JP2002228589A - Method and device for evaluating oxidation- decomposition activity of photocatalyst - Google Patents

Method and device for evaluating oxidation- decomposition activity of photocatalyst

Info

Publication number
JP2002228589A
JP2002228589A JP2001025572A JP2001025572A JP2002228589A JP 2002228589 A JP2002228589 A JP 2002228589A JP 2001025572 A JP2001025572 A JP 2001025572A JP 2001025572 A JP2001025572 A JP 2001025572A JP 2002228589 A JP2002228589 A JP 2002228589A
Authority
JP
Japan
Prior art keywords
cell
photocatalyst
solution
decomposition activity
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001025572A
Other languages
Japanese (ja)
Other versions
JP4742378B2 (en
Inventor
Tetsuya Yamaki
徹也 八巻
Haruya Yamamoto
春也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2001025572A priority Critical patent/JP4742378B2/en
Publication of JP2002228589A publication Critical patent/JP2002228589A/en
Application granted granted Critical
Publication of JP4742378B2 publication Critical patent/JP4742378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently carry out the development and research of a photocatalyst material by reproducibly obtaining decomposition activity data, in relation to a method for evaluating the oxidation-decomposition activity of a photocatalyst material such as TiO2 and its experiment device. SOLUTION: This method is used for evaluating the oxidation-decomposition activity of the photocatalyst by bringing a titanium oxide (TiO2) photocatalyst test piece into contact with a pigment solution in a cell for spectroscopy and by instantaneously measuring the concentration variation of the solution under light irradiation by light absorption analysis. This device is composed of a transparent cell for spectroscopy provided with an agitating device filled with the pigment solution for agitating the solution and a thermostatic device for keeping it at a certain temperature, the photocatalyst test piece disposed on the cell bottom, an exciting light source installed above the cell, and a light absorption analyzer for entering analysis light into the cell to measure the absorbance of the light transmitted through the cell and the pigment solution, and used for evaluating the oxidation-decomposition activity of the photocatalyst by instantaneously measuring the concentration variation of the solution under light irradiation by light absorption analysis.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、TiO2などの
光触媒材料に対し、その酸化分解活性を評価する方法と
その実験装置に関するものである。さらに詳しくは、分
解活性データを再現性よく得ることによって、光触媒材
料の開発研究を効率的に行おうとするものである。
TECHNICAL FIELD The present invention is, with respect to the photocatalytic material, such as TiO 2, it relates to the experimental apparatus and method for evaluating the oxidative decomposition activity. More specifically, the present invention aims to efficiently develop and research photocatalytic materials by obtaining decomposition activity data with good reproducibility.

【0002】[0002]

【従来の技術】光触媒材料の性能評価には、反応機構を
十分にふまえた上で、それぞれの使用目的に応じた実験
法を用いることが望ましい。しかし実際には、簡便化の
ため、分解対象となる“汚れ”の代わりにモデル物質を
用いる場合が多い。例えば、モデル物質として色素を光
触媒表面に吸着させ、その脱色速度を吸光度変化で測定
する手法が知られている。すなわち、この手法では、T
iO2への紫外線照射に伴う吸収ピーク波長での吸光度
変化を分光光度計で測定し、吸光度の初期値からの変化
量(ΔABS)を時間に対してプロットする。ここでΔ
ABSは色素の分解量に対応している。
2. Description of the Related Art In order to evaluate the performance of a photocatalytic material, it is desirable to use an experimental method suitable for each purpose of use after sufficiently considering a reaction mechanism. However, in practice, a model substance is often used in place of "dirt" to be decomposed for simplicity. For example, a method of adsorbing a dye as a model substance on the surface of a photocatalyst and measuring the decolorization rate by a change in absorbance is known. That is, in this method, T
The change in absorbance at the absorption peak wavelength due to the irradiation of iO 2 with ultraviolet rays is measured with a spectrophotometer, and the change (ΔABS) from the initial value of the absorbance is plotted against time. Where Δ
ABS corresponds to the amount of degradation of the dye.

【0003】また、この手法では言うまでもなく、ΔA
BSが分光光度計の感度以上でなければならないから、
ΔABSをできる限り高めるべく励起光量や色素吸着量
などを調節する必要がある。また、同様の理由で、反応
面積(通常は試験片の表面積に対応)の大きな試料しか
評価対象としないのが普通である。このように、現状で
は光触媒材料の分解活性データを再現性よく取得するこ
とは比較的困難であり、特に微小な試験片を対象とした
評価法の確立は未だなされていない。
In this method, it is needless to say that ΔA
Since BS must be above the sensitivity of the spectrophotometer,
It is necessary to adjust the amount of excitation light and the amount of dye adsorbed in order to increase ΔABS as much as possible. For the same reason, it is usual that only a sample having a large reaction area (usually corresponding to the surface area of a test piece) is evaluated. As described above, at present, it is relatively difficult to obtain decomposition activity data of a photocatalytic material with good reproducibility, and an evaluation method particularly for a minute test piece has not yet been established.

【0004】[0004]

【発明が解決しようとする課題】本発明は、以上の事情
を鑑みてなされており、これまで光触媒の活性評価に存
した限界を克服するものである。本発明の課題は、この
従来のものとは異なり、微小な光触媒試験片の酸化分解
活性でも再現性よく容易に評価できる方法とその実験装
置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and aims at overcoming the limitations in the evaluation of photocatalytic activity. An object of the present invention is to provide a method and an experimental apparatus thereof that can easily evaluate the oxidative decomposition activity of a minute photocatalyst test piece with good reproducibility, unlike the conventional one.

【0005】[0005]

【課題を解決するための手段】本発明は、上記の課題を
解決するものとして、分光用セル内でTiO2光触媒試
験片と色素溶液を接触させ、光照射下における溶液の濃
度変化を吸光分析でその場測定することによって、光触
媒の酸化分解活性を評価する方法と実験装置を提供す
る。
The present invention solves the above-mentioned problems by contacting a TiO 2 photocatalyst test piece with a dye solution in a spectroscopic cell, and measuring the change in the concentration of the solution under light irradiation by absorption analysis. The present invention provides a method and an experimental apparatus for evaluating the oxidative decomposition activity of a photocatalyst by performing in-situ measurement in the above.

【0006】また本発明は、評価対象とする光触媒試験
片として寸法1cm以下のものも含むことを特徴とする
上記の評価方法と実験装置をも提供する。本発明におけ
る光触媒の酸化分解活性を評価する装置は、図2に示さ
れるように、励起光源1の下に、その励起光2が入射さ
れる石英ガラス製分光用セル3を配置し、そのセルの底
面に試験片6をそのTiO2面を光源に向けて配置し、
セルにはメチレンブルー水溶液などの色素溶液4を満た
す。この溶液は、測定処理中にはマグネットスターラー
9によって作動される攪拌子5によって攪拌される。色
素溶液の攪拌中に分光器からセル中の溶液に入射光7を
導入し、その透過光8を吸光分析器で測定する。
[0006] The present invention also provides the above-described evaluation method and experimental apparatus, wherein the photocatalyst test pieces to be evaluated include those having a size of 1 cm or less. As shown in FIG. 2, the apparatus for evaluating the oxidative decomposition activity of a photocatalyst according to the present invention includes, as shown in FIG. Specimen 6 is placed on the bottom surface of the device with its TiO 2 surface facing the light source,
The cell is filled with a dye solution 4 such as a methylene blue aqueous solution. This solution is stirred by the stirrer 5 operated by the magnet stirrer 9 during the measurement process. While the dye solution is being stirred, the incident light 7 is introduced from the spectroscope into the solution in the cell, and the transmitted light 8 is measured by the absorption analyzer.

【0007】[0007]

【発明の実施の形態】TiO2光触媒は通常、粉体の状
態で市販されているが、それ以外にもボール状粉体担持
体(ガラスビーズなど)、膜状粉体担持体(紙、布、テ
ント)、TiO2膜コーティング材などの状態がある。
本発明の方法では、これらのどの状態でも活性評価が可
能であるが、粉体より担持状態の薄膜の方が測定の簡便
さの点から評価対象として好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS TiO 2 photocatalyst is usually commercially available in the form of a powder. Tent), TiO 2 film coating material, and the like.
In the method of the present invention, the activity can be evaluated in any of these states, but a thin film in a supported state is more preferable than a powder as an evaluation target in terms of simplicity of measurement.

【0008】上記のとおり、本発明では、色素溶液を分
解対象として用い、光照射下における溶液の濃度変化を
吸光分析でその場測定することによって、光触媒の酸化
分解活性を評価する。このような液相の光触媒分解に
は、液相中分子のTiO2表面への拡散、吸着、
分解反応の3つの過程が関わる。実験的に求めることが
できるのは液相中の濃度であるが、反応速度に直接的に
効くのは表面濃度であるため、活性評価は複雑になる。
As described above, in the present invention, the oxidative decomposition activity of a photocatalyst is evaluated by using a dye solution as an object to be decomposed and measuring the concentration change of the solution under light irradiation in situ by absorption spectroscopy. Such photocatalytic decomposition of the liquid phase involves diffusion and adsorption of molecules in the liquid phase to the TiO 2 surface,
Three processes of the decomposition reaction are involved. Although it is possible to experimentally determine the concentration in the liquid phase, it is the surface concentration that directly affects the reaction rate, which makes the activity evaluation complicated.

【0009】しかし、十分量の色素分子を光触媒表面へ
供給できる溶液系では、吸着平衡が保たれるため、反応
速度は光量と光触媒の電荷分離効率だけで決まる。よっ
て、このとき求められた分解反応の速度は真の酸化分解
活性に限りなく近い。あらかじめ光触媒表面に吸着させ
た色素を分解するという従来の方法では、色素の吸着量
に結果が左右される可能性を考慮しなければならない
が、本発明の方法ではその必要がない。
However, in a solution system capable of supplying a sufficient amount of dye molecules to the photocatalyst surface, the adsorption equilibrium is maintained, so that the reaction speed is determined only by the amount of light and the charge separation efficiency of the photocatalyst. Therefore, the rate of the decomposition reaction determined at this time is as close as possible to the true oxidative decomposition activity. In the conventional method of decomposing a dye previously adsorbed on the surface of the photocatalyst, it is necessary to consider the possibility that the result depends on the amount of the dye adsorbed, but the method of the present invention does not need to do so.

【0010】また、色素の溶液を用いると、ΔABSか
ら実際の分解量を見積もることができる。通常、試料溶
液の吸光度ABSと濃度cの関係はランバート−ベール
則、 ABS=εcι [式1] で表せる。ここで、吸光係数εは色素固有の定数、ιは
液相の厚さであるから、[式1]は単純な比例関数とな
り、吸光度から濃度すなわち単位体積当たりの色素分子
量を計算することができる。従来法では光活性の絶対値
を決めることは困難であり、あくまでも標準試料に対す
る相対比が得られるに過ぎなかったが、本発明の方法で
は活性を色素分解量という絶対値へ変換できる。
When a dye solution is used, the actual amount of decomposition can be estimated from ΔABS. In general, the relationship between the absorbance ABS of the sample solution and the concentration c can be expressed by the Lambert-Beer rule, ABS = εcι [Equation 1]. Here, the extinction coefficient ε is a constant specific to the dye, and ι is the thickness of the liquid phase. Therefore, [Equation 1] is a simple proportional function, and the concentration, that is, the dye molecular weight per unit volume can be calculated from the absorbance. . In the conventional method, it is difficult to determine the absolute value of the photoactivity, and only the relative ratio to the standard sample can be obtained. However, in the method of the present invention, the activity can be converted to the absolute value of the amount of dye decomposition.

【0011】分解速度は光照射された試験片の表面積に
比例する。よって、絶対的に分解量の少ない微小試験片
の場合、色素溶液の体積をできる限り小さくすることで
濃度変化(すなわちΔABS)を見かけ上大きくする。
本発明の方法では、反応容器として分光用セルを用い、
光照射下における溶液の吸光度変化をその場測定する方
法をその態様としている。例えば、寸法1cm以下の試
験片でも、セルに満たす溶液を3ミリリットルにするこ
とによって、十分なΔABSが観測可能である。このと
き、好ましい溶液の初期濃度は1×10-6mol dm
-3〜1×10-4mol dm-3である。
The decomposition rate is proportional to the surface area of the test piece irradiated with light. Therefore, in the case of a small test piece with a small amount of decomposition, the change in concentration (ie, ΔABS) is apparently increased by minimizing the volume of the dye solution.
In the method of the present invention, using a spectroscopic cell as a reaction vessel,
An embodiment of the present invention is a method for in-situ measurement of a change in absorbance of a solution under light irradiation. For example, even for a test piece having a size of 1 cm or less, a sufficient ΔABS can be observed by making the solution filling the cell 3 ml. At this time, a preferable initial concentration of the solution is 1 × 10 −6 mol dm.
−3 to 1 × 10 −4 mol dm −3 .

【0012】本発明の分解活性評価において用いる色素
は、(i)それ自体は紫外線に対して耐性があること、
(ii)暗中ではTiO2に吸着した状態でも分解しな
いこと、(iii)TiO2の励起に用いる波長域(3
30nm〜370nm付近)に強い吸収を持たないこ
と、(iv)光触媒反応では容易に分解すること、のす
べての条件を満足するものである。このような色素に例
えばメチレンブルー(図1)がある。
The dye used in the evaluation of the decomposition activity of the present invention is: (i) that the dye itself is resistant to ultraviolet light;
It is in (ii) dark do not decompose even in a state adsorbed on TiO 2, the wavelength range used to excite the (iii) TiO 2 (3
(At around 30 nm to 370 nm), and (iv) easily decompose by photocatalytic reaction. Such dyes include, for example, methylene blue (FIG. 1).

【0013】色素溶液を満たす分光用セルは、色素の強
い吸収がある可視光のほぼ全域にわたって透明であれ
ば、その材質に特別な制限はないが、扱いやすさの点か
ら石英ガラスが頻繁に用いられる。セルの寸法について
も制限はないが、満たす色素溶液の体積と試験片の大き
さ(後で述べるようにセルの底面積に大きく依存)を考
えて適当なものとする。例えば、寸法1cm以下という
微小試験片を評価する場合には、底面寸法1cm×1c
mのセルを用いる。
The material for the spectroscopic cell that fills the dye solution is not particularly limited as long as it is transparent over almost the entire visible light region where the dye is strongly absorbed, but quartz glass is frequently used in terms of ease of handling. Used. The dimensions of the cell are also not limited, but are appropriately determined in consideration of the volume of the dye solution to be filled and the size of the test piece (which largely depends on the bottom area of the cell as described later). For example, when evaluating a small test piece having a dimension of 1 cm or less, the bottom dimension is 1 cm × 1c.
m cells are used.

【0014】続いて、本発明の方法と装置を用いた実験
の概要について説明する。清浄な分光用セルの底面に光
触媒試験片を表面を上にして置き、その上から色素溶液
を決められた体積だけ満たす。測定中は常に、試験片を
セルの底面に対して平行に保つようにする。このため、
本手法で測定可能な試験片の形状、寸法はセルの底面に
よって自ずと決まる。
Next, an outline of an experiment using the method and apparatus of the present invention will be described. A photocatalyst specimen is placed face-up on the bottom of a clean spectroscopic cell, and the dye solution is filled from above with a defined volume. Always keep the specimen parallel to the bottom of the cell during the measurement. For this reason,
The shape and dimensions of the test piece that can be measured by this method are naturally determined by the bottom surface of the cell.

【0015】励起光はセルの上部より導入する。TiO
2の場合には330nm〜370nm付近の紫外光であ
るから、光源として例えばブラックライトなどが好まし
い。メチレンブルーはこの波長域に強い吸収を持たない
ので、光源からの光はほぼそのままセル底部にあるTi
2表面に届く。一方、吸光度を測定するための分光器
からの光は、セルに対して垂直に透過し検出系に導かれ
る。このとき、励起のための紫外光が検出側に入るのを
絶対に避ける。
[0015] The excitation light is introduced from above the cell. TiO
In the case of 2 , since the light is ultraviolet light in the vicinity of 330 nm to 370 nm, for example, a black light is preferable as the light source. Since methylene blue has no strong absorption in this wavelength range, the light from the light source is
Reach the O 2 surface. On the other hand, light from the spectrometer for measuring the absorbance is transmitted perpendicularly to the cell and guided to the detection system. At this time, it is absolutely necessary to prevent ultraviolet light for excitation from entering the detection side.

【0016】色素の分解はTiO2表面のみで起こるか
ら、上記の実験配置では時間とともにセル内に濃度分布
が生じる。既に述べたように、本発明の評価法では液相
中における分子の拡散効果は考慮していないから、色素
分子を光触媒表面へ十分に供給できる条件を保つととも
にセル内濃度を均一にするよう、反応中は絶えず溶液を
撹拌する。
Since the decomposition of the dye occurs only on the TiO 2 surface, a concentration distribution occurs in the cell over time in the above experimental arrangement. As described above, the evaluation method of the present invention does not consider the diffusion effect of the molecules in the liquid phase, so that the conditions for sufficiently supplying the dye molecules to the photocatalyst surface are maintained and the concentration in the cell is made uniform. The solution is constantly stirred during the reaction.

【0017】さらに、より再現性の高いデータを得るた
め、試験片の初期状態を一定にしておく。そのため、色
素溶液に浸す前にTiO2表面に十分に紫外線照射を行
い、表面をクリーニングする。以下、本発明の実施例を
図に基づいて説明する。
Further, in order to obtain data with higher reproducibility, the initial state of the test piece is kept constant. Therefore, before immersion in the dye solution, the TiO 2 surface is sufficiently irradiated with ultraviolet rays to clean the surface. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0018】[0018]

【実施例1】図2は実験装置の概要で、本発明の方法と
装置による酸化分解活性の評価実験の概略図であり、薄
膜状態で寸法1cm以下のTiO2光触媒試験片を対象
とする場合について示してある。(a)は石英ガラス製
分光用セルの詳細、(b)は実験の試料配置及び光学配
置である。
Embodiment 1 FIG. 2 is a schematic view of an experimental apparatus, which is a schematic view of an evaluation experiment of oxidative decomposition activity by the method and apparatus of the present invention, in the case of a TiO 2 photocatalyst test piece having a size of 1 cm or less in a thin film state. Is shown. (A) shows details of a quartz glass spectroscopic cell, and (b) shows a sample arrangement and an optical arrangement of an experiment.

【0019】ここに示すように、石英ガラス製で底面寸
法1cm×1cmの分光用セル(図2(a))をそのま
ま反応容器として用いた。すなわち、セルの底面に試験
片を表面を上にして置き、その上から1×10-5mol
dm-3の色素溶液を3ミリリットル満たした。試験片
の上にテフロン(登録商標)コーティングされたマイク
ロ撹拌子(寸法6.4mm×3mmφ)を入れ、反応中
はマグネチックスターラーで溶液を絶えず撹拌した。ま
た、恒温水槽からの水をセルの周りに循環させることに
よって、色素溶液の温度を20℃に保った。
As shown here, a spectroscopic cell made of quartz glass and having a bottom dimension of 1 cm × 1 cm (FIG. 2A) was used as it was as a reaction vessel. That is, a test piece was placed on the bottom surface of the cell with the surface facing up, and 1 × 10 −5 mol was placed from above.
3 ml of the dm -3 dye solution was filled. A micro-stirrer (dimensions: 6.4 mm × 3 mmφ) coated with Teflon (registered trademark) was placed on the test piece, and the solution was constantly stirred with a magnetic stirrer during the reaction. Further, the temperature of the dye solution was kept at 20 ° C. by circulating water from the thermostatic water bath around the cell.

【0020】TiO2励起のため、ブラックライトから
の紫外光(最大波長352nm、出力3.0W)を上部
から照射した。光源からセル底面までの距離は約10c
mであった。一方、分光器内のモノクロメーターで単色
化した分析光(強度I0)をセルに対して垂直に入射
し、セルと色素溶液(液相厚1cm)を透過した光(強
度I)を検出系に導いた。そのときの吸光度ABS=l
og10(I0/I)を波長の関数として描き、吸収スペ
クトルを得た。
To excite TiO 2 , ultraviolet light (maximum wavelength 352 nm, output 3.0 W) from a black light was irradiated from above. The distance from the light source to the bottom of the cell is about 10c
m. On the other hand, the analysis light (intensity I 0 ) monochromatized by the monochromator in the spectroscope is perpendicularly incident on the cell, and the light (intensity I) transmitted through the cell and the dye solution (liquid phase thickness 1 cm) is detected by the detection system. Led to. Absorbance at that time ABS = 1
og 10 (I 0 / I) was plotted as a function of wavelength and an absorption spectrum was obtained.

【0021】[0021]

【実施例2】実施例1に示した実験の配置と条件のもと
で、レーザー蒸着法により基板上に堆積したTiO2
膜の活性評価を行った。すなわち、この試験片は、Kr
Fエキシマーレーザー(λ=248mm;Energ
y:50mJ/pulse)を用いてTiターゲットを
酸素雰囲気中(35mTorr)でアブレーションし、
400℃に加熱した(0001)面のα−Al23単結
晶基板の上に製膜した結晶性薄膜(ルチル、アナターゼ
両構造が混合)である。
Embodiment 2 Under the arrangement and conditions of the experiment shown in Embodiment 1, the activity of a TiO 2 thin film deposited on a substrate by a laser deposition method was evaluated. That is, this test piece has a Kr
F excimer laser (λ = 248 mm; Energ
y: 50 mJ / pulse) and ablation of the Ti target in an oxygen atmosphere (35 mTorr),
It is a crystalline thin film (both rutile and anatase structures are mixed) formed on a (0001) plane α-Al 2 O 3 single crystal substrate heated to 400 ° C.

【0022】図3には、この試験片に対して得られた、
色素溶液の吸収スペクトルの経時変化を示す。即ち、色
素溶液であるメチレンブルー水溶液の吸収スペクトルの
経時変化を示し、(a)0分、(b)20分、(c)4
0分、(d)117分後のスペクトルである。反応時間
とともに、660nm付近の吸収ピーク波長における吸
光度は大きく減少した。
FIG. 3 shows the results obtained for this test piece.
5 shows the change over time in the absorption spectrum of a dye solution. That is, the time-dependent changes in the absorption spectrum of the aqueous solution of methylene blue, which is a dye solution, are shown in (a) 0 minutes, (b) 20 minutes, (c) 4
It is a spectrum after 0 minute and (d) 117 minutes. With the reaction time, the absorbance at the absorption peak wavelength near 660 nm decreased significantly.

【0023】その初期値からの変化量ΔABSを20
分、40分、117分に測定しプロットしたのが図4の
(a)である。即ち、吸収ピーク波長(660nm付
近)における吸光度の時間変化を示す。(a)はレーザ
ー蒸着法により(0001)面のα−Al23単結晶基
板上に堆積したTiO2薄膜の結果を表し、試験片を入
れなかった場合(b)と比較してある。この図から明ら
かなように、117分間の色素の光触媒分解でΔABS
は−0.211に達した。[式1]とε=6.3×10
4(リットル/mol・cm)を用いることによって、
この値は1.0×10-8mol(6.0×1015個)の
分解量に相当するものと計算することができた。
The amount of change ΔABS from the initial value is 20
FIG. 4A shows the results measured and plotted at minutes, 40 minutes and 117 minutes. That is, it shows the time change of the absorbance at the absorption peak wavelength (around 660 nm). (A) shows the result of the TiO 2 thin film deposited on the (0001) α-Al 2 O 3 single crystal substrate by the laser vapor deposition method, and is compared with (b) where no test piece was inserted. As apparent from this figure, ΔABS was obtained by photocatalytic decomposition of the dye for 117 minutes.
Reached -0.211. [Equation 1] and ε = 6.3 × 10
By using 4 (liter / mol · cm),
This value could be calculated to correspond to a decomposition amount of 1.0 × 10 −8 mol (6.0 × 10 15 ).

【0024】[0024]

【比較例1】実施例2と同じ条件で、TiO2試験片が
なかったとき、すなわちセル内に色素溶液とマイクロ撹
拌子のみを入れたときの吸光度変化を測定した。この結
果を図4(b)に示す。117分後の最終的なΔABS
は−0.004であり、実施例1の値に比べ無視できる
ほど小さく、メチレンブルーがブラックライトからの紫
外線に対し耐性を有することが確認できた。また、実施
例1との差(−0.207)をとることによって、真の
分解量により近い補正値を得ることができた。
[Comparative Example 1] Under the same conditions as in Example 2, the change in absorbance was measured when there was no TiO 2 test piece, that is, when only the dye solution and the micro stirrer were placed in the cell. The result is shown in FIG. Final ΔABS after 117 minutes
Is -0.004, which is negligibly smaller than the value of Example 1, and it was confirmed that methylene blue has resistance to ultraviolet light from black light. Further, by taking the difference (−0.207) from the first embodiment, a correction value closer to the true decomposition amount could be obtained.

【0025】[0025]

【発明の効果】本発明の方法と実験装置によると、極め
て簡単にTiO2光触媒試験片の酸化分解活性を評価す
ることができる。また、得られた酸化分解活性データ
は、再現性が高く、試料同士の定量的な比較が可能であ
る。さらに言えば、分光用セル内でその場測定をするた
め、温度依存性の評価や多試料の同時測定など、さまざ
まな分析技術への展開が比較的容易である点も見逃せな
い。
According to the method and the experimental apparatus of the present invention, the oxidative decomposition activity of the TiO 2 photocatalyst test piece can be evaluated very easily. In addition, the obtained oxidative decomposition activity data has high reproducibility and enables quantitative comparison between samples. Furthermore, since the measurement is performed in-situ in the spectroscopic cell, it cannot be overlooked that it is relatively easy to apply to various analysis techniques such as evaluation of temperature dependency and simultaneous measurement of multiple samples.

【0026】以上のような本発明による性能評価データ
を、光触媒材料の作製プロセスに絶えずフィードバック
させることによって、当該研究開発の効率化が期待され
る。
The efficiency of the research and development is expected by constantly feeding back the performance evaluation data according to the present invention as described above to the production process of the photocatalytic material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 メチレンブルーの化学構造を示す。FIG. 1 shows the chemical structure of methylene blue.

【図2】 本発明の方法と装置による酸化分解活性の評
価実験の概略図である。
FIG. 2 is a schematic view of an evaluation experiment of oxidative decomposition activity by the method and the apparatus of the present invention.

【図3】 メチレンブルー水溶液の吸収スペクトルの経
時変化を示す図である。
FIG. 3 is a diagram showing a change over time in an absorption spectrum of an aqueous methylene blue solution.

【図4】 吸収ピーク波長(660nm付近)における
吸光度の時間変化を示す図である。
FIG. 4 is a diagram showing a temporal change in absorbance at an absorption peak wavelength (around 660 nm).

【符号の説明】[Explanation of symbols]

(1)ブラックライト(励起光源) (2)TiO2励起のための紫外光 (3)石英ガラス製分光用セル (4)メチレンブルー水溶液 (5)マイクロ撹拌子 (6)TiO2試験片 (7)分光器からの入射光(強度I0) (8)検出系へ入る透過光(強度I) (9)マグネチックスターラー(1) Black light (excitation light source) (2) Ultraviolet light for TiO 2 excitation (3) Quartz glass spectroscopic cell (4) Methylene blue aqueous solution (5) Micro stirrer (6) TiO 2 test piece (7) Light incident from the spectroscope (intensity I 0 ) (8) Transmitted light entering the detection system (intensity I) (9) Magnetic stirrer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G054 EA04 FA06 GA03 GB01 JA08 JA09 4G069 BA04A BA04B BA48A CA01 CA07 CA10 DA06 EA08 FB02 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G054 EA04 FA06 GA03 GB01 JA08 JA09 4G069 BA04A BA04B BA48A CA01 CA07 CA10 DA06 EA08 FB02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 分光用セル内で酸化チタン(TiO2
光触媒試験片と色素溶液を接触させ、光照射下における
溶液の濃度変化を吸光分析でその場測定することによっ
て、光触媒の酸化分解活性を評価する方法。
1. Titanium oxide (TiO 2 ) in a spectroscopic cell
A method for evaluating the oxidative decomposition activity of a photocatalyst by bringing a dye solution into contact with a photocatalyst test piece and measuring the concentration change of the solution under light irradiation in situ by absorption spectroscopy.
【請求項2】 評価対象とする光触媒試験片は、寸法1
cm以下という微小なものも含むことを特徴とする請求
項1に記載の方法。
2. A photocatalyst test piece to be evaluated has a size of 1
The method according to claim 1, wherein the method includes a minute thing of less than cm.
【請求項3】 色素溶液で満たされ、その溶液を攪拌し
且つ恒温に保持するための攪拌装置及び恒温装置を備え
た透明な分光用セル、セル底面に配置された光触媒試験
片、セルの上方に設置された励起光源、及び分析光をセ
ルに入射しセルと色素溶液を透過した光の吸光度を測定
する吸光分析器から構成されることを特徴とする、光照
射下における溶液の濃度変化を吸光分析でその場測定す
ることによって光触媒の酸化分解活性を評価する装置。
3. A transparent spectroscopic cell filled with a dye solution and equipped with a stirrer and a thermostat for stirring and maintaining the solution at a constant temperature, a photocatalyst test piece disposed on the bottom of the cell, and above the cell. It consists of an excitation light source installed in the cell, and an absorption spectrometer that measures the absorbance of light transmitted through the cell and the dye solution by injecting the analysis light into the cell and measuring the concentration change of the solution under light irradiation. A device that evaluates the oxidative decomposition activity of a photocatalyst by measuring it in situ by absorption spectrometry.
JP2001025572A 2001-02-01 2001-02-01 Method and apparatus for evaluating oxidative degradation activity of photocatalyst Expired - Fee Related JP4742378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001025572A JP4742378B2 (en) 2001-02-01 2001-02-01 Method and apparatus for evaluating oxidative degradation activity of photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001025572A JP4742378B2 (en) 2001-02-01 2001-02-01 Method and apparatus for evaluating oxidative degradation activity of photocatalyst

Publications (2)

Publication Number Publication Date
JP2002228589A true JP2002228589A (en) 2002-08-14
JP4742378B2 JP4742378B2 (en) 2011-08-10

Family

ID=18890532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001025572A Expired - Fee Related JP4742378B2 (en) 2001-02-01 2001-02-01 Method and apparatus for evaluating oxidative degradation activity of photocatalyst

Country Status (1)

Country Link
JP (1) JP4742378B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004080595A1 (en) * 2003-03-12 2004-09-23 University Of Strathclyde Indicator for detecting a photocatalyst
WO2006070554A1 (en) * 2004-12-27 2006-07-06 Japan Science & Technology Agency Photocatalytic activity evaluation method and photocatalytic activity evaluation apparatus
DE102005003878B3 (en) * 2005-01-24 2006-07-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Measuring device for measuring the photocatalytic activity of a photocatalytic layer
CN1313820C (en) * 2004-09-28 2007-05-02 张金龙 Photocatalyst active detection method with optical catalyst material
DE102009043378A1 (en) * 2009-08-13 2011-03-03 Technische Universität Braunschweig Method and use of luminescent compounds for measuring a photocatalytic surface activity
JP2016161384A (en) * 2015-03-02 2016-09-05 株式会社日立ハイテクサイエンス Thermal analyzer
CN106053436A (en) * 2016-05-13 2016-10-26 东南大学 Liquid phase photocatalysis test device
KR20200038591A (en) * 2018-10-04 2020-04-14 (주)아모레퍼시픽 Method for evaluating sun protection degree
EP3564656A4 (en) * 2016-12-30 2020-07-22 Consejo Superior de Investigaciones Cientificas (CSIC) Portable device for measuring photocatalytic activity and method for measuring photocatalytic activity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102088244B1 (en) 2018-02-05 2020-03-12 고려대학교 산학협력단 Chemical detecting sensor of zero-power and sensing method using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755697A (en) * 1993-08-18 1995-03-03 Fujitsu Ltd Spectrophotometer
JP2574163Y2 (en) * 1991-06-26 1998-06-11 株式会社堀場製作所 Measurement cell for colorimeter
JPH10332595A (en) * 1997-05-27 1998-12-18 Hakuto Co Ltd On-stream monitoring apparatus for concentration of treatment agent containing anionic polymer electrolyte in water system and control method for injection amount of treatment agent
JP2000162129A (en) * 1998-11-30 2000-06-16 Shinku Riko Kk Evaluating method and evaluating device of photocatalyst function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2574163Y2 (en) * 1991-06-26 1998-06-11 株式会社堀場製作所 Measurement cell for colorimeter
JPH0755697A (en) * 1993-08-18 1995-03-03 Fujitsu Ltd Spectrophotometer
JPH10332595A (en) * 1997-05-27 1998-12-18 Hakuto Co Ltd On-stream monitoring apparatus for concentration of treatment agent containing anionic polymer electrolyte in water system and control method for injection amount of treatment agent
JP2000162129A (en) * 1998-11-30 2000-06-16 Shinku Riko Kk Evaluating method and evaluating device of photocatalyst function

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4861164B2 (en) * 2003-03-12 2012-01-25 ユニバーシティ オブ ストラスクライド Indicator for photocatalyst detection
JP2006520471A (en) * 2003-03-12 2006-09-07 ユニバーシティ オブ ストラスクライド Indicator for photocatalyst detection
WO2004080595A1 (en) * 2003-03-12 2004-09-23 University Of Strathclyde Indicator for detecting a photocatalyst
CN1313820C (en) * 2004-09-28 2007-05-02 张金龙 Photocatalyst active detection method with optical catalyst material
WO2006070554A1 (en) * 2004-12-27 2006-07-06 Japan Science & Technology Agency Photocatalytic activity evaluation method and photocatalytic activity evaluation apparatus
DE102005003878B3 (en) * 2005-01-24 2006-07-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Measuring device for measuring the photocatalytic activity of a photocatalytic layer
WO2006077169A1 (en) * 2005-01-24 2006-07-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Measuring device and measuring method for measuring photocatalytic activity of a photocatalytic layer
DE102009043378A1 (en) * 2009-08-13 2011-03-03 Technische Universität Braunschweig Method and use of luminescent compounds for measuring a photocatalytic surface activity
DE102009043378B4 (en) * 2009-08-13 2011-04-07 Technische Universität Braunschweig Method and use of luminescent compounds for measuring a photocatalytic surface activity
JP2016161384A (en) * 2015-03-02 2016-09-05 株式会社日立ハイテクサイエンス Thermal analyzer
CN106053436A (en) * 2016-05-13 2016-10-26 东南大学 Liquid phase photocatalysis test device
EP3564656A4 (en) * 2016-12-30 2020-07-22 Consejo Superior de Investigaciones Cientificas (CSIC) Portable device for measuring photocatalytic activity and method for measuring photocatalytic activity
KR20200038591A (en) * 2018-10-04 2020-04-14 (주)아모레퍼시픽 Method for evaluating sun protection degree
KR102506883B1 (en) 2018-10-04 2023-03-08 (주)아모레퍼시픽 Method for evaluating sun protection degree

Also Published As

Publication number Publication date
JP4742378B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
León et al. Designing spectroelectrochemical cells: A review
Herlihy et al. Detecting the oxyl radical of photocatalytic water oxidation at an n-SrTiO3/aqueous interface through its subsurface vibration
Jeanmaire et al. Resonance Raman spectroelectrochemistry. 2. Scattering spectroscopy accompanying excitation of the lowest 2B1u excited state of the tetracyanoquinodimethane anion radical
Schlegel et al. Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity
Adams et al. Determination of the absolute quantum efficiency of luminescence of solid materials employing photoacoustic spectroscopy
Bello et al. Titanium dioxide based substrate for optical monitors in surface-enhanced Raman scattering analysis
Suah et al. Applications of artificial neural network on signal processing of optical fibre pH sensor based on bromophenol blue doped with sol–gel film
JPH0720054A (en) Method and equipment for isotopic analysis
Volkan et al. A sol–gel derived AgCl photochromic coating on glass for SERS chemical sensor application
JP4742378B2 (en) Method and apparatus for evaluating oxidative degradation activity of photocatalyst
Premasiri et al. Determination of cyanide in waste water by low‐resolution surface enhanced Raman spectroscopy on sol‐gel substrates
Kao et al. A comparison of fluorescence inner-filter effects for different cell configurations
Plieth et al. Spectroelectrochemistry: A survey of in situ spectroscopic techniques (Technical Report)
Faguy et al. Sensitivity and reproducibility in infrared spectroscopic measurements at single-crystal electrode surfaces
Christensen et al. In-situ techniques in electrochemistry—ellipsometry and FTIR
US4486272A (en) Method of electrochemical measurement utilizing photochemical reaction and apparatus therefor
Li et al. A portable non-enzyme photoelectrochemical ascorbic acid sensor based on BiVO4 electrode under 20 W LED light
Bellec et al. In situ time-resolved FTIR spectroelectrochemistry: study of the reduction of TCNQ
Jackson Electrothermal atomic absorption spectrometry and related techniques
Katoh et al. Quantum Yields of Photoluminescence of TiO2 Photocatalysts
Diessel et al. Glucose quantification in dried-down nanoliter samples using mid-infrared attenuated total reflection spectroscopy
Berkes et al. Combination of nanogravimetry and visible spectroscopy: A tool for the better understanding of electrochemical processes
Burakov et al. Intracavity laser spectroscopic method for determining trace amounts of iodine and barium in water and biological samples
Dieckmann et al. Phototriggered NO and CN release from [Fe (CN) 5NO] 2− molecules electrostatically attached to TiO 2 surfaces
Valkai et al. Some physical parameters influencing the comprehensive evaluation of kinetic data in photochemical reactions and its application in the periodate-chemistry

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees