JPH08338808A - Method for evaluating photocatalytic activity and film for evaluating photocatalytic activity - Google Patents

Method for evaluating photocatalytic activity and film for evaluating photocatalytic activity

Info

Publication number
JPH08338808A
JPH08338808A JP7170435A JP17043595A JPH08338808A JP H08338808 A JPH08338808 A JP H08338808A JP 7170435 A JP7170435 A JP 7170435A JP 17043595 A JP17043595 A JP 17043595A JP H08338808 A JPH08338808 A JP H08338808A
Authority
JP
Japan
Prior art keywords
photocatalytic activity
film
evaluated
evaluating
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7170435A
Other languages
Japanese (ja)
Other versions
JP3449046B2 (en
Inventor
Eiichi Kojima
栄一 小島
Mitsuyoshi Machida
町田  光義
Keiichiro Norimoto
圭一郎 則本
Makoto Hayakawa
信 早川
Tatsuhiko Kuga
辰彦 久我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP17043595A priority Critical patent/JP3449046B2/en
Publication of JPH08338808A publication Critical patent/JPH08338808A/en
Application granted granted Critical
Publication of JP3449046B2 publication Critical patent/JP3449046B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method for evaluating a photocatalytic activity easily without using a gas reaction or a biological reaction. CONSTITUTION: The method includes a process wherein an evaluation reaction substance (halogenated alkali aqueous solution 3) reacting with a hole or electron generated when the light is shed onto a substance having a photocatalytic activity (photocatalytic thin film 2) is applied to a surface to be evaluated, a process of casting ultraviolet, rays to the surface, and a process of determining the reacting amount of the evaluation reaction substance. In these processes, the evaluation reaction substance reacts, e.g. is oxidized or reduced, etc. The reacting amount is determined from a pH or a color change of the evaluation reaction substance, whereby a photocatalytic activity on the surface to be evaluated is quantitatively evaluated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光触媒活性を定量的に
評価する方法及びその評価に用いるフィルムに関する。
特には、ガス反応や生物学的な反応を介することなく、
簡便に光触媒活性を評価することのできる光触媒活性の
評価方法に関する。さらには、抗菌タイル等を建物の壁
等に貼った後においても、現場で容易に光触媒活性を評
価することのできる光触媒活性の評価方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for quantitatively evaluating photocatalytic activity and a film used for the evaluation.
In particular, without going through gas reactions or biological reactions,
The present invention relates to a photocatalytic activity evaluation method capable of simply evaluating photocatalytic activity. Furthermore, the present invention relates to a photocatalytic activity evaluation method that enables easy evaluation of photocatalytic activity in the field even after attaching antibacterial tiles or the like to a building wall or the like.

【0002】[0002]

【従来の技術及び発明が解決すべき課題】ある物質に紫
外線を照射した場合に、この物質が、光のエネルギーを
化学エネルギーに変換して周囲の物質の反応を促進する
作用をする場合があり、このような性質を光触媒活性と
いう。例えば、タイルの表面にTiO2 の薄膜を形成し
たもの(抗菌タイルという)をトイレや厨房の壁に貼っ
ておくと、室内雰囲気の脱臭や、タイル表面の抗菌とい
う作用を発揮するとされている(特開平5−25354
4号、WO94/11092号等)。
2. Description of the Related Art When a substance is irradiated with ultraviolet rays, the substance sometimes acts to convert light energy into chemical energy and accelerate the reaction of surrounding substances. This property is called photocatalytic activity. For example, when a tile having a TiO 2 thin film formed thereon (called an antibacterial tile) is stuck on the wall of a toilet or kitchen, it is said that it exerts the effect of deodorizing the indoor atmosphere and the antibacterial effect of the tile surface ( JP-A-5-25354
4 and WO94 / 11092).

【0003】このような抗菌タイルの光触媒薄膜の活性
を評価する方法として、従来は、光触媒薄膜によって分
解されるガス(アンモニアやメチルメルカプタン等)の
経時的濃度変化をガスクロマトグラフでモニターする方
法が知られている。
As a method for evaluating the activity of the photocatalyst thin film of such an antibacterial tile, conventionally known is a method of monitoring a time-dependent concentration change of a gas decomposed by the photocatalyst thin film (ammonia, methyl mercaptan, etc.) by a gas chromatograph. Has been.

【0004】しかし、ガスクロマトグラフでモニタ−す
る方法では、測定装置が高価である上に装置1台につい
てサンプル1枚しか測定できず効率が悪い。また、Pt
等の金属をTiO2 に担持させることで光活性が向上す
ることが知られているが、このような構造の光触媒薄膜
にあっては金属によるガス吸着の影響のため、正味の光
活性がどの程度のものか判断しにくい。更に、タイル等
を壁面として一旦施工した後に、その表面に形成されて
いる光触媒薄膜の活性をガスクロマトグラフでは測定す
ることはできない。
However, the method of monitoring with a gas chromatograph is inefficient because the measuring device is expensive and only one sample can be measured per device. Also, Pt
It is known that the photoactivity is improved by supporting a metal such as TiO 2 on the TiO 2. However, in the photocatalytic thin film having such a structure, the net photoactivity depends on the gas adsorption by the metal. It is difficult to determine if it is of a degree. Furthermore, once the tile or the like is used as a wall surface, the activity of the photocatalytic thin film formed on the wall cannot be measured by a gas chromatograph.

【0005】一方、ガスクロマトグラフを用いない光活
性の評価方法として、光触媒によって死滅する細菌の光
照射後の生存率を調べる方法もあるが、ガスクロマトグ
ラフ以上に操作が面倒で、また金属を担持した光触媒薄
膜にあっては、金属自体の抗菌力によっても細菌が死滅
するので、正味の光活性を判定しにくい。
On the other hand, as a method of evaluating photoactivity without using a gas chromatograph, there is a method of examining the survival rate of bacteria killed by a photocatalyst after light irradiation. In the photocatalytic thin film, the bacteria are killed by the antibacterial activity of the metal itself, so that it is difficult to determine the net photoactivity.

【0006】本発明は、ガス反応や生物学的な反応を介
することなく、簡便に光触媒活性を評価することのでき
る光触媒活性の評価方法を提供することを目的とする。
さらには、抗菌タイル等を建物の壁等に貼った後におい
ても、現場で容易に光触媒活性を評価することのできる
光触媒活性の評価方法、及び、それに用いる光触媒活性
評価フィルムを提供することを目的とする。
An object of the present invention is to provide a method for evaluating photocatalytic activity, which enables simple evaluation of photocatalytic activity without involving gas reaction or biological reaction.
Furthermore, an object of the present invention is to provide a photocatalytic activity evaluation method that can easily evaluate photocatalytic activity in the field even after pasting antibacterial tiles or the like on the walls of buildings, and a photocatalytic activity evaluation film used therefor. And

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明の光触媒活性の評価方法は、光触媒活性を有
する物質(活性物質)に光を照射した際に生じるホール
又はエレクトロンと反応する物質(評価反応物質)を被
評価表面に適用する工程と、該表面に紫外線を照射する
工程と、評価反応物質の反応量を定量化する工程と、を
含むことを特徴とする。
In order to solve the above problems, the method for evaluating photocatalytic activity of the present invention is a substance which reacts with holes or electrons generated when a substance having photocatalytic activity (active substance) is irradiated with light. The method is characterized by including a step of applying the (evaluation reaction substance) to the surface to be evaluated, a step of irradiating the surface with ultraviolet light, and a step of quantifying the reaction amount of the evaluation reaction substance.

【0008】[0008]

【作用】まず、光触媒活性現象に対して敏感な変化を示
す評価反応物質を被評価表面に塗付等する。そして該評
価反応物質を通して該表面に紫外線を照射する。する
と、被評価表面の活性物質がホール及びエレクトロンを
生成し、評価反応物質に直接あるいは間接的に作用し
て、評価反応物質が酸化、還元等の反応を起こす。この
反応の量を、評価反応物質のpHや色の変化から定量化
することにより、被評価表面の光触媒活性を定量的に評
価できる。
First, an evaluation reaction substance showing a change sensitive to the photocatalytic activity phenomenon is applied to the surface to be evaluated. Then, the surface is irradiated with ultraviolet rays through the evaluation reaction substance. Then, the active substance on the surface to be evaluated generates holes and electrons, and acts directly or indirectly on the evaluation reaction substance, causing the evaluation reaction substance to undergo reactions such as oxidation and reduction. The photocatalytic activity of the surface to be evaluated can be quantitatively evaluated by quantifying the amount of this reaction from the change in the pH or color of the evaluation reaction substance.

【0009】[0009]

【実施例】以下、本発明の実施例を説明する。ハロゲンイオンを含む水溶液を用いる方法 :この態様の
方法は、ハロゲンイオンを含む水溶液を被評価表面に適
用し、次いで該表面に紫外線を照射し、照射前後の水溶
液のpH変化を測定し、pH変化量に基づいて光触媒活
性を評価することを特徴とする。
Embodiments of the present invention will be described below. Method using an aqueous solution containing a halogen ion : In the method of this embodiment, an aqueous solution containing a halogen ion is applied to a surface to be evaluated, and then the surface is irradiated with ultraviolet rays to measure a pH change of the aqueous solution before and after irradiation, and a pH change It is characterized in that the photocatalytic activity is evaluated based on the amount.

【0010】この方法においては、一例として、ヨウ素
イオンを含む水溶液の場合、以下の反応が生じる。まず
光が(紫外線)が活性物質(TiO2 等)に当たると、
活性物質はホール(h+ )及びエレクトロン(e- )を
生成し、再結合せずに活性物質表面に現れたホールとエ
レクトロンが以下の反応に寄与する。なお、この反応
は、活性物質のバンドギャップエネルギー以上の光を照
射することで活発となるが、紫外線の波長がちょうどこ
れに適している。TiO2 のバンドギャップは結晶系に
よって異なり、アナターゼで3.2eV、(波長約38
7nm)、ルチルで3.0eV(波長約414nm)で
あり、一般的にTiO2 の場合は約400nmより短い
波長の紫外線が吸収される。このホール(h+ )及びエ
レクトロン(e- )により、 酸化反応: 2I- +2h+ →I2 還元反応: O2 +2H2 O+4e- →4OH- が起る。ここで生じたOH- (水酸イオン)のため、水
溶液のpHが上がる。
In this method, for example, in the case of an aqueous solution containing iodine ions, the following reactions occur. First, when light (ultraviolet) hits an active substance (TiO 2 etc.),
The active substance generates holes (h + ) and electrons (e ), and the holes and electrons that have appeared on the surface of the active substance without recombination contribute to the following reaction. This reaction is activated by irradiation with light having a bandgap energy higher than that of the active substance, and the wavelength of ultraviolet rays is suitable for this. The band gap of TiO 2 differs depending on the crystal system and is 3.2 eV for anatase (wavelength of about 38
7 nm), rutile is 3.0 eV (wavelength: about 414 nm), and in the case of TiO 2 , ultraviolet rays having a wavelength shorter than about 400 nm are generally absorbed. Due to the holes (h + ) and the electrons (e ), an oxidation reaction: 2I + 2h + → I 2 reduction reaction: O 2 + 2H 2 O + 4e → 4OH occurs. The pH of the aqueous solution rises due to the OH (hydroxy ion) generated here.

【0011】この態様の方法において、イオン種として
ハロゲンイオンが選択されている理由は、上記酸化還元
反応が生じやすいからである。その理由はハロゲンイオ
ンは電離度が高く、実質的にイオンとして存する量を多
くできるからである。
In the method of this aspect, the reason why the halogen ion is selected as the ionic species is that the above-mentioned redox reaction is likely to occur. The reason for this is that halogen ions have a high ionization degree, and the amount existing as ions can be increased substantially.

【0012】ハロゲンイオンの中で特に好ましいのは、
ヨウ素イオンである。その理由は上記酸化反応が生じる
ために必要なエネルギーが最も小さいためである。
Among the halogen ions, particularly preferred is
It is an iodine ion. The reason is that the energy required for the oxidation reaction to occur is the smallest.

【0013】ハロゲンイオンを含む水溶液の中で好まし
いのは、ハロゲン化アルカリ水溶液である。その理由
は、電離度が化合物中最も高く、溶液中への溶解濃度を
高くできるからである。
Among the aqueous solutions containing halogen ions, preferred are alkaline halide aqueous solutions. The reason is that the ionization degree is the highest in the compound and the concentration of dissolution in the solution can be increased.

【0014】ハロゲン化アルカリ水溶液の例としては、
ヨウ化物;KI、NaI、LiI、塩化物;KCl、N
aCl、LiCl、臭化物;KBr、NaBr、LiB
r、フッ化物;KF、NaF、LiFの水溶液を挙げる
ことができる。
Examples of the alkali halide aqueous solution include:
Iodide; KI, NaI, LiI, chloride; KCl, N
aCl, LiCl, bromide; KBr, NaBr, LiB
An aqueous solution of r, a fluoride; KF, NaF, or LiF can be used.

【0015】この態様の方法においては、水溶液がさら
にpH指示薬を含むことが好ましい。紫外線照射時のp
H変化を、水溶液の色変化として直接的に測定すること
ができ、きわめて簡便に光触媒活性を評価できるからで
ある。
In the method of this aspect, it is preferable that the aqueous solution further contains a pH indicator. P at the time of ultraviolet irradiation
This is because the H change can be directly measured as the color change of the aqueous solution, and the photocatalytic activity can be evaluated very easily.

【0016】このようなpH指示薬としては、pH4〜
8ぐらいで変化する指示薬が好ましく、その例として、
ブロモクレゾールパープル;pH範囲5.2〜6.8、
クロロフェノールレッド;pH範囲5.0〜6.6、ο
−ニトロフェノール;pH範囲5.0〜7.0、メチル
レッド;pH範囲4.2〜6.2等が好適に利用でき
る。
As such a pH indicator, a pH of 4 to
An indicator that changes around 8 is preferable, and as an example,
Bromocresol purple; pH range 5.2-6.8,
Chlorophenol red; pH range 5.0 to 6.6, o
-Nitrophenol; pH range 5.0 to 7.0, methyl red; pH range 4.2 to 6.2 and the like can be suitably used.

【0017】本体態様の方法においては、ハロゲンイオ
ンを含有する水溶液及びpH指示薬を含むフィルム、又
は、それらを塗布したフィルム(光触媒活性評価フィル
ム)を被評価表面に密着させ、次いで該表面に上記フィ
ルムを通して紫外線を照射し、照射前後の上記フィルム
の色の変化を測定し、色の変化量に基づいて光触媒活性
を評価することができる。
In the method of the main embodiment, a film containing an aqueous solution containing a halogen ion and a pH indicator, or a film coated with them (a photocatalytic activity evaluation film) is brought into close contact with the surface to be evaluated, and then the film is attached to the surface. The photocatalytic activity can be evaluated based on the amount of color change by irradiating ultraviolet rays through the film, measuring the color change of the film before and after the irradiation.

【0018】そのような光触媒活性評価フィルムとし
て、有機バインダーにハロゲンイオンを含む水溶液及び
pH指示薬を添加混合した後に、フィルム状に成形した
ものを用いることができる。あるいは、吸水性物質にハ
ロゲンイオンを含む水溶液及びpH指示薬を吸収させた
ものを用いることもできる。
As such a photocatalytic activity evaluation film, a film formed by adding an aqueous solution containing a halogen ion and a pH indicator to an organic binder and mixing them can be used. Alternatively, it is also possible to use a water-absorbing substance in which an aqueous solution containing a halogen ion and a pH indicator are absorbed.

【0019】このようなフィルムを用いれば、フィルム
を被評価表面に貼って光を当て、色の変化を測定する、
といういわめて簡便な操作で評価作業をすませることが
できる。つまり、薬品の混合や塗布の手間を省ける。ま
た、使用する薬品の量も均一化されるので測定誤差も低
減される。さらに、壁にすでに貼られているタイルの表
面などの垂直な面にも容易に適用できる。なお、この光
触媒活性評価フィルムを用いることによる利点は、後述
する他の態様の光触媒活性の評価方法においても共通す
る。
If such a film is used, the film is attached to the surface to be evaluated, and light is applied to measure the change in color.
That is, the evaluation work can be completed with a simple operation. That is, it is possible to save the trouble of mixing and applying the chemicals. Further, the amount of chemicals used is made uniform, so that measurement error is reduced. Furthermore, it can be easily applied to vertical surfaces such as the surface of tiles already affixed to a wall. The advantage of using this photocatalytic activity evaluation film is common to the photocatalytic activity evaluation methods of other embodiments described later.

【0020】以下に本発明の実施例を添付図面に基づい
て説明する。ここで、図1は本発明に係る光触媒薄膜の
活性測定方法を説明した図であり、図中1はタイル等の
基板であり、この基板1表面にはTiO2 を主体とする
光触媒薄膜2が形成されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a diagram for explaining the method for measuring the activity of a photocatalytic thin film according to the present invention, in which 1 is a substrate such as a tile, and a photocatalytic thin film 2 mainly composed of TiO 2 is provided on the surface of the substrate 1. Has been formed.

【0021】光触媒薄膜2の形成方法としては、Tiの
硫酸塩を塗膜形成して熱分解する方法、Tiのアルコキ
サイドを塗膜形成して熱分解する方法、TiO2 ゾルを
塗膜形成した後加熱して得る方法などがあり、更に、光
活性効果を高めるために、TiO2 薄膜中に均一にC
u、Ag、Fe、Co、Pt、Ni、Pd等の金属を固
定化してもよい。
The photocatalyst thin film 2 can be formed by coating Ti sulfate as a coating film and thermally decomposing it, by coating a alkoxide of Ti as a coating film and thermally decomposing it, and after coating a TiO 2 sol as a coating film. There is a method for obtaining the same by heating, and further, in order to enhance the photoactivation effect, C is uniformly distributed in the TiO 2 thin film.
Metals such as u, Ag, Fe, Co, Pt, Ni and Pd may be fixed.

【0022】以上のようにして形成した光触媒薄膜2に
光活性があるか否かをチェックするには、光触媒薄膜2
表面にヨウ化カリウム或は塩化カリウム等のハロゲン化
アルカリ水溶液3を滴下し、次いで、滴下したハロゲン
化アルカリ水溶液3に紫外線ランプ4によって所定時間
紫外線を照射し、照射前のハロゲン化アルカリ水溶液の
pHと照射後のpHとの差から光触媒薄膜2の活性の大
きさを判断する。
To check whether or not the photocatalytic thin film 2 formed as described above is photoactive, the photocatalytic thin film 2
An alkali halide aqueous solution 3 such as potassium iodide or potassium chloride is dropped on the surface, and then the dropped alkali halide aqueous solution 3 is irradiated with ultraviolet rays by an ultraviolet lamp 4 for a predetermined time to adjust the pH of the alkali halide aqueous solution before irradiation. Then, the magnitude of the activity of the photocatalytic thin film 2 is determined from the difference between the pH after irradiation and the pH after irradiation.

【0023】図4は紫外線照射時間とpHの変化量との
関係を示すグラフであり、ハロゲン化アルカリ水溶液3
の濃度は0.1mo1/リットル、紫外線ランプ4とし
てはBLB蛍光灯20Wを用い、光触媒薄膜2と紫外線
ランプ4との距離は20cm、照射時間は60分として
試験を行った。この図から分かるように、アナターゼ
型、金属担持型、ルチル型のいずれのタイプの光触媒薄
膜2にあっても、紫外線の照射時間が30分になるまで
はハロゲン化アルカリ水溶液3のpHが高くなる。
FIG. 4 is a graph showing the relationship between the ultraviolet irradiation time and the amount of change in pH.
The test was conducted with a concentration of 0.1 mo1 / liter, a BLB fluorescent lamp 20W as the ultraviolet lamp 4, a distance between the photocatalytic thin film 2 and the ultraviolet lamp 4 of 20 cm, and an irradiation time of 60 minutes. As can be seen from this figure, in any of the anatase type, metal-supporting type, and rutile type photocatalyst thin films 2, the pH of the alkali halide aqueous solution 3 increases until the ultraviolet irradiation time reaches 30 minutes. .

【0024】このように紫外線の照射によってハロゲン
化アルカリ水溶液3のpHが高くなるのは以下の酸化反
応と還元反応が同時に起こり、還元反応によってOH-
(水酸イオン)が生じるからである。 酸化反応: 2I- +2h+ →I2 還元反応: O2 +2H2 O+4e- →4OH- したがって紫外線の照射によってハロゲン化アルカリ水
溶液3のpHが高くなれば、その光触媒薄膜2は光活性
を有しているといえる。
[0024] The reason why the pH of an aqueous alkali halide solution 3 by the irradiation of ultraviolet rays is increased occurs following oxidation and reduction reactions simultaneously, OH by reduction reaction -
This is because (hydroxy ion) is generated. Oxidation reaction: 2I + 2h + → I 2 reduction reaction: O 2 + 2H 2 O + 4e → 4OH Therefore, when the pH of the alkali halide aqueous solution 3 is increased by the irradiation of ultraviolet rays, the photocatalytic thin film 2 has photoactivity. Can be said to be.

【0025】図5はR30とpHの変化量との関係を示
すグラフである。ここで、R30は紫外線照射後30分
で減少したガス(メチルメルカプタン等)の割合(%)
であり、この図からR30とpHの変化量とは正の相関
関係があることが分る。即ち、pHの変化量は光活性の
有無の指標となる。
FIG. 5 is a graph showing the relationship between R30 and the amount of change in pH. Here, R30 is the ratio (%) of the gas (methyl mercaptan etc.) that has decreased 30 minutes after the irradiation with ultraviolet rays.
From this figure, it can be seen that there is a positive correlation between R30 and the amount of change in pH. That is, the amount of change in pH serves as an indicator of the presence or absence of photoactivity.

【0026】上記実施例にあっては、pHの変化量はp
Hメータ或いはpH測定シート5によって行うが、第2
の実施例にあっては、ハロゲン化アルカリ水溶液3にp
H指示薬を添加した混合液を光触媒薄膜2表面に滴下
し、次いで、滴下した混合液に所定時間紫外線を照射
し、混合液の色の変化でもって光触媒薄膜2の活性の大
きさを判断する。
In the above embodiment, the amount of change in pH is p
H meter or pH measurement sheet 5
In the embodiment of FIG.
The mixed solution added with the H indicator is dropped on the surface of the photocatalyst thin film 2, and then the dropped mixed solution is irradiated with ultraviolet rays for a predetermined time, and the magnitude of the activity of the photocatalytic thin film 2 is judged by the change in the color of the mixed solution.

【0027】pH指示薬としては、ハロゲン化アルカリ
水溶液3の紫外線照射前のpHが約4.5、紫外線照射
後のpHが5.5〜6.5であるので、ブロモクレゾー
ルパープルが適当である。
As the pH indicator, bromocresol purple is suitable because the pH of the aqueous solution of alkali halide 3 before irradiation with ultraviolet rays is about 4.5 and the pH after irradiation with ultraviolet rays is 5.5 to 6.5.

【0028】また、前記した第1及び第2の実施例にあ
っては、光触媒薄膜2表面にハロゲン化アルカリ水溶液
3あるいはハロゲン化アルカリ水溶液3にpH指示薬を
添加した混合液を滴下するが、基板毎に滴下した液体の
広がりがまちまちで一定の液厚を確保できず、反応面積
が基板毎に異なることがある。
In the first and second embodiments, the aqueous solution of alkali halide 3 or the mixed solution of the aqueous solution of alkali halide 3 and the pH indicator added thereto is dropped onto the surface of the photocatalyst thin film 2. The spread of the dropped liquid varies for each case, so that a constant liquid thickness cannot be secured, and the reaction area may differ from substrate to substrate.

【0029】これを解消するのが図2に示す方法であ
り、この方法にあっては、ハロゲン化アルカリ水溶液3
などを光触媒薄膜2表面に滴下した後、ガラス板等の透
明板6によってハロゲン化アルカリ水溶液3を押え付
け、一定の厚さにするとともに乾燥するのを防止してい
る。
The method shown in FIG. 2 solves this problem. In this method, the alkali halide aqueous solution 3 is used.
After dripping, etc. on the surface of the photocatalyst thin film 2, the alkali halide aqueous solution 3 is pressed by a transparent plate 6 such as a glass plate to make it have a constant thickness and prevent it from drying.

【0030】また、ハロゲン化アルカリ水溶液3等の液
体は基板1の表面が水平であることが条件になるので、
既設の壁面等の垂直面や天井面に形成した光触媒薄膜の
活性を判定することが困難である。
Further, the liquid such as the alkali halide aqueous solution 3 is required that the surface of the substrate 1 is horizontal.
It is difficult to determine the activity of the photocatalytic thin film formed on a vertical surface such as an existing wall surface or the ceiling surface.

【0031】これを解消するのが図3に示す方法であ
り、この方法にあっては、基板1表面に形成した光触媒
薄膜2の表面に活性測定フィルム7を密着させ、この状
態で当該活性測定フィルム7に紫外線を照射し、活性測
定フィルム7の色の変化でもって光触媒薄膜2の活性の
大きさを判断するようにしている。ここで、活性測定フ
ィルム7は、有機バインダにヨウ化カリウム或いは塩化
カリウム等のハロゲン化アルカリ水溶液及びpH指示薬
を添加した混合液を乾燥してフィルム状に成形すること
で得られる。本実施例において使用した有機バインダは
水溶性の樹脂(エマルジョン)であり、乾燥するとフィ
ルムが形成されて、再び水に触れても溶解(エマルジョ
ン)しないタイプの樹脂である。乾燥後にもフィルム中
には、KIとpH指示薬と微量の水分が分散していて、
フィルム表面にも少なからず存在している。
This is solved by the method shown in FIG. 3. In this method, the activity measuring film 7 is brought into close contact with the surface of the photocatalytic thin film 2 formed on the surface of the substrate 1, and the activity is measured in this state. The film 7 is irradiated with ultraviolet rays, and the magnitude of the activity of the photocatalytic thin film 2 is judged by the color change of the activity measuring film 7. Here, the activity measuring film 7 is obtained by drying a mixed solution of an organic binder to which an aqueous solution of an alkali halide such as potassium iodide or potassium chloride and a pH indicator are dried to form a film. The organic binder used in this example is a water-soluble resin (emulsion), which forms a film when dried and does not dissolve (emulsion) even if it comes into contact with water again. Even after drying, KI, pH indicator and a trace amount of water are dispersed in the film,
Not a little present on the film surface.

【0032】以上に説明した如く、第1実施例に係る光
触媒薄膜の活性測定方法によれば、タイル等の基板表面
に形成した光触媒薄膜の表面にハロゲン化アルカリ水溶
液を滴下し、この滴下したハロゲン化アルカリ水溶液に
所定時間紫外線を照射し、照射前のハロゲン化アルカリ
水溶液のpHと照射後のpHとの差から光触媒薄膜の活
性の大きさを判断するようにしたので、従来のガスクロ
マトグラフでモニターする方法や死滅した細菌数を測定
する方法に比べて、簡単且つ迅速に光触媒薄膜の活性の
有無を判定することができる。
As described above, according to the method for measuring the activity of the photocatalyst thin film according to the first embodiment, the aqueous solution of alkali halide is dropped onto the surface of the photocatalyst thin film formed on the surface of the substrate such as the tile, and the dropped halogen. The aqueous alkali chloride solution is irradiated with ultraviolet rays for a predetermined time, and the activity of the photocatalytic thin film is judged from the difference between the pH of the alkali halide solution before irradiation and the pH after irradiation. The presence or absence of the activity of the photocatalytic thin film can be determined more easily and more rapidly than the method described above or the method of measuring the number of dead bacteria.

【0033】また、第2実施例に係る光触媒薄膜の活性
測定方法によれば、光触媒薄膜の表面にハロゲン化アル
カリ水溶液にpH指示薬を添加した混合液を滴下するよ
うにしたので、pHメータやpH測定シートを用いるこ
となく、混合液自体の色の変化でもって光触媒薄膜の活
性を測定できるので更に簡便である。
Further, according to the method for measuring the activity of the photocatalytic thin film according to the second embodiment, since the mixed solution of the pH indicator added to the aqueous solution of alkali halide is dropped on the surface of the photocatalytic thin film, the pH meter and the pH are adjusted. The activity of the photocatalytic thin film can be measured by the change in color of the mixed liquid itself without using a measurement sheet, which is more convenient.

【0034】特に、上記ハロゲン化アルカリ水溶液また
はハロゲン化アルカリ水溶液とpH指示薬との混合液を
滴下した後、基板表面にガラス板等の透明板を戴置する
ようにすれば、ハロゲン化アルカリ水溶液等の厚みが一
定になるとともに乾燥しにくくなるので、より正確な判
断が可能になる。
In particular, if a transparent plate such as a glass plate is placed on the surface of the substrate after dropping the above-mentioned alkali halide aqueous solution or a mixed solution of the alkali halide aqueous solution and the pH indicator, the alkali halide aqueous solution, etc. Since the thickness of the product becomes constant and it becomes difficult to dry, it is possible to make a more accurate judgment.

【0035】また、有機バインダにヨウ化カリウム或い
は塩化カリウム等のハロゲン化アルカリ水溶液及びpH
指示薬を添加した混合液を乾燥してフィルム状に成形し
てなる光触媒薄膜の活性測定フィルムで光触媒薄膜の活
性の大きさを判断するようにすれば、施行後のタイル具
体的には天井面や垂直面等を構成するため測定液を滴下
しにくいタイルに形成した光触媒薄膜の活性についても
簡単に測定することができる。
Further, the organic binder is an aqueous solution of an alkali halide such as potassium iodide or potassium chloride, and pH.
By measuring the activity of the photocatalyst thin film with the photocatalyst thin film activity measurement film formed by drying the mixed solution containing the indicator and forming it into a film, the tiles after the implementation, specifically the ceiling surface or It is possible to easily measure the activity of the photocatalytic thin film formed on the tile on which it is difficult to drop the measurement liquid because the vertical surface is formed.

【0036】有色金属のイオンを含む溶液を用いる方
;この態様の光触媒活性の評価方法は、有色金属のイ
オンを含む溶液を被評価表面(活性物質(TiO2 )等
の表面)に適用し、次いで該表面に紫外線を照射し、照
射前後の該表面の色の変化を測定し、色の変化量に基づ
いて光触媒活性を評価することを特徴とする。
Those who use a solution containing colored metal ions
Method : The photocatalytic activity evaluation method of this embodiment is a method in which a solution containing colored metal ions is applied to the surface to be evaluated (the surface of the active substance (TiO 2 ) or the like), and then the surface is irradiated with ultraviolet rays, before and after irradiation. It is characterized in that the change in color of the surface is measured and the photocatalytic activity is evaluated based on the amount of change in color.

【0037】この態様の方法においては、一例として有
色金属が銀の場合、以下の反応が生じる。 Ag+ +e- →Ag↓ ここで、e- は光触媒活性物質(TiO2 等)が紫外線
照射を受けて生成した電子である。上式の反応により、
Agが被評価表面(TiO2 表面等)上に析出して、同
表面が茶色あるいは黒色に変る。この色の変化により光
触媒活性を評価する。
In the method of this embodiment, for example, when the colored metal is silver, the following reactions occur. Ag + + e → Ag ↓ Here, e is an electron generated by photocatalytically active substance (TiO 2 or the like) irradiated with ultraviolet rays. By the reaction of the above formula,
Ag is deposited on the surface to be evaluated (such as the TiO 2 surface) and the surface turns brown or black. The photocatalytic activity is evaluated by this change in color.

【0038】本方法に用いられて好ましい有色金属の例
としては、Ag、Cu、Au、Pb、Ni、Co、F
e、Sn、Pd、Ge、Mo、V、Tl、In、Cr、
Cd等を挙げることができる。
Examples of preferred colored metals used in this method are Ag, Cu, Au, Pb, Ni, Co and F.
e, Sn, Pd, Ge, Mo, V, Tl, In, Cr,
Cd etc. can be mentioned.

【0039】そのような溶液の例としては、硝酸銀、乳
酸銀、硫酸銀、塩素酸銀、フッ化銀、硫酸白金、ロダン
化パラジウム、硫酸パラジウム、塩化第一金、塩化第二
金、硫酸第一銅、酢酸第一銅、酢酸第二銅、硫酸第二
銅、塩化第二銅、臭化第二銅、硝酸第二銅、塩素酸第二
銅、ロダン化第二銅、塩化第一鉄、塩化第二鉄、硫酸第
一鉄、硫酸第二鉄、ヨウ化第一鉄、臭化第一鉄、臭化第
二鉄、シュウ酸第二鉄、酢酸第一鉄、酢酸第二鉄、塩素
酸第一鉄、塩素酸第二鉄、硝酸第一鉄、硝酸第二鉄、チ
オ硫酸第一鉄、ロダン化第一鉄、ロダン化第二鉄、塩化
コバルト、硫酸コバルト、ヨウ化コバルト、臭化コバル
ト、酢酸コバルト、塩素酸コバルト、硝酸コバルト、塩
化ニッケル、硫酸ニッケル、ヨウ化ニッケル、臭化ニッ
ケル、酢酸ニッケル、塩素酸ニッケル、硝酸ニッケル、
ロダン化ニッケル等を挙げることができる。
Examples of such solutions include silver nitrate, silver lactate, silver sulfate, silver chlorate, silver fluoride, platinum sulfate, palladium rhodanide, palladium sulfate, gold (I) chloride, gold (II) chloride, and gold (II) sulfate. Cuprous acetate, cuprous acetate, cupric acetate, cupric sulfate, cupric chloride, cupric bromide, cupric nitrate, cupric chlorate, cupric rhodanide, ferrous chloride , Ferric chloride, ferrous sulfate, ferric sulfate, ferrous iodide, ferrous bromide, ferric bromide, ferric oxalate, ferrous acetate, ferric acetate, Ferrous chlorate, ferric chlorate, ferrous nitrate, ferric nitrate, ferrous thiosulfate, ferrous rhodanide, ferric rhodanide, cobalt chloride, cobalt sulfate, cobalt iodide, Cobalt bromide, cobalt acetate, cobalt chlorate, cobalt nitrate, nickel chloride, nickel sulfate, nickel iodide, nickel bromide, nickel acetate Chlorine acid nickel, nickel nitrate,
Examples thereof include nickel rhodanide.

【0040】以下の条件で、Ag呈色量を指標とする光
触媒活性評価の実験を行った。 被評価表面:マット調壁タイル(基体:陶器質壁タイ
ル、表面:釉薬層)に、TiO2 ゾルを塗膜形成し、加
熱した後Cuを光還元により固定化する方法により、厚
さ0.5μmのTiO2 層(Cu担持)を形成したもの
(抗菌タイル)を準備した。なお、この抗菌タイルの製
法の詳細については特願平5−313061を参照され
たい。
An experiment for evaluating the photocatalytic activity using the Ag coloration amount as an index was conducted under the following conditions. Surface to be evaluated: TiO 2 sol was formed into a coating film on a matte wall tile (substrate: ceramic wall tile, surface: glaze layer), and after heating, Cu was immobilized by photoreduction to a thickness of 0. A 5 μm TiO 2 layer (supporting Cu) was formed (antibacterial tile). For details of the manufacturing method of this antibacterial tile, refer to Japanese Patent Application No. 5-313061.

【0041】有色金属イオン水溶液:硝酸銀(AgN
3 )を1wt%含む水溶液を用いた。 水溶液塗布:上記タイルを上記水溶液に浸漬した。な
お、刷毛塗りやスプレーにても可である。
Colored metal ion aqueous solution: silver nitrate (AgN
An aqueous solution containing 1 wt% of O 3 ) was used. Aqueous solution application: The tile was dipped in the aqueous solution. It is also possible to use brush coating or spraying.

【0042】光照射:BLB蛍光灯(ブラックライト
蛍光灯、主波長365mm)を用い、90秒間タイルに
光を当てた。 水溶液ふき取り:タイル表面の水溶液をキムタオルで
ふき取った。
Light irradiation: Using a BLB fluorescent lamp (black light fluorescent lamp, main wavelength 365 mm), the tile was irradiated with light for 90 seconds. Aqueous solution wiping: The aqueous solution on the tile surface was wiped off with a Kim towel.

【0043】色差ΔE測定:タイルのAg呈色量を測
定し、照射前(塗布前)の呈色量との差を求めた。測定
は日本電色工業社の色差計ND300Aを用い、JIS
Z8729(1980)およびZ8730(1980)
に基づいて行った。 大腸菌生存率試験:上記で作成したのと同じ抗菌タ
イルの表面について大腸菌生存率テストを行った。同テ
ストの詳細は特願平05−313061記載の方法を採
用した。
Color difference ΔE measurement: The amount of Ag coloration of the tile was measured and the difference from the amount of coloration before irradiation (before coating) was determined. The measurement was performed using a color difference meter ND300A manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS
Z8729 (1980) and Z8730 (1980)
Based on. E. coli viability test: An E. coli viability test was performed on the same antibacterial tile surface prepared above. For the details of the test, the method described in Japanese Patent Application No. 05-313061 was adopted.

【0044】TiO2 層形成の段階で、Cu固定化量を
操作することにより、光触媒活性の程度を数段階に変化
させて、上記テストを何回か行った。なお、Cu固定化
量を変化させると、Cuの電子捕促効果により、光触媒
活性を変化させることができる。図6は、Ag呈色量
(横軸)と大腸菌生存率(抗菌力)との関係を表すグラ
フである。
At the stage of forming the TiO 2 layer, the degree of photocatalytic activity was changed in several stages by manipulating the amount of Cu immobilized, and the above test was conducted several times. In addition, when the amount of Cu immobilized is changed, the photocatalytic activity can be changed by the electron-trapping effect of Cu. FIG. 6 is a graph showing the relationship between Ag coloration amount (horizontal axis) and Escherichia coli viability (antibacterial activity).

【0045】図6に示されているように、呈色量差ΔE
が大きい場合ほど、大腸菌の生存率が低い、すなわち抗
菌力が高いことが判明した。このことから、Ag呈色量
は光触媒活性を定量的に評価するための良い指標となる
ことが判明した。
As shown in FIG. 6, the color difference ΔE
It was found that the larger the ratio, the lower the survival rate of E. coli, that is, the higher the antibacterial activity. From this, it was found that the Ag coloration amount is a good index for quantitatively evaluating the photocatalytic activity.

【0046】易還元性の金属イオンを含む水溶液を用い
る方法;この態様の光触媒活性の評価方法は、易還元性
の金属イオンを含む水溶液を被評価表面に適用し、次い
で該表面に紫外線を照射し、照射前後の該水溶液のpH
変化を測定し、pH変化量に基づいて光触媒活性を評価
することを特徴とする。
Using an aqueous solution containing an easily reducing metal ion
The method for evaluating the photocatalytic activity of this embodiment is to apply an aqueous solution containing a readily reducible metal ion to the surface to be evaluated, and then irradiate the surface with ultraviolet rays to adjust the pH of the aqueous solution before and after irradiation.
It is characterized in that the change is measured and the photocatalytic activity is evaluated based on the pH change amount.

【0047】この態様の方法においては、一例として上
記水溶液がAgNO3 水溶液である場合、以下の反応が
生じる。 AgNO3 +H2 O→ Ag+ +NO3 -+H2 O 2H2 O+4h+ → O2 +4H+ (酸化反応) Ag+ +e- → Ag↓ (還元反応) 上記反応で生じたH+ が水溶液系内で増加するため、水
溶液のpHが減少する。このpH減により被評価表面の
光触媒活性を評価する。
In the method of this aspect, for example, when the aqueous solution is an AgNO 3 aqueous solution, the following reaction occurs. AgNO 3 + H 2 O → Ag + + NO 3 - + H 2 O 2H 2 O + 4h + → O 2 + 4H + ( oxidation) Ag + + e - → Ag ↓ ( reduction) produced in the above reaction H + is in an aqueous solution system Since it increases, the pH of the aqueous solution decreases. The photocatalytic activity of the surface to be evaluated is evaluated by this pH decrease.

【0048】本態様の方法においては、用いる金属イオ
ンの易還元性は、金属の標準電極電位が光触媒の伝導帯
の下端の電位よりも正側であることが好ましい。そのよ
うな金属の例としては、光触媒がTiO2 である場合は
Ag、Cu、Au、Pb、Ni、Co、Fe、Sn、P
d、Ge、Mo、V、Tl、In、Cr、Cd等を挙げ
ることができる。
In the method of the present embodiment, it is preferable that the metal ion used is easily reducible when the standard electrode potential of the metal is more positive than the potential at the lower end of the conduction band of the photocatalyst. Examples of such metals include Ag, Cu, Au, Pb, Ni, Co, Fe, Sn and P when the photocatalyst is TiO 2.
Examples thereof include d, Ge, Mo, V, Tl, In, Cr and Cd.

【0049】以下の条件で、易還元性の金属イオンを含
む水溶液のpH変化を指標とする光触媒活性の評価方法
の実験を行った。 被評価表面: 上述のAg呈色量の場合と同じ方法で
作成した抗菌タイルを準備した。ただし、TiO2 薄膜
の厚さは0.3μmであった。また担持金属はAgとし
た。 易還元性の金属イオンを含む水溶液:硝酸銀(AgN
3 )を1wt%含む水溶液を用いた。
Under the following conditions, an experiment of a method for evaluating the photocatalytic activity was carried out using the pH change of the aqueous solution containing the easily reducing metal ion as an index. Surface to be evaluated: An antibacterial tile prepared by the same method as in the case of the Ag coloration amount described above was prepared. However, the thickness of the TiO 2 thin film was 0.3 μm. The supporting metal was Ag. Aqueous solution containing easily reducing metal ions: Silver nitrate (AgN
An aqueous solution containing 1 wt% of O 3 ) was used.

【0050】水溶液滴下:上記タイル表面に上記水溶
液を0.15mリットル滴下した。 光照射BLB蛍光灯(ブラックライト蛍光灯、主波長
365mm)を用い、約W/cm2 の紫外線照度で10
分間、光を当てた。
Drop of aqueous solution: 0.15 ml of the above aqueous solution was dropped onto the surface of the tile. Light irradiation BLB fluorescent lamp (black light fluorescent lamp, main wavelength 365 mm) is used, and the UV illuminance is about 10 W / cm 2.
Lighted for minutes.

【0051】水溶液回収:光照射後、水溶液を吸水シ
ートで回収した。 pH測定:回収した水溶液のpHをpHメータ(堀場
製、コンパクトpHメータB−212)で測定し、元の
水溶液のpHとの差を求めた。
Recovery of aqueous solution: After irradiation with light, the aqueous solution was recovered with a water absorbing sheet. pH measurement: The pH of the collected aqueous solution was measured with a pH meter (manufactured by Horiba, compact pH meter B-212) to determine the difference from the pH of the original aqueous solution.

【0052】大腸菌生存率試験:上記で作成したの
と同じ抗菌タイルの表面について大腸菌生存率テストを
行った。TiO2 層形成の段階で、Agの固定化量を操
作することにより、光触媒活性の程度を数段階に変化さ
せて、上記テストを何回か行った。
E. coli viability test: An E. coli viability test was performed on the same antibacterial tile surface prepared above. At the stage of forming the TiO 2 layer, the degree of photocatalytic activity was changed in several stages by manipulating the fixed amount of Ag, and the above test was performed several times.

【0053】図7は、硝酸銀水溶液のpH変化(縦軸)
と抗菌力(横軸)との関係を表すグラフである。横軸の
抗菌力において、“+++”は、タイルに大腸菌サンプ
ルを30分間接触させた時に、大腸菌の生存率が10%
以下であったことを示す。同様に、“++”は生存率が
10〜30%、“+”は30〜70%、“−”は70%
以上を示す。
FIG. 7 shows the pH change of the silver nitrate aqueous solution (vertical axis).
It is a graph showing the relationship between and antibacterial activity (horizontal axis). In the antibacterial activity on the horizontal axis, “+++” means that the survival rate of E. coli is 10% when the sample is contacted with the tile for 30 minutes.
It shows that it was the following. Similarly, the survival rate of "++" is 10 to 30%, "+" is 30 to 70%, and "-" is 70%.
The above is shown.

【0054】図7に示されているように、pH変化と抗
菌力との間には、はっきりとした相関関係が見られる。
このことから、硝酸銀水溶液のpH変化は、光触媒活性
を定量的に評価するための良い指標となることが判明し
た。なお、硝酸銀水溶液の場合、前述の銀析出に伴う変
色と、水溶液のpH変化という2重の評価を一度に行う
ことができるので、評価がより確実になるという利点も
ある。
As shown in FIG. 7, there is a clear correlation between pH change and antibacterial activity.
From this, it was found that the pH change of the aqueous silver nitrate solution is a good index for quantitatively evaluating the photocatalytic activity. In the case of an aqueous solution of silver nitrate, it is possible to perform the double evaluation of the discoloration due to the above-described silver precipitation and the pH change of the aqueous solution at the same time, and there is also an advantage that the evaluation becomes more reliable.

【0055】二重結合を有する物質を用いる方法;この
態様の光触媒活性の評価方法は、二重結合を有する物質
を被評価表面に塗布した後、該表面に紫外線を照射し、
その際における該物質の開裂反応に基づく変化を観察す
ることにより被評価表面の光触媒活性を評価することを
特徴とする。
Method using a substance having a double bond ; The photocatalytic activity evaluation method of this embodiment is such that a substance having a double bond is applied to a surface to be evaluated, and then the surface is irradiated with ultraviolet rays,
The photocatalytic activity of the surface to be evaluated is evaluated by observing a change due to the cleavage reaction of the substance at that time.

【0056】ここで、二重結合を有する物質の開裂反応
に基く変化の類型としては、例えば、色の変化、溶媒滴
下時の接触角の変化、比重の変化等を挙げることができ
る。このうち、定量的に測定しやすいのは色である。
Here, the types of changes based on the cleavage reaction of the substance having a double bond include, for example, changes in color, changes in contact angle at the time of dropping a solvent, changes in specific gravity, and the like. Of these, it is color that is easy to measure quantitatively.

【0057】このような二重結合を有する物質の例とし
て、エラストマー、ポリエンまたはABS等のそれらを
含む高分子等がある。このうち、ゴム、アラビアゴム等
のエラストマーを含む物質が適度な反応性を有している
ので好ましい。
Examples of the substance having such a double bond include polymers such as elastomers, polyenes and ABS. Of these, substances containing elastomers such as rubber and gum arabic are preferable because they have appropriate reactivity.

【0058】身近に存在するものの中ではセロファン粘
着テープ(いわゆるセロテープ)が、この態様の光触媒
活性の評価方法に用いる光触媒活性評価フィルムとして
好ましい。すなわち、被評価表面に容易に、評価反応物
質(ゴム等)をほぼ均一な厚さで、貼り付けることがで
きる。また、生地や粘着物質が透明なため、照射時に被
評価表面までほぼ完全に光が通るとともに、粘着層の色
の測定が妨害を受けない。
Among those that are present in our daily lives, cellophane adhesive tape (so-called cellophane tape) is preferable as the photocatalytic activity evaluation film used in the photocatalytic activity evaluation method of this embodiment. That is, the evaluation reaction substance (rubber or the like) can be easily attached to the surface to be evaluated with a substantially uniform thickness. In addition, since the cloth and the adhesive substance are transparent, the light is almost completely transmitted to the surface to be evaluated upon irradiation, and the color measurement of the adhesive layer is not disturbed.

【0059】変色のメカニズムは以下のように考えられ
る。セロテープの粘着剤には、ゴム系の材料が主に使用
されている。輪ゴムなどは自然に放置しておいても空気
中の酸素によって酸化されて弾力を失ってボロボロにな
ってしまう、つまりゴムは比較的容易に分解されるので
ある。ゴムは一般的に二重結合をたくさん持つため弾力
を示している。この二重結合が酸化反応によって壊され
たため、弾力が失われたのである。そして、この酸化反
応を光触媒を用いて促進することで、セロテープに使用
されているゴムが酸化され変質したため、粘着剤が変色
したものと考えられる。なお、上記反応は紫外線を照射
するだけでも緩やかに進行するが、光触媒が加わること
で30分程度の短い時間でも生じることになる。したが
って、変色の程度を比較的短時間の光照射で定量するこ
とにより、光触媒活性を評価できるのである。
The mechanism of discoloration is considered as follows. Rubber-based materials are mainly used as adhesives for cellophane tape. Even if rubber bands are naturally left unattended, they are oxidized by oxygen in the air to lose elasticity and become tattered, that is, rubber is relatively easily decomposed. Rubber generally exhibits elasticity because it has many double bonds. The double bond was destroyed by the oxidation reaction, and the elasticity was lost. It is considered that the rubber used in the cellophane tape was oxidized and deteriorated by accelerating the oxidation reaction using a photocatalyst, and thus the adhesive was discolored. Although the above-mentioned reaction proceeds slowly only by irradiating it with ultraviolet rays, it will occur even in a short time of about 30 minutes by adding a photocatalyst. Therefore, the photocatalytic activity can be evaluated by quantifying the degree of discoloration by light irradiation for a relatively short time.

【0060】光触媒反応を利用した脱臭や殺菌、防汚な
どの働きを日常空間で実現するためには、光触媒を表面
に薄膜形成した建材、たとえばタイルなど、を用いて同
空間の壁面や天井を施工することが考えられる。その場
合に、このセロテープを用いる方法によれば、施工した
その現場で光触媒反応が働いていることを視覚で手軽に
判断する事ができる。
In order to realize functions such as deodorization, sterilization and antifouling utilizing photocatalytic reaction in everyday space, a wall or ceiling of the space is constructed by using a building material having a thin film of photocatalyst on its surface, such as tile. It is possible to construct it. In that case, according to the method using this cellophane tape, it is possible to easily visually judge that the photocatalytic reaction is working at the site where the construction is performed.

【0061】以下の条件で、セロテープの色変化を指標
とする光触媒活性評価の実験を行った。 被評価表面:通常のブライト調壁タイル(基体:陶器
質タイル、表面:釉薬層)そのままのもの、同タイルに
アナターゼ型のTiO2 からなる光触媒活性薄膜を形成
したもの(厚約1μm、780℃焼成)、及び、同タイ
ルにルチル型のTiO2 の薄膜を形成しさらにCuを担
持した光触媒活性薄膜を形成したもの(厚約1μm、9
00℃焼成)の3サンプルを準備した。薄膜の形成方
法、及びCuの担持方法については特願平5−3130
61を参照されたい。
Under the following conditions, an experiment for evaluating the photocatalytic activity using the color change of cellophane tape as an index was conducted. Surface to be evaluated: Ordinary bright wall tile (base: ceramic tile, surface: glaze layer) as it is, on which a photocatalytically active thin film made of anatase TiO 2 was formed (thickness: about 1 μm, 780 ° C) (Fired), and a rutile type TiO 2 thin film formed on the tile and a photocatalytically active thin film carrying Cu (thickness: about 1 μm, 9
Three samples (fired at 00 ° C) were prepared. Regarding the method of forming a thin film and the method of supporting Cu, Japanese Patent Application No. 5-3130
See 61.

【0062】セロテープ:ニチバン薬品工業製のセロ
テープ(商品名)を用いた。このセロテープを上記被評
価表面に貼り付けた。 光照射:BLB蛍光灯(ブラックライト蛍光灯、主波
長365mm)を用い、約1.0mW/cm2 の紫外線
照度で30分間、光を当てた。この際、紫外線照度の測
定にはウシオ電機製の照度計UIT101−365PD
を用いた。なお、比較用として、無照射(遮光)のもの
も調整した。
Cellotape: Cellotape (trade name) manufactured by Nichiban Pharmaceutical Co., Ltd. was used. This cellophane tape was attached to the surface to be evaluated. Light irradiation: Using a BLB fluorescent lamp (black light fluorescent lamp, main wavelength 365 mm), light was applied for 30 minutes at an ultraviolet illuminance of about 1.0 mW / cm 2 . At this time, the illuminance meter UIT101-365PD manufactured by Ushio Inc. is used to measure the ultraviolet illuminance.
Was used. For comparison, a non-irradiated (light-shielded) one was also prepared.

【0063】色差ΔE測定:照射前後におけるセロテ
ープの色度を測定し、両者の色差を求めた。色差計は日
本電色製ND−300Aを用いて、L*** 表色系
を選び、色差ΔE* を下式により求めた。 ΔE* =((ΔL*2 +(Δa*2 +(Δb*
21/2
Color difference ΔE measurement: The chromaticity of the cellophane tape before and after irradiation was measured to determine the color difference between the two. As the color difference meter, ND-300A manufactured by Nippon Denshoku Co., Ltd. was used, the L * a * b * color system was selected, and the color difference ΔE * was calculated by the following formula. ΔE * = ((ΔL * ) 2 + (Δa * ) 2 + (Δb * )
2 ) 1/2

【0064】得られた試験結果を表1に示す。The test results obtained are shown in Table 1.

【0065】[0065]

【表1】 [Table 1]

【0066】図8は、表1の結果をまとめたもので、タ
イル表面に貼り付けたセロテープ粘着剤の色差を示すグ
ラフである。
FIG. 8 is a summary of the results of Table 1 and is a graph showing the color difference of the cellophane tape adhesive stuck on the tile surface.

【0067】表1及び図8に示されているように、通常
タイルや遮光時の場合は、ほとんど色差が認められない
のに対して、アナターゼ型薄膜とルチル型薄膜の照射時
のものにおいては、大きい色差が観察されている。この
ことから、セロテープの色の変化は、光触媒活性を定量
的に評価するための良い指標となることが判明した。
As shown in Table 1 and FIG. 8, almost no color difference is observed in the case of ordinary tiles or when light is shielded, whereas in the case of irradiation of anatase type thin film and rutile type thin film, , A large color difference is observed. From this, it was found that the color change of the cellophane tape is a good index for quantitatively evaluating the photocatalytic activity.

【0068】本発明の一態様の光触媒活性評価フィルム
は、実質的に透明であり、ハロゲンイオンを含有する水
溶液及びpH指示薬を含むことを特徴とする。本発明の
他の一態様の光触媒活性評価フィルムは、実質的に透明
であり、有色金属のイオンを含む溶液を含むことを特徴
とする。これらのフィルムのの製造方法、使用方法につ
いては前述のとおりである。
The photocatalytic activity evaluation film of one embodiment of the present invention is substantially transparent and is characterized by containing a halogen ion-containing aqueous solution and a pH indicator. The photocatalytic activity evaluation film according to another aspect of the present invention is substantially transparent and is characterized by containing a solution containing ions of a colored metal. The production method and use method of these films are as described above.

【0069】[0069]

【発明の効果】以上の説明から明らかなように、本発明
は以下の効果を発揮する。 従来のガスクロマトグラフでモニターする方法や死
滅した細菌数を測定する方法に比べて、簡単且つ迅速に
光触媒活性を評価できる。 傾いている被評価表面や、既に現場に貼られたタイ
ルの表面についても測定することもできる。
As is apparent from the above description, the present invention exhibits the following effects. The photocatalytic activity can be evaluated more easily and rapidly compared to the conventional method of monitoring with a gas chromatograph and the method of measuring the number of dead bacteria. It is also possible to measure a tilted surface to be evaluated or the surface of a tile that has already been pasted on site.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例に係る光触媒薄膜の活性測定
方法を説明した図である。
FIG. 1 is a diagram illustrating a method for measuring the activity of a photocatalytic thin film according to an example of the present invention.

【図2】透明部材を評価反応物質上に載置する実施例に
係る光触媒薄膜の活性測定方法を説明した図である。
FIG. 2 is a diagram illustrating a method for measuring activity of a photocatalytic thin film according to an example in which a transparent member is placed on an evaluation reaction substance.

【図3】活性測定フィルムを用いた実施例に係る光触媒
薄膜の活性測定方法を説明した図である。
FIG. 3 is a diagram illustrating a method for measuring activity of a photocatalytic thin film according to an example using an activity measuring film.

【図4】紫外線照射時間とpHの変化量との関係を示す
グラフである。
FIG. 4 is a graph showing a relationship between an ultraviolet irradiation time and a change amount of pH.

【図5】R30とpHの変化量との関係を示すグラフで
ある。
FIG. 5 is a graph showing the relationship between R30 and the amount of change in pH.

【図6】Ag呈色量(横軸)と大腸菌生存率(抗菌力)
との関係を表すグラフである。
FIG. 6 Ag coloration amount (horizontal axis) and Escherichia coli viability (antibacterial activity)
It is a graph showing the relationship with.

【図7】硝酸銀水溶液のpH変化(縦軸)と抗菌力(横
軸)との関係を表すグラフである。
FIG. 7 is a graph showing the relationship between pH change (vertical axis) and antibacterial activity (horizontal axis) of an aqueous silver nitrate solution.

【図8】タイル表面に貼り付けたセロテープ粘着剤の色
差を示すグラフである。
FIG. 8 is a graph showing the color difference of a cellophane tape adhesive attached to the surface of a tile.

【符号の説明】[Explanation of symbols]

1 基板 2 光触媒薄膜 3 ハロゲン化アルカリ水溶液 4 紫外線ランプ 5 pH測定シート 6 ガラス板 7
活性測定フィルム
1 substrate 2 photocatalytic thin film 3 alkali halide aqueous solution 4 ultraviolet lamp 5 pH measurement sheet 6 glass plate 7
Activity measurement film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 則本 圭一郎 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 早川 信 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 久我 辰彦 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keiichiro Norimoto, 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu, Fukuoka Prefecture Totoki Kikai Co., Ltd. (72) Shin Hayakawa, Nakajima, Kitakyushu, Kitakyushu 2-1-1 1-1 Totoki Co., Ltd. (72) Inventor Tatsuhiko Kuga 2-1-1 1-1 Nakajima, Kokurakita-ku, Kitakyushu City, Fukuoka Prefecture Totoki Co., Ltd.

Claims (36)

【特許請求の範囲】[Claims] 【請求項1】 光触媒活性を有する物質(活性物質)に
光を照射した際に生じるホール又はエレクトロンと反応
する物質(評価反応物質)を被評価表面に適用する工程
と、 該表面に紫外線を照射する工程と、 評価反応物質の反応量を定量化する工程と、 を含むことを特徴とする光触媒活性の評価方法。
1. A step of applying a substance (evaluation reaction substance) that reacts with holes or electrons generated when a substance having photocatalytic activity (active substance) is irradiated to the surface to be evaluated, and irradiating the surface with ultraviolet rays. And a step of quantifying the reaction amount of the reaction substance to be evaluated, the method for evaluating photocatalytic activity.
【請求項2】 上記評価反応物質の反応が、酸化又は還
元反応である請求項1記載の光触媒活性の評価方法。
2. The photocatalytic activity evaluation method according to claim 1, wherein the reaction of the evaluation reaction substance is an oxidation or reduction reaction.
【請求項3】 上記評価反応物質のpH変化を測定する
ことにより反応量を定量化する請求項1又は2記載の光
触媒活性の評価方法。
3. The photocatalytic activity evaluation method according to claim 1, wherein the reaction amount is quantified by measuring the pH change of the evaluation reaction substance.
【請求項4】 上記評価反応物質の色の変化を測定する
ことにより反応量を定量化する請求項1又は2記載の光
触媒活性の評価方法。
4. The method for evaluating photocatalytic activity according to claim 1, wherein the reaction amount is quantified by measuring the change in color of the evaluation reaction substance.
【請求項5】 評価反応物質を塗布した透明部材を被評
価表面に密着させることにより評価反応物質を被評価表
面に適用する請求項1〜4いずれか1項記載の光触媒活
性の評価方法。
5. The method for evaluating photocatalytic activity according to claim 1, wherein the evaluation reaction substance is applied to the surface to be evaluated by bringing a transparent member coated with the evaluation reaction substance into close contact with the surface to be evaluated.
【請求項6】 評価反応物質を含むフィルム又は評価反
応物質を塗布したフィルム(光触媒活性評価フィルム)
を被評価表面に貼付することにより評価反応物質を被評
価表面に適用する請求項1〜4いずれか1項記載の光触
媒活性の評価方法。
6. A film containing an evaluation reaction substance or a film coated with an evaluation reaction substance (photocatalytic activity evaluation film)
The method for evaluating photocatalytic activity according to any one of claims 1 to 4, wherein the reaction substance for evaluation is applied to the surface to be evaluated by sticking to the surface to be evaluated.
【請求項7】 評価反応物質及びその反応量を定量化す
るための指示薬を含むフィルム、又は、それらを塗布し
たフィルム(光触媒活性評価フィルム)を被評価表面に
貼付することにより評価反応物質を被評価表面に適用す
る請求項1〜4いずれか1項記載の光触媒活性の評価方
法。
7. A film containing an evaluation reaction substance and an indicator for quantifying the reaction amount of the evaluation reaction product, or a film (photocatalytic activity evaluation film) coated with the film is attached to the surface to be evaluated so as to cover the evaluation reaction product. The photocatalytic activity evaluation method according to claim 1, which is applied to an evaluation surface.
【請求項8】 ハロゲンイオンを含む水溶液を被評価表
面に適用し、次いで該表面に紫外線を照射し、照射前後
の水溶液のpH変化を測定し、pH変化量に基づいて光
触媒活性を評価することを特徴とする光触媒活性の評価
方法。
8. An aqueous solution containing halogen ions is applied to a surface to be evaluated, and then the surface is irradiated with ultraviolet rays to measure the pH change of the aqueous solution before and after irradiation, and the photocatalytic activity is evaluated based on the pH change amount. A method for evaluating photocatalytic activity, comprising:
【請求項9】 ハロゲンイオン及びpH指示薬を含む水
溶液を被評価表面に適用し、次いで該表面に紫外線を照
射し、照射前後の水溶液の色の変化を測定し、色の変化
量に基づいて光触媒活性を評価することを特徴とする光
触媒活性の評価方法。
9. A photocatalyst is prepared by applying an aqueous solution containing halogen ions and a pH indicator to a surface to be evaluated, and then irradiating the surface with ultraviolet rays to measure the change in color of the aqueous solution before and after irradiation, and based on the amount of change in color. A method for evaluating photocatalytic activity, which comprises evaluating the activity.
【請求項10】 上記水溶液を被評価表面に適用した
後、適用部に透明部材を載置し、この透明部材を介して
紫外線の照射を行う請求項8又は9記載の光触媒活性の
評価方法。
10. The method for evaluating photocatalytic activity according to claim 8, wherein after the aqueous solution is applied to the surface to be evaluated, a transparent member is placed on the application part and ultraviolet rays are radiated through the transparent member.
【請求項11】 ハロゲンイオンを含有する水溶液及び
pH指示薬を含むフィルム、又は、それらを塗布したフ
ィルム(光触媒活性評価フィルム)を被評価表面に密着
させ、次いで該表面に上記フィルムを通して紫外線を照
射し、照射前後の上記フィルムの色の変化を測定し、色
の変化量に基づいて光触媒活性を評価することを特徴と
する光触媒活性の評価方法。
11. A film containing an aqueous solution containing a halogen ion and a pH indicator, or a film coated with them (a photocatalytic activity evaluation film) is brought into close contact with the surface to be evaluated, and then the surface is irradiated with ultraviolet rays through the film. A method for evaluating photocatalytic activity, which comprises measuring the color change of the film before and after irradiation and evaluating the photocatalytic activity based on the amount of color change.
【請求項12】 上記光触媒活性評価フィルムが、有機
バインダーにハロゲンイオンを含む水溶液及びpH指示
薬を添加混合した後に、フィルム状に成形したものであ
る請求項11記載の光触媒活性の評価方法。
12. The method for evaluating photocatalytic activity according to claim 11, wherein the photocatalytic activity evaluation film is formed into a film after adding and mixing an aqueous solution containing a halogen ion and a pH indicator to an organic binder.
【請求項13】 上記光触媒活性評価フィルムが、、吸
水性物質にハロゲンイオンを含む水溶液及びpH指示薬
を吸収させたものである請求項11記載の光触媒活性の
評価方法。
13. The method for evaluating photocatalytic activity according to claim 11, wherein the photocatalytic activity evaluation film is obtained by absorbing an aqueous solution containing a halogen ion and a pH indicator in a water-absorbing substance.
【請求項14】 上記ハロゲンイオンを含む水溶液がハ
ロゲン化アルカリ水溶液である請求項8〜13いずれか
1項記載の光触媒活性の評価方法。
14. The method for evaluating photocatalytic activity according to claim 8, wherein the aqueous solution containing halogen ions is an aqueous alkali halide solution.
【請求項15】 有色金属のイオンを含む溶液を被評価
表面に適用し、次いで該表面に紫外線を照射し、照射前
後の該表面の色の変化を測定し、色の変化量に基づいて
光触媒活性を評価することを特徴とする光触媒活性の評
価方法。
15. A solution containing colored metal ions is applied to a surface to be evaluated, and then the surface is irradiated with ultraviolet rays to measure the change in color of the surface before and after irradiation, and the photocatalyst is based on the amount of change in color. A method for evaluating photocatalytic activity, which comprises evaluating the activity.
【請求項16】 上記有色金属のイオンを含む溶液を被
評価表面に適用した後、適用部に透明部材を載置し、こ
の透明部材を介して紫外線の照射を行う請求項15記載
の光触媒活性の評価方法。
16. The photocatalytic activity according to claim 15, wherein a solution containing the colored metal ions is applied to the surface to be evaluated, a transparent member is placed on the application portion, and ultraviolet rays are radiated through the transparent member. Evaluation method.
【請求項17】 有色金属のイオンを含む溶液を含むフ
ィルム、又は、該溶液を塗布したフィルム(光触媒活性
評価フィルム)を被評価表面に密着させ、次いで該表面
に上記フィルムを通して紫外線を照射し、照射前後の上
記被評価表面又は上記フィルムの色の変化を測定し、色
の変化量に基づいて光触媒活性を評価することを特徴と
する光触媒活性の評価方法。
17. A film containing a solution containing colored metal ions, or a film coated with the solution (a photocatalytic activity evaluation film) is brought into close contact with the surface to be evaluated, and then the surface is irradiated with ultraviolet rays through the film, A method for evaluating photocatalytic activity, which comprises measuring a change in color of the surface to be evaluated or the film before and after irradiation and evaluating the photocatalytic activity based on the amount of change in color.
【請求項18】 上記光触媒活性評価フィルムが、有機
バインダーに有色金属のイオンを含む溶液を添加混合し
た後に、フィルム状に成形したものである請求項17記
載の光触媒活性の評価方法。
18. The photocatalytic activity evaluation method according to claim 17, wherein the photocatalytic activity evaluation film is formed into a film after adding and mixing a solution containing colored metal ions to an organic binder.
【請求項19】 上記光触媒活性評価フィルムが、、吸
水性物質に有色金属のイオンを含む溶液を吸収させたも
のである請求項17記載の光触媒活性の評価方法。
19. The photocatalytic activity evaluation method according to claim 17, wherein the photocatalytic activity evaluation film is obtained by absorbing a solution containing a colored metal ion in a water-absorbing substance.
【請求項20】 上記有色金属が銀である請求項15〜
19いずれか1項記載の光触媒活性の評価方法。
20. The method according to claim 15, wherein the colored metal is silver.
19. The method for evaluating photocatalytic activity according to any one of 19 above.
【請求項21】 易還元性の金属イオンを含む水溶液を
被評価表面に適用し、次いで該表面に紫外線を照射し、
照射前後の該水溶液のpH変化を測定し、pH変化量に
基づいて光触媒活性を評価することを特徴とする光触媒
活性の評価方法。
21. An aqueous solution containing an easily reducing metal ion is applied to a surface to be evaluated, and then the surface is irradiated with ultraviolet rays,
A method for evaluating photocatalytic activity, which comprises measuring the pH change of the aqueous solution before and after irradiation and evaluating the photocatalytic activity based on the pH change amount.
【請求項22】 易還元性の金属イオン及びpH指示薬
を含む水溶液を被評価表面に適用し、次いで該表面に紫
外線を照射し、照射前後の水溶液の色の変化を測定し、
色の変化量に基づいて光触媒活性を評価することを特徴
とする光触媒活性の評価方法。
22. An aqueous solution containing a readily reducible metal ion and a pH indicator is applied to the surface to be evaluated, and then the surface is irradiated with ultraviolet rays to measure the change in color of the aqueous solution before and after irradiation,
A method for evaluating photocatalytic activity, which comprises evaluating photocatalytic activity based on the amount of color change.
【請求項23】 上記水溶液を被評価表面に滴下した
後、滴下部に透明部材を載置し、この透明部材を介して
紫外線の照射を行う請求項21又は22記載の光触媒活
性の評価方法。
23. The method for evaluating photocatalytic activity according to claim 21, wherein the aqueous solution is dropped onto the surface to be evaluated, a transparent member is placed on the dropping portion, and ultraviolet rays are radiated through the transparent member.
【請求項24】 易還元性の金属イオンを含む水溶液及
びpH指示薬を含むフィルム、又は、それらを塗布した
フィルム(光触媒活性評価フィルム)を被評価表面に密
着させ、次いで該表面に上記フィルムを通して紫外線を
照射し、照射前後の上記被評価表面又は上記フィルムの
色の変化を測定し、色の変化量に基づいて光触媒活性を
評価することを特徴とする光触媒活性の評価方法。
24. An aqueous solution containing an easily reducing metal ion and a film containing a pH indicator, or a film coated with them (a film for evaluating photocatalytic activity) is adhered to a surface to be evaluated, and then the film is passed through the surface to emit ultraviolet light. And a change in color of the surface to be evaluated or the film before and after irradiation, and the photocatalytic activity is evaluated based on the amount of change in color.
【請求項25】 上記光触媒活性評価フィルムが、有機
バインダーに易還元性の金属イオンを含む水溶液及びp
H指示薬を添加混合した後に、フィルム状に成形したも
のである請求項24記載の光触媒活性の評価方法。
25. The photocatalytic activity evaluation film, wherein the organic binder contains an easily reducing metal ion in an aqueous solution and p.
25. The photocatalytic activity evaluation method according to claim 24, which is formed into a film after adding and mixing the H indicator.
【請求項26】 上記光触媒活性評価フィルムが、吸水
性物質に易還元性の金属イオン含む水溶液及びpH指示
薬を吸収させたものである請求項24記載の光触媒活性
の評価方法。
26. The photocatalytic activity evaluation method according to claim 24, wherein the photocatalytic activity evaluation film is obtained by absorbing an aqueous solution containing a readily reducing metal ion and a pH indicator in a water-absorbing substance.
【請求項27】 有色かつ易還元性の金属イオンを含む
水溶液を被評価表面に適用し、次いで該表面に紫外線を
照射し、照射前後の該表面の色の変化、並びに該水溶液
のpH変化を測定し、色の変化及びpH変化量に基づい
て光触媒活性を評価することを特徴とする光触媒活性の
評価方法。
27. An aqueous solution containing a colored and easily reducing metal ion is applied to a surface to be evaluated, and then the surface is irradiated with ultraviolet rays to change the color of the surface before and after irradiation and the pH change of the aqueous solution. A method for evaluating photocatalytic activity, which comprises measuring and evaluating photocatalytic activity based on the amount of color change and the amount of pH change.
【請求項28】 上記水溶液が硝酸銀水溶液である請求
項21〜27いずれか1項記載の光触媒活性の評価方
法。
28. The photocatalytic activity evaluation method according to claim 21, wherein the aqueous solution is an aqueous silver nitrate solution.
【請求項29】 二重結合を有する物質を被評価表面に
塗布した後、該表面に紫外線を照射し、その際における
該物質の開裂反応に基づく変化を観察することにより被
評価表面の光触媒活性を評価することを特徴とする光触
媒活性の評価方法。
29. A photocatalytic activity of a surface to be evaluated is obtained by applying a substance having a double bond to the surface to be evaluated, irradiating the surface with ultraviolet rays, and observing a change due to the cleavage reaction of the substance at that time. A method for evaluating photocatalytic activity, which comprises:
【請求項30】 二重結合を有する物質を含むフィルム
又は二重結合を有する物質を塗布したフィルム(光触媒
活性評価フィルム)を被評価表面に密着させた後、該表
面に紫外線を照射し、その際における該物質の開裂反応
に基づく変化を観察することにより被評価表面の光触媒
活性を評価することを特徴とする光触媒活性の評価方
法。
30. A film containing a substance having a double bond or a film coated with a substance having a double bond (photocatalytic activity evaluation film) is brought into close contact with the surface to be evaluated, and then the surface is irradiated with ultraviolet rays, A method for evaluating a photocatalytic activity, which comprises evaluating a photocatalytic activity of a surface to be evaluated by observing a change due to a cleavage reaction of the substance at the time.
【請求項31】 上記変化が色の変化である請求項29
又は30記載の光触媒活性の評価方法。
31. The change in color is a change in color.
Or the method for evaluating photocatalytic activity according to item 30.
【請求項32】 上記二重結合を有する物質がエラスト
マーを含む物質である請求項29〜31いずれか1項記
載の光触媒活性の評価方法。
32. The method for evaluating photocatalytic activity according to claim 29, wherein the substance having a double bond is a substance containing an elastomer.
【請求項33】 上記二重結合を有する物質がアラビア
ゴムを含む物質である請求項29〜31いずれか1項記
載の光触媒活性の評価方法。
33. The photocatalytic activity evaluation method according to claim 29, wherein the substance having a double bond is a substance containing gum arabic.
【請求項34】 上記光触媒活性評価フィルムがセロフ
ァン粘着テープである請求項30〜31いずれか1項記
載の光触媒活性の評価方法。
34. The photocatalytic activity evaluation method according to claim 30, wherein the photocatalytic activity evaluation film is a cellophane adhesive tape.
【請求項35】 実質的に透明であり、ハロゲンイオン
を含有する水溶液及びpH指示薬を含むことを特徴とす
る光触媒活性評価フィルム。
35. A photocatalytic activity evaluation film, which is substantially transparent and contains an aqueous solution containing a halogen ion and a pH indicator.
【請求項36】 実質的に透明であり、有色金属のイオ
ンを含む溶液を含むことを特徴とする光触媒活性評価フ
ィルム。
36. A photocatalytic activity evaluation film, which is substantially transparent and contains a solution containing ions of a colored metal.
JP17043595A 1995-06-14 1995-06-14 Photocatalytic activity evaluation method and photocatalytic activity evaluation film Expired - Lifetime JP3449046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17043595A JP3449046B2 (en) 1995-06-14 1995-06-14 Photocatalytic activity evaluation method and photocatalytic activity evaluation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17043595A JP3449046B2 (en) 1995-06-14 1995-06-14 Photocatalytic activity evaluation method and photocatalytic activity evaluation film

Publications (2)

Publication Number Publication Date
JPH08338808A true JPH08338808A (en) 1996-12-24
JP3449046B2 JP3449046B2 (en) 2003-09-22

Family

ID=15904868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17043595A Expired - Lifetime JP3449046B2 (en) 1995-06-14 1995-06-14 Photocatalytic activity evaluation method and photocatalytic activity evaluation film

Country Status (1)

Country Link
JP (1) JP3449046B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040043895A (en) * 2002-11-20 2004-05-27 주식회사 유진텍 이십일 Apparatus for measuring photocatalytic activity and method using the same
WO2006070554A1 (en) * 2004-12-27 2006-07-06 Japan Science & Technology Agency Photocatalytic activity evaluation method and photocatalytic activity evaluation apparatus
JP2006208180A (en) * 2005-01-27 2006-08-10 National Institute For Materials Science Activity evaluation/measurement method of photocatalyst and device therefor
DE102005042897A1 (en) * 2005-09-09 2007-03-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Means for determination of photo-catalytic activity of surface, in which means is formed in form of test strips which is directly applicable on surface whose photo catalytic activity is to be determined
JP2007298328A (en) * 2006-04-28 2007-11-15 Shunichi Nakai Photocatalyst activity evaluation device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040043895A (en) * 2002-11-20 2004-05-27 주식회사 유진텍 이십일 Apparatus for measuring photocatalytic activity and method using the same
WO2006070554A1 (en) * 2004-12-27 2006-07-06 Japan Science & Technology Agency Photocatalytic activity evaluation method and photocatalytic activity evaluation apparatus
JP2006208180A (en) * 2005-01-27 2006-08-10 National Institute For Materials Science Activity evaluation/measurement method of photocatalyst and device therefor
JP4538600B2 (en) * 2005-01-27 2010-09-08 独立行政法人物質・材料研究機構 Photocatalytic activity evaluation and measurement method and equipment for it
DE102005042897A1 (en) * 2005-09-09 2007-03-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Means for determination of photo-catalytic activity of surface, in which means is formed in form of test strips which is directly applicable on surface whose photo catalytic activity is to be determined
DE102005042897B4 (en) * 2005-09-09 2007-10-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Means for determining the photocatalytic activity of surfaces
JP2007298328A (en) * 2006-04-28 2007-11-15 Shunichi Nakai Photocatalyst activity evaluation device

Also Published As

Publication number Publication date
JP3449046B2 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
Rahman Efficient formaldehyde sensor development based on Cu-codoped ZnO nanomaterial by an electrochemical approach
Ahmadi et al. Comparison between electrochemical and photoelectrochemical detection of dopamine based on titania-ceria-graphene quantum dots nanocomposite
Isarov et al. Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles: surface modification with copper (II) ions
Sun et al. Piezoelectric quartz crystal (PQC) with photochemically deposited nano-sized Ag particles for determining cyanide at trace levels in water
JP5121012B2 (en) Response glass and glass electrode
Jornet-Martinez et al. Nylon-supported plasmonic assay based on the aggregation of silver nanoparticles: in situ determination of hydrogen sulfide-like compounds in breath samples as a proof of concept
Rahman et al. Phenolic sensor development based on chromium oxide-decorated carbon nanotubes for environmental safety
EP2271938B1 (en) Method and apparatus for nanoparticle electrogenerated chemiluminescence amplification
WO2004080595A1 (en) Indicator for detecting a photocatalyst
Khorami et al. Spectroscopic detection of Hydrogen peroxide with an optical fiber probe using chemically deposited Prussian blue
JP3449046B2 (en) Photocatalytic activity evaluation method and photocatalytic activity evaluation film
Rahman In-situ preparation of cadmium sulphide nanostructure decorated CNT composite materials for the development of selective benzaldehyde chemical sensor probe to remove the water contaminant by electrochemical method for environmental remediation
Hu et al. A signal-on electrochemiluminescence sensor for clenbuterol detection based on zinc-based metal-organic framework–reduced graphene oxide–CdTe quantum dot hybrids
JP2002320862A (en) Photocatalyst thin film in which metal is supported on titanium oxide thin film
CN116879364A (en) Printed electrode of nano and/or micro structure
US20100022010A1 (en) Chemical agent detection method and apparatus
Maruo et al. Development and performance evaluation of ozone detection paper using azo dye orange I: effect of pH
JP3261959B2 (en) Photocatalytic material
JP3247857B2 (en) Method and apparatus for measuring photocatalytic activity
Li et al. Multiplexed analysis of photochemical oxidants using a nanoparticle-based optoelectronic nose
Mills et al. Photocatalyst Activity Indicator Inks, paii s, for Assessing Self-Cleaning Films
JPH07191011A (en) Method and film for measuring activity of thin photocatalyst film
JP3555540B2 (en) Photocatalytic thin film activity measurement method and activity measurement film
JP4814572B2 (en) Method for measuring electron spin concentration
JP2002323484A (en) Method and apparatus for evaluating property of photocatalyst of photocatalyst coating

Legal Events

Date Code Title Description
S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

S211 Written request for registration of transfer of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314211

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140711

Year of fee payment: 11

EXPY Cancellation because of completion of term