JP4537818B2 - Plasma processing method - Google Patents

Plasma processing method Download PDF

Info

Publication number
JP4537818B2
JP4537818B2 JP2004285752A JP2004285752A JP4537818B2 JP 4537818 B2 JP4537818 B2 JP 4537818B2 JP 2004285752 A JP2004285752 A JP 2004285752A JP 2004285752 A JP2004285752 A JP 2004285752A JP 4537818 B2 JP4537818 B2 JP 4537818B2
Authority
JP
Japan
Prior art keywords
etching
film
plasma
gas
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004285752A
Other languages
Japanese (ja)
Other versions
JP2006100628A (en
JP2006100628A5 (en
Inventor
誠浩 角屋
大本  豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2004285752A priority Critical patent/JP4537818B2/en
Publication of JP2006100628A publication Critical patent/JP2006100628A/en
Publication of JP2006100628A5 publication Critical patent/JP2006100628A5/ja
Application granted granted Critical
Publication of JP4537818B2 publication Critical patent/JP4537818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Description

本発明はプラズマ処理方法に係わり、特にプラズマを用いて半導体素子などの表面処理を行うのに好適なプラズマ処理方法に関するものである。   The present invention relates to a plasma processing method, and more particularly to a plasma processing method suitable for performing surface treatment of a semiconductor element or the like using plasma.

エッチング処理をプラズマ処理装置を用いて行う場合、処理ガスを電離し活性化することで処理の高速化をはかり、また被処理材に高周波バイアス電力を供給しイオンを垂直に入射させることで、異方性形状などの高精度エッチング処理を実現している。従来の酸化膜(SiO)のプラズマ処理方法は、記載のように、エッチングガスAr,O,CxFy(例えばC,C,C等),COを用いてエッチング処理を行っている(例えば、非特許文献1参照)。 When performing an etching process using a plasma processing apparatus, the process gas is ionized and activated to speed up the process, and a high frequency bias power is supplied to the material to be processed so that ions are incident vertically. High-precision etching process such as isotropic shape is realized. A conventional plasma processing method for an oxide film (SiO 2 ) uses an etching gas Ar, O 2 , CxFy (for example, C 4 F 8 , C 5 F 8 , C 4 F 6, etc.) and CO as described. Etching is performed (for example, see Non-Patent Document 1).

しかし、配線間およびその配線間を接続するプラグを形成するダマシンプロセスでは、消費電力低減の観点から、SiOCH膜の様な低誘電率膜が層間絶縁膜として使用されるようになってきたが、これらは、Oプラズマ等の照射によりK値が劣化することが知られている(例えば、非特許文献2参照)。 However, in the damascene process for forming plugs connecting between wirings and between the wirings, a low dielectric constant film such as a SiOCH film has been used as an interlayer insulating film from the viewpoint of reducing power consumption. These are known to deteriorate in K value by irradiation with O 2 plasma or the like (for example, see Non-Patent Document 2).

このため、Oガスに替えてNガスを添加しC成分を除去する方法が用いられているが、NラジカルはOラジカルに比べてC成分の除去効率が低く、従ってよりデポの少ないプロセスが必要となる。 For this reason, a method of removing C component by adding N 2 gas in place of O 2 gas is used, but N radical has a lower C component removal efficiency than O radical, and therefore a process with less deposition. Is required.

またデバイスの微細化に伴い、レジストマスクの露光も短波長側へシフトし、そのためレジスト厚さが薄くなり、エッチング処理を行う際に高マスク選択比を確保することが要求されてきた。特に、ArFレジストではエッチング時のプラズマ耐性が著しく低下することが知られており、そのためエッチングプロセスにおけるレジストダメージの低減が急務である。
H.Hayashi:1996 DPS p135 K.Maex et.al. : J. Appl. Phys, Vol93(2003)p8793
Further, with the miniaturization of devices, the exposure of the resist mask is also shifted to the short wavelength side, so that the resist thickness is reduced, and it has been required to ensure a high mask selectivity when performing the etching process. In particular, it is known that plasma resistance at the time of etching is significantly reduced in an ArF resist. Therefore, it is urgent to reduce resist damage in the etching process.
H. Hayashi: 1996 DPS p135 K. Maex et. al. : J.M. Appl. Phys, Vol93 (2003) p8793

本発明の目的は、ArFレジストマスク対応の低誘電率膜(Low−k膜、例えばSiOCH)において、ArFレジストダメージを発生せず、高選択比で高精度なエッチングを実現可能な処理条件を提供することにある。   An object of the present invention is to provide a processing condition capable of realizing high-selectivity and high-precision etching without causing ArF resist damage in a low dielectric constant film (Low-k film, for example, SiOCH) corresponding to an ArF resist mask. There is to do.

上記課題を解決するために、本発明は、プラズマを生成し、試料に高周波電圧を印加することにより被処理材をエッチングする装置を用いて、ArFレジストマスクを用いてSiOCH膜のエッチングを行うプラズマ処理方法において、希ガス(例えばAr)を用いないで被処理材をエッチングする。さらに、上記プラズマ処理方法を、0.4〜0.7Paの低圧力で行う。また、上記プラズマ処理方法を、N、O等のガスを用いないで行う。 In order to solve the above-described problems, the present invention is a plasma that etches a SiOCH film using an ArF resist mask using an apparatus that generates plasma and applies a high-frequency voltage to a sample to etch a material to be processed. In the treatment method, the material to be treated is etched without using a rare gas (for example, Ar). Further, the plasma processing method is performed at a low pressure of 0.4 to 0.7 Pa . The plasma processing method is performed without using a gas such as N 2 or O 2 .

本発明は、上記プラズマ処理方法において、希ガス(例えば、Ar)を含まないCFとCHFの混合ガスをエッチングガスとして用いる、または、CHFとNの混合ガスを用いる、もしくは、CFとNの混合ガスを用いて行う。 The present invention uses a mixed gas of CF 4 and CHF 3 not containing a rare gas (for example, Ar) as an etching gas in the above plasma processing method, or a mixed gas of CHF 3 and N 2 , or CF This is performed using a mixed gas of 4 and N 2 .

さらに、本発明は、上記プラズマ処理方法において、磁場を用いてプラズマを生成する。   Furthermore, the present invention generates plasma using a magnetic field in the plasma processing method.

本発明のプラズマ処理方法では、低圧力でエッチング処理を行うことにより、ウエハ上に堆積するデポ量を減少させると共に、その組成を制御しArFレジストダメージを低減するため、高精度で低レジストダメージの処理が可能である。   In the plasma processing method of the present invention, the amount of deposit deposited on the wafer is reduced by performing an etching process at a low pressure, and the composition is controlled to reduce ArF resist damage. Processing is possible.

ArFレジストマスクSiOCH膜のエッチングにおいて希ガス(例えばAr)を含まず、低圧力(例えば0.4〜0.7Pa)でエッチングを行うことにより、高垂直で低ArFレジストダメージなエッチング処理が可能である。 Etching of the ArF resist mask SiOCH film does not include a rare gas (for example, Ar) and is performed at a low pressure (for example, 0.4 to 0.7 Pa ), thereby enabling etching processing that is highly vertical and has low ArF resist damage. is there.

図1は、典型的なビアエッチングを施す被エッチング処理材(試料)の断面構造を示す概念図である。
試料は、シリコン基板(Si)105上にエッチングストップ膜(例えば、SiC)104、被処理材(例えば、SiOCH:AMAT社製 Black Diamond, ASM社製 Aurora, Novellus社製 Coralなど多種の膜がある)103、反射防止膜(BARC)102を積層し、その表面にArFフォトレジスト膜101を形成して構成される。
FIG. 1 is a conceptual diagram showing a cross-sectional structure of a material to be etched (sample) subjected to typical via etching.
Samples include various films such as an etching stop film (for example, SiC) 104 and a material to be processed (for example, SiOCH: Black Diamond from AMAT, Aurora from ASM, and Coral from Novellus on a silicon substrate (Si) 105. ) 103 and an antireflection film (BARC) 102 are laminated, and an ArF photoresist film 101 is formed on the surface thereof.

ビアエッチングに当たっては、まず、ArFフォトレジストマスク101をマスクにBARC膜102をエッチングし、その後、被処理材膜103をエッチングし、好ましくはエッチングストップ膜104上で選択的にエッチングを停止させる。   In the via etching, first, the BARC film 102 is etched using the ArF photoresist mask 101 as a mask, and then the material film 103 is etched, and the etching is preferably selectively stopped on the etching stop film 104.

従来、SiOの薄膜にコンタクトホールを形成する場合、マスクであるフォトレジスト(PR)に対し選択的にエッチングを行うため、エッチングガスであるAr、O、CxFy(例えばC、C、C、C等)およびCO等の比較的デポ量の多いプロセス用いてエッチングを行っている。しかし、ビア加工では比較的アスペクト比の小さいこと、Low−k(SiOCH)膜103のk値劣化ダメージの観点から、デポ量の比較的少ないプロセスが必要である。 Conventionally, when a contact hole is formed in a thin film of SiO 2 , etching is selectively performed on a photoresist (PR) that is a mask. Therefore, Ar, O 2 , CxFy (for example, C 4 F 8 , C) 5 F 8 , C 3 F 6 , C 4 F 6, etc.) and CO, etc., are used for etching. However, in the via processing, a process with a relatively small amount of deposit is required from the viewpoint of a relatively small aspect ratio and damage of k value deterioration of the Low-k (SiOCH) film 103.

そこで、本発明では、Low−k(SiOCH)膜103のエッチングガスとしてCFとCHFの混合ガスにNを添加したガス系とした。さらに、よりデポ量を減少させる方法としては、希ガス(例えばAr)によりエッチャントガスを希釈する方法と、低圧力化の方法の2種類の比較を行った。 Therefore, in the present invention, a gas system in which N 2 is added to a mixed gas of CF 4 and CHF 3 as an etching gas for the low-k (SiOCH) film 103 is used. Furthermore, as a method of further reducing the deposition amount, two kinds of comparisons were performed: a method of diluting an etchant gas with a rare gas (for example, Ar) and a method of reducing the pressure.

Ar希釈有無によるエッチャント分圧とエッチング特性の関係を示す特性図である図2を用いて、その結果を説明する。すなわち、Ar希釈の有(○印)無(□印)によらず、CFとCHFの混合ガスの分圧を減少させるに伴ない、デポレートは減少する。しかし、SiOCH膜のエッチングレートは、CFとCHFの混合ガスの分圧を減少させるに伴ない、Ar希釈の場合(●印)では急激に減少し、低圧力化の場合(■印)には増加する。 The results will be described with reference to FIG. 2, which is a characteristic diagram showing the relationship between the etchant partial pressure and the etching characteristics depending on whether or not Ar is diluted. That is, the deposition rate decreases as the partial pressure of the mixed gas of CF 4 and CHF 3 is decreased regardless of whether Ar dilution is present (◯ mark) or not (□ mark). However, the etching rate of the SiOCH film decreases sharply in the case of Ar dilution (● mark) and decreases in pressure (■ mark) as the partial pressure of the mixed gas of CF 4 and CHF 3 is reduced. Will increase.

この相違の原因を明らかにするため、発光分光計測を実施した結果を図3に示す。図3は、Ar希釈有無によるエッチャント分圧とプラズマ組成の関係を示す特性図である。また、右軸にはガスの滞在時間をプロットした。Ar希釈の場合(●印)はCFとCHFの混合ガス分圧を減少させると、CF/C比が急激に減少することから、プラズマ組成のC成分が過多となっていると推測できる。また、Ar希釈の有(○印)無(□印)によらずガス滞在時間は同程度であることから、Ar希釈をした場合には、高電子温度化し過剰乖離状態となり、エッチストップ等が発生しやすくなっていると考えられる。従って、SiOCH膜のエッチングにおいて、Arガスのような希ガスを添加しないこと(■印)が望ましい。 In order to clarify the cause of this difference, the results of the emission spectroscopic measurement are shown in FIG. FIG. 3 is a characteristic diagram showing the relationship between the etchant partial pressure and the plasma composition with and without Ar dilution. Also, the gas residence time is plotted on the right axis. In the case of Ar dilution (marked with ●), if the mixed gas partial pressure of CF 4 and CHF 3 is decreased, the CF 2 / C 2 ratio is rapidly decreased, so that the C component of the plasma composition is excessive. I can guess. In addition, the gas residence time is almost the same regardless of whether Ar dilution is present (○ mark) or not (□ mark). Therefore, when Ar dilution is performed, the electron temperature rises to an excessively dissociated state, and etch stop, etc. It is thought that it is easy to occur. Therefore, it is desirable not to add a rare gas such as Ar gas (■ mark) in etching the SiOCH film.

図4の等高線図を用いて、Ar希釈なしでの圧力とN2流量比と、SiOCH膜のビアエッチングのエッチングレート、ホール垂直性、フォトレジストのCDシフトの関係を示す。(a)に示すように、SiOCH膜のエッチングレートは低圧力程高く、(b)に示すように、ホール垂直性は低圧力・高N流量領域で高く、(c)に示すように、フォトレジストのホールCD(Critical Dimension)シフトは低圧領域ほど少ないことが分かり、特に2Pa以下の低圧力領域が形状制御性の点で効果的であることが分かる。 The relationship between the pressure without Ar dilution and the N2 flow rate, the etching rate of via etching of the SiOCH film, the hole perpendicularity, and the CD shift of the photoresist is shown using the contour map of FIG. As shown in (a), the etching rate of the SiOCH film is higher as the pressure is lower, and as shown in (b), the hole perpendicularity is higher in the low pressure / high N 2 flow rate region, and as shown in (c), It can be seen that the hole CD (Critical Dimension) shift of the photoresist is smaller in the low pressure region, and in particular, the low pressure region of 2 Pa or less is effective in terms of shape controllability.

本実験では、実験装置として絶縁膜用UHF−ECR(Ultra High Frequency−Electron Cyclotron Resonance)プラズマ装置を用いたが、本プラズマ源では磁場を用いているため、低圧力領域での放電安定性に優れており、このようなプラズマ源を用いることにより低圧力での高精度エッチングを行うことが可能である。   In this experiment, a UHF-ECR (Ultra High Frequency-Electron Cyclotron Resonance) plasma device for an insulating film was used as an experimental device. However, since this plasma source uses a magnetic field, it has excellent discharge stability in a low pressure region. By using such a plasma source, high-precision etching can be performed at a low pressure.

図5に、エッチング後のArFレジスト101表面のSEM(Scanning Electron Microscopy)像を示す。高圧力・高N流量領域ほどレジスト表面のグレインサイズが小さく、ArFレジストダメージ(ストライエーション)に対する耐性が弱く、低圧力・低N流量領域ほどレジスト表面のグレインサイズが大きく、ArFレジストダメージに対する耐性が強い。 FIG. 5 shows an SEM (Scanning Electron Microscopy) image of the surface of the ArF resist 101 after etching. The higher the pressure and the higher N 2 flow rate region, the smaller the resist surface grain size, and the weaker the resistance to ArF resist damage (striation). The lower the pressure and the lower N 2 flow rate region, the larger the resist surface grain size, and against ArF resist damage. Strong tolerance.

この違いを解明するため、バイアスを印加せず堆積させたデポ膜をEDX(Energy Dispersive X−ray Spectrometer)を用いて表面組成分析を行った結果を図6に示す。図6は、放電条件とデポ膜組成の関係を示す特性図であり、左軸はF/C比(棒グラフ)、右軸にはデポレート(●印)を示す。それぞれ、条件(a)6Pa、(b)2Pa、(c)0.7Pa、(d)0.4Paとした。その結果、低圧力ほどF成分の多い膜が堆積していることが分かる。従って、ArFレジストダメージを低減するためには、C成分比率が少なくF成分比率の高いデポ膜を形成することが必要であると言える。   In order to elucidate this difference, FIG. 6 shows the results of surface composition analysis of the deposited film deposited without applying a bias using an EDX (Energy Dispersive X-ray Spectrometer). FIG. 6 is a characteristic diagram showing the relationship between the discharge conditions and the deposition film composition. The left axis shows the F / C ratio (bar graph), and the right axis shows the deposition (●). The conditions (a) were 6 Pa, (b) 2 Pa, (c) 0.7 Pa, and (d) 0.4 Pa, respectively. As a result, it can be seen that a film with more F component is deposited as the pressure is lower. Therefore, in order to reduce ArF resist damage, it can be said that it is necessary to form a deposition film having a small C component ratio and a high F component ratio.

次に、実際にバイアスを印加しエッチングを行った際のレジスト表面組成をXPS(X−ray Photoelectron Spectroscopy)を用いて分析を行った結果を図7に示す。図7は、放電条件とレジスト表面組成の関係を示す特性図であり、それぞれ条件(a)6Pa、(b)0.4Pa、(c)0.4Pa+高電圧とした。低圧力ほどC成分比率が低いことが分かる。また、一般にウエハバイアス出力を増加させVpp(ピークトゥピーク)電圧を増加させると、加工性能の垂直性が向上するが、Vppの増加によりC成分比率が増加していることが分かる。   Next, FIG. 7 shows the result of analyzing the resist surface composition using XPS (X-ray Photoelectron Spectroscopy) when etching is actually performed by applying a bias. FIG. 7 is a characteristic diagram showing the relationship between the discharge conditions and the resist surface composition. The conditions (a) 6 Pa, (b) 0.4 Pa, and (c) 0.4 Pa + high voltage were set, respectively. It can be seen that the lower the pressure, the lower the C component ratio. In general, when the wafer bias output is increased and the Vpp (peak-to-peak) voltage is increased, the verticality of the processing performance is improved, but it can be seen that the C component ratio is increased by the increase of Vpp.

したがって、垂直性加工性とArFレジストダメージはトレードオフの関係にあることが分かるが、低圧力化することによりF成分比率の高いデポ膜を形成することが可能であるため、低ArFレジストダメージで、高垂直・高精度なエッチングを行うことが可能であるという効果がある。   Therefore, it can be seen that there is a trade-off relationship between the vertical workability and ArF resist damage, but it is possible to form a deposition film with a high F component ratio by lowering the pressure, so that low ArF resist damage There is an effect that it is possible to perform highly vertical and highly accurate etching.

また、上記実施例では、エッチングガスとしてCFとCHFの混合ガスにNを添加したガス系を使用したが、圧力およびガス流量およびCFとCHFの混合ガス比率を調整することによりNを添加しないことも可能であり、Low−k(SiOCH)膜のk値劣化抑制が可能であるという効果がある。また、CFとCHFの混合ガス比率を調整することによりエッチング形状を制御できるという効果もある。 In the above embodiment, a gas system in which N 2 is added to a mixed gas of CF 4 and CHF 3 is used as an etching gas, but by adjusting the pressure and gas flow rate and the mixed gas ratio of CF 4 and CHF 3 It is possible not to add N 2 , and there is an effect that k value deterioration of the Low-k (SiOCH) film can be suppressed. In addition, the etching shape can be controlled by adjusting the mixed gas ratio of CF 4 and CHF 3 .

また、上記の説明では、エッチングガスとして、CFとCHFの混合ガスを用いたが、CFとNの混合ガス、または、CHFとNの混合ガスを用いることができる。 In the above description, a mixed gas of CF 4 and CHF 3 is used as an etching gas, but a mixed gas of CF 4 and N 2 or a mixed gas of CHF 3 and N 2 can be used.

また、CFとCHFの混合比については、CHF比率が高いほど対レジスト選択比が向上するが、エッチングを阻害する傾向が強いため、バイアス出力の増加、または圧力を低下することにより高精度なエッチングが可能となる。 As for the mixing ratio of CF 4 and CHF 3, the higher the CHF 3 ratio, the higher the resist selection ratio is. However, since the tendency to inhibit etching is strong, the higher the bias output or the lower the pressure, the higher the ratio. Accurate etching is possible.

さらに、本実施例では有磁場エッチング装置について述べたが、低圧力動作が可能であるアッシング装置、プラズマCVD装置など他のプラズマ処理装置においても同様の効果がある。   Furthermore, although the magnetic field etching apparatus has been described in the present embodiment, the same effect can be obtained in other plasma processing apparatuses such as an ashing apparatus and a plasma CVD apparatus that can operate at a low pressure.

被エッチング処理材(試料)の構造を説明する断面図。Sectional drawing explaining the structure of a to-be-etched processing material (sample). Ar希釈有無によるエッチャント分圧とエッチング特性の関係を示す特性図。The characteristic view which shows the relationship between the etchant partial pressure by the presence or absence of Ar dilution, and an etching characteristic. Ar希釈有無によるエッチャント分圧とプラズマ組成の関係を示す特性図。The characteristic view which shows the relationship between the etchant partial pressure by the presence or absence of Ar dilution, and a plasma composition. 圧力とN流量によるエッチング特性への影響を示す等高線図。FIG. 7 is a contour map showing the influence of the pressure and N 2 flow rate on etching characteristics. ArFレジストのエッチング後表面SEM像。Surface SEM image after etching of ArF resist. 放電条件とデポ膜組成の関係を示す特性図。The characteristic view which shows the relationship between discharge conditions and a deposit film composition. 放電条件とレジスト表面組成の関係を示す特性図。The characteristic view which shows the relationship between discharge conditions and a resist surface composition.

符号の説明Explanation of symbols

101…フォトレジストマスク、102…反射防止膜(BARC)、103…被処理材、104…エッチングストップ膜、105…シリコン基盤。 DESCRIPTION OF SYMBOLS 101 ... Photoresist mask, 102 ... Antireflection film (BARC), 103 ... Material to be processed, 104 ... Etching stop film, 105 ... Silicon base | substrate.

Claims (2)

プラズマを生成し、試料に高周波電圧を印加することにより被処理材をエッチングする装置を用いて、ArFレジストマスクを用いてSiOCH膜のエッチングを行うエッチングプロセスにおいて、
とCHF からなる混合ガスまたはCF とCHF とN からなる混合ガスをエッチングガスとして用い、
0.4〜0.7Paの低圧力でプラズマ処理する
ことを特徴とするプラズマ処理方法。
In an etching process for etching a SiOCH film using an ArF resist mask using an apparatus that etches a material to be processed by generating a plasma and applying a high-frequency voltage to a sample,
Using C F 4 mixed gas consisting of CHF 3 or CF 4, CHF 3 and a mixed gas consisting of N 2 as the etching gas,
A plasma processing method comprising performing plasma processing at a low pressure of 0.4 to 0.7 Pa.
請求項1記載のプラズマ処理方法において、磁場を用いてプラズマを生成することを特徴とするプラズマ処理方法。   2. The plasma processing method according to claim 1, wherein plasma is generated using a magnetic field.
JP2004285752A 2004-09-30 2004-09-30 Plasma processing method Expired - Fee Related JP4537818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004285752A JP4537818B2 (en) 2004-09-30 2004-09-30 Plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004285752A JP4537818B2 (en) 2004-09-30 2004-09-30 Plasma processing method

Publications (3)

Publication Number Publication Date
JP2006100628A JP2006100628A (en) 2006-04-13
JP2006100628A5 JP2006100628A5 (en) 2007-07-05
JP4537818B2 true JP4537818B2 (en) 2010-09-08

Family

ID=36240131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004285752A Expired - Fee Related JP4537818B2 (en) 2004-09-30 2004-09-30 Plasma processing method

Country Status (1)

Country Link
JP (1) JP4537818B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278517A (en) * 2005-03-28 2006-10-12 Tokyo Electron Ltd Plasma etching method, plasma etching apparatus, control program, and computer storage medium
JP4599212B2 (en) * 2005-04-15 2010-12-15 株式会社日立ハイテクノロジーズ Plasma processing method
TWI437633B (en) * 2006-05-24 2014-05-11 Ulvac Inc Dry etching method for interlayer insulating film
JP2017092142A (en) * 2015-11-05 2017-05-25 東京エレクトロン株式会社 Method of processing object to be processed
CN108417526B (en) * 2017-02-09 2020-11-03 中芯国际集成电路制造(上海)有限公司 Method for manufacturing semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015479A (en) * 1999-06-29 2001-01-19 Toshiba Corp Method of manufacturing semiconductor
JP2001127040A (en) * 1999-10-26 2001-05-11 Tokyo Electron Ltd Etching method
WO2004003988A1 (en) * 2002-06-27 2004-01-08 Tokyo Electron Limited Plasma processing method
JP2004071731A (en) * 2002-08-05 2004-03-04 Ulvac Japan Ltd Etching method
JP2004071774A (en) * 2002-08-05 2004-03-04 Tokyo Electron Ltd Plasma processing method using multi-chamber system
JP2004158821A (en) * 2002-09-10 2004-06-03 Hitachi Ltd Method of manufacturing semiconductor device
JP2004193627A (en) * 1999-06-24 2004-07-08 Renesas Technology Corp Method of manufacturing semiconductor integrated circuit device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193627A (en) * 1999-06-24 2004-07-08 Renesas Technology Corp Method of manufacturing semiconductor integrated circuit device
JP2001015479A (en) * 1999-06-29 2001-01-19 Toshiba Corp Method of manufacturing semiconductor
JP2001127040A (en) * 1999-10-26 2001-05-11 Tokyo Electron Ltd Etching method
WO2004003988A1 (en) * 2002-06-27 2004-01-08 Tokyo Electron Limited Plasma processing method
JP2004071731A (en) * 2002-08-05 2004-03-04 Ulvac Japan Ltd Etching method
JP2004071774A (en) * 2002-08-05 2004-03-04 Tokyo Electron Ltd Plasma processing method using multi-chamber system
JP2004158821A (en) * 2002-09-10 2004-06-03 Hitachi Ltd Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2006100628A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
US9514953B2 (en) Methods for barrier layer removal
US6114250A (en) Techniques for etching a low capacitance dielectric layer on a substrate
US6620733B2 (en) Use of hydrocarbon addition for the elimination of micromasking during etching of organic low-k dielectrics
KR101683405B1 (en) Sidewall protection of low-k material during etching and ashing
US7442651B2 (en) Plasma etching method
US8592327B2 (en) Formation of SiOCl-containing layer on exposed low-k surfaces to reduce low-k damage
KR102340870B1 (en) Plasma Etching Method
TWI822631B (en) Method to improve profile control during selectively etching of silicon nitride spacers
US8124322B2 (en) Method for manufacturing semiconductor device, and method for processing etching-target film
US20180337047A1 (en) Methods of etching hardmasks containing high hardness materials
US6955177B1 (en) Methods for post polysilicon etch photoresist and polymer removal with minimal gate oxide loss
Layadi et al. An introduction to plasma etching for VLSI circuit technology
JP4537818B2 (en) Plasma processing method
JP3198538B2 (en) Dry etching method
JP2009059805A (en) Semiconductor device processing method
US20220157614A1 (en) Dry Etching Method and Method for Producing Semiconductor Device
US6828250B1 (en) Process for etching vias in organosilicate glass materials without causing RIE lag
JP4577328B2 (en) Manufacturing method of semiconductor device
US7041230B2 (en) Method for selectively etching organosilicate glass with respect to a doped silicon carbide
JP3305270B2 (en) Method for manufacturing semiconductor device
TWI851705B (en) Method of anisotropically etching adjacent lines with multi-color selectivity
US6949469B1 (en) Methods and apparatus for the optimization of photo resist etching in a plasma processing system
JP2005072352A (en) Dry etching method of interlayer insulating film
US20060084276A1 (en) Methods for surface treatment and structure formed therefrom

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees