaluation / measurement method of the activity of the photocatalyst suitable for a form such as a coating film, the following two evaluation methods can be exemplified. The first evaluation / measurement method is a dye decomposition method using a dye such as methylene blue. In this dye decomposition method, the dye is applied to the surface of the photocatalyst material in advance, and the photocatalytic activity is measured by recording the change in absorbance of the dye over time while irradiating it with excitation light of photocatalytic reaction such as ultraviolet light. This is a technique to be realized (see Non-Patent Document 1).

この第1の色素法による評価方法は、前記ホルムアルデヒド分解法である粉末法に比し
て、触媒の活性度測定条件、測定状況は、触媒表面の反応を捉えている点で実際の使用状況に対応しており、非常に有効な評価法であると言える。しかしながら、その測定プロセスを紹介すると、先ず、事前に色素の塗布および乾燥する工程が必須である。この色素塗布の膜の状態は、塗布工程や作業者の熟練度、温度・湿度等の環境条件によって非常に左右されやすく、常に一様な条件に設定することが難しく、再現性の点で十分とは言えないし、なにより手間のかかるものであった。
Compared to the powder method, which is the formaldehyde decomposition method, the evaluation method by the first dye method is the actual use situation in that the conditions for measuring the activity of the catalyst and the measurement situation capture the reaction on the catalyst surface. It can be said that this is a very effective evaluation method. However, when introducing the measurement process, first, a step of applying and drying a dye in advance is essential. The state of this dye-coated film is very sensitive to environmental conditions such as the coating process, operator's skill level, temperature and humidity, and it is difficult to always set uniform conditions, which is sufficient in terms of reproducibility. However, it was a lot of work.

第2の手法は、銀イオンの光還元を利用した評価方法である。この評価方法は、この出願前に発行された学術文献において紹介され、報告されている評価法である(非特許文献2参照のこと)。この評価法は、次ぎのように行われる。先ず、光触媒材料を硝酸銀水溶液中に挿入し、紫外光等の光触媒反応の励起光照射を実施する。水溶液中の銀イオンが光触媒作用によって光触媒材料表面に銀薄膜として堆積を始めるため銀薄膜の形成とともに試料の可視光線の透過率は減少する。一定時間光触媒反応の励起光照射を実施した後、硝酸銀水溶液中から試料を取り出して可視光透過率測定装置に移し、可視光を照射して可視光透過率を測定する。測定後、再び硝酸銀水溶液中に試料を挿入し、同様の操作、すなわち、紫外光等の光触媒反応の励起光照射と、可視光線の透過率測定というプロセスを繰り返し、径時変化を記録する。銀薄膜の形成とともに可視光線の透過率は減少するため可視光線の透過率低下の割合(速度)から光触媒活性が評価される。   The second method is an evaluation method using silver ion photoreduction. This evaluation method is an evaluation method introduced and reported in the academic literature issued prior to this application (see Non-Patent Document 2). This evaluation method is performed as follows. First, a photocatalytic material is inserted into an aqueous silver nitrate solution, and excitation light irradiation of a photocatalytic reaction such as ultraviolet light is performed. Since silver ions in the aqueous solution start to deposit as a silver thin film on the surface of the photocatalytic material by photocatalysis, the visible light transmittance of the sample decreases with the formation of the silver thin film. After carrying out excitation light irradiation of the photocatalytic reaction for a certain period of time, a sample is taken out from the silver nitrate aqueous solution and transferred to a visible light transmittance measuring device, and visible light is irradiated to measure visible light transmittance. After the measurement, the sample is again inserted into the silver nitrate aqueous solution, and the same operation, that is, the process of irradiation with photocatalytic reaction such as ultraviolet light and the measurement of visible light transmittance is repeated, and the change with time is recorded. Since the visible light transmittance decreases with the formation of the silver thin film, the photocatalytic activity is evaluated from the rate (rate) of the visible light transmittance decrease.

この後者の評価方法は、前述第1の手法のような塗布工程等の条件を一様に維持管理し、常に再現性に富んだ一定条件に管理することの困難な色素法とは異なり、基本的には、水の純度と硝酸銀濃度の管理のみで済み、非常に管理が容易で再現性の良い、優れた方法である。さらに、この後者の手法は、感度が高く、試料ごとの微妙な活性の強弱の検出や光触媒活性の検出限界が低く感度が高いことも長所としてあげられる。しかしながら、そのプロセスは、複数の異なる操作を繰り返すことが必要とし、そのため、一試料の測定に極めて多くの時間と手間を要する点で、かならずしも簡便な手法とは言えず、問題のある手法である。   This latter evaluation method is basically the same as the first method described above, unlike the dyeing method, which maintains the conditions of the coating process, etc. uniformly and is difficult to always manage under constant conditions with high reproducibility. This is an excellent method that requires only control of the purity of water and the concentration of silver nitrate, is very easy to manage and has good reproducibility. Furthermore, this latter technique has advantages such as high sensitivity, subtle activity intensity detection for each sample, and low photocatalytic activity detection limit and high sensitivity. However, the process requires repeating a number of different operations, so it is not always a simple method and problematic because it requires a great deal of time and effort to measure a single sample. .

すなわち上記に示した「硝酸銀水溶液中に試料を挿入し、紫外光等の光触媒反応の励起光照射を一定時間実施する」という工程と、「硝酸銀水溶液中から試料を取り出して可視光透過率測定装置によって可視光透過率を測定する」工程とを、何度も繰り返し実施することが必要である。また、この2工程の繰り返し作業は作業者が常時つきっきりで作業をする必要があるため一試料の測定のためにかかる手間は非常に大きく、高感度かつ信頼性の高いデータを供給できる手法ではあるものの、簡便な手法とはとてもいえないものであった。   In other words, the above-mentioned process of “inserting a sample into an aqueous silver nitrate solution and performing excitation light irradiation of a photocatalytic reaction such as ultraviolet light for a certain period of time” and “visible light transmittance measuring device by taking out the sample from the aqueous silver nitrate solution” It is necessary to repeat the process of “measuring the visible light transmittance by” repeatedly. In addition, since it is necessary for the operator to perform the work in a repetitive manner at all times, the labor required for measuring one sample is very large, and it is a technique that can supply highly sensitive and reliable data. However, it was not a simple method.

「工業材料Vol.46No.5」、(1998年)、高見和之、中曽根隆義、橋本和仁、藤嶋昭著、日刊工業新聞社発行、102頁〜105頁)“Industrial Materials Vol. 46 No. 5” (1998), Kazuyuki Takami, Takayoshi Nakasone, Kazuhito Hashimoto, Akira Fujishima, Nikkan Kogyo Shimbun, pages 102-105) S.Nishimoto,B.Ohtani,H.Kajiwara,T.Kagiya,J.Chem.Soc.,Faraday Trans.,179,2685(1983)S. Nishimoto, B .; Ohtani, H .; Kajiwara, T .; Kagiya, J .; Chem. Soc. , Faraday Trans. , 179, 2685 (1983)

上記説明したように、銀イオンの光還元法による光触媒の活性度評価・測定法は、ガラス等の基体上へ塗布、あるいはコーティングして使用する二酸化チタンからなる膜状光触媒の活性化評価法としては、感度がよいこと、分析者の技能に左右されず、再現性が良く評価可能であることから極めて有効な評価手段であるが、「硝酸銀水溶液に試料を挿入し
、紫外光等の光触媒反応の励起光照射を一定時間実施する工程」に引き続き、「硝酸銀水溶液から試料を取り出して可視光透過率測定装置に移して可視光透過率を測定する工程」を、交互に数十回繰り返して行っていた。すなわち、この作業は非常に手間がかかり、効率的にも劣り、せっかくの測定上の優位性もこの作業の煩雑さによって相殺され、この手法による評価法の発展を妨げていた原因の一つと考えられる。本発明は、銀イオンの光還元法のプロセス法の長所に着目し、この手法による評価法を実施するに当たり、長所はそのままにして、一試料あたりに必要とされる作業工程を短縮し、従来の銀イオンの光還元法はもとより競合する他の光触媒活性測定手法よりも簡便で、少ない作業時間で正確な測定が可能な手法を提供しようとするものである。
As described above, the photocatalytic activity evaluation / measurement method based on the silver ion photoreduction method is a method for evaluating the activation of a film-like photocatalyst made of titanium dioxide applied or coated on a substrate such as glass. Is an extremely effective evaluation means because it is highly sensitive and can be evaluated with good reproducibility regardless of the skill of the analyst. Following the process of irradiating the excitation light for a certain period of time, “the process of taking the sample from the silver nitrate aqueous solution and transferring it to the visible light transmittance measuring device and measuring the visible light transmittance” is alternately repeated several tens of times. It was. In other words, this work is very time-consuming and inefficient, and the preponderance of measurement is offset by the complexity of this work, which is one of the reasons that hindered the development of evaluation methods using this method. It is done. The present invention pays attention to the advantages of the silver ion photoreduction method, and in carrying out the evaluation method by this method, the work steps required per sample are shortened while maintaining the advantages. The present invention aims to provide a method that is simpler than other competing photocatalytic activity measurement methods and capable of accurate measurement with less work time as well as the silver ion photoreduction method.

そのため、従来の銀イオンの光還元法による基本的事項はそのまま生かしながら、その分析に要する手間を極力削減することができないかを鋭意検討した。その結果、銀イオン光還元法による光触媒の活性度評価試験方法において、従来は、独立して時期をずらせて行っていた、光反応を励起する励起光照射と、その励起光照射による反応後に行う、光透過率を求める可視光照射とを、別々に実施するのではなく、一度に一挙に照射して、照射光によって光触媒反応と光透過率測定作業とをその場で行うことを思いつき、開発を進めた。   Therefore, while basing on the basic matters of the conventional silver ion photoreduction method, the inventors have intensively studied whether the labor required for the analysis can be reduced as much as possible. As a result, in the photocatalytic activity evaluation test method based on the silver ion photoreduction method, conventionally, the photocatalytic activity evaluation was performed independently, and after the reaction by the excitation light irradiation to excite the photoreaction. Rather than carrying out visible light irradiation to obtain the light transmittance separately, it was devised to irradiate all at once and carry out photocatalytic reaction and light transmittance measurement work on the spot with the irradiated light. Advanced.

そのため、光触媒反応を励起させる光と光透過率を測定するための光とを試料に一度に照射してみたところ、光反応を生じさせると共に試料を反応溶液中においたまま光透過率測定を行いうることにも成功した。すなわち、光触媒反応を励起する光による光触媒反応、すなわち、銀イオンを還元して触媒層状に銀層を析出させる反応と同時に、セルおよび試料を透過する可視光の透過率を測定する作業とを一度に済ましてしまうことができる手法を開発すること、この光照射と光透過率測定作業を時間ごとに繰り返すだけで済む、試料をいちいち取り出したり、その都度光源の切換をしたりといった煩雑さから解放され、容易に自動化して光触媒活性度を評価・測定することのできる評価・測定法を開発することに成功した。   Therefore, when the sample was irradiated with light for exciting the photocatalytic reaction and light for measuring the light transmittance at once, the light reaction was caused and the light transmittance was measured while the sample was left in the reaction solution. I was also successful. That is, the photocatalytic reaction by light that excites the photocatalytic reaction, that is, the reaction of reducing silver ions to deposit a silver layer in the form of a catalyst layer, and at the same time measuring the transmittance of visible light transmitted through the cell and the sample. Development of a technique that can be completed, and it is only necessary to repeat this light irradiation and light transmittance measurement work every time, freeing from the complexity of taking out samples one by one and switching the light source each time And succeeded in developing an evaluation and measurement method that can be easily automated to evaluate and measure the photocatalytic activity.

すなわち、従来法のように試料を、光触媒反応を行う溶液中において光反応を行い、その後、試料を取り出して別の手段に移し、そこで光の透過率を測定していた、いちいち試料を取り出したり、入れたり、あるいは、光反応を励起する光と透過率を測定する光とを切換えて別々に照射したり、測定したりといった煩雑な作業を要することのない、試料は同一容器にてそのままして、取り出すことなく、光照射、透過率測定を基本的に行うだけですむ、極めて簡素化した光触媒活性度評価・測定方法を開発するのに成功したものである。   That is, the sample is photoreacted in a solution for photocatalytic reaction as in the conventional method, and then the sample is taken out and transferred to another means, where the light transmittance is measured. The sample can be left in the same container without the need for complicated operations such as putting in or switching between the light that excites the photoreaction and the light that measures the transmittance and irradiating them separately. In this way, we have succeeded in developing an extremely simplified photocatalytic activity evaluation and measurement method that basically requires only light irradiation and transmittance measurement without taking them out.

すなわち、従来法では、光反応を励起する励起光照射と、その後に行う光透過率を求める可視光照射の2系統の光源による、別々のタイミングによる手間のかかる光照射処理を、統合した光だけで光触媒反応を生じさせると同時に、透過率を測定しうるようにしたもので、作業を簡素化して光触媒の活性度を評価・測定することに成功したものである。本発明は、上記知見と一連の成功に基づいてなされたものであり、その構成は、以下(1)から(12)に記載の通りである。   In other words, the conventional method uses only two types of light irradiation processes at different timings, which are two types of light sources: excitation light irradiation that excites the photoreaction and visible light irradiation that determines the light transmittance thereafter. The photocatalytic reaction is caused at the same time as the transmittance can be measured, and the work was simplified and the activity of the photocatalyst was evaluated and measured. This invention is made | formed based on the said knowledge and a series of success, The structure is as the following (1) to (12).

(1) 銀イオン光還元法による光触媒活性度評価・測定方法において、銀イオンを含む水溶液を満たした光透過セル中に表面に光触媒を塗布担持した光透過性材料からなる担持体を立設して、浸漬し、セルの外側からこの担持体に向けて光触媒反応励起用波長光と光透過率測定用波長光とを一系統に統合して光を照射し、励起光によって光触媒塗布面において銀イオン還元反応を生じさせると同時に、測定光によって担持体を通過する光の透過率を測定し、検知しうるようにしたことを特徴とする、光触媒活性度評価・測定方法。
(2) 前記光触媒反応励起用波長光が紫外光であり、光透過率測定用波長光が可視光である、(1)記載の光触媒活性度評価・測定方法。
(3) 前記光触媒反応励起用波長光と光透過率測定用波長光とを一系統に統合して照射する手段がハーフミラーである、(1)記載の光触媒活性度評価・測定方法。
(4) 前記セルおよび光触媒担持体が、光透過率の高い透明ガラス製または合成樹脂製である、(1)記載の光触媒活性度評価・測定方法。
(5) 前記光照射から光透過率を測定して触媒活性を計算し、求めるまでの工程管理、データ管理、データ計算を、コンピューターによって制御し、自動的に行わせるようにした、(1)記載の光触媒活性度評価・測定方法。
(6) 前記光触媒が二酸化チタンである、(1)ないし(5)記載の何れか1項に記載の光触媒活性度評価・測定方法。
(1) In the photocatalytic activity evaluation / measurement method based on the silver ion photoreduction method, a carrier made of a light transmissive material having a photocatalyst coated and supported on a surface is filled in a light transmissive cell filled with an aqueous solution containing silver ions. Then, the photocatalytic reaction excitation wavelength light and the light transmittance measurement wavelength light are integrated into one system and irradiated to the support from the outside of the cell, and silver is irradiated on the photocatalyst coating surface by the excitation light. A photocatalytic activity evaluation / measurement method characterized in that an ion reduction reaction is caused, and at the same time, the transmittance of light passing through a carrier is measured and detected by measurement light.
(2) The photocatalytic activity evaluation / measurement method according to (1), wherein the photocatalytic reaction excitation wavelength light is ultraviolet light, and the light transmittance measurement wavelength light is visible light.
(3) The photocatalytic activity evaluation / measurement method according to (1), wherein the means for irradiating the wavelength light for photocatalytic reaction excitation and the wavelength light for light transmittance measurement in a single system is a half mirror.
(4) The photocatalytic activity evaluation / measurement method according to (1), wherein the cell and the photocatalyst support are made of transparent glass or synthetic resin having high light transmittance.
(5) The light transmittance was measured from the light irradiation to calculate the catalyst activity, and the process management, data management, and data calculation until the determination were controlled by a computer and automatically performed. (1) The photocatalytic activity evaluation / measurement method described.
(6) The photocatalytic activity evaluation / measurement method according to any one of (1) to (5), wherein the photocatalyst is titanium dioxide.

(7) 銀イオン光還元法による光触媒評価・測定装置において、光触媒反応励起用波長光を発振する第1の光源からの光と光透過率測定用波長光を発振する第2の光源からの光とをまとめて一系統の光に統合して照射する手段と、銀イオンを含む水溶液を満たしてなる光透過型反応セルと、光透過型反応セル内に立設し、浸漬した、光入射面に光触媒が塗布されてなる透明な材料からなる光触媒担持体と、光触媒担持体および光透過型セルを透過する光を検出する光透過率測定器とを有してなる、銀イオン光還元法による光触媒評価・測定装置。
(8) 前記光触媒反応励起用波長光が紫外光であり、前記光透過率測定用波長光が可視光である、(7)記載の銀イオン光還元法による光触媒評価・測定装置。
(9) 光触媒反応励起用波長光を発振する第1の光源からの光と光透過率測定用波長光を発振する第2の光源からの光とをまとめて一系統の光に統合して照射する手段が、ハーフミラーである、(7)記載の銀イオン光還元法による光触媒評価・測定装置。
(10) 前記光透過型反応セルおよび光触媒担持体が、光透過率の高い透明ガラス製または合成樹脂製のいずれかである、(7)記載の光触媒活性度評価・測定装置。
(11) 前記光照射から光透過率を測定して触媒活性を計算し、求めるまでの工程管理、データ管理、データ計算を、コンピューターによって制御し、自動的に行わせるようにした、(7)記載の光触媒活性度評価・測定装置。
(12) 前記光触媒が二酸化チタンである、(7)ないし(11)記載の何れか1項に記載の光触媒活性度評価・測定装置。
(7) In a photocatalyst evaluation / measurement apparatus based on a silver ion photoreduction method, light from a first light source that oscillates photocatalytic reaction excitation wavelength light and light from a second light source that oscillates light transmittance measurement wavelength light Are integrated into one system of light, a light transmission reaction cell filled with an aqueous solution containing silver ions, and a light incident surface standing and immersed in the light transmission reaction cell. By a silver ion photoreduction method, comprising: a photocatalyst carrier made of a transparent material coated with a photocatalyst; and a light transmittance measuring device for detecting light transmitted through the photocatalyst carrier and the light transmission type cell. Photocatalyst evaluation / measurement equipment.
(8) The photocatalyst evaluation / measurement device based on the silver ion photoreduction method according to (7), wherein the photocatalytic reaction excitation wavelength light is ultraviolet light, and the light transmittance measurement wavelength light is visible light.
(9) Irradiating the light from the first light source that oscillates the wavelength light for photocatalytic reaction excitation and the light from the second light source that oscillates the wavelength light for light transmittance measurement together into one system of light The photocatalyst evaluation / measurement device by the silver ion photoreduction method according to (7), wherein the means to perform is a half mirror.
(10) The photocatalytic activity evaluation / measurement device according to (7), wherein the light transmission type reaction cell and the photocatalyst carrier are made of transparent glass or synthetic resin having high light transmittance.
(11) The light transmittance was measured from the light irradiation to calculate the catalyst activity, and the process management, data management, and data calculation until the determination were controlled by a computer and automatically performed. (7) The photocatalytic activity evaluation / measurement apparatus described.
(12) The photocatalytic activity evaluation / measurement device according to any one of (7) to (11), wherein the photocatalyst is titanium dioxide.

従来の銀イオンの光還元法においては、一定時間の紫外光照射により光触媒反応を誘起し、試料表面に銀の薄膜を成長させる工程(数秒〜数分)と、試料の可視光線の透過率を測定する工程(数十秒〜数分)とを別々の装置で実施していた。 そのため、自動化は困難であり、作業者がつききりで必要なデータ点数だけ、上記2工程を繰り返していた。このためデータの点数を多く求められるような高精度評価実施の場合は数時間つききりで上記2工程を繰り返すという膨大な作業をこなしていた。より具体的な作業内容は、試料を硝酸銀水溶液に挿入→光触媒反応励起光を一定時間照射→試料を取り出して水溶液を除去→可視光透過率の測定装置へ試料を設置→可視光透過率測定→試料を取り出す→硝酸銀水溶液に挿入、といったサイクルをデータ点数分行っていた。20点のデータであれば20回繰り返すことになる。
これに対して本発明によれば前述のように光触媒反応の励起用光源と可視光透過率測定用光源を一系統に統合することにより、励起光照射による光触媒反応誘起と可視光透過率測定が同時に実施され、作業者の作業量は激減する。一試料の評価に際して作業者が実施する作業は、試料を石英セルに入れる→石英セルに硝酸銀水溶液を満たす→石英セルを後分光型紫外・可視分光装置、透過率測定装置等に設置する→制御・データ蓄積用計算機による一定時間可視光測定を繰り返すプログラムを起動する、で完了であり、この作業はデータ点数によらず一度のみである。これは光触媒反応の励起用光源と可視光透過率測定用
光源を一系統に統合したことにより装置間の試料の移動が不要となり、計算機による自動繰り返し測定の恩恵を受けることが可能となったからである。作業量を従来と比較してみれば桁違いに本発明の作業量が少なく合理的であることがわかる。
In the conventional silver ion photoreduction method, a photocatalytic reaction is induced by ultraviolet light irradiation for a certain period of time to grow a silver thin film on the sample surface (several seconds to several minutes), and the visible light transmittance of the sample is increased. The step of measuring (several tens of seconds to several minutes) was performed with separate devices. Therefore, automation is difficult, and the above two steps are repeated by the number of data points required by the operator. For this reason, in the case of high-precision evaluation that requires a large number of data points, the above two steps were repeated every few hours. More specific work contents: Insert sample into silver nitrate aqueous solution → Irradiate photocatalytic reaction excitation light for a certain period of time → Remove sample and remove aqueous solution → Install sample in measuring device of visible light transmittance → Visible light transmittance measurement → The cycle of taking out the sample and inserting it into the aqueous silver nitrate solution was performed for the number of data points. If the data is 20 points, it is repeated 20 times.
In contrast, according to the present invention, as described above, the excitation light source for photocatalytic reaction and the light source for visible light transmittance measurement are integrated into one system, so that photocatalytic reaction induction and visible light transmittance measurement by excitation light irradiation can be performed. At the same time, the amount of work for the operator is drastically reduced. The work performed by the operator when evaluating one sample is to place the sample in a quartz cell → fill the quartz cell with an aqueous silver nitrate solution → install the quartz cell in a post-spectral ultraviolet / visible spectroscopic device, transmittance measuring device, etc. → control • Start up a program that repeats visible light measurement for a certain period of time using a data storage computer. This is a one-time operation regardless of the number of data points. This is because the light source for excitation of photocatalytic reaction and the light source for visible light transmittance measurement are integrated into one system, which eliminates the need to move the sample between devices, and can benefit from automatic repeated measurement by a computer. is there. Comparing the amount of work with the conventional one, it can be seen that the amount of work of the present invention is small and reasonable.

本発明を、図面および実施例に基づいて具体的に説明する。ただしこれらは、あくまでも本発明を理解するための一助として開示するための具体的態様例であって、本発明はこれによって限定されない。   The present invention will be specifically described with reference to the drawings and examples. However, these are only specific examples for disclosing as an aid for understanding the present invention, and the present invention is not limited thereto.

図1は、本発明の光触媒活性度測定評価方法を実施する、励起用光源と可視光透過率測定用光源を統合して装置の概念を示す光触媒活性の評価装置の模式図である。光触媒反応励起用波長光を発振する光源1からの光と可視光透過率測定用波長光を発振する光源2からの光をハーフミラーを用いて、光触媒反応励起および可視光透過率測定双方に有効な光を統一した光4を合成する。   FIG. 1 is a schematic diagram of a photocatalytic activity evaluation apparatus that integrates an excitation light source and a visible light transmittance measurement light source and implements the photocatalytic activity measurement evaluation method of the present invention and shows the concept of the apparatus. Effective for both photocatalytic reaction excitation and visible light transmittance measurement using a half mirror with light from light source 1 that oscillates wavelength light for photocatalytic reaction excitation and light from light source 2 that oscillates wavelength light for visible light transmittance measurement Synthesize light 4 that unifies light.

むろん光触媒材料と光源等の組み合わせによっては単一の光源をもってして光触媒反応を励起し、且つ可視光透過率測定に有効な光を発生しうる場合がありうる。この場合は単一の光源のみを用いた構成(図示外)でも有効である。   Of course, depending on the combination of the photocatalyst material and the light source, there may be a case where a single light source can be used to excite the photocatalytic reaction and to generate light effective for measuring the visible light transmittance. In this case, a configuration using only a single light source (not shown) is also effective.

まず、評価しようとする光触媒をガラス等基体8表面に各種手段によってコーティングし、光触媒層7を形成する。この試料層7は硝酸銀水溶液等9を満たした石英製等からなる光触媒反応励起光および可視光透過率測定用光の双方に対して透過性材料からなるセル5中に設置され、図示したように光触媒反応励起用光および可視光透過率測定用光を含む光を、石英セルの外側から照射する。照射した光は、石英セル5、硝酸銀等水溶液9、光触媒コーティング膜7、ガラス等基体8、硝酸銀水溶液9、石英セル5の順に通過するように設置する。設置の際、試料の設置を裏表を逆にすると、光触媒コーティング膜7内で光触媒反応励起光1が吸収を受けてしまい、光触媒コーティング膜の表面での光触媒反応に寄与する光量が低くなり、感度の低下や最悪の場合は測定不能を引き起こすため好ましくない。   First, the photocatalyst to be evaluated is coated on the surface of the substrate 8 such as glass by various means to form the photocatalyst layer 7. This sample layer 7 is placed in a cell 5 made of a material permeable to both photocatalytic reaction excitation light made of quartz filled with an aqueous silver nitrate solution 9 and the like and light for measuring visible light transmittance, as shown in the figure. Light including photocatalytic reaction excitation light and visible light transmittance measurement light is irradiated from the outside of the quartz cell. The irradiated light is installed so as to pass through the quartz cell 5, the silver nitrate aqueous solution 9, the photocatalyst coating film 7, the glass substrate 8, the silver nitrate aqueous solution 9, and the quartz cell 5 in this order. When installing the sample upside down, the photocatalytic reaction excitation light 1 is absorbed in the photocatalyst coating film 7, and the amount of light contributing to the photocatalytic reaction on the surface of the photocatalyst coating film is reduced, resulting in sensitivity. In the worst case, it is not preferable because it causes measurement failure.

なお、この手法ではコーティング膜に基づいて説明したが、使用される光触媒は、バルクの試料においても有効であることは言うまでもない。可視光線が透過しさえすれば光触媒活性測定が可能であることを付記しておく。   Although this method has been described based on a coating film, it goes without saying that the photocatalyst used is also effective for bulk samples. It should be noted that the photocatalytic activity can be measured as long as visible light is transmitted.

上記したように試料の設置を完了し、光触媒反応励起および可視光透過率測定用の双方を含む光4の照射開始直後においては光触媒反応(この場合は硝酸銀水溶液9中の銀イオン(図示外)の還元による銀薄膜6の形成は開始されたばかりであり、可視光線の透過率は高く、石英セルを通過してきた光線10はほとんど吸収を受けていないため透過率(光強度)測定検出器11で測定された可視光線の強度は強い。この照射開始直後の強度を100%と定義し、制御・データ蓄積用計算機12に自動的に記録する。   As described above, the sample installation is completed, and immediately after the start of irradiation of light 4 including both photocatalytic reaction excitation and visible light transmittance measurement, photocatalytic reaction (in this case, silver ions in silver nitrate aqueous solution 9 (not shown)). The formation of the silver thin film 6 by the reduction of is just started, the visible light transmittance is high, and the light beam 10 that has passed through the quartz cell is hardly absorbed, so the transmittance (light intensity) measurement detector 11 is used. The intensity of the measured visible light is strong, and the intensity immediately after the start of irradiation is defined as 100%, which is automatically recorded in the control / data storage computer 12.

この透過率(光強度)測定検出器11とその制御・データ蓄積用計算機12は照射開始直後から一定時間ごとに可視光線の強度を自動的に測定記録するよう設定しておく。時間の経過とともに光触媒反応励起および可視光透過率測定用の双方を含む有効な光4が照射されている光触媒コーティング膜7の表面において銀イオン(図示外)の還元による銀薄膜6の形成が進行する。銀薄膜は可視光線の透過を妨げるため銀薄膜の膜厚の増加とともに石英セルを通過する光線10の強度は減少する。すなわち測定経過時間に対して可視光線の透過強度(透過率)は減少し、その様子は透過率(光強度)測定検出器11とその制御・データ蓄積用計算機12が記録する。光触媒活性の高いコーティング膜ほど銀イオン(図示外)の還元による銀薄膜6の形成速度が速く、石英セルを通過する可視光線10の
強度の減少が早い。すなわちこの石英セルを通過する可視光線10の強度の減少の速度が評価すべきコーティング膜7の光触媒活性に対応する。
The transmittance (light intensity) measurement detector 11 and its control / data storage computer 12 are set to automatically measure and record the intensity of visible light at regular intervals immediately after the start of irradiation. Formation of the silver thin film 6 by reduction of silver ions (not shown) proceeds on the surface of the photocatalyst coating film 7 irradiated with effective light 4 including both photocatalytic reaction excitation and visible light transmittance measurement over time. To do. Since the silver thin film hinders the transmission of visible light, the intensity of the light beam 10 passing through the quartz cell decreases as the thickness of the silver thin film increases. That is, the visible light transmission intensity (transmittance) decreases with respect to the measurement elapsed time, and the state is recorded by the transmittance (light intensity) measurement detector 11 and the control / data storage computer 12. The higher the photocatalytic activity of the coating film, the faster the rate of formation of the silver thin film 6 due to reduction of silver ions (not shown), and the faster the intensity of visible light 10 passing through the quartz cell decreases. That is, the rate of decrease in the intensity of the visible light 10 passing through the quartz cell corresponds to the photocatalytic activity of the coating film 7 to be evaluated.

さらに、現在光触媒材料として圧倒的に広く用いられており、最も光触媒活性評価のニーズが高いガラス等の透明基板上にコーティングされた二酸化チタン光触媒薄膜の光触媒活性評価には、一般に広く市販されている後分光型紫外・可視分光装置や透過率測定装置13をそのまま全く手を加えることなく本発明の実現手段として採用することができる。ここに、後分光型紫外・可視分光装置あるいは透過率測定装置とは、紫外・可視光に対する分光装置、あるいは透過率測定装置であり、その光源が発するすべての波長範囲の光線をすべて同時に試料に照射し、分光を行う場合、試料から出た後の光に対して行うタイプの分光装置あるいは透過率測定装置をして、後分光型紫外・可視分光装置あるいは透過率測定装置と称する。   Furthermore, it is currently widely used as a photocatalyst material, and is generally widely available for photocatalytic activity evaluation of a titanium dioxide photocatalytic thin film coated on a transparent substrate such as glass, which has the highest need for photocatalytic activity evaluation. The post-spectral ultraviolet / visible spectroscopic device and the transmittance measuring device 13 can be employed as the means for realizing the present invention without any modification. Here, the post-spectral type ultraviolet / visible spectroscopic device or transmittance measuring device is a spectroscopic device or a transmittance measuring device for ultraviolet / visible light, and all the light beams of all wavelength ranges emitted by the light source are simultaneously applied to the sample. In the case of irradiating and performing spectroscopy, a spectroscopic device or a transmittance measuring device of a type for performing light emitted from a sample is referred to as a post-spectral ultraviolet / visible spectroscopic device or a transmittance measuring device.

このタイプの装置においては、試料は紫外から可視にかけての光線を常に照射されているために光触媒反応の進行と透過率測定を同時進行させることができる。特に限定するものではないが、後分光型紫外・可視分光装置の一例としては島津製作所製Multispec1500型があげられる。この市販の装置を使用するときは、本発明を実施する装置は、後分光型紫外・可視分光装置13、石英セル5、硝酸銀水溶液等9があれば試料の光触媒活性測定が可能である。   In this type of apparatus, the sample is always irradiated with light from ultraviolet to visible, so that the progress of the photocatalytic reaction and the transmittance measurement can proceed simultaneously. Although not particularly limited, an example of a post-spectral type ultraviolet / visible spectroscopic device is a Multispec 1500 type manufactured by Shimadzu Corporation. When this commercially available apparatus is used, the apparatus for carrying out the present invention can measure the photocatalytic activity of a sample if it has a post-spectral ultraviolet / visible spectroscopic apparatus 13, a quartz cell 5, a silver nitrate aqueous solution 9 and the like.

実施例;
本発明を実際にガラス基板上にスパッタリング法を用いて成膜した二酸化チタンコーティング薄膜の光触媒活性測定に適用した場合を実施例として示す。
試料は、ガラス基板上にスパッタリング装置を用いて形成した二酸化チタンコーティング薄膜であり、ガラス基板8の厚みは0.5ミリメートル、二酸化チタンコーティング層7の厚みは400ナノメートル程度である。この試料を光路長2ミリメートルの石英セル中に挿入して0.01モル/リットルの濃度の硝酸銀水溶液を満たした。本実施例においては市販され、品質が均一で保証されている後分光型紫外・可視分光装置13(島津製作所製、Multispec1500型)を光線の照射および透過率の測定を兼用する装置として使用した。同装置の光源構成から光触媒反応励起を主に担う光源1としては重水素ランプを、また、可視光透過率測定を主に担う光源としてはハロゲンランプを使用し、両光源からの光を、ハーフミラー3を介して合成し、試料7、8、硝酸銀水溶液9を内包する石英セル5に向けて照射した。
Example;
The case where the present invention is applied to the photocatalytic activity measurement of a titanium dioxide coating thin film actually formed on a glass substrate by sputtering is shown as an example.
The sample is a titanium dioxide coating thin film formed on a glass substrate using a sputtering apparatus. The thickness of the glass substrate 8 is 0.5 millimeters, and the thickness of the titanium dioxide coating layer 7 is about 400 nanometers. This sample was inserted into a quartz cell having an optical path length of 2 mm and filled with an aqueous silver nitrate solution having a concentration of 0.01 mol / liter. In this example, a post-spectral ultraviolet / visible spectroscopic device 13 (manufactured by Shimadzu Corp., Multispec 1500 type), which is commercially available and of which quality is uniform and guaranteed, was used as a device that combines light irradiation and transmittance measurement. From the light source configuration of the apparatus, a deuterium lamp is used as the light source 1 mainly responsible for the photocatalytic reaction excitation, and a halogen lamp is used as the light source mainly responsible for the visible light transmittance measurement. The sample was synthesized via the mirror 3 and irradiated toward the quartz cell 5 containing the samples 7 and 8 and the silver nitrate aqueous solution 9.

この後分光型紫外・可視分光装置13には、光源制御機構(図示外)が設けられ、これによって、光源から照射される光の波長や、強度、光量が常に安定に維持照射され、充分な精度で光照射が実行され、本発明の信頼性が担保される。すなわち、本発明を実施するにおいては、光照射条件が変動したりすると、得られたデータは、信頼性を欠く事になるので、光照射条件が変動しないものを選択することが非常に重要である。本実施例の場合、石英セル位置における紫外線強度を、ミノルタUM−10+UM−360型紫外光強度測定装置で測定したところ、3マイクロワット/平方センチメートルであった。その安定性、再現性とも十分なものであった。さらに、透過率測定に関しても光源の安定性以上に重要なファクターである点では変わりはない。そのため、透過率を測定する装置11は、発明を実施し、触媒を評価するうえでは、重要であり、心臓部といっても過言ではなく、信頼性の高いものを準備すべきである。   After this, the spectroscopic ultraviolet / visible spectroscopic device 13 is provided with a light source control mechanism (not shown), which ensures that the wavelength, intensity, and amount of light emitted from the light source are always maintained stably. Light irradiation is performed with accuracy, and the reliability of the present invention is ensured. That is, in the practice of the present invention, if the light irradiation conditions fluctuate, the obtained data will be unreliable, so it is very important to select one that does not fluctuate the light irradiation conditions. is there. In the case of this example, the ultraviolet intensity at the quartz cell position was measured with a Minolta UM-10 + UM-360 type ultraviolet light intensity measuring device, and found to be 3 microwatts / square centimeter. The stability and reproducibility were sufficient. Furthermore, there is no change in terms of transmittance measurement in that the factor is more important than the stability of the light source. Therefore, the device 11 for measuring the transmittance is important in carrying out the invention and evaluating the catalyst, and it should not be an exaggeration to say that it is a heart, but a highly reliable device should be prepared.

得られた測定データは、コンピューター12によって一元的に管理され、光触媒の活性度が自動的に演算され、求められる。以上によって、本発明は、従来法に比して、その作業要領は、大幅に簡素化され、試料を石英セルにセットするとから、光触媒活性度を演算し、求めるまでに要する時間は、極めて短縮された。しかも、従来法では、自動化が困難
であったのに対し、本発明は、自動化が可能となったことから、測定者の負担が大幅に軽減された。
The obtained measurement data is centrally managed by the computer 12, and the activity of the photocatalyst is automatically calculated and obtained. As described above, the working procedure of the present invention is greatly simplified as compared with the conventional method, and the time required to calculate and obtain the photocatalytic activity after the sample is set in the quartz cell is extremely shortened. It was done. Moreover, while it was difficult to automate the conventional method, the present invention can be automated, so the burden on the measurer is greatly reduced.

図2に光触媒活性コーティングを施したガラス基板と比較のために光触媒活性コーティング層を有しない単なるガラス基板に対する光触媒活性測定結果を示してある。図2において横軸は測定時間(作業時間とは異なる、本発明においては試料セットしてからプログラム起動までが作業であり、それ以降の測定は自動的に分光装置が実施する)縦軸が透過率を示している。単なるガラスの基板は当然であるが光触媒活性を示さず、透過率は100パーセント位置で一定であるが、コーティングを施した試料に関しては光触媒効果による銀薄膜の析出により試料の透過率が減少する様子を極めて鮮明に感度高くとらえていることがわかる。また測定点の連続性から極めて光源の安定性が高いことが裏付けられ、信頼性の高い測定結果であることが証明された。   FIG. 2 shows the photocatalytic activity measurement results for a glass substrate having no photocatalytic active coating layer for comparison with a glass substrate having a photocatalytic active coating. In FIG. 2, the horizontal axis represents the measurement time (different from the work time. In the present invention, the work is from the sample setting to the program activation, and the subsequent measurement is automatically performed by the spectroscopic device). Shows the rate. Of course, a simple glass substrate does not exhibit photocatalytic activity, and the transmittance is constant at the 100 percent position. However, with respect to the coated sample, the transmittance of the sample decreases due to the deposition of a silver thin film due to the photocatalytic effect. It can be seen that the image is very clearly and highly sensitive. In addition, the continuity of the measurement points proved that the stability of the light source was extremely high, and it was proved that the measurement results were highly reliable.

また120分の測定時間に対して測定点数は600点(一分あたり5回)とした。従来の従来の銀イオンの光還元法の測定法においては通常1測定点数を得るのに必ず1サイクルの作業(試料を硝酸銀水溶液に挿入→光触媒反応励起光を一定時間照射→試料を取り出して水溶液を除去→可視光透過率の測定装置へ試料を設置→可視光透過率測定→試料を取り出す→硝酸銀水溶液に挿入、熟練しても照射時間等切り詰められない時間があり最低でも1サイクル5分は必要)が必要であるためこのデータを従来の手法でとろうとした場合の作業量は5分×600=50時間という非現実的な数字となる。   The number of measurement points was 600 points (5 times per minute) for a measurement time of 120 minutes. In the conventional measurement method of the conventional silver ion photoreduction method, usually one cycle of work is always required to obtain one measurement point (insert the sample into the silver nitrate aqueous solution → irradiate the photocatalytic reaction excitation light for a certain period of time → remove the sample and the aqueous solution. → Place the sample in the visible light transmittance measurement device → Visible light transmittance measurement → Take out the sample → Insert into the silver nitrate aqueous solution, even if skillful, irradiation time etc. can not be cut down at least 5 minutes per cycle Therefore, the amount of work when trying to take this data by the conventional method is an unrealistic number of 5 minutes × 600 = 50 hours.

以上述べたように、本発明は、従来の銀イオンの光還元法と比較すると、一試料の評価に要する作業者の作業量(時間)を飛躍的に削減することができたものであり、その意義は極めて大きい。さらに要約して述べると、本発明によれば前述のように光触媒反応の励起用光源と可視光透過率測定用光源を一系統に統合することにより、励起光照射による光触媒反応誘起と可視光透過率測定が同時に実施され、作業者の作業量は激減する。一試料の評価に際して作業者が実施する作業は、試料を石英セルに入れる→石英セルに硝酸銀水溶液を満たす→石英セルを後分光型紫外・可視分光装置、透過率測定装置等に設置する→制御・データ蓄積用計算機による一定時間可視光測定を繰り返すプログラムを起動する、で完了であり、この作業はデータ点数によらず一度のみである。これは光触媒反応の励起用光源と可視光透過率測定用光源を一系統に統合したことにより装置間の試料の移動が不要となり、計算機による自動繰り返し測定の恩恵を受けることが可能となったからである。作業量を従来と比較してみれば桁違いに本発明の作業量が少なく合理的であることがわかる。   As described above, the present invention is capable of dramatically reducing the amount of work (time) of an operator required for evaluating one sample, as compared with the conventional silver ion photoreduction method, The significance is extremely great. In summary, according to the present invention, as described above, the photocatalytic reaction excitation light source and the visible light transmittance measurement light source are integrated into a single system, so that photocatalytic reaction induction and visible light transmission by excitation light irradiation are integrated. The rate measurement is performed at the same time, and the amount of work for the worker is drastically reduced. The work performed by the operator when evaluating one sample is to place the sample in a quartz cell → fill the quartz cell with an aqueous silver nitrate solution → install the quartz cell in a post-spectral ultraviolet / visible spectroscopic device, transmittance measuring device, etc. → control • Start up a program that repeats visible light measurement for a certain period of time using a data storage computer. This is a one-time operation regardless of the number of data points. This is because the light source for excitation of photocatalytic reaction and the light source for visible light transmittance measurement are integrated into one system, which eliminates the need to move the sample between devices, and can benefit from automatic repeated measurement by a computer. is there. Comparing the amount of work with the conventional one, it can be seen that the amount of work of the present invention is small and reasonable.

従来の銀イオンの光還元法においては一試料の測定の作業時間を現実的な値に維持することが必要であったためせいぜい一試料あたり数10プロット程度のデータ点数を持って高精度測定と称してきた。しかしながら本発明をもってすればデータ点数の多寡は作業時間とは無関係であり、制御・データ蓄積用計算機の計算速度および記憶容量に依存するのみである。近年の計算機をもってすれば容易に一試料あたりのデータ点数を数100点以上とすることに全く支障をきたさないため作業時間の劇的短縮のみならず測定精度においても本発明は従来の手法を大きく凌駕する。   In the conventional silver ion photoreduction method, it was necessary to maintain the working time of measurement of one sample at a realistic value, so at most it is called high-precision measurement with a data point of about several tens of plots per sample. I have done it. However, according to the present invention, the number of data points is irrelevant to the work time, and only depends on the calculation speed and storage capacity of the control / data storage computer. With a recent computer, the present invention greatly increases the conventional method not only in dramatically shortening the working time but also in measuring accuracy because it does not hinder the number of data points per sample from several hundreds or more. Surpass.

さらに現在光触媒材料として圧倒的に広く用いられており、最も光触媒活性評価のニーズが高いガラス等の透明基板上にコーティングされた二酸化チタン光触媒薄膜の光触媒活性評価には一般に広く市販されている後分光型紫外・可視分光装置や透過率測定装置(13)をそのまま全く手を加えることなく本発明の実現手段全体として採用することができることも大きな長所となる。現在世界中の多数の研究機関、民間企業等において光触媒材料は広く研究されている。しかしながら光触媒材料の研究は比較的新しく、光触媒活性の客観的、定量的な評価基準は定まっておらず、各機関ごとに異なる手法、装置によって光
触媒活性の評価を行っているのが現状である。すなわち現状では光触媒活性を外部機関と比較する場合において客観的基準が存在しないため触媒活性比較は極めて困難である。
Furthermore, it is currently overwhelmingly widely used as a photocatalyst material, and for the photocatalytic activity evaluation of a titanium dioxide photocatalyst thin film coated on a transparent substrate such as glass that has the highest need for photocatalytic activity evaluation, it is generally widely marketed after spectroscopic analysis. It is also a great advantage that the type ultraviolet / visible spectroscopic device and the transmittance measuring device (13) can be adopted as the whole means for realizing the present invention without any modification. Currently, photocatalytic materials are widely studied in many research institutions and private companies all over the world. However, research on photocatalyst materials is relatively new, and objective and quantitative evaluation criteria for photocatalytic activity have not yet been established, and the present situation is that photocatalytic activity is evaluated by different methods and apparatuses for each institution. That is, under the present situation, there is no objective standard when comparing photocatalytic activity with an external engine, so it is extremely difficult to compare catalytic activity.

この光触媒活性評価の客観的基準となりうる評価法および装置に求められる条件は、高精度・高感度であること、再現性が良くオペレーター依存性や環境依存性がないこと、簡便な(作業時間、測定時間が少ない)手法であること、全く同じ仕様の測定装置が容易に手に入ること、などが挙げられる。本発明は、これらの条件を充分に満たしているものであり、今後、光触媒の活性度評価・測定法として世界基準に採用される可能性が大である。   Conditions required for the evaluation method and apparatus that can be an objective standard for this photocatalytic activity evaluation are high accuracy and high sensitivity, good reproducibility, no operator dependency and no environment dependency, simple (working time, (Measurement time is short), and a measuring device with exactly the same specifications can be easily obtained. The present invention sufficiently satisfies these conditions, and is likely to be adopted as a global standard in the future as a photocatalytic activity evaluation / measurement method.

光を利用する技術が盛んになるにつれ、光触媒の研究、開発も今後ますます盛んになることが予想される。これによって、これまでは、光触媒活性につき統一した適正な評価法がなく、光触媒の発展を阻害する要因となっていたところ、本発明によってこれを打破し、明確で、再現性の取れた評価・測定法を提供した意義は極めて大きい。今後、本発明は光触媒の研究、開発に大いに利用され、その発展のみならず、広く産業の発展に大いに寄与するものと期待される。   As technology using light becomes popular, research and development of photocatalysts are expected to become increasingly popular. Thus far, there has been no appropriate evaluation method unified with respect to photocatalytic activity, which has been a factor that hinders the development of photocatalysts. The significance of providing a measurement method is extremely great. In the future, the present invention will be greatly utilized for research and development of photocatalysts, and it is expected to greatly contribute not only to its development but also to industrial development.

光触媒反応の励起用光源と可視光透過率測定用光源とを統合した本発明の光触媒活性評価・測定装置の模式図。The schematic diagram of the photocatalytic activity evaluation and measurement apparatus of this invention which integrated the light source for excitation of a photocatalytic reaction, and the light source for visible light transmittance | permeability measurement. ガラス基板上にコーティングした膜状二酸化チタン光触媒の触媒活性測定結果を示す図。The figure which shows the catalytic activity measurement result of the film-form titanium dioxide photocatalyst coated on the glass substrate.

符号の説明Explanation of symbols

1:光触媒反応励起光源。
2:可視光透過率測定光源。
3:ハーフミラー。
4:1、2各光源の合成光。
5:石英セル。
6:光触媒反応で析出した銀の薄膜。
7:光触媒効果を示すコーティング層。
8:ガラス等基体。
9:硝酸銀水溶液。
10:銀薄膜による吸収で強度の下がった各光源から合成光。
11:透過率(光強度)測定検出器。
12:制御・データ蓄積用計算機。
13:後分光型紫外・可視分光/透過率測定装置。
1: Photocatalytic reaction excitation light source.
2: Visible light transmittance measurement light source.
3: Half mirror.
4: 1 and 2 combined light from each light source.
5: Quartz cell.
6: Silver thin film deposited by photocatalytic reaction.
7: Coating layer showing photocatalytic effect.
8: Substrate such as glass.
9: Silver nitrate aqueous solution.
10: Synthetic light from each light source whose intensity decreased due to absorption by the silver thin film.
11: Transmittance (light intensity) measurement detector.
12: Computer for control and data storage.
13: Post-spectral ultraviolet / visible spectroscopic / transmittance measuring device.

Claims (12)

銀イオン光還元法による光触媒活性度評価・測定方法において、銀イオンを含む水溶液を満たした光透過セル中に表面に光触媒を塗布担持した光透過性材料からなる担持体を立設して、浸漬し、セルの外側からこの担持体に向けて光触媒反応励起用波長光と光透過率測定用波長光とを一系統に統合して光を照射し、励起光によって光触媒塗布面において銀イオン還元反応を生じさせると同時に、測定光によって担持体を通過する光の透過率を測定し、検知しうるようにしたことを特徴とする、光触媒活性度評価・測定方法。   In the photocatalytic activity evaluation and measurement method by the silver ion photoreduction method, a support made of a light-transmitting material with a photocatalyst coated and supported on a surface is placed in a light-transmitting cell filled with an aqueous solution containing silver ions, and immersed. Then, from the outside of the cell, the photocatalytic reaction excitation wavelength light and the light transmittance measurement wavelength light are integrated into one system and irradiated with light, and the silver ion reduction reaction is performed on the photocatalyst coating surface by the excitation light. The photocatalytic activity evaluation / measurement method is characterized in that the transmittance of light passing through the support is measured and detected by measuring light at the same time. 前記光触媒反応励起用波長光が紫外光であり、光透過率測定用波長光が可視光である、請求項1記載の光触媒活性度評価・測定方法。   The photocatalytic activity evaluation / measurement method according to claim 1, wherein the photocatalytic reaction excitation wavelength light is ultraviolet light, and the light transmittance measurement wavelength light is visible light. 前記光触媒反応励起用波長光と光透過率測定用波長光とを一系統に統合して照射する手段がハーフミラーである、請求項1記載の光触媒活性度評価・測定方法。   The photocatalytic activity evaluation / measurement method according to claim 1, wherein the means for irradiating the wavelength light for photocatalytic reaction excitation and the wavelength light for light transmittance measurement in a single system is a half mirror. 前記セルおよび光触媒担持体が、光透過率の高い透明ガラス製または合成樹脂製である、請求項1記載の光触媒活性度評価・測定方法。   The photocatalytic activity evaluation / measurement method according to claim 1, wherein the cell and the photocatalyst carrier are made of transparent glass or synthetic resin having high light transmittance. 前記光照射から光透過率を測定して触媒活性を計算し、求めるまでの工程管理、データ管理、データ計算を、コンピューターによって制御し、自動的に行わせるようにした、請求項1記載の光触媒活性度評価・測定方法。   2. The photocatalyst according to claim 1, wherein the catalyst activity is calculated by measuring the light transmittance from the light irradiation, and the process management, data management, and data calculation until obtaining are controlled by a computer and automatically performed. Activity evaluation and measurement method. 前記光触媒が二酸化チタンである、請求項1ないし5記載の何れか1項に記載の光触媒活性度評価・測定方法。   The photocatalytic activity evaluation / measurement method according to any one of claims 1 to 5, wherein the photocatalyst is titanium dioxide. 銀イオン光還元法による光触媒評価・測定装置において、光触媒反応励起用波長光を発振する第1の光源からの光と光透過率測定用波長光を発振する第2の光源からの光とをまとめて一系統の光に統合して照射する手段と、銀イオンを含む水溶液を満たしてなる光透過型反応セルと、光透過型反応セル内に立設し、浸漬した、光入射面に光触媒が塗布されてなる透明な材料からなる光触媒担持体と、光触媒担持体および光透過型セルを透過する光を検出する光透過率測定器とを有してなる、銀イオン光還元法による光触媒評価・測定装置。   In the photocatalyst evaluation / measurement apparatus based on the silver ion photoreduction method, the light from the first light source that oscillates the wavelength light for photocatalytic reaction excitation and the light from the second light source that oscillates the wavelength light for light transmittance measurement are combined. Means for integrating and irradiating with one system of light, a light-transmitting reaction cell filled with an aqueous solution containing silver ions, and a photocatalyst on the light incident surface standing and immersed in the light-transmitting reaction cell. Photocatalyst evaluation by silver ion photoreduction method, comprising a photocatalyst carrier made of a transparent material applied, and a light transmittance measuring device for detecting light transmitted through the photocatalyst carrier and the light transmission type cell measuring device. 前記光触媒反応励起用波長光が紫外光であり、前記光透過率測定用波長光が可視光である、請求項7記載の銀イオン光還元法による光触媒評価・測定装置。   The photocatalyst evaluation / measurement device by the silver ion photoreduction method according to claim 7, wherein the photocatalytic reaction excitation wavelength light is ultraviolet light, and the light transmittance measurement wavelength light is visible light. 光触媒反応励起用波長光を発振する第1の光源からの光と光透過率測定用波長光を発振する第2の光源からの光とをまとめて一系統の光に統合して照射する手段が、ハーフミラーである、請求項7記載の銀イオン光還元法による光触媒評価・測定装置。   Means for collectively irradiating the light from the first light source that oscillates the wavelength light for photocatalytic reaction excitation and the light from the second light source that oscillates the light transmittance measurement wavelength light into one system of light; The photocatalyst evaluation / measurement device according to claim 7, wherein the photocatalyst is a half mirror. 前記光透過型反応セルおよび光触媒担持体が、光透過率の高い透明ガラス製または合成樹脂製のいずれかである、請求項7記載の光触媒活性度評価・測定装置。   The photocatalytic activity evaluation / measurement device according to claim 7, wherein the light transmission type reaction cell and the photocatalyst support are made of transparent glass or synthetic resin having high light transmittance. 前記光照射から光透過率を測定して触媒活性を計算し、求めるまでの工程管理、データ管理、データ計算を、コンピューターによって制御し、自動的に行わせるようにした、請求項7記載の光触媒活性度評価・測定装置。   The photocatalyst according to claim 7, wherein the light transmittance is measured from the light irradiation to calculate the catalyst activity, and the process management, data management, and data calculation until the calculation are controlled by a computer and automatically performed. Activity evaluation and measurement device. 前記光触媒が二酸化チタンである、請求項7ないし11記載の何れか1項に記載の光触媒活性度評価・測定装置。
The photocatalytic activity evaluation / measurement device according to any one of claims 7 to 11, wherein the photocatalyst is titanium dioxide.
JP2005020195A 2005-01-27 2005-01-27 Photocatalytic activity evaluation and measurement method and equipment for it Expired - Fee Related JP4538600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005020195A JP4538600B2 (en) 2005-01-27 2005-01-27 Photocatalytic activity evaluation and measurement method and equipment for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005020195A JP4538600B2 (en) 2005-01-27 2005-01-27 Photocatalytic activity evaluation and measurement method and equipment for it

Publications (2)

Publication Number Publication Date
JP2006208180A JP2006208180A (en) 2006-08-10
JP4538600B2 true JP4538600B2 (en) 2010-09-08

Family

ID=36965208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005020195A Expired - Fee Related JP4538600B2 (en) 2005-01-27 2005-01-27 Photocatalytic activity evaluation and measurement method and equipment for it

Country Status (1)

Country Link
JP (1) JP4538600B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338808A (en) * 1995-06-14 1996-12-24 Toto Ltd Method for evaluating photocatalytic activity and film for evaluating photocatalytic activity
JPH09311105A (en) * 1996-05-22 1997-12-02 Meidensha Corp Measuring cell cleaning method in optical water quality measuring apparatus
JP2000162129A (en) * 1998-11-30 2000-06-16 Shinku Riko Kk Evaluating method and evaluating device of photocatalyst function
JP2000162202A (en) * 1998-11-30 2000-06-16 Shinku Riko Kk Photocatalyst function evaluating apparatus
JP2002372516A (en) * 2001-06-15 2002-12-26 Shimadzu Corp Liquid chromatographic mass spectrometer
JP2004138387A (en) * 2002-10-15 2004-05-13 Ulvac-Riko Inc Photocatalyst function evaluating apparatus and photocatalyst function evaluation method using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338808A (en) * 1995-06-14 1996-12-24 Toto Ltd Method for evaluating photocatalytic activity and film for evaluating photocatalytic activity
JPH09311105A (en) * 1996-05-22 1997-12-02 Meidensha Corp Measuring cell cleaning method in optical water quality measuring apparatus
JP2000162129A (en) * 1998-11-30 2000-06-16 Shinku Riko Kk Evaluating method and evaluating device of photocatalyst function
JP2000162202A (en) * 1998-11-30 2000-06-16 Shinku Riko Kk Photocatalyst function evaluating apparatus
JP2002372516A (en) * 2001-06-15 2002-12-26 Shimadzu Corp Liquid chromatographic mass spectrometer
JP2004138387A (en) * 2002-10-15 2004-05-13 Ulvac-Riko Inc Photocatalyst function evaluating apparatus and photocatalyst function evaluation method using the same

Also Published As

Publication number Publication date
JP2006208180A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP5246741B2 (en) Apparatus for detecting contaminants in liquid and system for using the same
Kieber et al. Photochemical production of Fe (II) in rainwater
WO2003010511A2 (en) Low resolution surface enhanced raman spectroscopy on sol-gel substrates
Iitaka et al. Orthophosphate ion-sensors based on a quartz-crystal microbalance coated with insoluble orthophosphate salts
Brandt et al. Oxidation, reduction, and reactivity of supported Pd nanoparticles: mechanism and microkinetics
JP2000304698A (en) Method and device for fluorescence measurement, and substrate suited therefor
EP1256794A2 (en) Biochemical analysis data producing method and scanner used thereof
JP4538600B2 (en) Photocatalytic activity evaluation and measurement method and equipment for it
JP6385826B2 (en) Plastic scintillator, sample body for scintillation measurement, and method for producing plastic scintillator
JP4478773B2 (en) Sensor for detecting bad smell of sulfide with high sensitivity
Vandenborre et al. Interaction mechanisms between uranium (VI) and rutile titanium dioxide: From single crystal to powder
JP5022490B2 (en) Measuring apparatus and method for determining optical property values for detecting photolytic and electrochemical decomposition reactions
JP4406702B2 (en) Formaldehyde detection method and detection apparatus
JP2007298328A (en) Photocatalyst activity evaluation device
Leon et al. Integrated photochemical reaction/electrochemical detection in flow-injection systems: kinetic determination of oxalate
Baumgärtel et al. Structure determination of ammonia on Cu (111)
JP4711730B2 (en) Apparatus and method for measuring photocatalytic activity
WO2014174818A1 (en) Quantitative analyzing method for oxidant and quantitative analyzing instrument for oxidant
JP2002228589A (en) Method and device for evaluating oxidation- decomposition activity of photocatalyst
WO2005085801A1 (en) Method and apparatus for detection of biomolecular interaction using near-field light
CN105765359A (en) Method and system for determining ultraviolet fluence received by fluid
JP2010261811A (en) Gas measuring apparatus and method for the same
WO2006070554A1 (en) Photocatalytic activity evaluation method and photocatalytic activity evaluation apparatus
US6781143B2 (en) Biochemical analysis data producing method, biochemical analysis data producing apparatus and stimulable phosphor sheet used therefor
US20020150944A1 (en) Biochemical analysis unit and method for exposing stimulable phosphor sheet using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees