JP4537194B2 - Charged particle beam equipment - Google Patents

Charged particle beam equipment Download PDF

Info

Publication number
JP4537194B2
JP4537194B2 JP2004375976A JP2004375976A JP4537194B2 JP 4537194 B2 JP4537194 B2 JP 4537194B2 JP 2004375976 A JP2004375976 A JP 2004375976A JP 2004375976 A JP2004375976 A JP 2004375976A JP 4537194 B2 JP4537194 B2 JP 4537194B2
Authority
JP
Japan
Prior art keywords
sample
power supply
voltage
charged particle
supply unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004375976A
Other languages
Japanese (ja)
Other versions
JP2006185661A (en
Inventor
正司 笹氣
毅 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2004375976A priority Critical patent/JP4537194B2/en
Publication of JP2006185661A publication Critical patent/JP2006185661A/en
Application granted granted Critical
Publication of JP4537194B2 publication Critical patent/JP4537194B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、荷電粒子線を用いての試料を加工または観察する機能を有する荷電粒子線装置および試料を搭載する試料台に関する。   The present invention relates to a charged particle beam apparatus having a function of processing or observing a sample using a charged particle beam and a sample stage on which the sample is mounted.

荷電粒子線装置は、走査電子顕微鏡(SEM)、集束イオンビーム(FIB)を用いて試料に加工を施したり、加工した加工面を観察したりする装置がある。SEMは、電子源より加速電圧V0(負電圧)にて放出される電子ビームを電磁あるいは静電レンズを用いて集束して試料表面を走査し、試料から発生する二次電子を検出してSEM像取得し、試料表面の構造を観察する装置である。   As the charged particle beam apparatus, there is an apparatus for processing a sample using a scanning electron microscope (SEM) or a focused ion beam (FIB) and observing the processed surface. The SEM focuses an electron beam emitted from an electron source at an acceleration voltage V0 (negative voltage) using an electromagnetic or electrostatic lens, scans the surface of the sample, detects secondary electrons generated from the sample, and detects the SEM. It is an apparatus that acquires images and observes the structure of the sample surface.

また、FIB装置は、例えばガリウム(Ga)イオン源より加速電圧V0(正電圧)にて放出されるイオンビームを集束して試料表面を走査して照射することで、イオンによるスパッタ現象にて試料を加工する装置である。FIB装置は、透過電子顕微鏡(TEM)や走査透過電子顕微鏡(STEM)用の薄膜試料を作成する用途などに用いられている。   In addition, the FIB apparatus focuses an ion beam emitted from a gallium (Ga) ion source at an acceleration voltage V0 (positive voltage) and scans and irradiates the sample surface, thereby causing the sample to be sputtered by ions. Is a device for processing. The FIB apparatus is used for the purpose of creating a thin film sample for a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM).

FIBを用いる事によりデバイスの所望位置からの薄膜試料を短時間かつ確実に作る事ができる。このFIBによるTEM試料作製方法に関しては、非特許文献1〔“Transmission Electron Microscope Sample Preparation Using a Focused Ion Beam”(J. Electron Microsc. 43 , pp.322−326 , 1994)〕に記載されている。また、FIB装置は、特許文献1(特開平6−168688号公報)にも記載されている。   By using the FIB, a thin film sample from a desired position of the device can be reliably produced in a short time. Regarding the TEM sample preparation method by FIB, it is described in Non-Patent Document 1 ["Transmission Electron Microscope Sample Preparation Using a Focused Ion Beam" (J. Electron Microsc. 43, 226-3 pp. 322-3 pp. 322-3). The FIB apparatus is also described in Patent Document 1 (Japanese Patent Laid-Open No. 6-168688).

“Transmission Electron Microscope Sample Preparation Using a Focused Ion Beam”(J. Electron Microsc. 43 , pp.322−326 , 1994)“Transmission Electron Microscope Sample Preparation Using a Focused Ion Beam” (J. Electron Microsc. 43, pp.322-326, 1994). 特開平6−168688号公報JP-A-6-168688

FIB装置において、加速電圧を高くした方が加工速度を速く、かつビーム径を細くすることができる。しかし、加速電圧が高い方がFIBによるイオン打ち込まれる部分の深さや横方向の広がりが大きくなり、それにより試料のFIB照射部付近に形成されるダメージ層の厚さが大きくなる。   In the FIB apparatus, the higher the acceleration voltage, the faster the processing speed and the narrower the beam diameter. However, the higher the acceleration voltage, the greater the depth and lateral extent of the portion where ions are implanted by FIB, thereby increasing the thickness of the damage layer formed in the vicinity of the FIB irradiated portion of the sample.

図3(a)に試料のFIB照射部付近の概略を示すように、集束イオンビームによる加工を行うと、試料18表面にはイオンが打ち込まれ、ダメージ層51が形成される。このダメージ層51の幅は、加速電圧V0が大きいほど大きくなり、例えば、シリコン基板上にGaイオンビームを照射した場合、V0=30kVの場合には加工側壁でのダメージ層の幅は約15nmとなる。   As shown in FIG. 3A, when the processing with the focused ion beam is performed, ions are implanted into the surface of the sample 18 and a damaged layer 51 is formed. The width of the damaged layer 51 increases as the acceleration voltage V0 increases. For example, when a Ga ion beam is irradiated on a silicon substrate, the width of the damaged layer on the processed sidewall is about 15 nm when V0 = 30 kV. Become.

ダメージ層は、例えば、図3(b)のように厚さ60nmの薄膜試料を作成し、図に示した方向から電子線を照射してSTEM観察を行おうとする場合には薄膜試料の厚さの半分がダメージ層になり、試料内部の結晶構造などの観察に支障が出る。   For example, when the thin layer sample having a thickness of 60 nm is prepared as shown in FIG. 3B and the electron beam is irradiated from the direction shown in FIG. Half of this becomes a damaged layer, which hinders observation of the crystal structure inside the sample.

また、加速電圧を低くするとダメージ層の厚さは小さくなるが、加速電圧を低くするとビームの集束性能が劣化し、ビームが絞れない、電流が小さく加工に時間がかかる、といった不具合が発生する。このため、試料に減速電圧Vrを印加し、試料への照射エネルギー(V0−Vr)を下げることで対応することが考えられる。   Further, when the acceleration voltage is lowered, the thickness of the damaged layer is reduced. However, when the acceleration voltage is lowered, the beam focusing performance is deteriorated, the beam cannot be focused, the current is small, and processing takes time. For this reason, it can be considered that a deceleration voltage Vr is applied to the sample to reduce the irradiation energy (V0−Vr) to the sample.

試料に電圧を印加するという技術は、例えば、特許文献1に示すように、低い照射エネルギーで高いビーム集束性能を得るために種々の荷電粒子線装置で試みられている。   The technique of applying a voltage to a sample has been attempted with various charged particle beam apparatuses in order to obtain high beam focusing performance with low irradiation energy, as shown in Patent Document 1, for example.

しかし、例えば数kVの電圧を印加するためには、試料ステージの耐電圧の問題のほかに、大気側から試料室(真空内)に電圧を導入するための端子の耐圧や、電圧の電源部から端子までの線材の選定や耐圧といった問題があり、これらの問題をクリアするために耐電圧テストを繰り返し行う必要があった。更に印加する電圧が高くなればなるほど、耐電圧の問題から電圧導入端子が大きくなり、装置の小型化をはかる場合、端子の大きさが制限になったり、端子が大きくなることで、その部位からの振動も試料観察や加工する上で無視できない。また、一般的に高耐圧の絶縁被覆を施した太目の高電圧ケーブルは硬いため、耐振動性能を確保する観点からも不利であった。これらを考慮した結果、試料ステージは大型かつ高価なものとなっていた。   However, for example, in order to apply a voltage of several kV, in addition to the problem of the withstand voltage of the sample stage, the withstand voltage of the terminal for introducing the voltage from the atmosphere side to the sample chamber (in the vacuum) and the voltage power supply unit There are problems such as selection of wires from terminals to terminals and withstand voltage, and it was necessary to repeat withstand voltage tests to clear these problems. Further, the higher the applied voltage, the larger the voltage introduction terminal due to the problem of withstand voltage, and when miniaturizing the device, the size of the terminal is limited or the terminal becomes larger, so This vibration cannot be ignored when observing or processing the sample. In general, a thick high-voltage cable provided with a high-voltage insulation coating is hard, which is disadvantageous from the viewpoint of ensuring vibration resistance. As a result of these considerations, the sample stage has become large and expensive.

本発明は、上記問題に鑑み、高電圧ケーブルが不要で耐振動性能でも有利な荷電粒子線装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a charged particle beam device that does not require a high voltage cable and is advantageous in terms of vibration resistance.

本発明は、荷電粒子ビームを発生する荷電粒子ビーム発生源と、荷電粒子ビームが照射される試料を載置する加工用の試料台と、荷電粒子ビーム発生源に加速電圧を印加する荷電粒子ビーム発生源用高電圧電源と、試料に照射する荷電粒子ビームの照射速度を減速する減速電圧を加工用の試料台に印加する減速手段とを備え、減速手段は、昇圧電源部と、低圧供給用外部電源部とを有し、昇圧電源部を加工用の試料台に設けたことを特徴とする。   The present invention relates to a charged particle beam generation source that generates a charged particle beam, a processing sample stage on which a sample irradiated with the charged particle beam is placed, and a charged particle beam that applies an acceleration voltage to the charged particle beam generation source. A high-voltage power source for the generation source, and a deceleration unit that applies a deceleration voltage to the sample stage for processing to decelerate the irradiation speed of the charged particle beam that irradiates the sample. And a step-up power supply unit provided on a processing sample stage.

本発明によれば、低圧供給用外部電源部より供給する低圧の試料台に設けた昇圧電源部で高圧の減速電圧を生成するので、高耐圧の絶縁被覆を施した太目の高電圧ケーブル太い高電圧ケーブルが不要で耐振動性能でも有利な荷電粒子線装置を提供することができる。   According to the present invention, since the high-voltage deceleration voltage is generated by the boosting power supply unit provided on the low-voltage sample stage supplied from the low-voltage supply external power supply unit, a thick high-voltage cable with a high withstand voltage insulation coating is used. It is possible to provide a charged particle beam device that does not require a voltage cable and is advantageous in terms of vibration resistance.

以下に、本発明の実施の形態に係わる実施例について図面を用いて説明する。   Examples according to embodiments of the present invention will be described below with reference to the drawings.

図1に荷電粒子線装置に含まれるイオンビーム装置(FIB装置)の概略構成図を示す。   FIG. 1 shows a schematic configuration diagram of an ion beam apparatus (FIB apparatus) included in a charged particle beam apparatus.

荷電粒子ビーム発生源である液体金属イオン源1から引き出し電極2により引き出されたGaイオンビームは、加速電圧Voで加速され、集束レンズ3、ビーム制限絞り4、偏向電極5、対物レンズ6などからなるイオン光学系で集束、偏向されて、試料18上を走査する。   The Ga ion beam extracted by the extraction electrode 2 from the liquid metal ion source 1 that is a charged particle beam generation source is accelerated by the acceleration voltage Vo, and is supplied from the focusing lens 3, the beam limiting diaphragm 4, the deflection electrode 5, the objective lens 6, and the like. The sample 18 is focused and deflected by an ion optical system to scan the sample 18.

この時、ビームの照射により試料表面から発生した二次荷電粒子である二次信号は、二次信号検出器9によって検出され、アンプ10により増幅され、偏向制御と同期させる事によりデータ処理部11の画像表示装置12上にSIM像として表示される。半導体ウェハ等の試料18を上に装着した試料台29は、移動ステージ21の上に設置された載置基台24に搭載される。   At this time, the secondary signal, which is secondary charged particles generated from the sample surface by beam irradiation, is detected by the secondary signal detector 9, amplified by the amplifier 10, and synchronized with the deflection control, thereby causing the data processing unit 11. Are displayed as SIM images on the image display device 12. A sample table 29 on which a sample 18 such as a semiconductor wafer is mounted is mounted on a mounting base 24 installed on the moving stage 21.

少なくともX,Y,Z方向に移動可能な移動ステージ21を移動させることにより試料18上の任意の位置を観察・加工することができる。   An arbitrary position on the sample 18 can be observed and processed by moving the movable stage 21 movable in at least the X, Y, and Z directions.

加速電圧Vo、集束レンズ3、対物レンズ6を含む各レンズ、二次信号検出器9に印加する電圧、偏向電圧発生器の電圧、ビーム制限絞り4などの条件は、データ処理部11に記憶される。そして、それぞれの条件に応じて、加速電圧Voを発生させる荷電粒子ビーム発生源用高電圧電源13、引き出し電圧Vextを発生させる引き出し電圧用高電圧電源14、集束レンズ3に印加する集束レンズ用高電圧電源15、対物レンズ6に印加する対物レンズ用高電圧電源17、二次信号検出器9に印加する二次信号検出器用高電圧電源19等を制御する制御部10で、加工領域の設定、加工・観察に用いる一連のビーム条件が自動で設定される。   Conditions such as the acceleration voltage Vo, each lens including the focusing lens 3 and the objective lens 6, the voltage applied to the secondary signal detector 9, the voltage of the deflection voltage generator, and the beam limiting aperture 4 are stored in the data processing unit 11. The Then, depending on the respective conditions, a high voltage power source 13 for the charged particle beam generation source that generates the acceleration voltage Vo, a high voltage power source 14 for the extraction voltage that generates the extraction voltage Vext, and a high voltage for the focusing lens that is applied to the focusing lens 3. The control unit 10 that controls the voltage power supply 15, the objective lens high voltage power supply 17 applied to the objective lens 6, the secondary signal detector high voltage power supply 19 applied to the secondary signal detector 9, etc. A series of beam conditions used for processing and observation are automatically set.

移動ステージ21、載置基台24、試料台29、試料18等は試料室20に内置される。液体金属イオン源1、集束レンズ3、ビーム制限絞り4、偏向電極5、対物レンズ6などからなるイオン光学系は、鏡筒部60に内置される。鏡筒部60、試料室20の内部は真空に保たれる。鏡筒部60、試料室20は、連通しているので同じ真空度になっている。   The moving stage 21, the mounting base 24, the sample base 29, the sample 18 and the like are placed in the sample chamber 20. An ion optical system including the liquid metal ion source 1, the focusing lens 3, the beam limiting aperture 4, the deflection electrode 5, the objective lens 6 and the like is installed in the lens barrel portion 60. The interior of the lens barrel 60 and the sample chamber 20 is kept in a vacuum. Since the lens barrel 60 and the sample chamber 20 communicate with each other, they have the same degree of vacuum.

試料台29には、減速手段の昇圧電源部7が設置される。昇圧電源部7は昇圧回路を有する。低圧供給用外部電源部8は、試料室20の外に備えられる。減速手段は、昇圧電源部7、低圧供給用外部電源部8を有する。   The sample stage 29 is provided with a boost power source unit 7 serving as a deceleration means. The boost power supply unit 7 has a booster circuit. The low-voltage supply external power supply unit 8 is provided outside the sample chamber 20. The decelerating means includes a boosting power supply unit 7 and a low-voltage supply external power supply unit 8.

供給用外部電源部8は低圧供給回路を有する。昇圧電源部7には、低圧供給用外部電源部8より直流の低圧供給電力が供給される。この低圧の電圧Vrefによって制御される昇圧電源部7は、高い直流の電圧を発生する。   The external power supply unit 8 for supply has a low voltage supply circuit. The step-up power supply unit 7 is supplied with DC low-voltage supply power from the low-voltage supply external power supply unit 8. The step-up power supply unit 7 controlled by the low voltage Vref generates a high DC voltage.

電圧VrefはDC24VまたはDC24V以下である。供給される低い電圧Vrefの電力は、昇圧電源部7により、10KVから30KV程度の直流高電圧に昇圧される。   The voltage Vref is DC24V or DC24V or less. The power of the supplied low voltage Vref is boosted to a DC high voltage of about 10 KV to 30 KV by the boost power supply unit 7.

電圧Vrefには、DC12、DC5V等が選択して使用することにより、昇圧する電圧が制御される。   The voltage Vref is controlled by selecting and using DC12, DC5V or the like as the voltage Vref.

図2に試料台29の詳細図を示す。   FIG. 2 shows a detailed view of the sample stage 29.

イオンビームの照射により加工が施される試料18を載せる加工用の試料台29は、試料搭載部34、昇圧電源部用載置部33、試料台底板部31、試料搭載部側絶縁部材35、昇圧電源部側絶縁部材36、昇圧電源部7、GND電位取得用接触子38、Vref電圧接続線41、減速電圧Vr接続線42、GND電位接続線43を有する。   A processing sample stage 29 on which the sample 18 to be processed by ion beam irradiation is placed includes a sample mounting part 34, a boosting power source mounting part 33, a sample base bottom plate part 31, a sample mounting part side insulating member 35, The boosting power source side insulating member 36, the boosting power source 7, a GND potential acquisition contact 38, a Vref voltage connection line 41, a deceleration voltage Vr connection line 42, and a GND potential connection line 43 are provided.

Vref電圧接続線41、GND電位接続線43は、昇圧電源部7の昇圧回路の入力側になる。減速電圧Vr接続線42は昇圧回路の出力側になる。入力側がDC24Vの低圧、出力側が10KVから30KVの直流高圧になっている。   The Vref voltage connection line 41 and the GND potential connection line 43 are on the input side of the booster circuit of the boost power supply unit 7. The deceleration voltage Vr connection line 42 is on the output side of the booster circuit. The input side is a low voltage of DC24V, and the output side is a DC high voltage of 10KV to 30KV.

試料台底板部31と昇圧電源部用載置部33の間に介在する昇圧電源部側絶縁部材36により、試料台底板部31と昇圧電源部用載置部33は電気的な絶縁により分離される。   The sample base plate 31 and the boosting power source mounting portion 33 are separated by electrical insulation by the boost power source side insulating member 36 interposed between the sample base bottom plate portion 31 and the boosting power source mounting portion 33. The

また、試料搭載部34と昇圧電源部用載置部33の間に介在する試料搭載部側絶縁部材35により試料搭載部34と昇圧電源部用載置部33は絶縁により分離される。このため、昇圧電源部用載置部33は、試料搭載部34と試料台底板部31の双方に対して絶縁される。   Further, the sample mounting portion 34 and the boosting power source mounting portion 33 are separated by insulation by the sample mounting portion side insulating member 35 interposed between the sample mounting portion 34 and the boosting power source mounting portion 33. For this reason, the step-up power supply unit mounting unit 33 is insulated from both the sample mounting unit 34 and the sample stage bottom plate unit 31.

試料台底板部31、昇圧電源部用載置部33、試料台底板部31は、導電性を有する金属性の材料で形成される。GND電位接続線43は、昇圧電源部用載置部33に接続され、GND電位取得用接触子38が昇圧電源部用載置部33に接触するので、昇圧電源部7のGND側はアースされる。Vref電圧接続線41は、試料台底板部31に接続される。つまり、昇圧回路の入力側は、プラス側の一端であるVref電圧接続線41が試料台底板部31に接続され、マイナス側の他端であるGND電位接続線43が昇圧電源部用載置部33に接続される。   The sample base bottom plate portion 31, the boosting power source mounting portion 33, and the sample base bottom plate portion 31 are formed of a conductive metallic material. The GND potential connection line 43 is connected to the boosting power supply unit mounting unit 33, and the GND potential acquisition contact 38 contacts the boosting power supply unit mounting unit 33. Therefore, the GND side of the boosting power supply unit 7 is grounded. The The Vref voltage connection line 41 is connected to the sample stage bottom plate portion 31. That is, on the input side of the booster circuit, the Vref voltage connection line 41, which is one end on the plus side, is connected to the sample table bottom plate portion 31, and the GND potential connection line 43, which is the other end on the minus side, is mounted on the mounting portion for the boosting power supply unit. 33.

また、昇圧回路の出力側は、プラス側の一端である減速電圧Vr接続線42が試料搭載部34に接続され、マイナス側の他端であるGND側は昇圧電源部7の外枠に接続され、外枠を介して昇圧電源部用載置部33に接続される。   On the output side of the booster circuit, a deceleration voltage Vr connection line 42 which is one end on the plus side is connected to the sample mounting portion 34, and the GND side which is the other end on the minus side is connected to the outer frame of the boost power supply unit 7. The boosting power source mounting unit 33 is connected via an outer frame.

図5に示すように、試料台29の試料台底板部31が載る載置基台24は、ステージ用絶縁材25を介して移動ステージ21の上に取り付けられる。この載置基台24は、導電性を有する金属性の材料で形成される。載置基台24には、クランプ50が設けられ、このクランプ50も導電性を有する金属性の材料で形成される。   As shown in FIG. 5, the mounting base 24 on which the sample base bottom plate portion 31 of the sample base 29 is mounted is mounted on the moving stage 21 via the stage insulating material 25. The mounting base 24 is made of a metallic material having conductivity. The mounting base 24 is provided with a clamp 50, and this clamp 50 is also formed of a metallic material having conductivity.

クランプ50は、載置基台24に取り外し自在に載置される試料台29を保持する。試料台29の試料台底板部31は、両側に係合部51を有する。この係合部51にクランプ50を掛けて、試料台29を載置基台24に確実に保持するのである。   The clamp 50 holds a sample table 29 that is detachably mounted on the mounting base 24. The sample table bottom plate portion 31 of the sample table 29 has engaging portions 51 on both sides. The clamp 50 is hung on the engaging portion 51 to securely hold the sample table 29 on the mounting base 24.

クランプ50は、導電性を有する金属性の材料で形成されているので、このクランプ50を介して載置基台24と試料台底板部31は、電気的に接続される。   Since the clamp 50 is formed of a metallic material having conductivity, the mounting base 24 and the sample base bottom plate portion 31 are electrically connected via the clamp 50.

低圧供給線23は、試料室20に配線される。低圧供給線23の一端は、載置基台24に接続され、他端は試料室20を貫通して試料室20の外側に設けた接続端子22に接続される。接続端子22には、試料室20の外側に備えた低圧供給用外部電源部8の低圧供給回路の一端が別の低圧供給線を介して接続される。低圧供給回路の他端は、アースに接続される。   The low pressure supply line 23 is wired to the sample chamber 20. One end of the low-pressure supply line 23 is connected to the mounting base 24, and the other end is connected to a connection terminal 22 that penetrates the sample chamber 20 and is provided outside the sample chamber 20. One end of the low-pressure supply circuit of the low-voltage supply external power supply unit 8 provided outside the sample chamber 20 is connected to the connection terminal 22 via another low-voltage supply line. The other end of the low voltage supply circuit is connected to ground.

このため、低圧供給用外部電源部8の低圧供給回路は、低圧供給線23、クランプ50、試料台底板部31、Vref電圧接続線41等を介して昇圧電源部7の昇圧回路の入力側に接続される。これにより、DC24Vの低圧電力が低圧供給用外部電源部8から昇圧電源部7に供給される。   For this reason, the low-voltage supply circuit of the external power supply unit 8 for low-voltage supply is connected to the input side of the booster circuit of the boost power supply unit 7 through the low-voltage supply line 23, the clamp 50, the sample base bottom plate part 31, the Vref voltage connection line 41, and the like. Connected. As a result, DC 24V low-voltage power is supplied from the low-voltage supply external power supply unit 8 to the boost power supply unit 7.

低圧供給線23、試料室20の外側に配線される低圧供給線等は、低圧供給回路の他端がアース接続になっているので、一本で低圧電力の供給が行える。アース接続によらない配線をするときには、二本の低圧供給線を用いる。   Since the other end of the low-pressure supply circuit is grounded, the low-voltage supply line 23 and the low-pressure supply line wired outside the sample chamber 20 can supply low-voltage power with a single line. When wiring without ground connection, two low-voltage supply lines are used.

この低圧供給線23は24V以下の低圧であるので、30KVの高圧に比べて絶縁被覆が薄く、線の太さは30KVのものより格段に細くなる。このため、低圧供給線23は、高耐圧の絶縁被覆を施した太目の硬い高電圧ケーブルとは違って可撓性に富み、移動ステージ21の移動動作に際して振動が生じたり、移動動作の障害になったりする支障がない。また、細い低圧供給線は、高耐圧の絶縁被覆を施した太目の硬い高電圧ケーブルと比べ安価である。さらに、接続部分の端子類も高圧用に比べ、小型化でき、安価になる。また、低圧供給線を引き出す試料室20の貫通穴については、真空に対するシール構造を施すだけですむ。高耐圧の絶縁を施す必要がないので安価になる。   Since the low-voltage supply line 23 has a low voltage of 24 V or less, the insulation coating is thinner than the high voltage of 30 KV, and the thickness of the line is much thinner than that of 30 KV. For this reason, the low-voltage supply line 23 is rich in flexibility unlike a thick, hard high-voltage cable with a high withstand voltage insulation coating, causing vibration during the moving operation of the moving stage 21 or obstructing the moving operation. There is no trouble to become. In addition, the thin low-voltage supply line is less expensive than a thick, hard high-voltage cable provided with a high breakdown voltage insulation coating. Furthermore, the terminals at the connection portion can be made smaller and less expensive than those for high voltage. Further, the through hole of the sample chamber 20 through which the low-pressure supply line is drawn out only needs to be sealed against vacuum. Since it is not necessary to provide high voltage insulation, the cost is reduced.

昇圧電源部7は、低圧供給線23、クランプ50、試料台底板部31、Vref電圧接続線41等を介して供給される低圧電力を元にして減速電圧Vrを生成し、Vr接続線42を介して試料搭載部34に印加する。   The step-up power supply unit 7 generates a deceleration voltage Vr based on the low-voltage power supplied via the low-voltage supply line 23, the clamp 50, the sample base plate 31, the Vref voltage connection line 41, and the like. To be applied to the sample mounting portion 34.

試料18は試料搭載部34に電気的に接続された状態で搭載されるため、試料18には減速電圧Vrが印加される。この減速電圧Vrの印加により、加速電圧Voが下げられるので、試料18に照射するビームの照射速度が減速し、試料18に生じるダメージは緩和される。   Since the sample 18 is mounted in a state of being electrically connected to the sample mounting portion 34, the deceleration voltage Vr is applied to the sample 18. By applying the deceleration voltage Vr, the acceleration voltage Vo is lowered, so that the irradiation speed of the beam irradiating the sample 18 is reduced, and damage caused to the sample 18 is alleviated.

図6は、各部位の電位をわかり易く示した図である。   FIG. 6 is a diagram showing the potential of each part in an easy-to-understand manner.

試料搭載部34およびVref電圧接続線41はVref電位となり、GND電位取得用接触子38、試料搭載部34およびGND電位接続線43はGND電位となる。Vr接続線42、試料搭載部34および試料18は昇圧電源部7にて形成された減速電圧Vr電位となる。   The sample mounting portion 34 and the Vref voltage connection line 41 become the Vref potential, and the GND potential acquisition contact 38, the sample mounting portion 34, and the GND potential connection line 43 become the GND potential. The Vr connection line 42, the sample mounting portion 34, and the sample 18 become the deceleration voltage Vr potential formed by the boost power source unit 7.

図4に、イオンビーム電流測定の概略図を示す。   FIG. 4 shows a schematic diagram of ion beam current measurement.

加工用の試料台29(図5に示す)を載置基台24から外し、代わりに予備室26から測定用の試料台70を出して載置基台24に付け替える。外した試料台29は、図5に示すように予備室26に置かれる。   The processing sample stage 29 (shown in FIG. 5) is removed from the mounting base 24, and instead, the measurement sample stage 70 is taken out from the spare chamber 26 and replaced with the mounting base 24. The removed sample stage 29 is placed in the spare chamber 26 as shown in FIG.

測定用の試料台70は、試料18を搭載する試料搭載部71、載置基台24に載る試料台底板部72を有する。試料台底板部72は、クランプ50が掛けられる係合部を有する。   The measurement sample stage 70 has a sample mounting part 71 for mounting the sample 18 and a sample stage bottom plate part 72 for mounting on the mounting base 24. The sample stage bottom plate portion 72 has an engaging portion on which the clamp 50 is hung.

接続端子22には、低圧供給用外部電源部8に代えてイオンビーム電流測定機(図示せず)が接続される。低圧供給線23は、測定信号の取り出し線になる。   An ion beam current measuring machine (not shown) is connected to the connection terminal 22 in place of the low-voltage supply external power supply unit 8. The low-pressure supply line 23 serves as a measurement signal extraction line.

このように、このイオンビーム装置は、加工用の試料台と測定用の試料台を付け替え、低圧供給用外部電源部とイオンビーム電流測定機の接続替えをすることにより、簡単に交換が行われる。   As described above, this ion beam apparatus can be easily replaced by changing the processing sample stage and the measurement sample stage, and changing the connection between the low voltage supply external power supply unit and the ion beam current measuring machine. .

なお、この実施例では、X,Y,Zの3軸が搭載されているが、試料の回転(R)軸や傾斜(T)軸が搭載されている構成にすることも可能である。   In this embodiment, three axes of X, Y, and Z are mounted. However, a configuration in which a rotation (R) axis and a tilt (T) axis of the sample are mounted is also possible.

移動ステージ21はベース部分30を介して試料室(GND電位)に接触しており、電位はGND電位である。移動ステージ21の上に載置基台24が設置されるが、移動ステージ21と載置基台24とはステージ用絶縁材25を用いて電気的に絶縁されている。   The moving stage 21 is in contact with the sample chamber (GND potential) through the base portion 30, and the potential is the GND potential. A mounting base 24 is installed on the moving stage 21, and the moving stage 21 and the mounting base 24 are electrically insulated using a stage insulating material 25.

ここでは、試料上に照射されるイオンビーム電流を測定することを目的としており、低圧供給線23(信号線)を介して接続端子22に接続されている。これは、試料18に電位を印加することを目的としていないため、接続端子22、低圧供給線23、およびステージ用絶縁材25の絶縁耐圧は数100V程度であればよく、安価な市販の端子や信号線を用いることができる。   Here, it aims at measuring the ion beam current irradiated on the sample, and is connected to the connection terminal 22 via the low voltage supply line 23 (signal line). This is not intended to apply a potential to the sample 18, so that the withstand voltage of the connection terminal 22, the low-voltage supply line 23, and the stage insulating material 25 may be about several hundred volts, and an inexpensive commercially available terminal or A signal line can be used.

接続端子22からの出力は試料室20(GND電位)に接続されており、イオンビーム照射による試料18のチャージアップを防止している。   The output from the connection terminal 22 is connected to the sample chamber 20 (GND potential) to prevent the sample 18 from being charged up by ion beam irradiation.

測定用の試料台70は、試料18を搭載する試料搭載部71、載置基台24に載る試料台底板部72を有する。   The measurement sample stage 70 has a sample mounting part 71 for mounting the sample 18 and a sample stage bottom plate part 72 for mounting on the mounting base 24.

通常使用する試料台70は、試料搭載部71、試料台底板部72で構成される。試料台底板部72の底面から試料18の表面までの高さを調整するために、試料搭載部71は上下に高さ調整できるようになっている。試料台底板部72から試料18までは電気的に接続されたら状態になっている。試料台70は予備排気室26から試料室20内に移される。試料台70を移す時以外は試料室20と予備排気室26はゲートバルブ27にて真空的に遮断されている。   The sample stage 70 that is normally used includes a sample mounting part 71 and a sample stage bottom plate part 72. In order to adjust the height from the bottom surface of the sample stage bottom plate portion 72 to the surface of the sample 18, the sample mounting portion 71 can be adjusted in the vertical direction. The sample base plate 72 to the sample 18 are in a state when they are electrically connected. The sample stage 70 is moved from the preliminary exhaust chamber 26 into the sample chamber 20. Except when the sample stage 70 is moved, the sample chamber 20 and the preliminary exhaust chamber 26 are shut off in vacuum by the gate valve 27.

たとえば、ここで述べた載置基台24のところに数kVのオーダのVrを印加できるようにするには接続端子22を高電圧印加できるコネクタに替え、低圧供給線23も数kVオーダーの高電圧に対応したケーブルに替え、ステージ用絶縁材25なども高電圧印加に対応できるように改造する必要がある。また、高圧印加用のケーブルは一般的に固く重いため、ケーブルの張力や自重などで移動ステージの動きに影響が出たり、外部の振動が移動ステージ上の試料に伝わってしまう可能性がある等の問題が生じる。   For example, in order to be able to apply Vr of the order of several kV to the mounting base 24 described here, the connection terminal 22 is replaced with a connector capable of applying a high voltage, and the low-voltage supply line 23 is also high in the order of several kV. In place of the cable corresponding to the voltage, it is necessary to modify the stage insulating material 25 and the like so as to cope with the application of the high voltage. In addition, cables for applying high voltage are generally hard and heavy, so there is a possibility that the movement of the moving stage will be affected by the tension and weight of the cable, and external vibrations may be transmitted to the sample on the moving stage. Problem arises.

しかし、上述したように本発明の実施例では、試料台29の昇圧電源部用載置部33に昇圧電源部7を設け、低圧の電力を供給して昇圧電源部7で試料搭載部34に印加する高電圧の減速電圧Vrを生成するようにしたので、上記の問題が一掃される。   However, as described above, in the embodiment of the present invention, the boosting power supply unit 7 is provided on the mounting unit 33 for the boosting power supply unit of the sample stage 29 and low voltage power is supplied to the sample mounting unit 34 by the boosting power supply unit 7. Since the high-speed deceleration voltage Vr to be applied is generated, the above problem is eliminated.

すなわち、試料室20に備えた低圧供給用外部電源部8の電圧Vref(DC24V以下)により制御する方法を取るため、測定信号を通電する信号用の低圧供給線23を使用できるので安価である。   That is, since the method is controlled by the voltage Vref (DC 24 V or less) of the low-voltage supply external power supply unit 8 provided in the sample chamber 20, the signal low-voltage supply line 23 for energizing the measurement signal can be used, so that it is inexpensive.

接続端子22に電圧Vrefを印加すると、低圧供給線23を介して載置基台24もVref電位になり、それに接触している試料台底板部31もVref電位となる。つまり、接続端子22から試料台底板部31に跨る範囲は、Vref電位(DC24V以下)であるので、感電などの事故防止になる。   When the voltage Vref is applied to the connection terminal 22, the mounting base 24 is also at the Vref potential via the low-voltage supply line 23, and the sample base bottom plate portion 31 that is in contact with the mounting base 24 is also at the Vref potential. That is, since the range extending from the connection terminal 22 to the sample table bottom plate portion 31 is the Vref potential (DC 24 V or less), accidents such as electric shock can be prevented.

同時にアース電位を得るためにGND電位取得用接触子38を移動ステージ21に接触させる。試料18には、Vrefを元に昇圧電源部7にて昇圧された減速電圧Vrを、減速電圧Vr接続線42および試料搭載部34を介して印加する。試料搭載部34は試料搭載部側絶縁部材35により昇圧電源部用載置部33とは絶縁される。試料搭載部側絶縁部材35は試料搭載部34にVrを印加しても放電や絶縁破壊を起こさないような耐電圧性能を有している。   At the same time, the GND potential acquisition contact 38 is brought into contact with the moving stage 21 in order to obtain the ground potential. A deceleration voltage Vr boosted by the boost power supply unit 7 based on Vref is applied to the sample 18 via the deceleration voltage Vr connection line 42 and the sample mounting unit 34. The sample mounting portion 34 is insulated from the boosting power source mounting portion 33 by the sample mounting portion side insulating member 35. The sample mounting portion side insulating member 35 has a withstand voltage performance that does not cause discharge or dielectric breakdown even when Vr is applied to the sample mounting portion 34.

試料台29の試料台底板部31が載置基台24に装着された状態でなければ、昇圧電源部7に電圧Vrefが印加されるため、試料台29の未装着状態では高圧の減速電圧Vrは発生しない。このため、試料台の取り付けが済むまでは放電などのトラブルは起こりえず、安全性も向上する。   If the sample table bottom plate portion 31 of the sample table 29 is not in the state of being mounted on the mounting base 24, the voltage Vref is applied to the step-up power supply unit 7, so that the high voltage deceleration voltage Vr is applied when the sample table 29 is not mounted. Does not occur. For this reason, troubles such as discharge cannot occur until the sample stage is attached, and safety is improved.

二次信号検出器9には10kVの電圧を印加して二次電子を捕集する。本実施例ではV0=15kV、Vr=8kVを印加した。Vr=8kVの電圧が印加された試料から発生する二次電子は約8keVのエネルギーであるので、二次信号検出器9に印加した10kVの電圧により形成される電界に引かれて検出器9に取り込まれる。本実施例の場合、照射エネルギー(V0−Vr)=8kVとなり、このビームを用いたときのダメージ層の厚さは約3nmに低減できた。   A voltage of 10 kV is applied to the secondary signal detector 9 to collect secondary electrons. In this example, V0 = 15 kV and Vr = 8 kV were applied. Since the secondary electrons generated from the sample to which a voltage of Vr = 8 kV is applied has an energy of about 8 keV, it is attracted to the electric field formed by the voltage of 10 kV applied to the secondary signal detector 9 and is applied to the detector 9. It is captured. In the case of this example, the irradiation energy (V0−Vr) = 8 kV, and the thickness of the damaged layer when this beam was used could be reduced to about 3 nm.

本発明の実施例に係わるもので、イオンビーム装置(FIB装置)の概略を示す概略図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic which concerns on the Example of this invention and shows the outline of an ion beam apparatus (FIB apparatus). 本発明の実施例に係わるもので、試料台の概略を示す概略図。The schematic diagram which concerns on the Example of this invention and shows the outline of a sample stand. FIB照射による試料へのダメージを示した図。The figure which showed the damage to the sample by FIB irradiation. 本発明の実施例に係わるもので、移動ステージの載置基台にイオンビーム電流を測定する測定用の試料台を載せた状態を示す概略図。The schematic diagram which concerns on the Example of this invention and shows the state which mounted the sample stand for a measurement which measures an ion beam current on the mounting base of a movement stage. 本発明の実施例に係わるもので、移動ステージの載置基台にイオンビーム加工用の試料台を載せた状態を示す概略図。The schematic diagram which concerns on the Example of this invention and shows the state which mounted the sample stand for ion beam processing on the mounting base of a movement stage. 本発明の実施例に係わるもので、試料台の電位分布の概略図。The schematic diagram of the electric potential distribution of a sample stand in connection with the Example of this invention.

符号の説明Explanation of symbols

1…荷電粒子ビーム発生源、29…加工用の試料台、13…荷電粒子ビーム発生源用高電圧電源、7…昇圧電源部、8…低圧供給用外部電源部。   DESCRIPTION OF SYMBOLS 1 ... Charged particle beam generation source, 29 ... Sample stage for processing, 13 ... High voltage power supply for charged particle beam generation source, 7 ... Boosting power supply part, 8 ... External power supply part for low voltage supply.

Claims (3)

荷電粒子ビームを発生する荷電粒子ビーム発生源と、前記荷電粒子ビームが照射される試料を載置する試料台と、前記荷電粒子ビーム発生源に加速電圧を印加する荷電粒子ビーム発生源用高電圧電源と、前記試料に照射する前記荷電粒子ビームの照射速度を減速する減速電圧を前記試料台に印加する減速手段とを備え、
前記減速手段は、昇圧電源部と、低圧供給用外部電源部とを有し、
前記昇圧電源部を前記試料台に設け、
試料を載せる試料搭載部と、昇圧電源部用載置部との間に、昇圧電源部側絶縁部材が介在され、
昇圧電源部を載せる昇圧電源部用載置部と、試料台底板部との間に昇圧電源部側絶縁部材が介在され、
昇圧電源部と試料搭載部を減速電圧Vr接続線で接続し、
昇圧電源部と試料台底板部をVref電圧接続線で接続し、
昇圧電源部と昇圧電源部用載置部をGND電位接続線で接続し、
昇圧電源部用載置部はGND電位取得用接触子に接続されてGNDに保たれ、
低圧供給用外部電源部から低圧供給線、試料台底板部を介して昇圧電源部へ低圧電力が入力することを特徴とする荷電粒子線装置。
A charged particle beam generation source for generating a charged particle beam, a sample stage on which a sample irradiated with the charged particle beam is mounted, and a high voltage for a charged particle beam generation source for applying an acceleration voltage to the charged particle beam generation source A power source, and a decelerating unit that applies a decelerating voltage to decelerate the irradiation speed of the charged particle beam that irradiates the sample to the sample stage,
The deceleration means has a boost power supply unit and a low-voltage supply external power supply unit,
The boost power supply unit is provided on the sample stage,
Between the sample mounting part for placing the sample and the mounting part for the boosting power supply part, the boosting power supply part side insulating member is interposed,
A step-up power supply side insulating member is interposed between the step-up power supply portion mounting portion on which the step-up power supply portion is placed and the sample table bottom plate portion,
Connect the step-up power supply unit and the sample mounting unit with the deceleration voltage Vr connection line,
Connect the step-up power supply unit and the sample base plate with the Vref voltage connection line,
The boosting power supply unit and the mounting unit for the boosting power supply unit are connected by a GND potential connection line,
The step-up power supply unit is connected to the GND potential acquisition contact and kept at GND,
A charged particle beam apparatus characterized in that low-voltage power is input from a low-voltage supply external power supply unit to a boosting power supply unit via a low-voltage supply line and a sample stage bottom plate .
荷電粒子ビームを発生する荷電粒子ビーム発生源と、前記荷電粒子ビーム発生源を内置
し、かつ内部が真空に保たれる鏡筒部と、前記荷電粒子ビームが照射される試料を載置す
る試料台と、前記試料台を内置し、かつ内部が真空に保たれる試料室と、前記荷電粒子ビ
ーム発生源に加速電圧を印加する荷電粒子ビーム発生源用高電圧電源と、前記試料に照射
する前記荷電粒子ビームの照射速度を減速する減速電圧を前記試料台に印加する減速手段
とを備え、
前記減速手段は、昇圧電源部と、低圧供給用外部電源部とを有し、
前記昇圧電源部を前記試料台に設け、
前記低圧供給用外部電源部を前記試料室の外に備え、
試料を載せる試料搭載部と、昇圧電源部用載置部との間に、昇圧電源部側絶縁部材が介在され、
昇圧電源部を載せる昇圧電源部用載置部と、試料台底板部との間に昇圧電源部側絶縁部材が介在され、
昇圧電源部と試料搭載部を減速電圧Vr接続線で接続し、
昇圧電源部と試料台底板部をVref電圧接続線で接続し、
昇圧電源部と昇圧電源部用載置部をGND電位接続線で接続し、
昇圧電源部用載置部はGND電位取得用接触子に接続されてGNDに保たれ、
前記昇圧電源部と低圧供給用外部電源部とを低圧供給線、試料台底板部を介して接続したことを特徴と
する荷電粒子線装置。
A charged particle beam generation source for generating a charged particle beam, a lens barrel portion in which the charged particle beam generation source is placed and the interior of which is kept in a vacuum, and a sample on which a sample irradiated with the charged particle beam is placed A sample chamber in which the sample table is placed and the interior is kept in a vacuum; a high-voltage power supply for a charged particle beam generation source that applies an acceleration voltage to the charged particle beam generation source; and the sample is irradiated Decelerating means for applying a decelerating voltage for decelerating the irradiation speed of the charged particle beam to the sample stage;
The deceleration means has a boost power supply unit and a low-voltage supply external power supply unit,
The boost power supply unit is provided on the sample stage,
The low-voltage supply external power supply unit is provided outside the sample chamber,
Between the sample mounting part for placing the sample and the mounting part for the boosting power supply part, the boosting power supply part side insulating member is interposed,
A step-up power supply side insulating member is interposed between the step-up power supply portion mounting portion on which the step-up power supply portion is placed and the sample table bottom plate portion,
Connect the step-up power supply unit and the sample mounting unit with the deceleration voltage Vr connection line,
Connect the step-up power supply unit and the sample base plate with the Vref voltage connection line,
The boosting power supply unit and the mounting unit for the boosting power supply unit are connected by a GND potential connection line,
The step-up power supply unit is connected to the GND potential acquisition contact and kept at GND,
A charged particle beam apparatus, wherein the step-up power supply unit and a low-voltage supply external power supply unit are connected via a low-voltage supply line and a sample stage bottom plate .
請求項1または2に記載された荷電粒子線装置において、
前記荷電粒子ビームの照射により前記試料から発生する二次荷電粒子を検出する二次荷
電粒子検出手段を設け、
前記二次荷電粒子検出手段に印加する検出印加電圧が前記減速電圧よりも高いことを特
徴とする荷電粒子線装置。
In the charged particle beam device according to claim 1 or 2,
A secondary charged particle detecting means for detecting secondary charged particles generated from the sample by irradiation of the charged particle beam;
A charged particle beam apparatus, wherein a detection application voltage applied to the secondary charged particle detection means is higher than the deceleration voltage.
JP2004375976A 2004-12-27 2004-12-27 Charged particle beam equipment Expired - Fee Related JP4537194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375976A JP4537194B2 (en) 2004-12-27 2004-12-27 Charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004375976A JP4537194B2 (en) 2004-12-27 2004-12-27 Charged particle beam equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010107026A Division JP2010165699A (en) 2010-05-07 2010-05-07 Charged particle beam apparatus, and testpiece stand for processing

Publications (2)

Publication Number Publication Date
JP2006185661A JP2006185661A (en) 2006-07-13
JP4537194B2 true JP4537194B2 (en) 2010-09-01

Family

ID=36738629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375976A Expired - Fee Related JP4537194B2 (en) 2004-12-27 2004-12-27 Charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP4537194B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2226830B1 (en) * 2009-03-06 2014-01-08 FEI Company Charged particle beam processing
JP5759815B2 (en) * 2011-07-19 2015-08-05 株式会社日立ハイテクノロジーズ electronic microscope
CN117219482B (en) * 2023-11-07 2024-01-26 国仪量子(合肥)技术有限公司 Current detection device and scanning electron microscope

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268759A (en) * 1999-03-17 2000-09-29 Jeol Ltd High voltage introducing mechanism

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419664A (en) * 1987-07-14 1989-01-23 Jeol Ltd Ion beam device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268759A (en) * 1999-03-17 2000-09-29 Jeol Ltd High voltage introducing mechanism

Also Published As

Publication number Publication date
JP2006185661A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
EP1028452B1 (en) Scanning electron microscope
JP4215282B2 (en) SEM equipped with electrostatic objective lens and electrical scanning device
KR100496496B1 (en) Optical column for charged particle beam device
JP2000133194A (en) Scanning electron microscope
CN104241066A (en) Method for imaging a sample in a charged particle apparatus
JP2010055756A (en) Method of irradiating charged corpuscular particle beam, and charged corpuscular particle beam apparatus
JP4162343B2 (en) Electron beam equipment
JP4537194B2 (en) Charged particle beam equipment
JP4911567B2 (en) Charged particle beam equipment
US5739528A (en) Fast atom beam source
CN110431649B (en) Charged particle beam device
JPH04233146A (en) Charged corpuscular beam device
JP4103345B2 (en) Charged particle beam equipment
JP2010165699A (en) Charged particle beam apparatus, and testpiece stand for processing
EP1367609B1 (en) High-voltage electric apparatus
US5420433A (en) Charged particle beam exposure apparatus
JP5478683B2 (en) Charged particle beam irradiation method and charged particle beam apparatus
JP3474082B2 (en) Electron beam equipment
JP2007324099A (en) Sample micromotion system, and charged particle beam device
JP3814095B2 (en) High voltage introduction mechanism
JP6204388B2 (en) Charged particle beam apparatus and scanning electron microscope
JP2004014251A (en) Charged particle beam device
CN112086332A (en) Electrostatic deflection device and deflection method thereof
JPH09167593A (en) Ion implantation device
US20220384140A1 (en) Method for operating a particle beam device, computer program product and particle beam device for carrying out the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees