JP4103345B2 - Charged particle beam equipment - Google Patents

Charged particle beam equipment Download PDF

Info

Publication number
JP4103345B2
JP4103345B2 JP2001176477A JP2001176477A JP4103345B2 JP 4103345 B2 JP4103345 B2 JP 4103345B2 JP 2001176477 A JP2001176477 A JP 2001176477A JP 2001176477 A JP2001176477 A JP 2001176477A JP 4103345 B2 JP4103345 B2 JP 4103345B2
Authority
JP
Japan
Prior art keywords
filter
charged particle
particle beam
lens
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001176477A
Other languages
Japanese (ja)
Other versions
JP2002367552A5 (en
JP2002367552A (en
Inventor
久弥 村越
浩士 牧野
博之 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001176477A priority Critical patent/JP4103345B2/en
Publication of JP2002367552A publication Critical patent/JP2002367552A/en
Publication of JP2002367552A5 publication Critical patent/JP2002367552A5/ja
Application granted granted Critical
Publication of JP4103345B2 publication Critical patent/JP4103345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、走査型荷電粒子顕微鏡およびその類似装置に係り、特に低加速領域で高分解能かつ二次電子の検出効率の優れた荷電粒子光学系に関する。
【0002】
【従来の技術】
走査型電子顕微鏡の分解能を向上させるために、一次電子線が試料を照射する直前まで高加速電圧とし、試料照射時に低加速電圧化する光学系が提案されている。この光学系では、電子線の照射により試料で発生した二次電子が、一次電子の減速電界により光軸方向に加速されるので、電界(E)と磁界(B)を直交させたいわゆるE×B形フィルタを用いて、光軸外に配置された二次電子検出器に入射させる構成が特開平2−142045号に記載されている。このE×B形フィルタは一次電子線に対してはフィルタ内を直進させ、二次電子に対しては、検出器方向に偏向させる作用をもつ。また、特開平2−142045号ではこの二次電子を偏向させる第一のE×B形フィルタで発生した色収差による一次電子線への影響をこの第一のE×B形フィルタより電子源側に配置された第二のE×B形フィルタにより補正する構成が記載されている。
【0003】
【発明が解決しようとする課題】
上記の構成では、図4に示すように、対物レンズ13と対物レンズの物面との間に第一のE×B形フィルタ17および第二のE×B形フィルタ18を配置するので、コンデンサレンズ12と対物レンズ13の間の距離を大きくとる必要があり、電子光学系の全長が長くなってしまうという問題があった。さらに、収差補正にはそれぞれのE×B形フィルタの強度を対物レンズの物面までの距離の逆比で設定する必要があるので、対物レンズの物面に近い第二のE×B形フィルタには大きな強度で設定する必要があった。これを回避するために、対物レンズ13の前段のコンデンサレンズ12で一次電子線を平行にしてやれば、それぞれのE×B形フィルタを同じ強度で設定することが可能となるが、光学系全体の倍率を縮小系で用いるためにはさらに光学系寸法を長くしなければならないという問題があった。
【0004】
【課題を解決するための手段】
本発明は、第一のE×B形フィルタ17と第二のE×B形フィルタ18の配置関係が、同一レンズの物面あるいは像面までの間の位置に配置しなくても収差を補正でき、且つ第二のE×B形フィルタ17の強度を大きく設定しなくても収差を補正できる装置を実現することにある。
図5に示すように、E×B形フィルタ51が長さLdの空間内で作用するとし、E×B形フィルタ内の電界強度Eは一定で、E×B形フィルタ内で電界強度Eと直角に作用する磁束Bとの間にウィーン条件E=vB(v:電子線の速度)が成り立つとすると、E×B形フィルタ51がレンズの物面とレンズの間に配置する場合の像面上での偏向色収差dcaは、LaをE×B形フィルタと物面との間の距離、Mをレンズ倍率、VをE×B形フィルタを通過する一次電子線の加速電圧、ΔVを一次電子線のエネルギー幅に相当する電圧揺らぎとして、次式で表わされる。
【0005】
【数1】

Figure 0004103345
【0006】
また、長さLdのE×B形フィルタがレンズの像面とレンズの間に配置する場合の像面上での偏向色収差dcbは、LbをE×B形フィルタと像面との距離と置くと、次式で表わされる。
【0007】
【数2】
Figure 0004103345
【0008】
そこで、図6に示すように、長さLd2の第二のE×B形フィルタ18をコンデンサレンズ12の像面位置とコンデンサレンズ12の間に配置すれば、第二のE×B形フィルタ18が対物レンズ13の像面で発生させる偏向色収差dc2は、(数2)でE2を第二のE×B形フィルタ内の電界強度、Lcbを第二のE×B形フィルタ18とコンデンサレンズ13の像面との距離、Moを対物レンズ倍率と置くと、次式で表わされる。
【0009】
【数3】
Figure 0004103345
【0010】
一方、対物レンズ13の物面と対物レンズ13の間に配置される長さLd1の第一のE×B形フィルタ17が対物レンズ13の像面で発生させる偏向色収差dc1は(数1)でE1を第一のE×B形フィルタ17内の電界強度、第一のE×B形フィルタ17と対物レンズ13の物面との距離をLoaと置くと、次式で表わされる
【0011】
【数4】
Figure 0004103345
【0012】
(数3)と(数4)から第一の第二のE×B形フィルタに対する強度比を
【0013】
【数5】
Figure 0004103345
【0014】
とし、試料面上で互いに逆方向に作用するように向きを設定すれば、試料面上での色収差を補正することができることがわかる。このように、第二のE×B形フィルタ18をコンデンサレンズ12の像面位置とコンデンサレンズ12の間に配置することにより、コンデンサレンズ12と対物レンズ13の間の距離を短くすることが可能となり電子光学系の全長を短くすることができる。
また、Ld1=Ld2とし、Loa=Lcbの関係が成り立つ位置に第一および第二のE×B形フィルタを配置すれば、第一および第二のE×B形フィルタの強度をほぼ等しく設定することができるので、従来例のように第二のE×B形フィルタの強度を大きく設定することなしに収差補正をすることができる。
さらに、図7に示すように、第二のE×B形フィルタ18をコンデンサレンズ12より電子源側に配置すれば、コンデンサレンズの倍率をさらに小さくすることができるので、電子光学系の全長をさらに小さくすることができる。すなわち、第二のE×B形フィルタ18がコンデンサレンズ12とコンデンサレンズ12の物面の間に配置されるとすると、第二のE×B形フィルタ18が対物レンズ13の像面で発生させる偏向色収差dcbは、第二のE×B形フィルタ18とコンデンサレンズ12の像面との距離をLca、コンデンサレンズ倍率をMcと置くと、次式で表わされる。
【0015】
【数6】
Figure 0004103345
【0016】
(数4)と(数6)から第一の第二のE×B形フィルタに対する強度比を
【0017】
【数7】
Figure 0004103345
【0018】
とし、試料面上で互いに逆方向に作用するように向きを設定すれば、試料面上での色収差を補正することができる。
しかし、コンデンサレンズ12が磁界型レンズの場合、一次電子線に対し集束レンズ作用に加えて、回転作用が発生する。すなわち、磁界レンズの光軸方向をz軸として、光軸上の磁束密度をB(z)と置くと、磁界レンズにより生ずる回転角φは、
【0019】
【数8】
Figure 0004103345
【0020】
で表わされる。ここではeは素電荷、mは電子の質量である。
そこで、第二のE×B形フィルタ18には第一のE×B形フィルタに対して任意の方向に磁界および電界を発生させて、磁界レンズによる回転角を補正して試料上の偏向方向が反対方向になるように設定すれば、収差を補正することができる。
【0021】
【発明の実施の形態】
以下に、本発明の実施の形態につき、実施例を挙げて詳細に説明する。
本発明の第一実施例を図1により説明する。図1は電子光学系を横からみた図である。電子光学系101は電界放出電子源10、電子銃レンズ11、コンデンサレンズ12、対物レンズ13、偏向器15、第一のE×B形フィルタ17および第二のE×B形フィルタ18により構成されている。電子源10から放出された一次電子線102は、コンデンサレンズ12、対物レンズ13により集束レンズ作用をうけて試料1上を集束照射される。試料1はリターディング電圧Vrに設定され、一次電子線はアース電位に設定された電極14と試料1の間で急激に減速される。試料1から反射した反射電子あるいは試料1内で二次的に発生した二次電子は電子線光軸の方向へ加速された後に、第一のE×B形フィルタ17により検出器16方向に偏向を受けて直接検出器16で検出される。電子線の偏向走査は制御部40により、偏向増幅器29を介して送られる走査信号を偏向器15に供給することによって電子線を制御することによって行われる。同時に表示装置41には電子線走査と同期した偏向信号が制御部40から供給され、試料走査像が表示装置41に供給される。以上が電子光学系の基本構成である。
第一のE×B形フィルタ17および第二のE×B形フィルタ18は図2に示すような八極形状である。電極は磁性体をコイルで同方向に巻いた構成であり、電極が磁極をも兼ねている。また、第一のE×B形フィルタ17および第二のE×B形フィルタ18の周囲をそれぞれアース電位の磁性体19および20で囲むことにより、E×B形フィルタ内で発生する電界および磁界をE×B形フィルタ近傍に留める構成としている。第一のE×B形フィルタ17の各コイルには第一のE×B形フィルタ用コイル供給電源27からコイル電流が、各電極には第一のE×B形フィルタ用電極印加電源28から電極電圧が供給される。各電極、各コイルへの電圧および電流の配分は、図2に示すような電流Ix、IyおよびVx,Vyの関数として配分される。それぞれの強度比をVy/Vx=Iy/Ix=tanθに設定すれば、二次電子に対して図中のx軸からθ方向に偏向作用を与えることができる。
ここで図中の
【0022】
【数9】
Figure 0004103345
【0023】
と置けば、高次の偏向収差が少ない条件が得られる。
第一のE×B形フィルタ17の強度および方向は検出器方向に二次電子が偏向されるように定められる。検出器の方向が図2のx方向とすると、図中のVyとIyをほぼ0にすれば、二次電子は検出器方向に偏向される。Vxと二次電子の偏向角との関係は二次電子がE×B形フィルタ17に入射するエネルギー、すなわち試料に印加するリターディング電圧Vrに依存するので、あらかじめ電子線の軌道計算結果や実験から求めた所望の偏向角に対するリターディング電圧VrとVxの関係が制御部40にインプットされている。IxとVxの関係は、電子線の軌道計算結果から求めた値があらかじめ制御部40にインプットされているか、表示装置41の画像上で試料上の偏向量が完全にキャンセルするようにマニュアルあるいは自動的に設定される。
第二のE×B形フィルタ18の強度は、(数4)より求められる。ここで、一次電子線102のコンデンサレンズ12への物面位置すなわち電子銃レンズ11の像面位置は、電子銃レンズの動作条件、すなわち、所望のエミッション電流を得るための引き出し電圧VEと一次電子線の加速電圧V0から、一義的に求められる。制御部40にはあらかじめ実験あるいはレンズ計算により求められた電子銃レンズの像面位置とVEおよびV0との関係のデータがインプットされている。対物レンズの物面位置すなわちコンデンサレンズの像面位置のデータもあらかじめ加速電圧V0、リターディング電圧Vr、コンデンサレンズ12の強度および対物レンズ13の強度などの情報から求められるようになっており、例えば対物レンズの強度、加速電圧V0およびリターディング電圧Vrと対物レンズ物面位置との関係のデータが制御部40にインプットされている。第二のE×B形フィルタ18の動作方向はコンデンサレンズの強度に依存する。この角度は(数8)より計算で求めるか、表示装置の画像上で求められる。画像上では、第一のE×B形フィルタ17を電界だけ印加した条件で第二のE×B形フィルタ18も電界だけ印加して、互いに逆な方向に作用するように第二のE×B形フィルタ18の各電極および各コイルの配分を定めればよい。例えば、第一と第二のフィルタの作用する方向がθだけ回転しているとすると、VxとVyの強度比Vy/Vx=tanθに設定してやれば良い。
以上より、加速電圧V0、リターディング電圧Vrから第一のE×B形フィルタ17の強度が制御部40から第一のE×B形フィルタコイル供給電源27および第一のE×B形フィルタ電極印加電源28を介して設定される。さらに引き出し電圧VE、コンデンサレンズ12の強度および対物レンズ13の強度から第二のE×B形フィルタ18の強度が制御部40から第二のエネルギーフィルタコイル供給電源23、第二のE×B形フィルタ電極印加電源24を介して設定される。
以上の動作により、二次電子を検出器方向に偏向する際に発生する第一のE×B形フィルタの収差を、第二のE×B形フィルタにより補正することができる。
本発明の第二の実施例は本発明を半導体パターンの回路検査に適用したもので、図3により説明する。検出器16は対物レンズ13の上方にあり、検出器16の出力信号はプリアンプ26で増幅されAD変換器32によりデジタルデータとなり、画像処理部47へ入力される。検査装置各部の動作命令及び動作条件は制御部48から入出力される。
電子源10には電界放出電子源を用いるが、特にパターンの回路検査には拡散補給型の熱電界放出電子源を用いたほうが望ましい。これにより明るさ変動の少ない比較検査画像が得られ、且つ電子線電流を大きくすることが可能なことから、高速な検査が可能となる。試料1にはリターディング用高圧電源31により負の電圧を印可できるようになっている。このリターディング用高圧電源31の電圧を調節することにより、試料1への電子線照射エネルギーを最適な値に調節することが容易になる。
試料1の画像を取得するためには、細く絞った電子線を試料1に照射し、二次電子103を発生させ、一次電子線102の走査及びステージの移動と同期して検出することで試料表面の画像を得る。試料1は負電位に設定され、一次電子線は試料1の直前で急激に減速される。試料1から反射した反射電子あるいは試料1内で二次的に発生した二次電子は電子線光軸の方向へ加速され、対物レンズを通過した後に第一のE×B形フィルタ17により検出器16方向に偏向を受けて反射板33に入射し、反射板から発生した三次電子104が検出器16で検出される。光軸近傍に配置された反射板33からの三次電子104を検出することで、かつ二次電子の偏向角が小さい条件でも検出することができるとともに、検出器を光軸近傍に近づけなくてもよくなるので検出器の光軸方向のスペースを小さくすることも可能となる。第二のE×B形フィルタ18はコンデンサレンズ12とコンデンサレンズ12の像面位置の間に配置される。対物レンズの物面位置すなわちコンデンサレンズの像面位置のデータはあらかじめ加速電圧V0、リターディング電圧Vr、コンデンサレンズ12の強度および対物レンズ13の強度などの情報から求められるようになっており、例えば対物レンズの強度、加速電圧V0、リターディング電圧Vrの情報から、制御部40は対物レンズ物面位置を決定し、(数5)より第二のE×B形フィルタ18と第一のE×B形フィルタ17の強度比を決定して、設定する。また、この実施例では2つのE×B形フィルタの間に磁界レンズが配置されていないので、第二のE×B形フィルタ18の動作方向は第一のE×B形フィルタ17の動作方向とほぼ等しく設定される。
本発明で述べるような自動検査には検査速度が速いことが必須となる。このような検査装置で、検査速度を決定するのは検出画像のSNであり、本実施例で高効率な二次電子検出が達成できれば、検査速度の向上を達成することができる。本実施例では通常のSEMに比べ約100倍以上の例えば100nAの大電流電子線の一回のみあるいは数回の走査によりSNの良好な画像を形成することができた。例えば、一枚の画像を1000x1000画素で10msecで取り込んだ場合、SN比20以上の画像を得ることができる。
画像信号には一画像分の遅延をかけて次の画像の取り込みと同期させて画像比較評価を行い、回路基板上の欠陥探索を行う構成としている。すなわち、画像処理系47では、画像記憶部42aに記憶された画像と遅延回路43より一画像分の遅延をかけて画像記憶部42bに記憶された画像との比較評価を行う。演算部45は例えば両画像の差を演算する機能を持ち、両画像の差がある閾値を越えた画像のアドレスPを欠陥判定部46に記憶することにより、欠陥検査を行う構成としている。
本発明では第一のE×B形フィルタ17を対物レンズ13と対物レンズ物面の間に配置したが、第一のE×B形フィルタ17を例えば対物レンズ13と対物レンズ像面の間に配置しても、第二のE×B形フィルタ18を例えば対物レンズ13と対物レンズ物面の間に配置して、(数1)と(数2)で与えられる強度比で設定すれば第一のE×B形フィルタ17の収差を補正することができる。すなわち、第一のE×B形フィルタ17が配置される集束レンズとその集束レンズの像面あるいは物面位置との間の空間以外のどのような位置に第二のE×B形フィルタ18を配置しても、収差を補正することができる。
本発明は電子線装置について述べたが、これに限ることなくイオン線のような荷電粒子線装置に適用できることは言うまでもない。ただし、正の電荷をもっている荷電粒子線の場合には、減速電圧は正の値にする必要がある。
【0024】
【発明の効果】
以上説明したように、本発明では、低加速電圧でも高分解能でかつ二次電子の高検出効率が得られる荷電粒子線装置を従来より短い電子光学系寸法で実現できる効果がある。
【図面の簡単な説明】
【図1】本発明の第一実施例の構成図。
【図2】本発明の第一実施例のE×B形フィルタの構成図。
【図3】本発明の第二実施例の構成図。
【図4】従来の構成図。
【図5】E×B形フィルタの動作を説明する図。
【図6】本発明のE×B形フィルタの第1の配置を示す図。
【図7】本発明のE×B形フィルタの第2の配置を示す図。
【符号の説明】
1…試料、2…X−Yステージ、3…回転ステージ、10、…電子源、11…電子銃レンズ、12…コンデンサレンズ、13…対物レンズ、14…電極、15…偏向器、16…検出器、17…第一のE×B形フィルタ、18…第二のE×B形フィルタ、19、20…磁性体、21…引き出し電圧制御電源、22…加速電圧制御電源、23…第二のE×B形フィルタ用コイル供給電源、24…第二のE×B形フィルタ用電極印加電源、25…コンデンサレンズ用電源、26…プリアンプ、27…第一のE×B形フィルタ用コイル供給電源、28…第一のE×B形フィルタ用電極印加電源、29…偏向増幅器、30…対物レンズ用電源、31…リターディング用電源、32…AD変換器、33…反射板、34…ブランカ、40…制御部、41……表示装置、42a、42b…画像記憶部、43…遅延回路、45…演算部,46…欠陥判定部,47…画像処理系,48…制御部、101…電子光学系、102…一次電子線、103…二次電子、104…三次電子。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a scanning charged particle microscope and similar devices, and more particularly to a charged particle optical system having high resolution and excellent secondary electron detection efficiency in a low acceleration region.
[0002]
[Prior art]
In order to improve the resolution of a scanning electron microscope, an optical system has been proposed in which a high acceleration voltage is set until just before the primary electron beam irradiates the sample, and the acceleration voltage is lowered during the sample irradiation. In this optical system, secondary electrons generated in the sample by electron beam irradiation are accelerated in the optical axis direction by a decelerating electric field of the primary electrons, so that the electric field (E) and the magnetic field (B) are orthogonal to each other. Japanese Patent Application Laid-Open No. 2-142045 discloses a configuration in which a B-type filter is used to enter a secondary electron detector disposed outside the optical axis. The E × B filter has a function of causing the primary electron beam to travel straight in the filter and deflecting the secondary electrons toward the detector. In Japanese Patent Laid-Open No. 2-142045, the influence on the primary electron beam due to the chromatic aberration generated by the first E × B filter for deflecting the secondary electrons is caused to be closer to the electron source than the first E × B filter. A configuration in which correction is performed by the second E × B filter arranged is described.
[0003]
[Problems to be solved by the invention]
In the above configuration, as shown in FIG. 4, the first E × B filter 17 and the second E × B filter 18 are disposed between the objective lens 13 and the object surface of the objective lens. There is a problem that the distance between the lens 12 and the objective lens 13 needs to be increased, and the total length of the electron optical system becomes long. Furthermore, since it is necessary to set the intensity of each E × B filter for the aberration correction by the inverse ratio of the distance to the object surface of the objective lens, the second E × B filter close to the object surface of the objective lens is used. It was necessary to set with large intensity. In order to avoid this, if the primary electron beam is made parallel by the condenser lens 12 in front of the objective lens 13, each E × B filter can be set with the same intensity. In order to use the magnification in the reduction system, there has been a problem that the optical system dimensions have to be further increased.
[0004]
[Means for Solving the Problems]
The present invention corrects aberration even if the positional relationship between the first E × B filter 17 and the second E × B filter 18 is not disposed between the object surface and the image plane of the same lens. An object of the present invention is to realize an apparatus that can correct aberrations without setting the strength of the second E × B filter 17 large.
As shown in FIG. 5, it is assumed that the E × B filter 51 acts in a space of length Ld. The electric field strength E in the E × B filter is constant, and the electric field strength E in the E × B filter is Assuming that the Wien condition E = vB (v: velocity of electron beam) is established between the magnetic flux B acting at right angles, the image plane when the E × B filter 51 is arranged between the lens object surface and the lens. In the above deflection chromatic aberration d ca , La is the distance between the E × B filter and the object surface, M is the lens magnification, V 0 is the acceleration voltage of the primary electron beam passing through the E × B filter, and ΔV is The voltage fluctuation corresponding to the energy width of the primary electron beam is expressed by the following equation.
[0005]
[Expression 1]
Figure 0004103345
[0006]
Further, the deflection chromatic aberration d cb on the image plane when the E × B filter having the length Ld is disposed between the image planes of the lens is expressed by Lb as the distance between the E × B filter and the image plane. When put, it is expressed by the following formula.
[0007]
[Expression 2]
Figure 0004103345
[0008]
Therefore, as shown in FIG. 6, if a second E × B filter 18 having a length Ld2 is disposed between the image plane position of the condenser lens 12 and the condenser lens 12, the second E × B filter 18 is provided. There deflection aberration d c2 be generated in the image plane of the objective lens 13, equation (2) in an electric field intensity of the E2 second E × the B-type filter, a second E × B-type filter 18 and the condenser lens Lcb When the distance between the image plane 13 and Mo is the objective lens magnification, it is expressed by the following equation.
[0009]
[Equation 3]
Figure 0004103345
[0010]
On the other hand, the deflection chromatic aberration dc1 generated on the image plane of the objective lens 13 by the first E × B filter 17 having a length Ld1 disposed between the object surface of the objective lens 13 and the objective lens 13 is expressed by the following equation (1). Where E1 is the electric field strength in the first E × B filter 17 and the distance between the first E × B filter 17 and the object surface of the objective lens 13 is Loa.
[Expression 4]
Figure 0004103345
[0012]
From (Equation 3) and (Equation 4), the intensity ratio to the first second E × B filter is obtained.
[Equation 5]
Figure 0004103345
[0014]
If the orientations are set so as to act in opposite directions on the sample surface, it can be seen that chromatic aberration on the sample surface can be corrected. Thus, by disposing the second E × B filter 18 between the image plane position of the condenser lens 12 and the condenser lens 12, the distance between the condenser lens 12 and the objective lens 13 can be shortened. Thus, the overall length of the electron optical system can be shortened.
If the first and second E × B filters are arranged at positions where Ld1 = Ld2 and the relationship Loa = Lcb is established, the strengths of the first and second E × B filters are set to be approximately equal. Therefore, aberration correction can be performed without setting the strength of the second E × B filter large as in the conventional example.
Further, as shown in FIG. 7, if the second E × B filter 18 is arranged on the electron source side from the condenser lens 12, the magnification of the condenser lens can be further reduced, so that the total length of the electron optical system can be reduced. It can be further reduced. That is, if the second E × B filter 18 is disposed between the condenser lens 12 and the object surface of the condenser lens 12, the second E × B filter 18 is generated on the image plane of the objective lens 13. The deflection chromatic aberration d cb is expressed by the following equation, where Lca is the distance between the second E × B filter 18 and the image plane of the condenser lens 12 and Mc is the magnification of the condenser lens.
[0015]
[Formula 6]
Figure 0004103345
[0016]
From (Equation 4) and (Equation 6), the intensity ratio of the first second E × B filter is calculated.
[Expression 7]
Figure 0004103345
[0018]
If the orientations are set so as to act in opposite directions on the sample surface, chromatic aberration on the sample surface can be corrected.
However, when the condenser lens 12 is a magnetic field type lens, a rotating action is generated in addition to the focusing lens action on the primary electron beam. That is, assuming that the optical axis direction of the magnetic lens is the z-axis and the magnetic flux density on the optical axis is B (z), the rotation angle φ generated by the magnetic lens is
[0019]
[Equation 8]
Figure 0004103345
[0020]
It is represented by Here, e is an elementary charge, and m is the mass of an electron.
Therefore, the second E × B type filter 18 generates a magnetic field and an electric field in an arbitrary direction with respect to the first E × B type filter, corrects the rotation angle by the magnetic lens, and deflects on the sample. If it is set to be in the opposite direction, the aberration can be corrected.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to examples.
A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a side view of the electron optical system. The electron optical system 101 includes a field emission electron source 10, an electron gun lens 11, a condenser lens 12, an objective lens 13, a deflector 15, a first E × B filter 17 and a second E × B filter 18. ing. The primary electron beam 102 emitted from the electron source 10 is focused and irradiated on the sample 1 by the condenser lens 12 and the objective lens 13 through a focusing lens action. The sample 1 is set to the retarding voltage Vr, and the primary electron beam is rapidly decelerated between the electrode 14 set to the ground potential and the sample 1. Reflected electrons reflected from the sample 1 or secondary electrons generated secondarily in the sample 1 are accelerated in the direction of the electron beam optical axis and then deflected in the direction of the detector 16 by the first E × B filter 17. Is directly detected by the detector 16. The deflection scanning of the electron beam is performed by controlling the electron beam by the control unit 40 by supplying a scanning signal sent via the deflection amplifier 29 to the deflector 15. At the same time, a deflection signal synchronized with electron beam scanning is supplied from the control unit 40 to the display device 41, and a sample scan image is supplied to the display device 41. The above is the basic configuration of the electron optical system.
The first E × B filter 17 and the second E × B filter 18 have an octopole shape as shown in FIG. The electrode has a configuration in which a magnetic material is wound in the same direction by a coil, and the electrode also serves as a magnetic pole. Further, by surrounding the first E × B filter 17 and the second E × B filter 18 with magnetic bodies 19 and 20 having a ground potential, respectively, an electric field and a magnetic field generated in the E × B filter are provided. In the vicinity of the E × B filter. Each coil of the first E × B filter 17 receives a coil current from the first E × B filter coil power supply 27 and each electrode receives a first E × B filter electrode application power supply 28. An electrode voltage is supplied. The distribution of voltage and current to each electrode and coil is distributed as a function of currents Ix, Iy and Vx, Vy as shown in FIG. If each intensity ratio is set to Vy / Vx = Iy / Ix = tan θ, the secondary electrons can be deflected in the θ direction from the x-axis in the figure.
Here in the figure [0022]
[Equation 9]
Figure 0004103345
[0023]
If so, a condition with less high-order deflection aberration can be obtained.
The intensity and direction of the first E × B filter 17 are determined so that secondary electrons are deflected in the detector direction. Assuming that the direction of the detector is the x direction in FIG. 2, if Vy and Iy in the figure are substantially zero, the secondary electrons are deflected in the direction of the detector. The relationship between Vx and the deflection angle of the secondary electrons depends on the energy of the secondary electrons entering the E × B filter 17, that is, the retarding voltage Vr applied to the sample. The relationship between the retarding voltages Vr and Vx with respect to the desired deflection angle obtained from the above is input to the control unit 40. As for the relationship between Ix and Vx, a value obtained from the electron beam trajectory calculation result is input to the control unit 40 in advance or manually or automatically so that the deflection amount on the sample on the image of the display device 41 is completely canceled. Is set automatically.
The strength of the second E × B filter 18 is obtained from (Equation 4). Here, the object plane position of the primary electron beam 102 to the condenser lens 12, that is, the image plane position of the electron gun lens 11, is the operating condition of the electron gun lens, that is, the extraction voltage VE and the primary electron for obtaining a desired emission current. It is uniquely determined from the line acceleration voltage V0. Data on the relationship between the image plane position of the electron gun lens and VE and V0 obtained in advance by experiment or lens calculation is input to the control unit 40. Data on the object plane position of the objective lens, that is, the image plane position of the condenser lens is also obtained in advance from information such as the acceleration voltage V0, the retarding voltage Vr, the intensity of the condenser lens 12 and the intensity of the objective lens 13, for example. Data on the relationship between the strength of the objective lens, the acceleration voltage V0, the retarding voltage Vr, and the objective lens object surface position is input to the control unit 40. The operation direction of the second E × B filter 18 depends on the strength of the condenser lens. This angle is obtained by calculation from (Equation 8) or on the image of the display device. On the image, the second E × B filter 18 is also applied with only the electric field under the condition that the first E × B filter 17 is applied with only the electric field, and the second E × B filter 18 operates in the opposite directions. The distribution of each electrode and each coil of the B-type filter 18 may be determined. For example, if the direction in which the first and second filters act is rotated by θ, the intensity ratio Vy / Vx = tan θ may be set to Vx and Vy.
From the above, the strength of the first E × B filter 17 from the acceleration voltage V0 and the retarding voltage Vr is increased from the control unit 40 to the first E × B filter coil power supply 27 and the first E × B filter electrode. It is set via the applied power supply 28. Further, the strength of the second E × B filter 18 is determined from the control unit 40 based on the extraction voltage VE, the strength of the condenser lens 12, and the strength of the objective lens 13, the second energy filter coil power supply 23, and the second E × B shape. It is set via the filter electrode application power source 24.
With the above operation, the aberration of the first E × B filter generated when the secondary electrons are deflected toward the detector can be corrected by the second E × B filter.
In the second embodiment of the present invention, the present invention is applied to circuit inspection of a semiconductor pattern and will be described with reference to FIG. The detector 16 is above the objective lens 13, and the output signal of the detector 16 is amplified by the preamplifier 26, converted into digital data by the AD converter 32, and input to the image processing unit 47. Operation commands and operation conditions of each part of the inspection apparatus are input / output from the control unit 48.
Although a field emission electron source is used as the electron source 10, it is preferable to use a diffusion replenishment type thermal field emission electron source particularly for pattern circuit inspection. As a result, a comparative inspection image with little brightness fluctuation can be obtained, and the electron beam current can be increased, so that high-speed inspection is possible. A negative voltage can be applied to the sample 1 by a high voltage power supply 31 for retarding. By adjusting the voltage of the high voltage power supply 31 for retarding, it becomes easy to adjust the electron beam irradiation energy to the sample 1 to an optimum value.
In order to acquire an image of the sample 1, the sample 1 is irradiated with a finely focused electron beam to generate secondary electrons 103, which are detected in synchronization with the scanning of the primary electron beam 102 and the movement of the stage. Get an image of the surface. Sample 1 is set to a negative potential, and the primary electron beam is rapidly decelerated immediately before sample 1. Reflected electrons reflected from the sample 1 or secondary electrons generated secondarily in the sample 1 are accelerated in the direction of the electron beam optical axis, pass through the objective lens, and then detected by the first E × B filter 17. The third electron 104 generated from the reflecting plate 33 is detected by the detector 16 after being deflected in 16 directions and entering the reflecting plate 33. By detecting the tertiary electrons 104 from the reflecting plate 33 arranged in the vicinity of the optical axis, it is possible to detect even when the deflection angle of the secondary electrons is small, and the detector does not have to be close to the optical axis. As a result, the space in the optical axis direction of the detector can be reduced. The second E × B filter 18 is disposed between the condenser lens 12 and the image plane position of the condenser lens 12. Data on the object plane position of the objective lens, that is, the image plane position of the condenser lens is obtained in advance from information such as the acceleration voltage V0, the retarding voltage Vr, the intensity of the condenser lens 12 and the intensity of the objective lens 13, for example. From the information on the intensity of the objective lens, the acceleration voltage V0, and the retarding voltage Vr, the control unit 40 determines the object lens object surface position, and the second E × B filter 18 and the first E × are obtained from (Equation 5). The intensity ratio of the B-type filter 17 is determined and set. In this embodiment, since the magnetic lens is not disposed between the two E × B filters, the operation direction of the second E × B filter 18 is the operation direction of the first E × B filter 17. Is set to be approximately equal.
A high inspection speed is essential for the automatic inspection described in the present invention. In such an inspection apparatus, it is the SN of the detected image that determines the inspection speed. If high-efficiency secondary electron detection can be achieved in this embodiment, the inspection speed can be improved. In this embodiment, an image having a good SN can be formed by scanning once or several times a large current electron beam of, for example, 100 nA, which is about 100 times or more that of a normal SEM. For example, when a single image is captured at 1000 × 1000 pixels in 10 msec, an image with an SN ratio of 20 or more can be obtained.
The image signal is delayed for one image, and image comparison evaluation is performed in synchronization with the capture of the next image to search for defects on the circuit board. That is, the image processing system 47 performs comparative evaluation between the image stored in the image storage unit 42 a and the image stored in the image storage unit 42 b with a delay of one image from the delay circuit 43. For example, the calculation unit 45 has a function of calculating the difference between both images, and stores the address P of an image in which the difference between both images exceeds a certain threshold in the defect determination unit 46, thereby performing defect inspection.
In the present invention, the first E × B filter 17 is disposed between the objective lens 13 and the objective lens object surface. However, the first E × B filter 17 is disposed between the objective lens 13 and the objective lens image surface, for example. Even if it is arranged, the second E × B filter 18 is arranged between the objective lens 13 and the objective lens object surface, for example, and is set by the intensity ratio given by (Equation 1) and (Equation 2). The aberration of one E × B filter 17 can be corrected. That is, the second E × B filter 18 is placed at any position other than the space between the focusing lens where the first E × B filter 17 is disposed and the image plane or object plane position of the focusing lens. Even if arranged, the aberration can be corrected.
Although the present invention has been described with respect to the electron beam apparatus, it is needless to say that the present invention can be applied to a charged particle beam apparatus such as an ion beam without being limited thereto. However, in the case of a charged particle beam having a positive charge, the deceleration voltage needs to be a positive value.
[0024]
【The invention's effect】
As described above, according to the present invention, there is an effect that a charged particle beam apparatus capable of obtaining a high resolution and high secondary electron detection efficiency even with a low acceleration voltage can be realized with a shorter electron optical system size.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a first embodiment of the present invention.
FIG. 2 is a configuration diagram of an E × B filter according to the first embodiment of the present invention.
FIG. 3 is a configuration diagram of a second embodiment of the present invention.
FIG. 4 is a conventional configuration diagram.
FIG. 5 is a diagram for explaining the operation of an E × B filter.
FIG. 6 is a diagram showing a first arrangement of an E × B filter of the present invention.
FIG. 7 is a diagram showing a second arrangement of the E × B filter of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sample, 2 ... XY stage, 3 ... Rotary stage, 10 ... Electron source, 11 ... Electron gun lens, 12 ... Condenser lens, 13 ... Objective lens, 14 ... Electrode, 15 ... Deflector, 16 ... Detection 17 ... first E × B filter, 18 ... second E × B filter, 19, 20 ... magnetic material, 21 ... drawing voltage control power supply, 22 ... acceleration voltage control power supply, 23 ... second E * B type filter coil power supply, 24 ... second E * B type filter electrode power supply, 25 ... condenser lens power supply, 26 ... preamplifier, 27 ... first E * B type filter coil power supply , 28 ... first E × B filter electrode application power supply, 29 ... deflection amplifier, 30 ... objective lens power supply, 31 ... retarding power supply, 32 ... AD converter, 33 ... reflector, 34 ... blanker, 40 ... Control unit, 41 ... Display 42a, 42b ... image storage unit 43 ... delay circuit 45 ... calculation unit 46 ... defect determination unit 47 ... image processing system 48 ... control unit 101 ... electron optical system 102 ... primary electron beam 103 ... secondary electrons, 104 ... tertiary electrons.

Claims (4)

荷電粒子源と前記荷電粒子源から出た第一の荷電粒子線を絞って試料に照射する対物レンズ手段と、
前記対物レンズ手段と前記電子源の間に配置され照射系の倍率を制御するコンデンサレンズと、
前記第一の荷電粒子線の前記対物レンズに対する物面と前記対物レンズの間に配置されて前記試料から発生した二次荷電粒子線を前記第一の荷電粒子線から分離させる第一のフィルタと、
前記コンデンサレンズと前記コンデンサレンズの物面の間に配置された、前記第一のフィルタで発生した第一の荷電粒子線の収差を補正する第二のフィルタとを備え
前記コンデンサレンズは、磁界型レンズであって、
前記第二のフィルタは、前記磁界型レンズの回転作用により生じる回転角を補正するために、前記第一の荷電粒子線の前記試料上の偏向方向と反対方向に偏向させるフィルタであることを特徴とする荷電粒子線装置。
Objective lens means for focusing the first charged particle beam emitted from the charged particle source and the charged particle source to irradiate the sample;
A condenser lens disposed between the objective lens means and the electron source to control the magnification of the irradiation system;
A first filter disposed between an object surface of the first charged particle beam with respect to the objective lens and the objective lens and separating a secondary charged particle beam generated from the sample from the first charged particle beam; ,
And a secondary filter for correcting the aberration of the disposed between the object plane of the condenser lens and the condenser lens, before Symbol first charged particle beam generated by the first filter,
The condenser lens is a magnetic field type lens,
The second filter is a filter that deflects the first charged particle beam in a direction opposite to a deflection direction on the sample in order to correct a rotation angle caused by a rotating action of the magnetic lens. A charged particle beam device.
請求項1に記載の荷電粒子線装置において、The charged particle beam apparatus according to claim 1,
前記第一のフィルタおよび前記第二のフィルタが、E×B形フィルタであることを特徴とする荷電粒子線装置。The charged particle beam device, wherein the first filter and the second filter are E × B filters.
請求項2に記載の荷電粒子線装置において、The charged particle beam apparatus according to claim 2,
前記E×B形フィルタは、八極形状であることを特徴とする荷電粒子線装置。The charged particle beam device, wherein the E × B filter has an octupole shape.
請求項1から3のいずれか1項に記載の荷電粒子線装置において、
前記荷電粒子源が電子源、前記第一の荷電粒子線が一次電子線、前記二次荷電粒子線が二次電子であることを特徴とする荷電粒子線装置。
In the charged particle beam device according to any one of claims 1 to 3,
A charged particle beam apparatus, wherein the charged particle source is an electron source, the first charged particle beam is a primary electron beam, and the secondary charged particle beam is a secondary electron.
JP2001176477A 2001-06-12 2001-06-12 Charged particle beam equipment Expired - Lifetime JP4103345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001176477A JP4103345B2 (en) 2001-06-12 2001-06-12 Charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001176477A JP4103345B2 (en) 2001-06-12 2001-06-12 Charged particle beam equipment

Publications (3)

Publication Number Publication Date
JP2002367552A JP2002367552A (en) 2002-12-20
JP2002367552A5 JP2002367552A5 (en) 2006-04-06
JP4103345B2 true JP4103345B2 (en) 2008-06-18

Family

ID=19017456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001176477A Expired - Lifetime JP4103345B2 (en) 2001-06-12 2001-06-12 Charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP4103345B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415162B (en) 2005-03-03 2013-11-11 Toshiba Kk Mapping projection type electron beam apparatus and defects inspection system using such apparatus
US7462828B2 (en) * 2005-04-28 2008-12-09 Hitachi High-Technologies Corporation Inspection method and inspection system using charged particle beam
US8067732B2 (en) 2005-07-26 2011-11-29 Ebara Corporation Electron beam apparatus
JP2007242490A (en) * 2006-03-10 2007-09-20 Ebara Corp Aberration correction optical device for charged particle beam optical system, and optical system
JP2007335125A (en) 2006-06-13 2007-12-27 Ebara Corp Electron beam device
JP4920385B2 (en) * 2006-11-29 2012-04-18 株式会社日立ハイテクノロジーズ Charged particle beam apparatus, scanning electron microscope, and sample observation method
JP5972663B2 (en) * 2012-05-15 2016-08-17 株式会社日立ハイテクノロジーズ Electron beam application apparatus and electron beam adjustment method
JP6002470B2 (en) 2012-06-28 2016-10-05 株式会社日立ハイテクノロジーズ Charged particle beam equipment
WO2016182948A1 (en) * 2015-05-08 2016-11-17 Kla-Tencor Corporation Method and system for aberration correction in electron beam system
US10090131B2 (en) * 2016-12-07 2018-10-02 Kla-Tencor Corporation Method and system for aberration correction in an electron beam system

Also Published As

Publication number Publication date
JP2002367552A (en) 2002-12-20

Similar Documents

Publication Publication Date Title
US6265719B1 (en) Inspection method and apparatus using electron beam
JP3441955B2 (en) Projection type charged particle microscope and substrate inspection system
JP4620981B2 (en) Charged particle beam equipment
JP4236742B2 (en) Scanning electron microscope
JP3774953B2 (en) Scanning electron microscope
US6184526B1 (en) Apparatus and method for inspecting predetermined region on surface of specimen using electron beam
US8604430B2 (en) Method and an apparatus of an inspection system using an electron beam
JP4215282B2 (en) SEM equipped with electrostatic objective lens and electrical scanning device
EP3782182A1 (en) Low-energy scanning electron microscope system, scanning electron microscope system, and specimen detection method
JP2001273861A (en) Charged beam apparatus and pattern incline observation method
JP3932894B2 (en) Electron beam equipment
JP2001093455A (en) Electron beam device
US7034297B2 (en) Method and system for use in the monitoring of samples with a charged particle beam
US20110139983A1 (en) Charged corpuscular particle beam irradiating method, and charged corpuscular particle beam apparatus
JP3966350B2 (en) Scanning electron microscope
US7095023B2 (en) Charged particle beam apparatus, charged particle detection method, and method of manufacturing semiconductor device
JP2004342341A (en) Mirror electron microscope, and pattern defect inspection device using it
JP4103345B2 (en) Charged particle beam equipment
JP4359232B2 (en) Charged particle beam equipment
US6653632B2 (en) Scanning-type instrument utilizing charged-particle beam and method of controlling same
JP5478683B2 (en) Charged particle beam irradiation method and charged particle beam apparatus
JP4310824B2 (en) Electron beam inspection device
JPH1167134A (en) Inspection device
US20040000640A1 (en) Scanning electron microscope and method of controlling same
JP4179369B2 (en) Scanning electron microscope

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R151 Written notification of patent or utility model registration

Ref document number: 4103345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

EXPY Cancellation because of completion of term