JP2002372516A - Liquid chromatographic mass spectrometer - Google Patents

Liquid chromatographic mass spectrometer

Info

Publication number
JP2002372516A
JP2002372516A JP2001181093A JP2001181093A JP2002372516A JP 2002372516 A JP2002372516 A JP 2002372516A JP 2001181093 A JP2001181093 A JP 2001181093A JP 2001181093 A JP2001181093 A JP 2001181093A JP 2002372516 A JP2002372516 A JP 2002372516A
Authority
JP
Japan
Prior art keywords
light
mass spectrometer
sample
ultraviolet
liquid chromatograph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001181093A
Other languages
Japanese (ja)
Other versions
JP4552363B2 (en
Inventor
Hideaki Murata
英明 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2001181093A priority Critical patent/JP4552363B2/en
Publication of JP2002372516A publication Critical patent/JP2002372516A/en
Application granted granted Critical
Publication of JP4552363B2 publication Critical patent/JP4552363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simplify the piping in an LC-MS with other detectors also used therein, and to improve the accuracy in each measurement. SOLUTION: A flow cell 12 is provided in a sample pipe 11 on the proximal side of a nozzle 14 for spraying a sample solution of an atmospheric ionization unit 2A, and an ultraviolet visible light source unit 20 and an ultraviolet visible absorption detection unit 30 of UV 3 are disposed thereacross. An inlet of an evaporation pipe 52 is provided behind an ion transport pipe 17 which attracts ions from an atomizing chamber 13 and feeds them to a mass spectrometer 40, and a laser beam source part 50 and a light scattering detection unit 56 of an ELSD 4 are disposed outside a light incoming window 53 and a light outgoing window 54 formed in the evaporation pipe 52. The UV 3 and the ELSD 4 are integrated with the mass spectrometer, and pipes and/or splitters for mutual connection are omitted thereby.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液体クロマトグラフ
質量分析装置に関し、更に詳しくは、液体クロマトグラ
フ部の検出器として質量分析装置以外に、紫外可視分光
光度計や蒸発光散乱検出器などの他の検出器を併用した
液体クロマトグラフ質量分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid chromatograph mass spectrometer, and more particularly, to a liquid chromatograph unit other than a mass spectrometer, such as an ultraviolet-visible spectrophotometer or an evaporative light scattering detector. The present invention relates to a liquid chromatograph mass spectrometer using the above detector in combination.

【0002】[0002]

【従来の技術】近年、質量分析装置や液体試料をイオン
化するための大気圧イオン化装置の大きな技術的進歩に
より、質量分析装置が液体クロマトグラフの検出器とし
て一般的に用いられるようになっている。
2. Description of the Related Art In recent years, with the great technological progress of mass spectrometers and atmospheric pressure ionizers for ionizing liquid samples, mass spectrometers have been generally used as detectors of liquid chromatographs. .

【0003】図4は液体クロマトグラフ質量分析装置
(以下「LC−MS」と称す)の基本構成を示すブロッ
ク図である。液体クロマトグラフ部(以下「LC」と称
す)1では、液体試料が移動相の流れに乗ってカラムへ
と導入され、その液体試料に含まれる各種の試料成分が
時間的に分離されてカラム出口に到達する。カラムの出
口端は配管によって大気圧イオン化部2Aに接続されて
おり、カラムから溶出した試料液は大気圧イオン化部2
Aでエレクトロスプレイイオン化法(ESI)、大気圧
化学イオン化法(APCI)などにより順次イオン化さ
れ、イオン輸送管を経て質量分析部2Bへと送られる。
質量分析部2Bは四重極質量フィルタ等の質量分析器を
備え、与えられた各種イオンをその質量数に応じて分離
し検出する。
FIG. 4 is a block diagram showing a basic configuration of a liquid chromatograph mass spectrometer (hereinafter referred to as "LC-MS"). In a liquid chromatograph unit (hereinafter, referred to as “LC”) 1, a liquid sample is introduced into a column along with a flow of a mobile phase, and various sample components contained in the liquid sample are temporally separated, and the column outlet. To reach. The outlet end of the column is connected to the atmospheric pressure ionization section 2A by a pipe, and the sample solution eluted from the column is supplied to the atmospheric pressure ionization section 2A.
At A, it is sequentially ionized by electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), etc., and is sent to the mass spectrometer 2B via an ion transport tube.
The mass analysis unit 2B includes a mass analyzer such as a quadrupole mass filter, and separates and detects given ions according to their mass numbers.

【0004】こうしたLC−MSでは、大気圧イオン化
部2Aと質量分析部2Bとは通常一体化され、つまり同
一の筐体内に配置されているため、ここでは、この両者
を合わせて質量分析装置(以下「MS」と称す)と呼ぶ
こととする。
In such an LC-MS, the atmospheric pressure ionization section 2A and the mass analysis section 2B are usually integrated, that is, disposed in the same housing. Hereinafter, it is referred to as “MS”).

【0005】MSは分析対象物に関して有用な情報を与
えてくれる優れた検出器であるが、分析対象物に関して
より多くの情報を取得するために、MSのみならず、従
来からLC用の検出器として用いられている紫外可視分
光光度計(以下「UV」と称す)や蒸発光散乱検出器
(以下「ELSD」と称す)などを併用したマルチ検出
を行うことも多い。このような複数の検出器を併用する
場合には、LCのカラム出口に各検出器を直列に接続す
るか、或いはカラムから溶出した試料液を分岐して並列
に各検出器へと導入するといった構成が採られている。
[0005] Although MS is an excellent detector that gives useful information on an analyte, not only MS but also a conventional LC detector is required to obtain more information on the analyte. In many cases, multi-detection is performed in combination with an ultraviolet-visible spectrophotometer (hereinafter, referred to as “UV”) or an evaporative light scattering detector (hereinafter, referred to as “ELSD”). When a plurality of such detectors are used together, each detector is connected in series to the LC column outlet, or a sample solution eluted from the column is branched and introduced into each detector in parallel. The configuration is adopted.

【0006】図5はこうした他の検出器を併用したLC
−MSの各種の接続形態を示す図である。図5(a)は
LC1、UV3、MS2を直列接続した構成であり、L
C1のカラムから溶出する試料液をUV3へ導入し、U
V3で測定された試料液をMS2へと導入して質量分析
を行うものである。図5(b)はLC1に対してMS2
とELSD4とを並列に接続した構成であり、LC1の
カラムから溶出する試料液を、メイクアップポンプ5を
接続したスプリッタ6で適宜の割合で分岐させてMS2
とELSD4へ導入するものである。更に、図5(c)
は図5(a)の直列接続と図5(b)の並列接続とを組
み合わせた構成である。
FIG. 5 shows an LC using such another detector.
It is a figure which shows the various connection forms of -MS. FIG. 5A shows a configuration in which LC1, UV3, and MS2 are connected in series.
The sample solution eluted from the column of C1 is introduced into UV3,
The sample solution measured in V3 is introduced into MS2 to perform mass spectrometry. FIG. 5 (b) shows MS2 with respect to LC1.
And ELSD4 are connected in parallel. The sample solution eluted from the column of LC1 is branched at an appropriate ratio by a splitter 6 connected to a makeup pump 5, and MS2 is separated.
And ELSD4. Further, FIG.
Is a configuration in which the series connection of FIG. 5A and the parallel connection of FIG. 5B are combined.

【0007】[0007]

【発明が解決しようとする課題】従来のLC−MSでは
上記記載のような構成を採っているために、次のような
様々な問題がある。 (1) 複数の検出器を配置するために広い設置スペースが
必要となる。 (2) LCと各検出器とを接続する配管が複雑になる。そ
の結果、配管のコストが高くつくのみならず、配管中に
存在する試料液の割合が増大し(つまり死容積が増大
し)、同一成分に対する各検出器での検出時刻のズレ
(つまり保持時間の差)が大きくなる。 (3) 並列配置でスプリッタを用いる場合には、スプリッ
タにおける分岐比の調整が必要となる。 (4) スプリッタと同時にメイクアップ溶媒を用いる場合
には、成分濃度が低下してピーク強度が低下する。 (5) 上記(2)の要因やスプリットの影響により、LCに
よって分離されたピークの拡散が生じ、異なるピークの
裾部が重なって分離性能を損なうことがある。 (6) 上記(2)の要因やスプリットの影響によって同一成
分に対する各検出器での保持時間がズレるため、正確な
同定を行うためには上記時間ズレを補正する処理が必要
となる。
Since the conventional LC-MS employs the above-described configuration, there are the following various problems. (1) A large installation space is required to arrange a plurality of detectors. (2) The piping connecting the LC and each detector is complicated. As a result, not only is the cost of the piping expensive, but also the proportion of the sample liquid present in the piping is increased (that is, the dead volume is increased), and the detection time of each detector for the same component is shifted (that is, the holding time). Difference) increases. (3) When a splitter is used in a parallel arrangement, it is necessary to adjust a splitting ratio in the splitter. (4) When the makeup solvent is used at the same time as the splitter, the component concentration decreases and the peak intensity decreases. (5) Due to the factor (2) and the influence of the split, the peaks separated by the LC may be diffused, and the skirts of the different peaks may overlap to deteriorate the separation performance. (6) Because the retention time of each detector for the same component is shifted due to the factor (2) or the influence of the split, a process of correcting the time shift is required for accurate identification.

【0008】本発明はこのような種々の課題を解決する
ために成されたものであり、その主な目的とするところ
は、UVやELSDといった他の検出器を併用する液体
クロマトグラフ質量分析装置において、各検出器の相互
接続を簡素化するとともに、その接続が複雑であること
に伴う各検出器での検出時間のズレやピーク波形の変形
に起因する分析精度の低下やデータ処理の複雑化を回避
することができる液体クロマトグラフ質量分析装置を提
供することにある。
The present invention has been made in order to solve these various problems, and a main object of the present invention is to provide a liquid chromatograph mass spectrometer using other detectors such as UV and ELSD. In addition to simplifying the interconnection of the detectors, the complexity of the connection has led to a shift in the detection time of each detector and a decrease in the analytical accuracy due to the deformation of the peak waveform, and complicated data processing. The object of the present invention is to provide a liquid chromatograph mass spectrometer capable of avoiding the above problem.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に成された本発明は、液体クロマトグラフ部と質量分析
部との間に、液体クロマトグラフ部のカラムから溶出し
た試料液をイオン化して質量分析部に与える大気圧イオ
ン化インタフェイスを備えた液体クロマトグラフ質量分
析装置であって、前記大気圧イオン化インタフェイス
は、略大気圧下にある霧化室と、前記試料液を該霧化室
へ輸送する試料管路と、該霧化室内で発生したイオンを
前記質量分析部へ輸送するイオン輸送管とを含んでお
り、 a)前記試料管路の途中に設けられたフローセルと、該フ
ローセルを挟んで配置された紫外可視光源部及び紫外可
視吸収検出部と、を含む紫外可視分光光度測定手段と、 b)前記霧化室内に開口端面を有し、該霧化室から吸引さ
れたガスの流れに交差するように光入射窓及び光出射窓
を設けた蒸発管と、該蒸発管の他の開口端面の外側に配
置されたガス吸引部と、前記光入射窓及び光出射窓の外
側に配置されたレーザ光源部及び光散乱検出部と、を含
む蒸発光散乱検出手段と、を備え、前記液体クロマトグ
ラフ部のカラムから溶出した試料液を前記質量分析部、
紫外可視分光光度測定手段、及び蒸発光散乱検出手段に
よりそれぞれ測定するようにしたことを特徴としてい
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method for ionizing a sample liquid eluted from a column of a liquid chromatograph section between a liquid chromatograph section and a mass spectrometric section. A liquid chromatograph mass spectrometer provided with an atmospheric pressure ionization interface provided to a mass spectrometry unit, wherein the atmospheric pressure ionization interface comprises an atomization chamber substantially at atmospheric pressure, and the sample liquid is atomized. A sample pipe for transporting the sample to the chamber, and an ion transport pipe for transporting ions generated in the atomization chamber to the mass spectrometer, a) a flow cell provided in the middle of the sample pipe, An ultraviolet-visible light source section and an ultraviolet-visible absorption detection section, which are arranged with a flow cell interposed therebetween, and an ultraviolet-visible spectrophotometer measuring means, comprising: To the gas flow An evaporating pipe provided with a light entrance window and a light exit window so as to be inserted, a gas suction unit disposed outside the other opening end face of the evaporator pipe, and disposed outside the light entrance window and the light exit window. A laser light source unit and a light scattering detection unit, and an evaporative light scattering detection unit including, and the mass spectrometric unit, the sample solution eluted from the column of the liquid chromatograph unit,
It is characterized in that it is measured by an ultraviolet-visible spectrophotometer and evaporative light scattering detector, respectively.

【0010】本発明に係るLC−MSでは、カラムから
溶出した試料液がフローセルを通過する際に、紫外可視
光源部から発せられた光が該フローセルを通過する試料
液に照射され、その透過光が紫外可視吸収検出部により
検出される。これにより、紫外可視分光光度測定手段に
よる測定が達成される。フローセルを通過した試料液は
その直後に霧化室に到達し、霧化されるとともにイオン
化される。このようなイオン化は従来知られている方法
で行うことができるから、例えばESIでは、試料液に
電荷を付与する高電圧印加部、霧化を助けるネブライズ
管などを備える構成とし、APCIでは、脱溶媒のため
の加熱部、コロナ放電用針電極、ネブライズ管などを備
える構成とすればよい。霧化により生じるイオンが入り
交じった微小液滴はガス吸引部の作用により蒸発管内部
に吸引され、溶媒の蒸発が一層進行しつつレーザ光源部
から発し光入射窓を通過したレーザ光を横切る。試料成
分が不揮発性であるとその成分による粒子の雲が形成さ
れるから、レーザ光の散乱を引き起こす。散乱光は光出
射窓から取り出され、光散乱検出部により検出される。
これにより、蒸発光散乱検出手段による測定が達成され
る。イオン輸送管の入口端面は蒸発管の手前と後方との
いずれの位置に配置してもよい。いずれの場合でも、霧
化室内で発生したイオンはイオン輸送管の内部へと取り
込まれ、質量分析部へと送られて従来通り質量分析が達
成される。
In the LC-MS according to the present invention, when the sample solution eluted from the column passes through the flow cell, light emitted from the ultraviolet-visible light source is irradiated on the sample solution passing through the flow cell, and the transmitted light Is detected by the ultraviolet-visible absorption detection unit. Thereby, the measurement by the ultraviolet-visible spectrophotometer is achieved. The sample liquid that has passed through the flow cell reaches the atomization chamber immediately thereafter, and is atomized and ionized. Since such ionization can be performed by a conventionally known method, for example, the ESI is configured to include a high voltage application unit that applies a charge to the sample solution, a nebulizing tube that assists atomization, and the APCI includes What is necessary is just to set it as the structure provided with the heating part for solvents, the needle electrode for corona discharge, a nebulize tube, etc. The microdroplets mixed with the ions generated by the atomization are sucked into the evaporating tube by the action of the gas suction unit, and cross the laser light emitted from the laser light source unit and passing through the light incident window while the solvent evaporates further. If the sample component is non-volatile, a cloud of particles is formed by the component, which causes scattering of laser light. The scattered light is taken out of the light exit window and detected by the light scattering detector.
Thereby, the measurement by the evaporative light scattering detecting means is achieved. The inlet end face of the ion transport tube may be arranged at any position before or after the evaporating tube. In any case, ions generated in the atomization chamber are taken into the ion transport tube, sent to the mass spectrometer, and mass spectrometry is achieved as before.

【0011】なお、前記紫外可視分光光度測定手段及び
蒸発光散乱検出手段は、前記質量分析部と同一の筐体内
に配置されている構成とすることができる。
The ultraviolet-visible spectrophotometer and the evaporative light scattering detector may be arranged in the same housing as the mass spectrometer.

【0012】[0012]

【発明の実施の形態】以下、本発明の一実施形態につい
て図面を参照して説明する。図2は本実施形態によるL
C−MSの全体構成を示すブロック図、図1は本発明の
特徴である大気圧イオン化部2Aの周囲の構成図であ
る。なお、本例は大気圧イオン化としてESIを用いた
ものであるが、APCIによる構成に簡単に変更できる
ことは後述の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 2 shows L according to the present embodiment.
FIG. 1 is a block diagram showing the overall configuration of the C-MS, and FIG. 1 is a configuration diagram around an atmospheric pressure ionization unit 2A which is a feature of the present invention. In this example, ESI is used for atmospheric pressure ionization. However, the configuration can be easily changed to APCI as described later.

【0013】図2に示すように本LC−MSでは、UV
3の機能とELSD4の機能とが実質的に大気圧イオン
化部2Aにほぼ一体化されている。これらは全て質量分
析部2Bと同一の筐体内に収容されており、LC1とM
S2の2つの装置に、図示しないコントローラとしての
パーソナルコンピュータなどを加えてシステムが構築さ
れている。したがって、従来のように、UV3やELS
D4を別体で用意する必要がなく、また複雑な配管やス
プリッタなども不要である。
As shown in FIG. 2, in this LC-MS, UV
The function of the ELSD 4 and the function of the ELSD 4 are substantially integrated into the atmospheric pressure ionization section 2A. These are all housed in the same casing as the mass spectrometer 2B, and LC1 and M
A system is constructed by adding a personal computer as a controller (not shown) to the two devices of S2. Therefore, as before, UV3 and ELS
There is no need to prepare D4 separately, and no complicated piping or splitter is required.

【0014】図1において、LCのカラムから時間的に
分離して溶出する試料液は、プローブ10に貫通されて
なる試料管路11に供給される。試料管路11は霧化室
13内に臨んだノズル14に至るまでの途中に、石英ガ
ラスから成るフローセル12を備えている。フローセル
12の両側には光通過路10aがプローブ10の外側ま
で貫通して穿孔されており、その外側には紫外可視光源
部20と紫外可視吸収検出部30とがフローセル12を
挟んで対向して配置されている。
In FIG. 1, a sample solution that is temporally separated and eluted from an LC column is supplied to a sample pipe 11 penetrated by a probe 10. The sample pipe 11 is provided with a flow cell 12 made of quartz glass on its way to the nozzle 14 facing the atomization chamber 13. On both sides of the flow cell 12, a light passage 10 a is formed so as to penetrate to the outside of the probe 10, and an ultraviolet-visible light source unit 20 and an ultraviolet-visible absorption detection unit 30 face each other across the flow cell 12. Are located.

【0015】紫外可視光源部20は、ハロゲンランプで
ある第1光源21、重水素ランプである第2光源22、
両光源21、22からの発光光を混合するハーフミラー
23、集光鏡24、シャッタ25などを含んで構成され
ている。紫外可視吸収検出部30は、反射鏡31、スリ
ット32、回折格子33、フォトダイオードアレイ検出
器34などを含んで構成されている。シャッタ25が開
放状態にあるとき、紫外可視光源部20は2つの光源2
1,22からの混合光をフローセル12に照射する。光
がフローセル12を透過する際に、その内部を流通して
いる試料液の成分に特有な波長で吸収を受ける。透過光
は回折格子33で波長方向に分散され、フォトダイオー
ドアレイ検出器34で複数の波長光が同時に検出され
る。したがって、このフォトダイオードアレイ検出器3
4の検出出力に基づいて、試料成分による光吸収を反映
した吸収スペクトルを作成することができる。
The ultraviolet-visible light source section 20 includes a first light source 21 which is a halogen lamp, a second light source 22 which is a deuterium lamp,
It is configured to include a half mirror 23, a condenser mirror 24, a shutter 25, and the like that mix light emitted from both light sources 21 and 22. The ultraviolet-visible absorption detector 30 includes a reflecting mirror 31, a slit 32, a diffraction grating 33, a photodiode array detector 34, and the like. When the shutter 25 is in the open state, the ultraviolet-visible light source unit 20
The mixed light from 1 and 22 is applied to the flow cell 12. When light passes through the flow cell 12, the light is absorbed at a wavelength specific to the components of the sample solution flowing inside the flow cell. The transmitted light is dispersed in the wavelength direction by the diffraction grating 33, and a plurality of wavelength lights are simultaneously detected by the photodiode array detector 34. Therefore, the photodiode array detector 3
Based on the detection output of No. 4, an absorption spectrum reflecting light absorption by the sample component can be created.

【0016】フローセル12を通過した試料液はその直
後に試料管路11の末端に達し、ノズル14から霧化室
13内に噴霧されイオン化される。詳しく述べると、試
料液が流通する試料管路11の先端には金属細管15に
より数kVの電圧が印加され、ノズル14付近に強い不平
等電界を発生させる。試料液はこの電界により電荷分離
し、ネブライズ管16を介してのネブライズガス(窒素
ガスなど)の助けを受けて片寄った電荷を有した状態で
霧化する。これにより発生した液滴は周囲の大気成分と
衝突して微細化され、更に液滴中の溶媒が蒸発して気体
イオンが発生する。発生したイオンは、その前方に位置
するイオン輸送管17の入口開口からイオン輸送管17
内へと引き込まれ、質量分析部40へと送られる。イオ
ン輸送管17は適度に加熱されたヒーテッドキャピラリ
であり、引き込まれた微細液滴から溶媒の気化を一層促
進させイオン化を促す。
The sample liquid having passed through the flow cell 12 reaches the end of the sample pipe 11 immediately thereafter, and is sprayed from the nozzle 14 into the atomization chamber 13 and ionized. More specifically, a voltage of several kV is applied to the tip of the sample pipe 11 through which the sample liquid flows by the thin metal tube 15 to generate a strong uneven electric field near the nozzle 14. The sample liquid is separated into electric charges by this electric field, and is atomized with a biased electric charge with the help of a nebulizing gas (such as nitrogen gas) through the nebulizing tube 16. The droplets generated thereby collide with surrounding atmospheric components and are miniaturized, and the solvent in the droplets evaporates to generate gas ions. The generated ions pass through the ion transport tube 17 through the entrance opening of the ion transport tube 17 located in front of it.
It is drawn inside and sent to the mass spectrometer 40. The ion transport tube 17 is a heated capillary that is appropriately heated, and further promotes the vaporization of the solvent from the drawn fine droplets to promote ionization.

【0017】なお、イオン輸送管17の入口開口がノズ
ル14の噴霧の中心軸から外れた位置となっていること
により、ノズル14からの噴流の周囲に多く存在する微
細液滴やイオンを効率よく取り込み、噴流の中心部に多
く存在する大きな液滴の取り込みを回避することができ
る。
Since the inlet opening of the ion transport pipe 17 is located off the center axis of the spray of the nozzle 14, fine droplets and ions which are often present around the jet from the nozzle 14 can be efficiently removed. Entrapment and entrapment of large droplets that are often present in the center of the jet can be avoided.

【0018】イオン輸送管17を経て質量分析部40へ
と送られたイオンは、イオンレンズ41により収束及び
加速されて四重極質量フィルタ42に送られ、特定の質
量数(質量m/電荷z)を有する目的イオンのみが四重
極質量フィルタ42を通り抜けて検出器43に達し検出
される。質量分析部40では、四重極質量フィルタ42
への印加電圧を適宜に走査してイオンの通過条件を変え
ることにより、質量スペクトルを作成することができ
る。
The ions sent to the mass analyzer 40 through the ion transport tube 17 are converged and accelerated by the ion lens 41 and sent to the quadrupole mass filter 42, where the ions have a specific mass number (mass m / charge z). ) Passes through the quadrupole mass filter 42 and reaches the detector 43 where it is detected. In the mass spectrometer 40, a quadrupole mass filter 42
A mass spectrum can be created by appropriately scanning the voltage applied to and changing the passage conditions of ions.

【0019】ノズル14からの噴流の前方には蒸発管5
2の入口開口が存在しており、その蒸発管52の他方の
開口の外側にはアスピレータ減圧式ドレイン55が設け
られている。アスピレータ減圧式ドレイン55は、高速
のガス流によって霧化室13内の液滴を蒸発管52の内
部へと吸引する。蒸発管52は適度な温度に加熱されて
おり、液滴に含まれる溶媒の揮発を一層促進させる。こ
の蒸発管52の側周面の適宜の位置には光入射窓53と
光出射窓54とが設けられている。光入射窓53の外側
にはレーザ光源51を含むレーザ光源部50が配置され
ており、蒸発管52の内部を流通するガスに対してほぼ
直交するようにレーザ光を照射する。また、光出射窓5
4の外側には光電子増倍管57などの光検出器を含む光
散乱検出部56が配置されている。
In front of the jet from the nozzle 14, an evaporating tube 5 is provided.
There are two inlet openings, and an aspirator depressurized drain 55 is provided outside the other opening of the evaporation tube 52. The aspirator decompression drain 55 sucks the liquid droplets in the atomization chamber 13 into the evaporating tube 52 by a high-speed gas flow. The evaporating tube 52 is heated to an appropriate temperature to further promote the volatilization of the solvent contained in the droplet. A light entrance window 53 and a light exit window 54 are provided at appropriate positions on the side peripheral surface of the evaporation tube 52. A laser light source unit 50 including a laser light source 51 is arranged outside the light incident window 53, and irradiates a laser beam so as to be substantially orthogonal to a gas flowing inside the evaporating tube 52. Also, the light exit window 5
A light scattering detection unit 56 including a photodetector such as a photomultiplier tube 57 is disposed outside the photomultiplier tube 57.

【0020】蒸発管52へ飛び込んだ液滴が揮発性の高
い溶媒のみであるときには、この溶媒蒸気中をレーザ光
が通過するため光の散乱はごく少なく、しかもその散乱
光の光強度はほぼ一定になる。これに対し、その液滴中
に不揮発性の成分が存在すると、蒸発管52の中にこの
成分による微細な粒子の雲が発生し、その粒子雲にレー
ザ光が当たると光の散乱が生じる。光出射窓54はこの
散乱光が通過する位置に設けられており、光散乱検出部
56は散乱光の光強度を検出する。検出信号は上記成分
の濃度や粒度分布などに依存した値となる。
When the liquid droplets jumping into the evaporating tube 52 are only a highly volatile solvent, the laser light passes through the solvent vapor, so that the scattering of light is very small and the light intensity of the scattered light is almost constant. become. On the other hand, if a non-volatile component is present in the droplet, a cloud of fine particles due to this component is generated in the evaporating tube 52, and when the particle cloud is irradiated with laser light, light scattering occurs. The light exit window 54 is provided at a position where the scattered light passes, and the light scattering detection unit 56 detects the light intensity of the scattered light. The detection signal has a value that depends on the concentration of the component, the particle size distribution, and the like.

【0021】上記構成では、紫外可視光源部20及び紫
外可視吸収検出部30からなる紫外可視分光光度測定手
段により測定された試料液は殆ど遅滞なくノズル14か
ら霧化室13内へと噴霧され、更にこれにより発生した
イオン(微細液滴を含む)がイオン輸送管17へ導入さ
れた後、殆ど遅滞なく残りの液滴が蒸発管52へ導入さ
れ、レーザ光源部50、蒸発管52及び光散乱検出部5
6からなる蒸発光散乱検出手段により測定される。した
がって、図2におけるUV3,質量分析部2B,ELS
D4の3種類の測定がきわめて近接した時間内で行われ
ることになる。
In the above configuration, the sample liquid measured by the ultraviolet-visible spectrophotometric measuring means comprising the ultraviolet-visible light source section 20 and the ultraviolet-visible absorption detecting section 30 is sprayed from the nozzle 14 into the atomization chamber 13 almost without delay. Further, after the ions (including fine droplets) generated thereby are introduced into the ion transport tube 17, the remaining droplets are introduced into the evaporation tube 52 almost without delay, and the laser light source unit 50, the evaporation tube 52, and the light scattering. Detector 5
6 is measured by the evaporative light scattering detecting means. Therefore, UV3, mass spectrometer 2B, ELS in FIG.
The three measurements of D4 will be made in very close time.

【0022】図3は、上記3種類の測定によって得られ
る、或る成分のピーク波形を示す模式図であり、(a)
は本発明による測定の一例、(b)は図5(c)に示す
従来構成による測定の一例である。図3(b)に示すよ
うに、従来の構成では、UV3,ELSD4,MS2の
間を接続する配管内部等に試料液が流通するのに時間を
要するため、同一成分に対するピークの発生時刻、つま
り保持時間に大きなズレが生じる。しかも、このような
時間ズレはLC1のカラム流量やメイクアップ溶媒の流
量などによって変わってしまう。また、ELSD4とM
S2とでのピーク強度はスプリッタ6でのスプリット比
やメイクアップ溶媒の流量によって変わり、定量分析に
誤差が生じ易い。これに対し本発明による方法では、図
3(a)に示すように、UV3,MS2,ELSD4に
おける同一成分の保持時間のズレが短縮化され、いずれ
も3秒以下にまで短くすることができる。また、MS2
とELSD4におけるピーク強度がいずれも向上し、し
かもメイクアップ溶媒を用いないのでピークの拡散も小
さく、鋭いピーク形状が現れる。このように本発明によ
れば、同一成分に対する各検出器での保持時間のズレが
小さく、ピーク形状の変形も小さくてすむ。
FIG. 3 is a schematic diagram showing a peak waveform of a certain component obtained by the above three kinds of measurements.
5B is an example of the measurement according to the present invention, and FIG. 5B is an example of the measurement according to the conventional configuration shown in FIG. As shown in FIG. 3B, in the conventional configuration, since it takes time for the sample liquid to flow inside the pipe connecting the UV3, the ELSD4, and the MS2, the peak generation time for the same component, that is, A large deviation occurs in the holding time. In addition, such a time lag varies depending on the flow rate of the LC1 column and the flow rate of the makeup solvent. ELSD4 and M
The peak intensity at S2 changes depending on the split ratio at the splitter 6 and the flow rate of the makeup solvent, and errors tend to occur in the quantitative analysis. On the other hand, in the method according to the present invention, as shown in FIG. 3A, the deviation of the retention time of the same component in UV3, MS2, and ELSD4 can be shortened, and all can be shortened to 3 seconds or less. Also, MS2
And ELSD4, the peak intensity is improved, and since no makeup solvent is used, the peak diffusion is small and a sharp peak shape appears. As described above, according to the present invention, the deviation of the holding time of each detector with respect to the same component is small, and the deformation of the peak shape is small.

【0023】なお、上記実施形態では、質量分析部40
へイオンを導入するためのイオン輸送管17の入口を蒸
発管52の入口開口の手前に設けていたが、蒸発管52
の出口開口の後方に設け、ELSD4による測定をMS
2による測定よりも先に行う構成としてもよい。
In the above embodiment, the mass spectrometer 40
The inlet of the ion transport tube 17 for introducing ions into the evaporator is provided before the inlet opening of the evaporator tube 52.
Provided behind the exit opening of
2 may be performed prior to the measurement.

【0024】また、上記実施形態では大気圧イオン化法
としてESIを用いていたが、APCI等の他の大気圧
イオン化法に代えることができる。すなわち、図1に示
す構成において、ノズル14や金属細管15等のESI
特有の構造体を含むプローブ10は霧化室13に対して
着脱自在に構成されており、APCIによるイオン化を
行う場合にはAPCI専用のプローブを装着する。この
APCI専用プローブは、例えば、試料液を噴霧するノ
ズルの前方をヒータで取り囲み、更にその前方にコロナ
放電用の針電極を配置する。ネブライズガスの助けによ
りノズルから噴出した液滴は直ぐにヒータにより加熱さ
れて溶媒が気化し、その微小液滴に針電極からのコロナ
放電により生成したキャリアガスイオン(バッファイオ
ン)を化学反応させてイオン化を行う。これにより、E
SIと同様に紫外可視分光光度測定手段により測定され
た直後の試料液をイオン化し、質量分析部2Bへと取り
込むことができる。なお、APCIとESIとを比較す
ると、前者は後者よりも霧化室13内での液滴の温度が
高くなるので脱溶媒化がより効率的に行える。そのた
め、後者では蒸発管52内部での溶媒の蒸発を一層促進
させるべく、その温度を高めに設定することが望まし
い。
In the above embodiment, ESI is used as the atmospheric pressure ionization method. However, other atmospheric pressure ionization methods such as APCI can be used. That is, in the configuration shown in FIG.
The probe 10 including a unique structure is configured to be detachable from the atomization chamber 13, and a probe dedicated to APCI is mounted when ionization by APCI is performed. In this APCI-dedicated probe, for example, the front of a nozzle for spraying a sample liquid is surrounded by a heater, and further, a needle electrode for corona discharge is disposed in front of the heater. The droplets ejected from the nozzle with the help of the nebulizing gas are immediately heated by the heater to evaporate the solvent, and the small droplets are chemically reacted with carrier gas ions (buffer ions) generated by corona discharge from the needle electrode to ionize. Do. This gives E
As in the case of SI, the sample solution immediately after measurement by the ultraviolet-visible spectrophotometer can be ionized and taken into the mass spectrometer 2B. When the APCI and the ESI are compared, the former is higher in temperature of the droplets in the atomization chamber 13 than the latter, so that the desolvation can be performed more efficiently. Therefore, in the latter case, it is desirable to set the temperature higher in order to further promote the evaporation of the solvent inside the evaporation tube 52.

【0025】更にまた、上記実施形態は本発明の単に一
例にすぎず、上記記載のもの以外に、本発明の趣旨の範
囲で適宜変更や修正を加えることができることは明らか
である。
Further, it is apparent that the above-described embodiment is merely an example of the present invention, and that changes and modifications other than those described above can be appropriately made within the spirit of the present invention.

【0026】[0026]

【発明の効果】以上説明したように本発明に係る液体ク
ロマトグラフ質量分析装置によれば、次のような様々な
効果を奏する。 (1) UV及びELSDの機能が質量分析装置に一体化さ
れているため、マルチ検出を行いたい場合であっても、
従来と同様にLCのカラムの溶出液を質量分析装置の入
口に接続しさえすればよいので、配管が非常に簡素化さ
れ、またスプリッタやメイクアップポンプも不要であ
る。したがって、配管の手間が大幅に軽減されるととも
に、これら配管等に関するコストが削減できる。 (2) UVやELSDを別体で用意する必要がないので、
設置スペースが狭くてもよい。 (3) 各検出器がきわめて近接して配置され配管中の死容
積が非常に小さくなるため、各検出器での検出時刻の差
(保持時間の相違)が非常に小さくなる。そのため、こ
のような保持時間のズレを補正する処理が不要になる
か、或いは、補正処理を要するとしてもカラム流量など
への依存性が小さくなるので補正処理が容易になる。 (4) MSやELSDにおけるピーク強度が高くなり、ま
たピークの広がりも抑制できる。したがって、複数の成
分の分離性能が向上し、定量分析、定性分析ともに従来
よりも正確性が向上する。このように本発明の液体クロ
マトグラフ質量分析装置によれば、単にコストの低減や
省力化が可能になるのみならず、分析性能も改善するこ
とができる。
As described above, the liquid chromatograph mass spectrometer according to the present invention has the following various effects. (1) UV and ELSD functions are integrated into the mass spectrometer, so even if you want to perform multi-detection,
Since it is only necessary to connect the eluate of the LC column to the inlet of the mass spectrometer as in the conventional case, the piping is greatly simplified, and a splitter and a makeup pump are not required. Therefore, the labor for piping can be greatly reduced, and the cost for these pipings and the like can be reduced. (2) It is not necessary to prepare UV and ELSD separately.
The installation space may be narrow. (3) Since the detectors are arranged very close to each other and the dead volume in the pipe becomes very small, the difference in detection time (difference in holding time) between the detectors becomes very small. Therefore, the process of correcting such a shift in the holding time becomes unnecessary, or even if the correction process is required, the dependency on the column flow rate or the like is reduced, so that the correction process is facilitated. (4) The peak intensity in MS and ELSD is increased, and the spread of the peak can be suppressed. Therefore, the separation performance of a plurality of components is improved, and the accuracy of both quantitative analysis and qualitative analysis is improved as compared with the conventional case. As described above, according to the liquid chromatograph mass spectrometer of the present invention, not only the cost can be reduced and labor can be saved, but also the analysis performance can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の液体クロマトグラフ質量分析装置の
一実施形態の特徴である大気圧イオン化部の周囲の構成
図。
FIG. 1 is a configuration diagram around an atmospheric pressure ionization unit, which is a feature of one embodiment of the liquid chromatograph mass spectrometer of the present invention.

【図2】 本実施形態によるLC−MSの全体構成を示
すブロック図。
FIG. 2 is a block diagram showing the overall configuration of the LC-MS according to the embodiment.

【図3】 UV,MS,ELSDによって得られる或る
成分のピーク波形を示す模式図であり、(a)は本発明
による測定の一例、(b)は図5(c)に示す従来構成
による測定の一例。
3A and 3B are schematic diagrams showing a peak waveform of a certain component obtained by UV, MS, and ELSD. FIG. 3A shows an example of measurement according to the present invention, and FIG. 3B shows a conventional configuration shown in FIG. An example of measurement.

【図4】 液体クロマトグラフ質量分析装置の基本構成
を示すブロック図。
FIG. 4 is a block diagram showing a basic configuration of a liquid chromatograph mass spectrometer.

【図5】 他の検出器(UV,ELSD)を併用したL
C−MSの各種の接続形態を示す図。
FIG. 5: L in combination with other detectors (UV, ELSD)
The figure which shows the various connection forms of C-MS.

【符号の説明】[Explanation of symbols]

1…LC 2…MS 2A…大気圧イオン化部 10…プローブ 10a…光通過路 11…試料管路 12…フローセル 13…霧化室 14…ノズル 15…金属細管 16…ネブライズ管 17…イオン輸送管 2B,40…質量分析部 41…イオンレンズ 42…四重極質量フィルタ 43…検出器 3…UV 20…紫外可視光源部 21…第1光源 22…第2光源 23…ハーフミラー 24…集光鏡 25…シャッタ 30…紫外可視吸収検出部 31…反射鏡 32…スリット 33…回折格子 34…フォトダイオードアレイ検出器 4…ELSD 50…レーザ光源部 51…レーザ光源 52…蒸発管 53…光入射窓 54…光出射窓 55…アスピレータ減圧式ドレイン 56…光散乱検出部 57…光電子増倍管 DESCRIPTION OF SYMBOLS 1 ... LC2 ... MS2A ... Atmospheric-pressure ionization part 10 ... Probe 10a ... Light passage 11 ... Sample line 12 ... Flow cell 13 ... Atomization chamber 14 ... Nozzle 15 ... Metal thin tube 16 ... Nebulize tube 17 ... Ion transport tube 2B 40, mass spectrometry unit 41, ion lens 42, quadrupole mass filter 43, detector 3, UV 20, ultraviolet-visible light source unit 21, first light source 22, second light source 23, half mirror 24, condenser mirror 25 ... Shutter 30 ... Ultraviolet-visible absorption detector 31 ... Reflector 32 ... Slit 33 ... Diffraction grating 34 ... Photodiode array detector 4 ... ELSD 50 ... Laser light source unit 51 ... Laser light source 52 ... Evaporation tube 53 ... Light entrance window 54 ... Light emission window 55 Aspirator decompression drain 56 Light scattering detector 57 Photomultiplier tube

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 30/74 G01N 30/74 E Z 30/78 30/78 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01N 30/74 G01N 30/74 EZ 30/78 30/78

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 液体クロマトグラフ部と質量分析部との
間に、液体クロマトグラフ部のカラムから溶出した試料
液をイオン化して質量分析部に与える大気圧イオン化イ
ンタフェイスを備えた液体クロマトグラフ質量分析装置
であって、前記大気圧イオン化インタフェイスは、略大
気圧下にある霧化室と、前記試料液を該霧化室へ輸送す
る試料管路と、該霧化室内で発生したイオンを前記質量
分析部へ輸送するイオン輸送管とを含んでおり、 a)前記試料管路の途中に設けられたフローセルと、該フ
ローセルを挟んで配置された紫外可視光源部及び紫外可
視吸収検出部と、を含む紫外可視分光光度測定手段と、 b)前記霧化室内に開口端面を有し、該霧化室から吸引さ
れたガスの流れに交差するように光入射窓及び光出射窓
を設けた蒸発管と、該蒸発管の他の開口端面の外側に配
置されたガス吸引部と、前記光入射窓及び光出射窓の外
側に配置されたレーザ光源部及び光散乱検出部と、を含
む蒸発光散乱検出手段と、 を備え、前記液体クロマトグラフ部のカラムから溶出し
た試料液を前記質量分析部、紫外可視分光光度測定手
段、及び蒸発光散乱検出手段によりそれぞれ測定するよ
うにしたことを特徴とする液体クロマトグラフ質量分析
装置。
1. A liquid chromatograph mass having an atmospheric pressure ionization interface between a liquid chromatograph section and a mass spectrometry section, the sample liquid eluted from a column of the liquid chromatograph section being ionized and supplied to the mass spectrometry section. An analyzer, wherein the atmospheric pressure ionization interface includes an atomization chamber substantially under atmospheric pressure, a sample pipe for transporting the sample liquid to the atomization chamber, and an ion generated in the atomization chamber. An ion transport tube for transporting to the mass spectrometry unit, a) a flow cell provided in the middle of the sample conduit, and an ultraviolet-visible light source unit and an ultraviolet-visible absorption detection unit arranged with the flow cell interposed therebetween. And b) an opening end face in the atomization chamber, and a light entrance window and a light exit window provided so as to intersect the flow of gas sucked from the atomization chamber. Evaporator tube and the evaporator A gas suction unit disposed outside the other open end surface of the tube, a laser light source unit and a light scattering detection unit disposed outside the light entrance window and the light exit window, and evaporative light scattering detection means including: Wherein the sample liquid eluted from the column of the liquid chromatograph section is measured by the mass spectrometer, the ultraviolet-visible spectrophotometer, and the evaporative light scattering detector, respectively. Analysis equipment.
【請求項2】 前記紫外可視分光光度測定手段及び蒸発
光散乱検出手段は、前記質量分析部と同一の筐体内に配
置されていることを特徴とする請求項1に記載の液体ク
ロマトグラフ質量分析装置。
2. The liquid chromatograph mass spectrometer according to claim 1, wherein the ultraviolet-visible spectrophotometer and the evaporative light scattering detector are arranged in the same housing as the mass spectrometer. apparatus.
JP2001181093A 2001-06-15 2001-06-15 Liquid chromatograph mass spectrometer Expired - Fee Related JP4552363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001181093A JP4552363B2 (en) 2001-06-15 2001-06-15 Liquid chromatograph mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001181093A JP4552363B2 (en) 2001-06-15 2001-06-15 Liquid chromatograph mass spectrometer

Publications (2)

Publication Number Publication Date
JP2002372516A true JP2002372516A (en) 2002-12-26
JP4552363B2 JP4552363B2 (en) 2010-09-29

Family

ID=19021412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001181093A Expired - Fee Related JP4552363B2 (en) 2001-06-15 2001-06-15 Liquid chromatograph mass spectrometer

Country Status (1)

Country Link
JP (1) JP4552363B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083416A1 (en) * 2004-02-27 2005-09-09 Japan Science And Technology Agency Analytical method and analyzer capable of substantially simultaneously analyzing absorption/emission/scattering spectrum and mass spectrum, and analytical method and mass spectroscope utilizing electrospray ionization technique
JP2006208180A (en) * 2005-01-27 2006-08-10 National Institute For Materials Science Activity evaluation/measurement method of photocatalyst and device therefor
EP2232253A2 (en) * 2007-12-05 2010-09-29 All-Tech Associates Inc. Methods and apparatus for analyzing samples and collecting sample fractions
JP2012519847A (en) * 2009-03-05 2012-08-30 ユーティバトル・エルエルシイ Method for forming a sample and sucking from a surface to be analyzed, and system therefor
EP2704181A3 (en) * 2012-09-03 2015-12-09 Bruker Daltonics, Inc. Atmospheric pressure ion source with exhaust system
GB2529495A (en) * 2014-12-23 2016-02-24 Chengdu Zhongyuan Qianye Technology Co Ltd Double beam wavelength detector for compounds structure
CN109870520A (en) * 2019-03-15 2019-06-11 广州纤维产品检测研究院 A kind of method that ultra high efficiency closes phase chromatography measurement benzotriazole UV stabilizer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163655A (en) * 1988-12-16 1990-06-22 Shimadzu Corp Liquid chromatograph mass spectrometer
JPH11258224A (en) * 1998-03-13 1999-09-24 Eisai Co Ltd Automatic analyzer
JP2000321208A (en) * 1999-04-03 2000-11-24 Bayer Ag Diffusion control sensor layer
JP2001059828A (en) * 1999-08-23 2001-03-06 Jeol Ltd Liquid chromatography nmr method
JP2002116193A (en) * 2000-10-05 2002-04-19 Hitachi Ltd Liquid chromatographic mass spectrographmeter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163655A (en) * 1988-12-16 1990-06-22 Shimadzu Corp Liquid chromatograph mass spectrometer
JPH11258224A (en) * 1998-03-13 1999-09-24 Eisai Co Ltd Automatic analyzer
JP2000321208A (en) * 1999-04-03 2000-11-24 Bayer Ag Diffusion control sensor layer
JP2001059828A (en) * 1999-08-23 2001-03-06 Jeol Ltd Liquid chromatography nmr method
JP2002116193A (en) * 2000-10-05 2002-04-19 Hitachi Ltd Liquid chromatographic mass spectrographmeter

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083416A1 (en) * 2004-02-27 2005-09-09 Japan Science And Technology Agency Analytical method and analyzer capable of substantially simultaneously analyzing absorption/emission/scattering spectrum and mass spectrum, and analytical method and mass spectroscope utilizing electrospray ionization technique
EP1724574A1 (en) * 2004-02-27 2006-11-22 Japan Science and Technology Agency Analytical method and analyzer capable of substantially simultaneously analyzing absorption/emission/scattering spectrum and mass spectrum, and analytical method and mass spectroscope utilizing electrospray ionization technique
JPWO2005083416A1 (en) * 2004-02-27 2007-08-02 独立行政法人科学技術振興機構 Analysis apparatus and analysis method for analyzing absorption / emission / scattering spectrum almost simultaneously with mass spectrum, and mass analysis apparatus and analysis method using electrospray ionization method
EP1724574A4 (en) * 2004-02-27 2008-07-02 Japan Science & Tech Agency Analytical method and analyzer capable of substantially simultaneously analyzing absorption/emission/scattering spectrum and mass spectrum, and analytical method and mass spectroscope utilizing electrospray ionization technique
JP2006208180A (en) * 2005-01-27 2006-08-10 National Institute For Materials Science Activity evaluation/measurement method of photocatalyst and device therefor
JP4538600B2 (en) * 2005-01-27 2010-09-08 独立行政法人物質・材料研究機構 Photocatalytic activity evaluation and measurement method and equipment for it
EP2232253A2 (en) * 2007-12-05 2010-09-29 All-Tech Associates Inc. Methods and apparatus for analyzing samples and collecting sample fractions
EP2803994A1 (en) * 2007-12-05 2014-11-19 Alltech Associates Inc. Method and apparatus for analyzing samples and collecting sample fractions
JP2012519847A (en) * 2009-03-05 2012-08-30 ユーティバトル・エルエルシイ Method for forming a sample and sucking from a surface to be analyzed, and system therefor
EP2704181A3 (en) * 2012-09-03 2015-12-09 Bruker Daltonics, Inc. Atmospheric pressure ion source with exhaust system
GB2529495A (en) * 2014-12-23 2016-02-24 Chengdu Zhongyuan Qianye Technology Co Ltd Double beam wavelength detector for compounds structure
CN109870520A (en) * 2019-03-15 2019-06-11 广州纤维产品检测研究院 A kind of method that ultra high efficiency closes phase chromatography measurement benzotriazole UV stabilizer
CN109870520B (en) * 2019-03-15 2022-04-01 广州纤维产品检测研究院 Method for determining benzotriazole ultraviolet stabilizer by ultra-high performance phase-combination chromatography

Also Published As

Publication number Publication date
JP4552363B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP5073168B2 (en) A fast combined multimode ion source for mass spectrometers.
US6812459B2 (en) Ion sampling for APPI mass spectrometry
US4999493A (en) Electrospray ionization interface and method for mass spectrometry
US6465776B1 (en) Mass spectrometer apparatus for analyzing multiple fluid samples concurrently
JP2647941B2 (en) Interface and method for coupling electrophoresis-electrospray
US4968885A (en) Method and apparatus for introduction of liquid effluent into mass spectrometer and other gas-phase or particle detectors
US6943346B2 (en) Method and apparatus for mass spectrometry analysis of aerosol particles at atmospheric pressure
US7855357B2 (en) Apparatus and method for ion calibrant introduction
JP2008524804A (en) Atmospheric pressure ionization using optimized drying gas flow
US11056327B2 (en) Inorganic and organic mass spectrometry systems and methods of using them
US20130020483A1 (en) Apparatus for photoionization of an analyte in an eluent of a chromatography column
JP4552363B2 (en) Liquid chromatograph mass spectrometer
US20190355565A1 (en) Discharge chambers and ionization devices, methods and systems using them
US7397028B2 (en) Apparatus and method for gas flow management
JP2001108656A (en) Interface for mass spectrometer and mass spectrometric system
US20110049348A1 (en) Multiple inlet atmospheric pressure ionization apparatus and related methods
JPH06302295A (en) Mass spectrograph device and differential air exhaust device
JP3052929B2 (en) Mass spectrometer
JP2003315271A (en) Plasma generating apparatus and gas analyzer using the same
JP4400284B2 (en) Liquid chromatograph mass spectrometer
Sanz-Medel et al. A general overview of atomic spectrometric techniques
Siouffi 4 Detection in Chromatography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4552363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees